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ABSTRACT

Structured pruning methods which are capable of delivering a densely pruned net-
work are among the most popular techniques in the realm of neural network prun-
ing, where most methods prune the original network at a filter or layer level. Al-
though such methods may provide immediate compression and acceleration ben-
efits, we argue that the blanket removal of an entire filter or layer may result in
undesired accuracy loss. In this paper, we revisit the idea of kernel pruning (to
only prune one or several k × k kernels out of a 3D-filter), a heavily overlooked
approach under the context of structured pruning. This is because kernel pruning
will naturally introduce sparsity to filters within the same convolutional layer —
thus, making the remaining network no longer dense. We address this problem
by proposing a versatile grouped pruning framework where we first cluster filters
from each convolutional layer into equal-sized groups, prune the grouped kernels
we deem unimportant from each filter group, then permute the remaining filters to
form a densely grouped convolutional architecture (which also enables the parallel
computing capability) for fine-tuning. Specifically, we consult empirical findings
from a series of literature regarding Lottery Ticket Hypothesis to determine the op-
timal clustering scheme per layer, and develop a simple yet cost-efficient greedy
approximation algorithm to determine which group kernels to keep within each fil-
ter group. Extensive experiments also demonstrate our method often outperforms
comparable SOTA methods with lesser data augmentation needed, smaller fine-
tuning budget required, and sometimes even much simpler procedure executed
(e.g., one-shot v. iterative). Please refer to our GitHub repository for code.

1 INTRODUCTION

The applications of convolutional neural networks (CNNs) have demonstrated proven success in
various computer vision tasks (Voulodimos et al., 2018). However, with modern CNN architectures
being increasingly deeper and wider, over-parameterization has become one of the major challenges
of deploying such models to devices with limited computational resources and memory capacity
(Frankle & Carbin, 2019). Therefore, the study of network pruning — the technique of removing
redundant weights from the originally trained network without significantly sacrificing accuracy —
has been an important subject both for practical concerns (Mozer & Smolensky, 1989) and better
understanding of the properties and mechanisms of neural networks (Arora et al., 2018).

In the realm of CNN pruning, a spectrum of techniques have been studied where the two ends are
populated by structured pruning and unstructured pruning methods (Mao et al., 2017). Methods
from the former end often propose to remove redundant weights in groups while following some
geometrical constraints — such as removing a certain filter or layer. The methods from the latter
end, on the other hand, prune the network with a more fine-grained view where they evaluate every
weight individually. Yet, there are many other methods lay in between of the two ends. Methods
that are more “unstructured” are believed to be capable of yielding better accuracy retention with
a commensurate amount of parameters pruned, due to having a higher degree of freedom on how
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and where to introduce sparsity to the originally dense network. Empirical findings also support this
claim (Liu et al., 2019; Mao et al., 2017).

Despite having advantages on accuracy retention, the resultant networks from methods closer to the
unstructured end will be more sparse and less regulated on where to introduce sparsity. It may not
provide actual compression and acceleration without relying on custom-indexing, sparse convolution
libraries, or even dedicated hardware devices; thus, limits the deployability of such methods (Mao
et al., 2017). Meanwhile, methods closer to the structured end, by preserving a more regulated
resultant network, are more likely to be library/hardware-friendly. The most deployable structured
pruning method may deliver a densely resultant network and therefore gain immediate compression
and acceleration benefits. We denote this kind of pruning method as densely structured.

Naturally, many scholars want to develop new methods within the realm of densely structured prun-
ing but with better accuracy retention. The majority of densely structured pruning methods focus
on pruning the original network at a filter or layer level. We argue that the blanket removal of an
entire filter or layer may harm the representation power of the network and result in undesired ac-
curacy loss — as removing a filter would consequently remove all feature maps generated by such
filter. Even worse, removing a layer would eliminate more feature maps and even face the danger of
layer-collapse, a phenomenon of having an untrainable pruned network due to premature pruning of
an entire layer (Tanaka et al., 2020).

In this paper, we revisit the idea of kernel pruning (to only prune one or several k×k kernels from a
3D-filter, instead of an entire one) as an alternative and less aggressive pruning approach with higher
degree of freedom. We hypothesize that by not removing the entire filter, the representation power
of the original network will be better preserved. Although the idea of kernel pruning is nothing
too novel (as it is simply a special case of individual weights pruning with 100% of weights of a
kernel pruned), it is mostly applied under the context of unstructured pruning or structured pruning
methods which may not deliver a dense pruned network (Mao et al., 2017; Ma et al., 2020). This is
because a direct implementation of kernel pruning with no constraint would introduce sparsity across
the network and therefore make the pruned network no longer dense. We address this problem by
proposing a versatile grouped pruning framework, where we:

1. Cluster similar filters from each convolutional layer into a (predefined) number of equal-
sized filter groups.

2. For each filter group, identify a certain portion of grouped kernels to prune according to the
required pruning ratio.

3. Permute the remaining filters to form a densely grouped convolutional architecture accord-
ing to the number of groups used in step 1.

Like most other post-train grouped pruning methods, we face the challenge of determining which
clustering schemes and which importance metrics to use in step 1 and 2 of the above procedure.
Upon investigations and experiments, we discovered that a classical clustering scoring system (e.g.,
the Silhouette score) might not capture the better clustering scheme in regard to accuracy retention.
Yet many filter importance metrics require sophisticated procedures, which are not computationally
friendly or easy to execute when applied at a kernel level. We address the first challenge by consult-
ing model-generated information — in this case, the empirical findings on Lottery Ticket Hypothesis
(LTH) and related literature on weights shifting — to develop a scoring system that identifies the
optimal clustering scheme among options per each convolutional layer (Frankle & Carbin, 2019;
Renda et al., 2020). For the second challenge, we design a simple and cost-efficient greedy algo-
rithm with multiple restarts to generate multiple candidate kernel selection queues and identify the
one queue where the preserved kernels are most “distinctive” from each other yet “similar” to the
pruned kernels. The main contributions and advantages of our method are:

• Bring back an overlooked approach: We brought attention to the heavily overlooked
approach of kernel pruning under the context of densely structured pruning.

• Simple but effective — a vanilla adaptation of our framework outperforms sophis-
ticated variants of other comparable frameworks (e.g., filter pruning): Even by just
applying well-understood classical mathematical tools, extensive experiments demonstrate
our method outperforms comparable SOTA methods across different networks and datasets.

2



Published as a conference paper at ICLR 2022

Additionally, our method often needs less data augmentation, a smaller fine-tuning budget,
and it executes without requiring any custom retraining, special fine-tuning, or iterative
prune-train cycles — which is rare for the approaches relying on LTH-related studies.

• Better longevity: We developed a framework that is compatible with further-
developed/discovered clustering schemes and inductive biases, or more advanced variations
upon them. This overcomes one of the major drawbacks of many filter pruning methods:
as most of them propose different filter importance metrics that are largely incompatible
with each other either in terms of their procedures or computational requirements.

• Improved deployability: The resultant network of our method is structured as a densely
grouped convolution, which enables parallel computing capability and greatly increases the
practical deployability of our methods: as we can now share the required computation and
memory footprint across multiple end-user devices, where most of them have very limited
said resources individually (e.g., IoT devices, mobile phones, and wearable technologies).

• General impact on LTH and beyond network pruning: Please refer to Section 5.

2 RELATED WORK

Many prior arts have explored the possibility of obtaining a smaller model with comparable perfor-
mance by removing redundant weights (Zhu & Gupta, 2018; Han et al., 2016), filters (Molchanov
et al., 2017; Yu et al., 2018; He et al., 2019; Wang et al., 2019a), layers (Wang et al., 2019b; Lin
et al., 2019), image input (Howard et al., 2017; Han et al., 2020), or from all three dimensions (Wang
et al., 2021). It is clear that filter pruning attracts the most attention among all structured pruning
approaches.

Our method is inspired by grouped convolution, a widely adopted convolutional architecture which
could be implemented efficiently on common devices (Iandola et al., 2017). Although kernel prun-
ing used together with filter clustering is not a popular trend, we have seen such a combination in
work like Yu et al. (2017). However, the proposed method by Yu requires iterative analysis of many
different intermediate feature maps per layer, involves a complex knowledge distillation application
during the fine-tuning stage, and lacks comparable experiment results to recent pruning literature.
Where our method (and concurrent work like Zhang et al. (2022)) provides a much cleaner adap-
tation of the abovementioned combination that delivers beyond-SOTA performance with a straight-
forward one-shot pruning and standard fine-tuning procedure. In addition, our method consults em-
pirical findings on the lottery ticket hypothesis and its derived literature regarding weights shifting
(Frankle & Carbin, 2019; Renda et al., 2020; Zhou et al., 2019), and we propose a novel greedy
kernel pruning algorithm that is again simple, efficient, yet effective — more on this in Section 3.

3 PROPOSED METHOD

3.1 PRELIMINARIES

Assume a convolutional neural network W has L convolutional layers, we denote the W ` to be
the `-th convolutional layer of W (for ` ∈ {Z+ | [1, L]}). Therefore, we shall have a 4-D tensor
W ` ∈ RC`out×C

`
in×H

`×W `

where C`
out represents the number of filters in W ` (also known as the

number of output channels in some literature), C`
in represents the number of kernels per filter (a.k.a.

number of input channels), and H` ×W ` represents the size of each kernel.

The overall procedure of our method can be mainly divided into four stages: 1) Clustering filters into
n equal-sized groups, where the best clustering scheme for each convolutional layer is determined
using the tickets magnitude increase score derived from prior arts on lottery ticket hypothesis and
weight-shifting; 2) Evaluating several candidate grouped kernel pruning strategies generated by a
greedy approximation algorithm with multiple restarts, where the strategy with preserved grouped
kernels that are most distinctive from each other, yet most similar to the pruned grouped kernels
gets selected; 3) Permuting the preserved filters to form a grouped convolutional architecture with n
groups; 4) Fine-tuning the pruned and grouped network to recover accuracy lost from pruning.
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Figure 1: Steps of our method
3.2 CLUSTERING FILTERS INTO GROUPS

The first step of our method is to cluster filters from the same convolutional layer into n equal-sized
groups. Known that for a layer W ` we have C`

out filters, there shall be C`
out/n filters inside each

equal-sized filter group. We denote F `
i to be the i-th filter in W ` (namely, F `

i = W `
[i,:,:,:]) for

i ∈ {Z+ | [1, C`
out]}. Filter clustering is a maturely adopted technique in network pruning since it

is a widely accepted assumption that when similar filters are clustered together, the representation
power of some filters can be covered by the rest of the filters in the same group (which therefore
enables the potential of pruning). Additionally, this technique drastically decomposes the scope of
the problem, as we may now proceed to evaluate in a group-by-group fashion instead of evaluating
all of the filters from W ` at the same time.

Many prior arts have developed methods on filter clustering with linearity assumptions (Guo et al.,
2020), via retraining with a custom loss function (Wu et al., 2018), or through an iterative process
(Yu et al., 2017). We argue that since each filter F `

i is a tensor of C`
in ×H` ×W `, considerations

regarding non-linearity and high-dimensional relationships should be added. Therefore, we utilize
the following three combinations of proven mathematical tools on dimensionality reduction and
clustering in order to cluster filters from each layer into n equal-sized groups.

3.2.1 AVAILABLE CLUSTERING SCHEMES

To reduce the dimension of filters in W ` and cluster them into n equal-sized groups, we utilize the
following three sets of methods: K-PCA + k-Means, Spectral Clustering + k-Means, and t-SNE
+ DBSCAN (with slight modifications done to obtain the desired cluster size and number). Since
all five methods here have been maturely studied, we will omit the introduction of these methods;
please refer to section A.5 for details. We denote each set of methods as a clustering scheme.

3.2.2 DECIDE OPTIMAL CLUSTERING SCHEME PER LAYER WITH TMI SCORE

With the three proposed and many other unimplemented clustering schemes, one natural question
to ask is how are we suppose to decide the optimal clustering scheme? And at what scale should
we make such a decision? The latter question was relatively easier to answer as we already set on
clustering filters into groups in a layer-by-layer fashion, so it is reasonable enough to find out the
most suitable clustering scheme for each layer. But to address the former question, we need to find a
way to quantify the “quality” of proposed clustering results. Mathematicians have provided us with
classical tools such as the Silhouette score to measure the quality of clusters. However, experiment
results suggest such tools can hardly identify the better cluster method under the context of accuracy
retention (A.1.1).

We hypothesize that this is because tools like the Silhouette score focus on properties regarding
clusters themselves — such as distances between clusters, or cohesion within each cluster — while
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accuracy retention relies on filter importance, or balance between filter groups under the context of
the network. Therefore, we decide to introduce network-induced information to help us quantify the
quality of different clustering results: where we consult empirical findings from a series of literature
regarding Lottery Ticket Hypothesis and weights shifting.

Background on Lottery Ticket Hypothesis, Weights Shifting, and Weights Rewinding For a
dense convolutional neural network W initialized with weights of W0, the conventional post-train
pruning procedure has three steps:

1. Train the proposed network for t epochs. Where we denote the network has weights of
Wk at the k-th epoch for 0 ≤ k ≤ t.

2. Prune the network with weights Wt according to the defined pruning ratio and achieve
subnetwork W

′

t , where W
′

t ⊂Wt.

3. Fine-tune the network with W
′

t and f more epochs to recover accuracy.

The Lottery Ticket Hypothesis claims that instead of fine-tuning upon the subnetwork W
′

t , there
exists a subnetwork W

′

k (defined as W
′

t but replaced with its counterpart weights from Wk) that,
when trained in isolation for f more epochs, may match or outperform the test accuracy of the fine-
tuned W

′

t achieved from step 3 above. This W
′

k is therefore known as the winning ticket (Frankle
& Carbin, 2019).

A vast amount of research has been done to demonstrate the existence of winning tickets across
different networks and datasets, making the lottery ticket hypothesis one of the most tested inductive
biases among neural networks (Renda et al., 2020). Scholars have additionally investigated the
relationship between the winning ticket’s weights and final weights in regard to accuracy retention.
Zhou et al. (2019) did one of the most thorough experiments on exploring such relationship by
deploying nine different zero mask criteria related to initial weights, final weights, and weights
shifting during training. They concluded that ||wt| − |w0|| (where wt, w0 respectively represent
the same weight in Wt and W0), the magnitude increase of a weight at its initialization and after
training, has demonstrated most significant positive correlation with accuracy retention.

Note that the Zhou et al. (2019) experiments were conducted under the assumption that the winning
ticket exists at W0. This is because, for early or even concurrent arts on the lottery ticket hypothesis,
scholars have their disagreements on whether to reinitialize the weights of W

′

t to their initial values
(namely, k = 0 for k in W

′

k) (Frankle & Carbin, 2019), to near initialization (0 < k � t) (Renda
et al., 2020), or just to reset randomly (Liu et al., 2019). However, with more comprehensive exper-
iments conducted, the findings reveal there are multiple winning tickets that exist within a range of
epochs starting from near initialization: such that for any k where 0 < k1 ≤ k ≤ k2 < t, W

′

k can
be a winning ticket (with k1 being close to 0). This technique is referred as weights rewinding and
we denote the range of [k1, k2] as the tickets window (Renda et al., 2020).

Ticket Magnitude Increase scoring system Based on the fact that a winning ticket may occur
at near initialization but not necessary exactly at initialization, we slightly modify the magnitude
increase criteria from Zhou et al. (2019) by replacing the initialization weights as the ticket weights.
Thus, we define the ticket magnitude increase score (hereinafter “TMI score”) as ||wt| − |wk|| for
0 < k � t (where wt, wk respectively represent the same weight in Wt and Wk). Since we aim
to use such scoring system to govern the clustering quality of filter groups, we further expand this
scoring system from individual weight to a filter-level. For a filter F `

i ∈ RC`in×H
`×W `

, we denote
the weight at (h,w) index from the c-th kernel of F `

i as W `
[i,c,h,w]; so the TMI score for filter F `

i in
regard to a winning ticket at the k-th epoch should be defined as the following.

TMI(F `
i , k) =

C`in∑
c

H`∑
h

W `∑
w

(||W `
t[i,c,h,w]

| − |W `
k[i,c,h,w]

||). (1)

Similarly, for a filter group g` of {F `
i ,F

`
j , . . . }, its TMI score would be:
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TMI(g`, k) =
∑
gi∈g`

TMI(F `
gi , k). (2)

Qualifying cluster results with TMI scores With the TMI score for a filter group defined, the
next question to address is what makes a good clustering result in regard to TMI scores? We already
observed that tools like the Silhouette score could not capture the better clustering result in terms
of accuracy retention, and we hypothesized that this is due to the lack of attention on filter impor-
tance and balance between filter groups. Since Zhou et al. (2019) has established the relationship
between better accuracy retention and weights with larger magnitude increase, we expect such re-
lationship will expand to a filter level where filters with large TMI scores may help on accuracy
retention and therefore be deemed “more important.” We confirm such assumption in A.4.1.

In terms of the balance between multiple filter groups — with each filter’s TMI score being an
indicator of its importance — we would prefer clustering results where all filter groups have a
similar TMI score. As if one filter group’s TMI score is significantly larger than another filter group,
the former group will presumably contain more “important filters” than the latter group. When
we proceed to prune the same ratio of grouped kernels out of both groups, the network will lose
more “important kernels” and therefore damage the accuracy retention. In other words, we want to
minimize the intervals between the TMI scores of all filter groups. So for a clustering result G`,
assume g`

i , g
`
j , ..., g

`
n−1, g

`
n are the n filter groups of G` sorted in descending order according to

their TMI scores. We denote the intervals of G` with respect to winning ticket k as:

Interval(G`, k) = [TMI(g`
i , k)− TMI(g`

j , k), . . . , TMI(g`
n−1, k)− TMI(g`

n, k)], (3)

where the clustering result G` = arg minG`(Sum[Interval(G`, k)]) is preferred. To further identify
the clustering result with the most balanced filter groups in terms of TMI scores, we also want to
minimize the variance of intervals between the TMI scores of all filter groups. By combining the
two heuristics with a balancing parameter α, the overall scoring system for a clustering result G` is
defined as:

Score
filters clustering

(G`, k) = R(Sum[Interval(G`, k)]/(n− 1)) + α ·R(Var[Interval(G`, k)]), (4)

where the function R denotes the ranking of the current G` against other proposed clustering re-
sults (for ranking in an ascending order). For example, if clustering result G` has the smallest
Sum[Interval(G`, k)] among all proposed clustering results, thenR(Sum[Interval(G`, k)]) = 1. We
choose to use rank instead of the raw value as we are only interested in if one clustering result is
better than another on one particular criterion (interval mean or interval variance), but not by how
much. Therefore, by projecting both criteria to rank indices, we avoid the imbalance between the
raw values of the two criteria. The arg min of this Equation 4 yields the best G`.

Increase robustness with multiple ticket evaluations Now we defined how to identify the pre-
ferred clustering scheme from all proposed G`s in layer W `, the last challenge is to find the winning
ticket k for TMI score calculations. Unfortunately, finding the winning ticket requires an extremely
computationally intensive process called iterative magnitude pruning, in which multiple training and
pruning cycles are involved (Frankle et al., 2020). To make matters worse, since we know that there
are often multiple winning tickets available from the training process (Renda et al., 2020), picking
one ticket but not the other will potentially yield a different set of preferred clustering schemes for
the network. This makes the k both a hard-to-find task and a sensitive parameter to tune.

We address both challenges by relying on the same finding from Renda et al. (2020), which demon-
strates that for any k where 0 < k1 ≤ k ≤ k2 < t, W

′

k can be a winning ticket. This tickets window
[k1, k2] is shown to be robust for the similar models across different datasets and pruning methods.
Thus, we can decide which model we will prune on, identify its tickets window by consulting ex-
periment results from Renda et al. (2020), and truncate some epochs in such window to conduct
multiple evaluations. The optimal clustering scheme for W ` will be the one that most often yield
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as the preferred clustering scheme per different k settings1. By doing this, we first avoid searching
for the winning ticket k, which greatly reduces the computational power needed to implement our
method. Secondly, it increases the robustness of our method, since the optimal clustering scheme
per layer is no longer sensitive to the choice of k. Last, granted the wide range of [k1, k2] observed
from most networks, practically we don’t even need to search for the exact (k1, k2) pair; an ap-
proximated guess with a reasonable overlap with the ideal (k1, k2) would often suffice. The kind of
tolerance, combined with the proven generalizability of winning tickets across different tasks, mod-
els, and datasets (Morcos et al., 2019), with more efficient methods of finding the winning tickets
become available (Tanaka et al., 2020; You et al., 2020). Our proposed method can also be applied
to experiments outside of Renda et al. (2020).

3.3 EVALUATE CANDIDATE PRESERVED GROUPED KERNEL QUEUES

With filters of W ` grouped into filter groups {g`
1, g

`
2, ..., g

`
n}, we will carry out the pruning proce-

dure within each filter group. Let Kg`

i be the i-th grouped kernel in filter group g` (for 1 ≤ i ≤ C`
in)

such that Kg`

i is the collection of the i-th kernels from every filter in g`. The pruning of a filter group
g` can be viewed as the task of identifying a set group kernels in g` that needs to be preserved. To
start off such identification, we first hypothesize a set of grouped kernels that are most “distinctive”
from each other may provide the best help on preserving the representation power of the origi-
nal filter group. We define a distance matrix between grouped kernels from g` as D(g`)) where
D(g`)[u,v] = |Kg`

u −Kg`

v |. This D(g`)) shall be a symmetric matrix with its diagonal full of 0s.

With this matrix, we may now translate this problem as a maximum edge-weight connected subgraph
problem: Given a filter group g` represented as an undirected complete graph G(V,E) with edge
weights w(u, v) = D(g`)[u,v] between nodes u and v, find a subset V ∗ ⊆ V with |V ∗| = s where
the total edge sum of G[V ∗] := (V ∗, E ∩

(
V ∗

2

)
) is maximal (with s = (1− pruning rate) · C`

in).

The brute force solution of this problem requires iterating through every possible subset of grouped
kernels with size s and calculate their edge sum. With

(|V |
s

)
possible subsets available and each

subset having
(
s
2

)
edges, this procedure has a time complexity of O(s2 · |V |s). This can be quite a

compute-extensive task given each graph G(V,E) deduced from g` has a |V | equals to C`
in; which

can be as large as 512 in models like ResNet-101. To address this, we hereby propose a simple
greedy algorithm with multiple restarts that may approximate the V ∗ in question.

Our approximated solution was based on the hypothesis that, assume we already have a set of nodes
U∗ ⊂ V ∗ representing grouped kernels which will be preserved. To find the next node unext ∈ V ∗
for unext 6∈ U∗, such unext should have a maximal edge sum to all nodes in U∗. Namely, unext =
arg maxunext

(
∑

u∈U∗ w(u, unext)). With this, for a filter group g` we may simply set the first grouped

kernel uinitial ∈ U∗ to be every grouped kernel Kg`

i ∈ g`, find the unext until |V ∗| = s, and obtainC`
in

pruning strategies. This trick is known as multiple restarts and is widely adopted in many algorithms
such as k-Means clustering.

We formalize the procedure of our approximation algorithm in pseudocode at A.2.1. The core of
our algorithm resides at line 10, where we use the computed result of previous row in M to
reduce time complexity of our algorithm. With M ∈ Rs×C`in and filled C`

in times, our approximation
algorithm therefore has a time complexity of O(s|V |2) (as |V | = C`

in). This provides a sensible
improvement upon the O(s2 · |V |s) brute force solution. To further and better identify the best
grouped kernel pruning strategy among the C`

in candidate strategies in PS, we define the score of a
strategy V ∗ on g` as the following:

Score
grouped kernel pruning

(V ∗, g`) =
∑

su,sv∈(V
∗
2 )

w(su, sv)− β
( ∑

p∈g`\V ∗

( sγ∑
si=1∈V ∗

w(p, si)
))
. (5)

1For example, suppose k1 + 29 = k2, clustering scheme A is chosen as the preferred clustering scheme by
Equation 4 for 20 times on layer W `, yet clustering schemes B and C are chosen 5 times respectively. In this
case, A will be the optimal clustering scheme for W `.
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The first term calculates the inner distance sum of V ∗, where a larger value represents greater in-
ner heterogeneity within the kept grouped kernels. The second term iterates through every pruned
grouped kernel p, finds the γ number of kept grouped kernels that are closest to each p according to
the distance matrix D(g`), then sums over the distance between each p to its corresponding γ kept
grouped kernels. A pruning strategy with a smaller second term has better homogeneity between
kept and pruned grouped kernels. Since a strategy with greater inner heterogeneity and smaller outer
homogeneity is desired, we further introduce a tunable parameter −β to balance two terms and de-
fine the best the pruning strategy of g` to be V ∗best = arg max

V ∗
(Score(V ∗, g`)) for all V ∗s available

in PS. We have also implemented a toy experiment to verify if our grouped kernel pruning
method may obtain the optimal or a close-to-optimal solution, please refer to A.1.2 for details.
Ablation studies conducted at A.4.5 also confirm the efficacy of our greedy algorithm.

3.4 LAYER RECONSTRUCTION TO GROUPED CONVOLUTION ARCHITECTURE

The layer reconstruction of our method happens at two places: 1) Given a convolutional layer W `,
we permute the output channels of such layer according to the filter clustering result. This makes
filters within W ` form n grouped filters as demonstrated in Figure 1 (a) to (b). 2) After a certain
ratio of grouped kernels were pruned from their corresponding filter groups, we permute the input
channels of the remaining grouped kernels to remove sparsity from each filter group (Figure 1(c) to
(d)). As the result of the above two channel permutations, we will have n dense grouped filters left
in the pruned W `. Since every grouped filter has its own set of input-output pathways, the pruned
W ` is essentially a grouped convolution architecture. This architecture enables parallel computing
capabilities, because every grouped filter can be deployed to a different device so that all group filters
may compute simultaneously. Please refer to A.2.2 for the general procedure in pseudocode.

4 EXPERIMENTS AND RESULTS
4.1 EXPERIMENT SETTINGS

Network Architectures and Datasets We evaluate the efficacy of our method on popular net-
works with various depth and architectures: ResNet-20/32/56/110 with the BasicBlock im-
plementation and ResNet-50/101 with the BottleNeck implementation (He et al., 2016). For
datasets, we choose CIFAR-10 (Krizhevsky, 2009), Tiny-ImageNet (Wu et al., 2017), and ImageNet
(ILSVRC-12) (Deng et al., 2009) as they vary in complexity and Wang et al. (2021) has carried out a
fairly large-scale comparative experiments of many different structured pruning algorithms running
under the same setting — which provides us with a rich background to compare against.

Compared Methods and Performance Evaluation We test our method against various existing
pruning methods showed in Table 2. All mentioned pruning methods are evaluated against the
following criteria: ∆Acc, ↓ Params, and ↓ FLOPs which are defined as the difference of top-
1 accuracy, parameters reduction, and FLOPs reduction between the baseline and pruned model
(where x represents x% of parameters/FLOPs were removed/reduced comparing to the original
network). In addition, we investigate the pruning procedure and pruning setting of the compared
methods in the three following aspects: 1) Does the method require an iterative pruning procedure?
2) Does the method require a special fine-tuning setup that deviates from Section 3.2.2 or Figure
1(a) of Wang et al. (2020)? 3) What is the fine-tuning budget of the method-in-question? We believe
these are crucial information for building a fair understanding of the three aforementioned numerical
criteria. Note, a method with iterative pruning procedure will automatically require special fine-
tuning, as it will fine-tune/retrain after each pruning operation, which is intrinsically different from
the procedure introduced in Section 3.2.2. Our training and pruning settings are fairly simple
given our method follows a one-shot procedure, please refer to A.3.1 for details.

4.2 RESULTS AND ANALYSIS

As demonstrated in Table 2, our method yields superior accuracy retention than various modern
SOTA methods across six tested network-dataset combinations with a commensurate amount
of parameters pruned with the exception of ResNet-56 on Tiny-ImageNet, where our performance
is reasonably close (−0.12% behind) to the best offering of 3D by Wang et al. (2021). Specifically,
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our method achieves such results with a simple one-shot pruning procedure and a standard fine-
tuning setup. Which are usually considered two less advantageous design as many recent SOTA
methods utilize iterative prune-train cycles (Wang et al., 2021; Frankle & Carbin, 2019). Yet some
simple tricks like dynamic pruning rate, soft-pruning (keep the pruned components updatable until
very end), and weight reinitialization before fine-tuning may often provide most algorithms another
performance boost (Li et al., 2017; He et al., 2018; Renda et al., 2020; Liu et al., 2019). We opt not
to implement such tricks to provide a cleaner delivery of our method. Last, although not universally
observed, our method often requires a smaller fine-tuning budget than other offerings. Here we
include an abbreviated version of our experiment report at Table 1, please refer to Table 2 for
the full one. Please also refer to A.3.2 and A.3.3 for discussions on hyperparameters and speedup.
Table 1: “IT”, “SF” respectively indicate if the method-in-question requires an iterative pruning or
a special fine-tuning procedure. “FB” is the fine-tuning budget of each method (in terms of # of
epochs). “BA” represents the pre-pruned network’s accuracy. A cell with “-” implies either such
information is inapplicable or we failed to confidently identify such information. Methods noted
with � are replicated by Wang et al. (2021), the rest are drawn from their original papers. The
pruning rates (PR) of our method are adjusted to meet the ↓Params or ↓FLOPs of other methods.

Method IT FB SF BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5

DBP� (Wang et al., 2019b) 3 560 3 93.69 ↓ 0.42 40 52
FPGM (He et al., 2019) 3 100 3 93.59 ↓ 0.33 - 52
GAL (Lin et al., 2019) 7 100 7 93.26 ↑ 0.12 12 38
PScratch (Wang et al., 2020) 3 ≈600 3 93.23 ↓ 0.18 - 50
SFP (He et al., 2018) 3 100 3 93.59 ↓ 1.33 - 53
3D (Wang et al., 2021) 3 560 3 93.69 ↑ 0.07 40 50
TMI-GKP (ours, PR = 43.75%) 7 300 7 93.78 ↑ 0.22 43.49 43.23

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
DHP (Li et al., 2020) - - 3 94.69 ↓ 0.06 37 36
FPGM (He et al., 2019) 3 100 3 93.68 ↑ 0.05 - 52
GAL (Lin et al., 2019) 7 - 7 93.50 ↓ 0.76 45 49
PScratch (Wang et al., 2020) 3 ≈500 3 93.49 ↑ 0.20 - 40
SFP (He et al., 2018) 3 100 3 93.68 ↓ 0.30 - 41
TMI-GKP (ours, PR = 43.75%) 7 300 7 94.26 ↑ 0.64 43.52 43.31

ResNet-101 on Tiny-ImageNet: FLOPs: 1.01E10 Params: 4.29E7
DBP� (Wang et al., 2019b) 3 420 3 64.83 ↓ 3.48 76 77
DHP� (Li et al., 2020) - 420 3 64.83 ↓ 0.01 50 75
GAL� (Lin et al., 2019) 7 420 7 64.83 ↓ 0.50 45 76
3D (Wang et al., 2021) 3 420 3 64.83 ↑ 0.44 51 75
TMI-GKP (ours, PR = 87.50%) 7 300 7 65.51 ↑ 1.38 43.53 43.25

ResNet-50 on ImageNet (ILSVRC-12): FLOPs: 5.37E9 Params: 2.56E7
PScratch (Wang et al., 2020) 3 ≈409 3 77.20 ↓ 0.50 29.8 26.8
Taylor (Molchanov et al., 2019) 3 25 3 76.18 ↓ 0.70 30.0 28.1
ThiNet (Luo et al., 2017) 3 1 per prune 3 72.88 ↓ 0.84 - 36.7
FPGM (He et al., 2019) 3 100 3 75.96 ↓ 0.92 33.2 33.7
SFP (He et al., 2018) 3 100 3 76.15 ↓ 1.54 - 41.8
TMI-GKP (ours, PR = 75%) 7 90 7 76.15 ↓ 0.62 33.21 33.74

4.3 ABLATION STUDY
We anatomize the effectiveness of different components of our proposed method. Specifically, we
first demonstrate if the idea of our proposed TMI system and greedy approach are sound at a fun-
damental level; then we evaluate if they are better than some common alternative approaches with
similar functionalities. With the procedure design evaluated, we also provide some real-word run-
time experiments of our proposed pruning procedure. Last, we evaluate the relationship between the
hyperparameters and the pruned network’s accuracy retention. Please refer to A.4 for details.
5 CONCLUSION

We proposed a densely structured pruning framework capable of yielding beyond SOTA perfor-
mance with a straightforward one-shot procedure. We believe the power of densely structured kernel
pruning may go well beyond our implementation, as a) there will certainly be more — and hopefully
better — inductive biases and unsupervised clustering schemes made available, and b) our adapta-
tion of kernel pruning and grouped convolution is rather vanilla, where more sophisticated variants
are available to explore; our framework may thrive on these further-discoveries.
In addition, our work serves as a proof of the lottery tickets-induced heuristics can be used to guide
a structured pruning strategy. This is an often overlooked usage despite the popularity of LT-related
research, possibly due to the high cost of winning tickets searching. In such case, we hope the
multiple (potential) tickets evaluations trick we introduced in our method may help in levitating
such concerns. This might have an impact beyond the field of network pruning, as scholars of other
tasks might find the ticket-induced heuristics to be useful but are deterred by the high cost of tickets
searching. Where our trick provides a form of approximation by just inspecting the weights shifting
log saved during training.
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REPRODUCIBILITY STATEMENT

As we advocate our proposed framework is able to shine a new light on kernel pruning under the con-
text of densely structured pruning, we have prepared a GitHub repository with checkpoints placed
on every stage of our method. We hope this will facilitate the reproduction of our work and invite our
fellow scholars to research and optimize on different stages of our pruning framework. To reproduce
the exact training and pruning settings of our experiments in Table 2, please refer to A.3.
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A APPENDIX

A.1 SUPPLEMENTARY MATERIAL TO PROPOSED METHOD

A.1.1 Silhouette score AND ACCURACY RETENTION

We experiment ResNet-32 on CIFAR-10 (BA = 92.82%) with K-PCA + Equal-sized k-Means
and Spectral + Equal-sized k-Means. The mean Silhouette score of the latter combination is
0.3349/0.0268 = 12.49 times higher than the previous combination; indicating that if the Sil-
houette score may capture the better clustering result with respect to accuracy retention, the latter
approach should be significantly better. However, the K-PCA approach has a pruned accuracy of
92.68% where the Spectral approach has a pruned accuracy of 92.41%, a +0.27% in favor of the
method which the Silhouette score strongly suggests against. This demonstrates that tools like the
Silhouette score might not be a good judge of clustering quality in terms of accuracy retention.

A.1.2 EFFECTIVENESS OF OUR GREEDY APPROXIMATION ALGORITHM WITH TOY EXAMPLE

To test out whether our greedy approximation algorithm may yield a solution that is close enough to
the optimal one, we conducted a trial of TMI-GKP with β = 0 in Equation 5 on ResNet-32. For the
first ten convolutional layers (80 filter groups pruned), all approximated solutions are within 0.5%
in terms of the score difference (as defined in Equation 5) to the optimal solution — which implies
the effectiveness of our approximation algorithm.
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A.2 ADDITIONAL METHOD PROCEDURE INFORMATION

A.2.1 GREEDY GROUPED KERNEL PRUNING PROCEDURE

Algorithm 1 Generate C`
in grouped kernel pruning strategies

Input: Filter group g` . one of the n filter group in layer W `

Input: s . number of grouped kernels to preserve, s = (1− pruning rate) · C`
in

Initialize: Empty list PS . for storing grouped kernels pruning strategies
Initialize: C`

in, D(g`) . number of grouped kernel in g` and distance matrix of g`

1: for each Ki ∈ g` do
2: Initialize: Empty list U∗ . storing preserved grouped kernels per the current strategy
3: Initialize: Zero-filled matrix M ∈ Rs×C`in . the cost matrix
4: M[0,j] ← w(Ki,Kj) for all Kj ∈ g`\Ki

5: U∗.append(Ki) . make Ki the first grouped kernel to keep
6: for row← 1 to s do
7: Klast ← U∗[−1]
8: for each grouped kernel K ∈ g` but K 6∈ U∗ do
9: Kindex← g`.getindex(K)

10: M[row,Kindex] ←M[row−1,Kindex] + w(Klast,K)

11: U∗.append(arg max
K

(M[row]))

12: if |U∗| == s then
13: V ∗ ← U∗, PS.append(V ∗) and break
14: return PS

A.2.2 GENERAL PROCEDURE

Algorithm 2 General Procedure of TMI-GKP
Input: W , (k1, k2) . trained model, tickets window
Input: CS,PR, n . clustering schemes, pruning ratio, number of groups

1: for each convolutional layer W ` ∈W do
2: Initialize: Empty list G`

candidates . To store candidate clustering results
3: for ki ∈ [k1, k2] do
4: Cluster filters from W ` into n equal-sized groups according to each scheme in CS
5: Identify the preferred clustering result G`

ki
← arg min

G`

( Score
filters clustering

(G`, ki))[Equation 4]

6: G`
candidates.append(G`

ki
)

7: Identify G`
best ← the most occurred item in G`

candidates
8: Apply G`

best on W `

9: for each filter group g`
i ∈ G`

best do
10: Get grouped kernel pruning strategies V ∗ ← Algorithm 1(g`

i ) [A.2.1]
11: Identify V ∗best ← arg max

V ∗
( Score

grouped kernel pruning
(V ∗, g`

i )) [Equation 5]

12: Apply V ∗best on g`
i

13: W ` ← pruned W ` reconstructed in grouped convolution architecture
14: return W

A.2.3 TIME COMPLEXITY ANALYSIS OF THE TMI CLUSTERING PROCEDURE

Our pruning procedure is basically two-stage: filter clustering and grouped kernel pruning. Since we
have already analyzed the time complexity of the second stage at the end of Section 3.3, we hereby
focus on the time complexity of our filter clustering procedure.

Given a clustering result of convolutional layer W `, we first calculate the TMI score of each filter
group defined by Equation 2. The TMI score of a clustering result in regards to an epoch k has a
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time complexity ofO(W `) for W ` ∈ RC`out×C
`
in×H

`×W `

. This is because TMI scores are essentially
achieved by finding out the magnitude increase of individual weights in W ` from epoch k to epoch
t (the final epoch). TMI scores for filters and filters groups are simply sum of the TMI scores of a
certain individual weights — where the summing procedure is at mostO(W `) as we only got these
many weights to sum.

The TMI score for this clustering result is then determined by Equation 4. Which is a O(n) proce-
dure as we have n groups (thus n − 1 intervals). Granted O(n) � O(W `), this term is negligible
and the overall time complexity is still O(W `)

Note we may have multiple clustering results generated by multiple clustering schemes, where we
use their TMI scores and Equation 4 to determine the best clustering result for layer W `. Thus, we
need to multiple the time complexity of a single clustering result to the number of clustering schemes
available, we denote this number asCSnum. The overall complexity is nowCSnum·O(W `). It is hard
to analyze the time complexity of each clustering scheme as it involves various dimension-reduction
and clustering combinations. For the ease of expression, we uniformly denote all clustering schemes
to have a time complexity ofO(CS(W `)) on layer W ` (forCS(W `) >W ` as a clustering scheme
need to read all weights in W ` to produce a proper clustering result).

Last, as illustrated in Section 3.2.2 - Increase robustness with multiple ticket evaluations, we
need to repeat the whole procedure for knum times for knum being the number of potential ticket
epochs we evaluated. Thus, the final “rough” big-O complexity for our filter clustering procedure
is:

CSnum · O(CS(W `)) + CSnum · knum · O(W `). (6)

In our experiments, such knum is usually set to 35 (unless the network is too large) and CSnum is 3
as we have three different clustering schemes available (see Section 3.2.1). By the “absorption” law
of big-O analysis, the theoretical time complexity is only O(CS(W `)) — which is identical to a
standard single-shot filter clustering procedure. This implies the theoretical lightweight-ness of our
proposed method.

For more information, we included a discussion on how to adjust the pruning procedure to meet a
time/computation budget at A.2.4 with real-world runtime experiments available at A.4.7.

A.2.4 ADJUST THE PRUNING PROCEDURE TO MEET A TIME/COMPUTATION BUDGET

Although the analysis at A.2.3 and experiments in A.4.7 demonstrate our TMI pruning procedure is
reasonably fast, we admit that it can be slow if given a wide network to prune or were asked to eval-
uate many potential ticket epochs — as our algorithm will have to repetitively evaluate the network
with different TMI scores over and over again. We hereby provide several points for adjustability of
our method.

1. Reduce the range of ticket window: If a ticket window is defined to be [k1, k2], consider
using [k′1, k

′
2] where k1 < k′1 and k′2 < k2. So less potential ticket epochs were evaluated.

2. Add a ticket step: For a ticket window [k1, k2], consider adding a kstep so instead of
evaluating k1, k1+1, k1+1+1, ...we now evaluate k1, k1+kstep , k1+kstep+kstep , .... By doing this,
less potential ticket epochs were evaluated while a wide range of potential ticket epochs
from different stage of the network training are still considered.

3. Relax the granularity of clustering evaluation: The proposed TMI-GKP determines the
optimal clustering scheme at a per layer manner. For CNN models with block-like structure
(such as ResNet), one may opt to determine the clustering scheme for one layer of the block,
then proceed to use such clustering scheme on the whole block.

4. Adjust clustering schemes: One may opt to reduce the number of clustering schemes
available for the TMI score evaluation. Or one may opt to use clustering schemes which
are less computational demanding. Granted the TMI system is likely to capture the “better”
clustering scheme among the options, the method would still function, but likely not at its
full potential.
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A.3 SUPPLEMENTARY MATERIAL TO EXPERIMENTS AND RESULTS

A.3.1 TRAINING AND PRUNING SETTINGS

For all experiments done on CIFAR-10 and Tiny-ImageNet, we train the baseline models for 300
epochs with the learning rate starting at 0.1 and dividing by 10 per every 100 epochs. The baseline
model is trained using SGD with a weight-decay set to 5e-4, momentum set to 0.9, and a batch-size
of 64. All data are augmented with random crop and randomly horizontal flip. For the experiments
done on ImageNet, we train the ResNet-50 model for 90 epochs with the weight-decay set to 1e-4
and learning rate dividing by 10 per every 30 epochs (while keeping all other settings the same
as CIFAR-10 and Tiny-ImageNet experiments). Our pruning settings are largely identical to our
training settings except for the learning rate, which is set to 0.01 at the start.

A.3.2 CHOICE OF HYPERPARAMETERS

There are three main tunable hyperparameters in the mainframe of TMI-GKP, α from Equation 4
and β, γ from Equation 5. Note in practice γ is not a fixed value but rather a value that has a fixed
proportion to its the convolutional layer’s input channels, i.e., γ = γratio · C`

in for layer W `. This is
because different convolutional layer may have a different Cin, so it makes better sense to let γ of a
layer adjust along with its Cin.

For experiments shown in Table 2, we fix α to 0.5 and γratio to 0.2 for convenience. For experiments
of ResNet-56 on CIFAR-10 and ResNet-101 on Tiny-ImageNet, we set β to 2. For the experiment
of ResNet-32 on CIFAR-10, we set β to 1. For the rest of the experiments in Table 2, we set
β =

(
V ∗

2

)
/(|g`\V ∗| · γ) with respect to Equation 5. This basically implies we want the two terms

in Equation 5 to evaluate an equal amount of grouped kernel pairs.

To further ensure/demonstrate the reproducibility of our work, in our codebase we will provide a
Google Colab notebook that replicates all CIFAR-10 pruning experiments conducted in Table 2. For
every completed experiment, our codebase may register a setting.json, a cluster.json
(upon extraction of a pruned model), and an experiment.log. Where the setting.json
includes all hyperparameters’ settings, cluster.json includes the clustering scheme per each
convolutional layer and its resultant permutation matrix for converting the baseline model from (a)
to (b) in Figure 1, and experiment.log contains the experiment printouts. In addition, we have
implemented a set of methods so a fellow researcher may pipeline the cluster.json file to the
baseline model and try for a different set of pruning strategies. This will save them the work of
re-clustering the filters and re-calculating/re-evaluating the TMI scores for every layer.

A.3.3 OMITTING SPEED UP ANALYSIS

We purposefully omitted the speedup analysis between the original and the pruned network mainly
due to lack of optimization of grouped convolution on current ML platforms. As an example, on
PyTorch, a grouped convolution with groups = 8 is much slower than the standard convolution
despite the former one has much less parameters and FLOPs.

Please direct to our GitHub repository where we discuss in length of why PyTorch is slowing
us done, what’s the reason behind it, and empirically show that it is indeed PyTorch lacks of
optimization that causing this problem. We also discuss why this will not be an issue for long (by
presenting ML platforms’ commitments of optimizing the speed of grouped convolution), why this
is an achievable goal (as scholars have already accelerated grouped convolution on said platforms
(Gibson et al., 2020; Qin et al., 2018)), and how this is not likely to affect the serious implementation
of our method for its intended purposes — as a group convolution network can be deployed as
standard convolution on multiple edge devices in a parallel fashion (Su et al., 2020).

A.3.4 SPECIFIC EXPERIMENTS REQUESTED BY REVIEWERS

Upon the requests of two reviewers, we have additionally conducted experiments with our proposed
method on VGG-16 (Simonyan & Zisserman, 2014) and on ResNet-56 on CIFAR-10 against pruning
method GAL by Lin et al. (2019) (but with a more aggressive pruning rate as ↓ Params and ↓ FLOPs
are ≈ 60% instead of ≈ 43%).
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Please refer to our OpenReview entry (former experiment, latter experiment, context of the latter
experiment) for details — as these requests should only make sense under their Q&A context, and
we have not (or for some literature, we are not able to) conduct the pruning procedure investigations
like we did in Table 2 as defined in Section 4.1.

A.4 ABLATION STUDIES

In this section we will anatomize our method in the following aspects. The general idea is we
first show the basic format(s) of our approach works — as if the results achieved by following
our approach would be better than the results achieved by going against our approach — then,
we show that our approach works better than some common alternative approaches with similar
functionalities.

First, we confirm the effectiveness of our TMI scoring system by conducting the following ablation
studies:

1. TMI/MI scores and filter pruning: where we investigate if filters with higher TMI score
or larger magnitude increase will lead to better accuracy retention. This shows our TMI
scoring system works at a filter level.

2. TMI-driven clustering and accuracy retention: where we compare the TMI-driven clus-
tering results with shuffled clustering results in terms of accuracy retention. This shows our
TMI scoring system works in terms of filter clustering.

3. TMI-driven clustering v. Other filter clustering schemes: where we investigate if
the TMI-driven clustering schemes are better than some common alternative clustering
schemes.

4. TMI-GKP v. Grouped convolution-only: where we investigate if the performance of our
method is from the procedure we proposed, or it is simply due to the adaptation of grouped
convolution.

Then, we investigate our greedy grouped kernel pruning algorithm with the following ablation stud-
ies:

1. Greedy-induced pruning and accuracy retention: where we compare the grouped kernel
pruning results induced by our greedy approach to two approaches that take the “inverse”
and “complement” of our greedy approach. This shows the basic principle of our greedy
approach works.

2. Greedy-induced pruning v. Other grouped kernel pruning policies: where we compare
the greedy approach against some alternative kernel pruning policies applied on grouped
kernel pruning. This shows our greedy approach works better than some common alterna-
tive kernel pruning policies.

Last, we provide some experiments to evaluate the real-world runtime of the pruning procedure of
TMI-GKP and ablation studies on hyperparameters.

A.4.1 TMI/MI SCORES AND FILTER PRUNING

We first address the question of whether the TMI score (or the original “MI” magnitude increase
score from Zhou et al. (2019)) has a relationship with accuracy retention when relaxed to a filter
level. Although the question is straightforward, it is up to different interpretations as the TMI score
was proposed as a tool to determine which clustering result is the optimal one — which requires
multiple tickets evaluation. Thus, it is hard to determine the TMI scores of a filter, as it is sensitive
to the choice of k in Equation 1.

To address such problem, we run Equation 1 on the same set of ks as our TMI-GKP algorithm, then
we rank (sort) all filters according to their TMI scores under each k. Namely, when k = 35, we may
have filter A to be rank 1, filter B to be rank 2... and for k = 36 we may have B to be rank 1 and
filter C to be rank 2. We then sum all ranks of each filter across different ks, where the filter with
smallest sum (highest sum of ranks) is considered the one that is most preferred by the TMI system.
We denote this sum the TMI Filter Ranking Score.
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We opt to use rank-per-each-k, but not simply adding TMI scores of the same filter on different ks to-
gether and rank all filters, because the former approach is a) less sensitive to potential extreme value
introduced by a certain k and b) similar to the proposed scoring mechanism defined in Equation 4,
which is used in TMI-GKP.

We zero-mask different filters according to the following five criteria. All experiments are conducted
on ResNet-32 (baseline accuracy: 92.82%) with pruning rate set to 50% (half of the filters per each
layer are zero masked).

1. TMI preferred: We kept filters that have the lowest TMI Filter Ranking Scores, and zero-
masked the rest.

2. TMI complement: We kept filters that have the highest TMI Filter Ranking Scores, and
zero-masked the rest. Since the pruning rate is set to 50%, this is essentially taking the
complement of the above scheme.

3. MI preferred: We kept filters that have the highest magnitude increase since initialization,
and zero-masked the rest.

4. MI complement: The complement of above scheme.

5. Random: Half of the filters per each layer were randomly zero-masked.

Scheme TMI preferred TMI complement MI preferred MI complement Random
Acc. (%) 64.48 61.93 63.25 62.06 63.92

The above experiments clearly demonstrate that both better TMI filter ranking scores and larger MI
scores are correlated with better accuracy retention. In addition, the 1.23% lead of TMI preferred
to MI preferred scheme also implies that our TMI system — with multiple tickets evaluation
— is superior than the original magnitude increase system introduced in Zhou et al. (2019) at
the filter level.

A.4.2 TMI-DRIVEN CLUSTERING AND ACCURACY RETENTION

Knowing that TMI preferred filters might lead to better accuracy retention. We are interested in
learning if the clustering results produced by the TMI system may also lead to better accuracy
retention. Thus, we implement the following criterion:

• TMI shuffled: Take a clustering result determined by the TMI scoring system (argmin of
Equation 5) and shuffle its filters across different groups. By “shuffle,” we mean that if a set
of filters were originally in the same group, after the shuffle, no two of the above-mentioned
filters will be in the same group anymore.

Model Baseline (%) TMI-GKP (%) TMI shuffled (%)
ResNet-20 92.35 ↓ 0.34 ↓ 0.67
ResNet-32 92.82 ↑ 0.22 ↓ 0.09
ResNet-56 93.78 ↑ 0.22 ↓ 0.05

ResNet-101 94.26 ↑ 0.64 ↑ 0.25

The experiment results confirmed that our TMI system may provide positive contribution even under
the filter clustering context. Although the improvement is not as significant as the one provide by
the greedy approach (see A.4.6), the improvement is consistent. Yet without it, our method may not
exceed SOTA performance at all.

We further include a discussion in A.4.6 on why empirical evidence suggests the TMI-driven clus-
tering may not guarantee on finding the best clustering in terms of accuracy retention, but rather a
robust policy with more comprehensive considerations done to deliver a “better” and very usable
solution.
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A.4.3 TMI-DRIVEN CLUSTERING V. OTHER FILTER CLUSTERING SCHEMES

We set the greedy grouped kernel pruning procedure to fixed and feed our method with different
schemes on filter clustering: three clustering schemes individually and a uniform random assignment
of the three clustering schemes. The results with ResNet-32 on CIFAR-10 suggest the TMI-driven
clustering may deliver the best accuracy retention.

Method BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.29E7

TMI Clustering w/ Greedy 92.82 ↑ 0.22 43.43 43.09
K-PCA + k-Means w/ Greedy 92.82 ↑ 0.01 43.43 43.09
Spectral + k-Means w/ Greedy 92.82 ↓ 0.16 43.43 43.09
t-SNE + DBSCAN w/ Greedy 92.82 ↓ 0.14 43.43 43.09

Random Clustering Schemes w/ Greedy 92.82 ↑ 0.03 43.43 43.09

However, by conducting experiments for the A.4.6, we notice that for the combination of ResNet-
110 on CIFAR-10, forcing the clustering scheme as Spectral Clustering may achieve slightly supe-
rior accuracy retention to TMI-GKP (+0.06%). But by running the same clustering scheme on other
experiment combinations like ResNet-20 and ResNet-32 on CIFAR-10, spectral clustering induces
much lower results (−0.33% and −0.16% in comparison to TMI-GKP). This implies the TMI-
driven clustering may not guarantee on finding the best clustering in terms of accuracy retention,
but rather a robust policy with more comprehensive considerations done to deliver a “better” solu-
tion than many other structured pruning methods when combined with our greedy-induced pruning
procedure.

We observe similar phenomena on the K-PCA + k-Means clustering scheme as it only shows slightly
lower performance (−0.21% in comparison to TMI-GKP) on ResNet-32 on CIFAR-10. But the
same clustering scheme performs consistently worse than TMI-GKP on ResNet-20/56/100 with
CIFAR-10: coming as respectively−0.38%,−0.29%, and−0.24% to our TMI-GKP method; which
implies TMI-GKP is likely more robust on providing a “better” solution across different networks.

A.4.4 TMI-GKP V. GROUPED CONVOLUTION-ONLY

Since the architecture of grouped convolution itself may induce a reduction of parameters, we are
also interested in learning how much it contributes to accuracy retention. We modified the original
network as a vanilla grouped convolution, trained it with the same training settings as in A.3.1, and
compared it against TMI-GKP. With a comparable amount of parameters and FLOPs reduction, the
results achieved with grouped convolution-only are well below our TMI-GKP.

Method BA (%) Pruned Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-20 on CIFAR-10: FLOPs: 4.09E7 Params: 2.70E5

Grouped Conv (n = 2) 90.48 - 49.0 49.5
TMI-GKP 92.35 92.01 43.4 42.9

ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.64E5
Grouped Conv (n = 2) 91.75 - 49.2 49.6

TMI-GKP 92.82 93.04 43.4 43.1
ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5

Grouped Conv (n = 2) 92.34 - 49.4 49.7
TMI-GKP 93.78 94.00 43.5 43.2

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
Grouped Conv (n = 2) 92.90 - 49.5 49.7

TMI-GKP 94.26 94.90 43.5 43.3

A.4.5 GREEDY-INDUCED PRUNING AND ACCURACY RETENTION

Our greedy grouped kernel pruning approach is developed on the assumption of (grouped) kernels
that are most distinctive from each other are better. We now put this assumption to test with the
following two schemes:
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1. Greedy complement: where we keep the group kernels that was originally pruned in TMI-
GKP.

2. Greedy reverse: where we flip the arg max on line 11 of Algorithm A.2.1 to arg min
with β = 0 in Equation 5. This means the algorithm is now searching for the next grouped
kernel that is “most similar” to the selected grouped kernels.

Here are the experiment results with pruning rate set to 43.75%:

Model Baseline (%) TMI-GKP (%) Greedy complement (%) Greedy reverse (%)
ResNet-20 92.35 ↓ 0.34 ↓ 1.50 ↓ 1.38
ResNet-32 92.82 ↑ 0.22 ↓ 1.38 ↓ 0.56
ResNet-56 93.78 ↑ 0.22 ↓ 0.88 ↓ 0.54

ResNet-110 94.26 ↑ 0.64 ↓ 0.76 ↓ 0.67

The experiment results once again demonstrate the significance of our greedy approach. In addition,
we observe Greedy reverse to have better accuracy retention to Greedy complement. We believe
this is because the pruning strategy produced by Greedy reverse may have overlaps with the one
produced by TMI-GKP; yet the pruning strategy produced Greedy complement is mutually exclu-
sive with the one produced by TMI-GKP. This indirectly suggests the grouped kernels selected by
our greedy approach are certainly “the better” ones, as only a partial overlap with the TMI-GKP’s
pruning strategy may lead to noticeably better accuracy retention.

Upon request, we further investigated Greedy reverse with β = 1 on ResNet-20/32/56/110 on
CIFAR-10, where such scheme is identical to Greedy reverse with the exception of setting β to 1.
This means the algorithm is still searching for the next grouped kernel that is “most similar” to the
selected grouped kernels. But among the C`

in candidate pruning strategies, it will pick the one with
best outer homogeneity (pruned and kept filters are most similar). The results are ↓ 1.52%, ↓ 0.42%,
↓ 0.45%, and ↓ 0.61% respectively to the baseline of four aforementioned networks.

This is in line with our anticipation. As per the design of Algorithm 2 and Equation 5, the set of
grouped kernels preserved by greedy reverse with β = 1 should be very similar to the set group
kernels preserved by greedy reverse with β = 0. This is because both of them will preserve a set
of grouped kernels that are very similar to each other; and as 56.25% of grouped kernels per layer
are preserved, the two policies might very likely end up on the same (or similar) set of grouped
kernels. Empirical evidence supports this hypothesis, as the performance differences between the
two policies are marginal.

A.4.6 GREEDY-INDUCED PRUNING V. OTHER GROUPED KERNEL PRUNING POLICIES

We set the filter clustering scheme to fix as Spectral Clustering and feed our method with differ-
ent commonly applied grouped kernel pruning policies (L2 and center pruning). Experiments of
ResNet-32/110 on CIFAR-10 have confirmed that our greedy-induced pruning scheme may yield
better accuracy retention in a controlled setting.

Method BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.29E7

Greedy-induced Pruning 92.82 ↑ 0.06 43.4 43.1
L2 Pruning 92.82 ↓ 0.30 43.4 43.1

Center Pruning 92.82 ↓ 0.19 43.4 43.1
ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6

Greedy-induced Pruning 94.26 ↑ 0.70 43.3 43.5
L2 Pruning 93.76 ↓ 0.08 43.3 43.5

Center Pruning 93.76 ↓ 0.05 43.3 43.5

A.4.7 RUNTIME ANALYSIS OF TMI-GKP

The following experiments are conducted on a 2.00GHz 4 core Intel Xeon CPU and Tesla V100.
Evaluated on 35 potential ticket epochs.
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In our code implementation, we first cluster a layer, then prune it, then move on to the next layer. So
the runtime is a mixed product of both the TMI filter clustering procedure and the greedy grouped
kernel pruning procedure. Please refer to the table below for the runtime of the pruning procedure
of our TMI-GKP method. All experiments are against the CIFAR-10 dataset.

Model ResNet-20 ResNet-32 ResNet-56 ResNet-101

Clustering and Pruning Runtime 2,977 sec
(49.62 min)

4,741 sec
(78.18 min)

10,376 sec
(172.93 min)

19,818 sec
(330.3 min)

We also separately analyze the runtime of our greedy grouped kernel pruning procedure. This is
done by assigning a pre-determined permutation matrix to the network (same effect as clustering,
as it permutes a convolutional layer from Figure 1(a) to Figure 1(b)), so the actual greedy-only
approach will be even slightly faster). Also note the runtime of this greedy procedure is theoretically
related to the choice of γ in Equation 5, but the greedy procedure itself is so fast to the point the
value of γ does not matter anymore.

Model ResNet-20 ResNet-32 ResNet-56 ResNet-101

Greedy Pruning Runtime 47 sec 16 sec 250 sec
(4.17 min)

2,205 sec
(36.75 min)

We consider this sort of runtime is totally tolerable as an overhead. When compared to methods
involve iterative prune-train cycles (Wang et al., 2021), custom loss function (Wu et al., 2018), or
feature maps analysis (Yu et al., 2017), our method is significantly more efficient and applicable to
a broader set of pre-trained networks.

A.4.8 EFFECTS OF DIFFERENT HYPERPARAMETERS CHOICES

As mentioned in A.3.2, the two hyperparameters we tuned are β and γ (derived from γratio) in
Equation 5. We hereby provide a set of experiments to show how different choices of such two
parameters will affect the accuracy retention of the pruned network. All experiments were done on
ResNet-32 on CIFAR-10 with pruning rate set to 43.75% (baseline: 92.82%). Note the experiments
below were done with setting one parameter fixed and adjusting the other, so the two tables should
be inspect in a collective manner.

We first fixed γratio to 0.2 — namely, for every pruned grouped kernel, 20% of all kept grouped ker-
nels which are most similar to such pruned grouped kernel were evaluated — and try with different
β settings. The term “auto” implies β =

(
V ∗

2

)
/(|g`\V ∗| ·γ) with respect to Equation 5, please refer

to A.3.2 on how we inferred this value.

Fixed / Tuned param β = 0 β = 1 β = 2 β = 4 β = 6 β = 8 β = auto
γratio = 0.2 92.71 93.04 92.58 92.67 92.8 92.76 92.74

The experiment results suggest a relatively more “balanced” relationship between the two terms in
Equation 5 may lead to better accuracy retention. This implies both the inner heterogeneity of kept
grouped kernels and outer homogeneity between kept and pruned grouped kernels should be taken
into consideration — which is exactly how Equation 5 was designed.

We then fixed β to “auto” and try with different γratio settings:

Fixed / Tuned param γratio = 0.1 γratio = 0.2 γratio = 0.4 γratio = 0.6 γratio = 0.8 γratio = 1
β = auto 92.97 92.74 92.7 92.65 92.74 92.53

The experiment results suggest γratio should be a relatively small value as increasing its value may
lead to worse accuracy retention of the pruned network. This is a rather intuitive result, as when
γratio = 1 every pruned grouped kernel is evaluated against all kept grouped kernels. In such case,
the second term of Equation 5 can no longer reveal if there are some kept grouped kernels that
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are similar to a pruned one, because all kept kernels are evaluated, yet all kept kernels are already
distinctive from each others due to the selection procedure introduced in A.2.1.

Additionally, we have conducted/disclosed more experiments with specific settings required by one
reviewer (e.g., with β = and γratio = 0.1 on ResNets; choice of β being 2 verses auto). Please refer
to our OpenReview entry for more details — as these specifically requested experiments should only
make sense under the Q&A context, and they do not fit well to the structure of our ablation studies.

A.5 DIMENSIONALITY REDUCTION AND CLUSTERING SCHEMES

A.5.1 KERNEL PRINCIPAL COMPONENT ANALYSIS (K-PCA)

Kernel PCA is considered an improved version of PCA. The choice of kernel functions will signif-
icantly affect the experimental results. Global kernels (e.g. polynomial, Sigmoid) and local kernels
(e.g. RBF, Laplacian) are the most commonly used kernel functions for K-PCA. They capture dif-
ferent characteristics of the data: the former one demonstrates better extrapolation abilities, and the
latter one has better interpolation abilities (Jordaan, 2004). Since the filters are usually not linearly
separable and often there are fewer filters than the number of features, we will mix the global and
local kernel functions to benefit both extrapolation and interpolation properties. Specifically, we
mixed a polynomial and an RBF kernel. We use a parameter λ to control the balance of these two
functions.

Knew(x, y) = λKPoly(x, y + (1− λ)KRBF(x, y)

= λ(axT · y + c)d + (1− λ) exp

(
−‖ x− y ‖

2

2σ2

)
,

(7)

where λ ∈ [0, 1), parameters a and c in polynomial kernel have been fixed to 1 and 0. d = 2 is the
degree of polynomial kernel and σ in RBF kernel is the reciprocal of the width of the radial basis
function. In practice, such λ is set fixed to 0.5.

A.5.2 SPECTRAL CLUSTERING

Spectral Clustering is yet another maturely studied and widely adopted clustering method. Unlike in
K-PCA, for this method we simply utilize the implementation of Von Luxburg (2007). Specifically
in TMI-GKP, we utilize the variation of mutual-KNN as the similarity graph and cosine distance
as the adjacency matrix based on empirical observations. We rely on Yikun Zhang’s version of
implementation.

A.5.3 EQUAL-SIZED k-MEANS

To ensure we may have n equal-sized groups out of each filter group, we utilize the default Same-
size k-Means Variation offered by Schubert & Zimek (2019). Specifically, we rely on Nathan
Danielsen’s version of implementation.

A.5.4 t-SNE AND DBSCAN

We explore the option of t-SNE and DBSCAN because we want to add a density-based clus-
tering scheme from the two distance-based offerings. For implementation details: we set the
perplexity of t-SNE to be the size of the filter group (namely, C`

in/n in layer W `) and iter-
ate through different combinations of n components, ε, and min samples until the DBSCAN
algorithm may yield a clustering result of ≥ n + 1 groups (for n components ∈ [2, n)). After
that, we execute the same data-point reassignment procedure as listed in Schubert & Zimek (2019)
until n equal-sized groups are achieved.
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Table 2: Full comparisons of different pruning methods with ResNet-20/32/56/110 on CIFAR-10,
ResNet-56/101 on Tiny-ImageNet, and ResNet-50 on ImageNet (ILSVRC-12). “IT”, “SF” respec-
tively indicate if the method-in-question requires an iterative pruning or a special fine-tuning pro-
cedure. “FB” is the fine-tuning budget of each method (in terms of # of epochs). “BA” represents
the pre-pruned network’s accuracy. A cell with “-” implies either such information is inapplicable
or we failed to confidently identify such information. Methods noted with � are replicated by Wang
et al. (2021), the rest are drawn from their original papers. The pruning rates (PR) of our method are
adjusted to meet the ↓Params or ↓FLOPs of other methods.

Method IT FB SF BA (%) ∆ Acc (%) ↓ Params (%) ↓ FLOPs(%)
ResNet-20 on CIFAR-10: FLOPs: 4.09E7 Params: 2.70E5

DHP (Li et al., 2020) - - 3 92.54 ↓ 1.00 44 48
FPGM (He et al., 2019) 3 100 3 92.20 ↓ 1.11 - 42
PScratch (Wang et al., 2020) 3 ≈ 600 3 91.75 ↓ 1.20 - 50
Rethink (Liu et al., 2019) 3 40 3 92.41 ↓ 1.34 - 40
SFP (He et al., 2018) 3 100 3 92.20 ↓ 1.37 - 42
TMI-GKP (ours, PR = 43.75%) 7 300 7 92.35 ↓ 0.34 43.35 42.87

ResNet-32 on CIFAR-10: FLOPs: 6.95E7 Params: 4.64E5
DBP� (Wang et al., 2019b) 3 560 3 93.18 ↓ 0.53 28 48
FPGM (He et al., 2019) 3 100 3 92.63 ↓ 0.32 - 42
GAL� (Lin et al., 2019) 7 560 7 93.18 ↓ 1.46 39 50
PScratch� (Wang et al., 2020) 3 560 3 93.18 ↓ 1.00 - 50
SFP (He et al., 2018) 3 100 3 92.63 ↓ 0.55 - 42
3D (Wang et al., 2021) 3 560 3 93.18 ↑ 0.09 38 49
TMI-GKP (ours, PR = 43.75%) 7 300 7 92.82 ↑ 0.22 43.43 43.09

ResNet-56 on CIFAR-10: FLOPs: 1.27E8 Params: 8.53E5
CP (He et al., 2017) - 20 7 92.80 ↓ 1.90 - 50
DBP� (Wang et al., 2019b) 3 560 3 93.69 ↓ 0.42 40 52
DHP� (Li et al., 2020) - 560 3 93.65 ↓ 0.07 42 49
FPGM (He et al., 2019) 3 100 3 93.59 ↓ 0.33 - 52
GAL (Lin et al., 2019) 7 - 7 93.26 ↑ 0.12 12 38
HRank (Lin et al., 2020) - 30 per layer - 93.26 ↓ 0.09 42 50
PScratch (Wang et al., 2020) 3 ≈ 600 3 93.23 ↓ 0.18 - 50
Rethink (Liu et al., 2019) 3 40 3 93.80 ↓ 0.73 - 50
SFP (He et al., 2018) 3 100 3 93.59 ↓ 1.33 - 53
3D (Wang et al., 2021) 3 560 3 93.69 ↑ 0.07 40 50
TMI-GKP (ours, PR = 43.75%) 7 300 7 93.78 ↑ 0.22 43.49 43.23

ResNet-110 on CIFAR-10: FLOPs: 2.55E8 Params: 1.73E6
CP (He et al., 2017) - 20 7 92.80 ↓ 1.90 - 50
DHP (Li et al., 2020) - - 3 94.69 ↓ 0.06 37 36
FPGM (He et al., 2019) 3 100 3 93.68 ↑ 0.05 - 52
GAL (Lin et al., 2019) 7 - 7 93.50 ↓ 0.76 45 49
PFEC (Li et al., 2017) 7 - 7 93.53 ↓ 0.61 - 39
PScratch (Wang et al., 2020) 3 ≈500 3 93.49 ↑ 0.20 - 40
Rethink (Liu et al., 2019) 3 40 3 93.77 ↑ 0.15 - 40
SFP (He et al., 2018) 3 100 3 93.68 ↓ 0.30 - 41
TMI-GKP (ours, PR = 43.75%) 7 300 7 94.26 ↑ 0.64 43.52 43.31

ResNet-56 on Tiny-ImageNet: FLOPs: 5.06E8 Params: 8.65E5
DBP� (Wang et al., 2019b) 3 420 3 56.55 ↓ 0.98 25 53
DHP� (Li et al., 2020) - 420 3 56.55 ↓ 0.73 46 55
GAL� (Lin et al., 2019) 7 420 7 56.55 ↓ 0.68 32 52
3D (Wang et al., 2021) 3 420 3 56.55 ↓ 0.51 34 59
TMI-GKP (ours, PR = 37.25%) 7 300 7 55.59 ↓ 0.63 36.74 37.05

ResNet-101 on Tiny-ImageNet: FLOPs: 1.01E10 Params: 4.29E7
DBP� (Wang et al., 2019b) 3 420 3 64.83 ↓ 3.48 76 77
DHP� (Li et al., 2020) - 420 3 64.83 ↓ 0.01 50 75
GAL� (Lin et al., 2019) 7 420 7 64.83 ↓ 0.50 45 76
3D (Wang et al., 2021) 3 420 3 64.83 ↑ 0.44 51 75
TMI-GKP (ours, PR = 87.50%) 7 300 7 65.51 ↑ 1.38 43.53 43.25

ResNet-50 on ImageNet (ILSVRC-12): FLOPs: 5.37E9 Params: 2.56E7
FPGM (He et al., 2019) 3 100 3 75.96 ↓ 0.19 22.1 22.5
PScratch (Wang et al., 2020) 3 ≈409 3 77.20 ↓ 0.50 29.8 26.8
TMI-GKP (ours, PR = 50%) 7 90 7 76.15 ↓ 0.19 22.1 22.5
Taylor (Molchanov et al., 2019) 3 25 3 76.18 ↓ 0.70 30.0 28.1
ThiNet (Luo et al., 2017) 3 1 per prune 3 72.88 ↓ 0.84 - 36.7
FPGM (He et al., 2019) 3 100 3 75.96 ↓ 0.92 33.2 33.7
SFP (He et al., 2018) 3 100 3 76.15 ↓ 1.54 - 41.8
TMI-GKP (ours, PR = 75%) 7 90 7 76.15 ↓ 0.62 33.21 33.74
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