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Abstract

Offline reinforcement learning (RL) leverages previously collected data for policy optimiza-
tion without any further active exploration. Despite the recent interest in this problem, its
theoretical results in neural network function approximation settings remain elusive. In this
paper, we study the statistical theory of offline RL with deep ReLU network function approx-
imation. In particular, we establish the sample complexity of n = Õ(H4+4 d

ακ
1+ d

α
µ ϵ−2−2 d

α )
for offline RL with deep ReLU networks, where κµ is a measure of distributional shift,
H = (1−γ)−1 is the effective horizon length, d is the dimension of the state-action space, α
is a (possibly fractional) smoothness parameter of the underlying Markov decision process
(MDP), and ϵ is a user-specified error. Notably, our sample complexity holds under two
novel considerations: the Besov dynamic closure and the correlated structure. While the
Besov dynamic closure subsumes the dynamic conditions for offline RL in the prior works,
the correlated structure renders the prior works of offline RL with general/neural network
function approximation improper or inefficient in long (effective) horizon problems. To the
best of our knowledge, this is the first theoretical characterization of the sample complexity
of offline RL with deep neural network function approximation under the general Besov
regularity condition that goes beyond the linearity regime in the traditional Reproducing
Hilbert kernel spaces and Neural Tangent Kernels.

1 Introduction

Offline reinforcement learning (Lange et al., 2012; Levine et al., 2020) is a practical paradigm of reinforcement
learning (RL) where logged experiences are abundant but a new interaction with the environment is limited or
even prohibited. The fundamental offline RL problems concern with how well previous experiences could be
used to evaluate a new target policy, known as off-policy evaluation (OPE) problem, or to learn the optimal
policy, known as off-policy learning (OPL) problem. We study these offline RL problems with infinitely
large state spaces, where the agent must rely on function approximation such as deep neural networks to
generalize across states from an offline dataset. Such problems form the core of modern RL in practical
settings (Levine et al., 2020; Kumar et al., 2020; Singh et al., 2020; Zhang et al., 2022).

Prior sample-efficient results in offline RL mostly focus on tabular environments with small finite state spaces
(Yin & Wang, 2020; Yin et al., 2021; Yin & Wang, 2021a), but as these methods scale with the number of
states, they are infeasible for the settings with infinitely large state spaces. While this tabular setting has been
extended to large state spaces via linear environments (Duan & Wang, 2020; Jin et al., 2020b; Xiong et al.,
2022; Yin et al., 2022; Nguyen-Tang et al., 2022b), the linearity assumption often does not hold for many RL
problems in practice. Theoretical guarantees for offline RL with general and deep neural network function
approximations have also been derived, but these results are either inadequate or relatively disconnected
from the regularity structure of the underlying MDP. In particular, while the finite-sample results for offline
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RL with general function approximation (Munos & Szepesvári, 2008; Le et al., 2019) depend on an inherent
Bellman error which could be uncontrollable in practice, the other analysis in the neural network function
approximation in Yang et al. (2019) relies on a data splitting technique to deal with the correlated structures
arisen in value regression for offline RL and use a relatively strong dynamic assumption. Recent works have
studied offline RL with function approximations in Reproducing Hilbert kernel spaces (RHKS) (Jin et al.,
2020b) and Neural Tangent Kernels (NTK) (Nguyen-Tang et al., 2022a). However, these function classes
also have (approximately) linear structures (in terms of the underlying features) which make their analysis
similar to the linear case. Moreover, the smoothness assumption imposed by the RKHS is often strong for
several practical cases while the NTK analysis requires a extremely wide neural net (the network width scales
with n10 for the NTK case in Nguyen-Tang et al. (2022a) versus only n2/5 (Proposition 5.1) in the current
work). Recent works (Xie et al., 2021a; Zhan et al., 2022; Chen & Jiang, 2022; Uehara & Sun, 2021) have
considered offline RL with general function approximation with weaker data coverage assumption. However,
they assumed the function class is finite and did not consider the (Besov) regularity of the underlying MDP.
Thus, to our knowledge, no prior work has dedicated to study a comprehensive and adequate analysis of the
statistical efficiency for offline RL with neural network function approximation in Besov spaces. Thus, it is
natural to ask:

Is offline RL sample-efficient with deep ReLU network function approximation beyond the (approximate-)
linear regime imposed by RKHS and NTK?

Our contributions. In this paper, we provide a statistical theory of both OPE and OPL with neural net-
work function approximation in a broad generality that is beyond the (approximate-) linear regime imposed
by RKHS and NTK. In particular, our contributions, which are summarized in Table 1 and will be discussed
in details in Section 5, are:

• First, we achieve a generality for the guarantees of offline RL with neural network function approx-
imation via two novel considerations: (i) We introduce a new structural condition namely Besov
dynamic closure which subsumes the existing dynamic conditions for offline RL with neural network
function approximation and even includes MDPs that need not be continuous, differentiable or spa-
tially homogeneous in smoothness; (ii) We take into account the correlated structure of the value
estimate produced by a regression-based algorithm from the offline data. This correlated structure
plays a central role in the statistical efficiency of an offline algorithm; yet the prior works improperly
ignore this structure (Le et al., 2019) or avoid it using an data splitting approach (Yang et al., 2019).

• Second, we prove that an offline RL algorithm based on fitted-Q iteration (FQI) can achieve the
sample complexity of n = Õ(H4+4 d

ακ
1+ d

α
µ ϵ−2−2 d

α ) where κ measures the distributional shift in the
offline data, H = (1−γ)−1 is the effective horizon length, d is the input dimension, α is a smoothness
parameter of the underlying MDP, and ϵ is a user-specified error. Notably, our guarantee holds under
our two novel considerations above that generalize the condition in Yang et al. (2019) and do not
require data splitting in Yang et al. (2019). Moreover, our analysis also corrects the technical mistake
in Le et al. (2019) that ignores the correlated structure of offline value estimate.

Problem scope. We emphasize that the present work focuses on statistical theory of offline RL with
neural network function approximation in Besov spaces where we analyze a relatively standard algorithm,
FQI. Regarding the empirical effectiveness of FQI with neural network function approximation for offline
RL, we refer the readers to the empirical study in Voloshin et al. (2019). Finally, this work is an extension
of our workshop paper (Nguyen-Tang et al., 2021).

Notations. Denote ∥f∥p,µ :=
(∫

X
|f |pdµ

)1/p

, and for simplicity, we write ∥ · ∥µ for ∥ · ∥p,µ when p = 2

and write ∥ · ∥p for ∥ · ∥p,µ if µ is the Lebesgue measure. Let Lp(X ) be the space of measurable functions
for which the p-th power of the absolute value is Lebesgue integrable, i.e. Lp(X ) = {f : X → R|∥f∥p <∞}.
Denote by ∥ · ∥0 the 0-norm, i.e., the number of non-zero elements, and a ∨ b = max{a, b}. For any two
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Table 1: Comparison among existing representative works of FQI estimators for offline RL with function
approximation under a uniform data coverage assumption. Here S and A are the cardinalities of the state
and action space when they are finite, κ is a measure of distribution shift (which can be defined slightly
different in different works), ϵ is the user-specified precision, d is the dimension of the input space, α is the
smoothness parameter of the underlying MDP, and H := (1− γ)−1 is the effective horizon length.

Work Function Regularity Tasks Sample complexity Remark

Yin & Wang (2020) Tabular Tabular OPE Õ
(
κ ·H4 · ϵ−2 · (SA)2) -

Duan & Wang (2020) Linear Linear OPE Õ
(
κ ·H4 · ϵ−2 · d

)
-

Le et al. (2019) General General OPE/OPL N/A improper analysis

Yang et al. (2019) ReLU nets Hölder OPL Õ
(
κ2+ d

α ·H5+2 d
α · ϵ−2− d

α · log(H2/ϵ)
)

data splitting

This work ReLU nets Besov OPE/OPL Õ
(
κ1+ d

α ·H4+4 d
α · ϵ−2−2 d

α

)
data reuse

real-valued functions f and g, we write f(·) ≲ g(·) if there is an absolute constant c independent of the
function parameters (·) such that f(·) ≤ c · g(·). We write f(·) ≍ g(·) if f(·) ≲ g(·) and g(·) ≲ f(·). We write
f(·) ≃ g(·) if there exists an absolute constant c such that f(·) = c · g(·). We denote H := (1− γ)−1 which
is the effective horizon length in the discounted MDP and is equivalent to the horizon (episode) length in
finite-horizon MDPs.

2 Related Work

Offline RL with tabular representation. The majority of the theoretical results for offline RL focus
on tabular MDP where the state space is finite and an importance sampling -related approach is possible
(Precup et al., 2000; Dudík et al., 2011; Jiang & Li, 2015; Thomas & Brunskill, 2016; Farajtabar et al., 2018;
Kallus & Uehara, 2019). The main drawback of the importance sampling-based approach is that it suffers
high variance in long horizon problems. The high variance problem can be mitigated by direct methods
where we employ models to estimate the value functions or the transition kernels. We focus on direct
methods in this work. For tabular MDPs with some uniform data-visitation measure dm > 0, a near-optimal
sample complexity bound of O(H3dm/ϵ

2) and O(H2dm/ϵ
2) were obtained for time-inhomogeneous tabular

MDP (Yin et al., 2021) and for time-homogeneous tabular MDP (Yin & Wang, 2021b; Ren et al., 2021),
respectively. With the single-concentrability assumption, a tight bound of O(H3SC∗/ϵ2) was achieved (Xie
et al., 2021b; Rashidinejad et al., 2021), where H ≈ 1/(1 − γ) is the episode length. Yin & Wang (2021c)
introduced intrinsic offline bound that further incorporates instance-dependent quantities. Shi et al. (2022)
obtained the minimax rate with model-free methods. Wang et al. (2022) derived gap-dependent bounds for
offline RL in tabular MDPs.

Offline RL with linear function approximation. Offline RL with function approximation often follow
two algorithmic approaches: Fitted Q-iteration (FQI) (Bertsekas & Tsitsiklis, 1995; Jong & Stone, 2007;
Lagoudakis & Parr, 2003; Grünewälder et al., 2012; Munos, 2003; Munos & Szepesvári, 2008; Antos et al.,
2008; Tosatto et al., 2017; Le et al., 2019), and pessimism principle (Buckman et al., 2020), where the former
requires a uniform data coverage and the latter only needs a sufficient coverage over the target policy. Duan
& Wang (2020) studied fitted-Q iteration algorithm in linear MDPs. Wang et al. (2020) highlighted the
necessity of strong structural assumptions (e.g., on low distributional shift or strong dynamic condition
beyond realizability) for sample-efficient offline RL with linear function approximation suggesting that only
realizability and strong uniform data coverage are not sufficient for sample-efficient offline RL. Jin et al.
(2020b) brought pessimism principle into offline linear MDPs. Nguyen-Tang et al. (2022b) derived a minimax
rate of 1/

√
n for offline linear MDPs under a partial data coverage assumption and obtained the instance-

dependent rate of 1/n when the gap information is available. Xiong et al. (2022); Yin et al. (2022) used
variance reduction and data splitting to tighten the bound of Jin et al. (2020b). Xie et al. (2021a) proposed
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Bellman-consistent condition with general function approximation which improves the bound of Jin et al.
(2020b) by a factor of

√
d when realized to finite action space and linear MDPs. Chen et al. (2021) studied

sample complexity of FQI in linear MDPs and derive a lower bound for this setting.

Offline RL with non-linear function approximation. Beyond linearity, some works study offline RL
in general or nonparametric function approximation, either with FQI estimators (Munos & Szepesvári, 2008;
Le et al., 2019; Duan et al., 2021a;b; Hu et al., 2021), pessimistic estimators (Uehara & Sun, 2021; Nguyen-
Tang et al., 2022a; Jin et al., 2020b), or minimax estimators (Uehara et al., 2021), where Uehara et al. (2021)
also realized their minimax estimators to the neural network function approximation, Nguyen-Tang et al.
(2022a) considered offline contextual bandits with Neural Tangent Kernels (NTK), and Jin et al. (2020b)
considered the pessimistic value iteration algorithm with Reproducing Kernel Hilbert Space (RKHS) in their
extended version. Our work is different from these aforementioned works in that we analyze the fundamental
FQI estimators with neural network function approximation under the Besov regularity condition that is
much more general than RKHS and NTK. We also further emphasize that even that RKHS and NTK spaces
are non-linear function approximation, the functions in those spaces are linear in terms of an underlying
feature space, making the analysis for these spaces akin to the case of linear function approximation. Yang
et al. (2019) also considered deep neural network approximation. In particular, Yang et al. (2019) focused on
analyzing deep Q-learning using a disjoint fold of offline data for each iteration. Such approach is considerably
sample-inefficient for offline RL with long (effective) horizon. In addition, they rely on a relatively restricted
smoothness assumption of the underlying MDPs that hinders their results from being widely applicable in
more general settings. Recently, other works (Xie et al., 2021a; Zhan et al., 2022; Chen & Jiang, 2022; Uehara
& Sun, 2021) considered offline RL with general function approximation and imposed weaker data coverage
assumption by using pessimistic algorithms. Their algorithms are more involved than FQI but did not study
the effect of the regularity of the underlying MDP on the sample complexity of offline RL. They also assume
that the function class is finite which is not applicable to neural network function approximation. Since the
first version of our paper appeared online, there have been several other works establishing sample complexity
of reinforcement learning in Besov spaces for various problem settings, including ϵ-greedy exploration for
online setting with Markovian data (Liu et al., 2022) and off-policy evaluation on low-dimensional manifolds
(Ji et al., 2022).

3 Preliminaries

We consider a discounted Markov decision process (MDP) with possibly infinitely large state space S,
continuous action space A, initial state distribution ρ ∈ P(S), transition operator P : S×A → P(S), reward
distribution R : S × A → P([0, 1]), and a discount factor γ ∈ [0, 1). For notational simplicity, we assume
that X := S ×A ⊆ [0, 1]d.

A policy π : S → P(A) induces a distribution over the action space conditioned on states. The Q-value
function for policy π at state-action pair (s, a), denoted by Qπ(s, a) ∈ [0, 1], is the expected discounted total
reward the policy collects if it initially starts in the state-action pair, i.e.,

Qπ(s, a) := Eπ

[ ∞∑
t=0

γtrt|s0 = s, a0 = a

]
,

where rt ∼ R(st, at), at ∼ π(·|st), and st ∼ P (·|st−1, at−1). The value of policy π is V π =
Es∼ρ,a∼π(·|s) [Qπ(s, a)], and the optimal value is V ∗ = maxπ V

π where the maximization is taken over
all stationary policies. Alternatively, the optimal value V ∗ can be obtained via the optimal Q-function
Q∗ = maxπ Q

π as V ∗ = Es∼ρ [maxa Q
∗(s, a)]. Denote by Tπ and T ∗ the Bellman operator and the optimal-

ity Bellman operator, respectively, i.e., for any f : S ×A → R

[Tπf ](s, a) = Er∼R(s,a)[r] + γEs′∼P (·|s,a),a′∼π(·|s′) [f(s′, a′)]

[T ∗f ](s, a) = Er∼R(s,a)[r] + γEs′∼P (·|s,a)

[
max

a′
f(s′, a′)

]
,

we have TπQπ = Qπ and T ∗Q∗ = Q∗.
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Offline regime. We consider the offline RL setting where a learner cannot explore the environment but
has access to a fixed logged data D = {(si, ai, s

′
i, ri)}n

i=1 collected a priori by certain behaviour policy η.
For simplicity, we assume that {si}n

i=1 are independent and η is stationary. Equivalently, {(si, ai)}n
i=1 are

i.i.d. samples from the normalized discounted stationary distribution over state-actions with respect to
η, i.e., (si, ai)

i.i.d.∼ µ(·, ·) := (1 − γ)
∑∞

t=0 γ
tP(st = ·, at = ·|ρ, η) where s′

i ∼ P (·|si, ai) and ai ∼ η(·|si).
This assumption is relatively standard in the offline RL setting (Munos & Szepesvári, 2008; Chen & Jiang,
2019a; Yang et al., 2019). The goals of Off-Policy Evaluation (OPE) and Off-Policy Learning (OPL) are to
estimate V π and V ∗, respectively from D. The performance of OPE and OPL estimates are measured via
sub-optimality gaps defined as follows.

For OPE Task. Given a fixed target policy π, for any value estimate V̂ computed from the offline data
D, the sub-optimality of OPE is defined as

SubOpt(V̂ ;π) = |V π − V̂ |.

For OPL Task. For any estimate π̂ of the optimal policy π∗ that is learned from the offline data D, we
define the sup-optimality of OPL as

SubOpt(π̂) := Es∼ρ

[
V ∗(s)− V π̂(s)

]
.

3.1 Deep ReLU Networks as Function Approximation

In practice, the state space is often very large and complex, and thus function approximation is required
to ensure generalization across different states. Deep neural networks with the ReLU activation offer a rich
class of parameterized functions with differentiable parameters. Deep ReLU networks are state-of-the-art in
many applications, e.g., Krizhevsky et al. (2012); Mnih et al. (2015), including offline RL with deep ReLU
networks that can yield superior empirical performance (Voloshin et al., 2019). In this section, we describe
the architecture of deep ReLU networks and the associated function space which we use throughout this
paper. Specifically, a L-height, m-width ReLU network on Rd takes the form of

fL,m
θ (x) = W (L)σ

(
W (L−1)σ

(
. . . σ

(
W (1)σ(x) + b(1)

)
. . .
)

+ b(L−1)
)

+ b(L),

where W (L) ∈ R1×m, b(L) ∈ R,W (1) ∈ Rm×d, b(1) ∈ Rm, W (l) ∈ Rm×m, b(l) ∈ Rm,∀1 < l < L, θ =
{W (l), b(l)}1≤l≤L, and σ(x) = max{x, 0} is the (element-wise) ReLU activation. We define Φ(L,m, S,B) as
the space of L-height, m-width ReLU functions fL,m

θ (x) with sparsity constraint S, and norm constraint
B, i.e.,

∑L
l=1(∥W (l)∥0 + ∥b(l)∥0) ≤ S,max1≤l≤L ∥W (l)∥∞ ∨ ∥b(l)∥∞ ≤ B. Finally, for some L,m ∈ N and

S,B ∈ (0,∞), we define the unit ball of ReLU network function space FNN as

FNN(L,m, S,B) :=
{
f ∈ Φ(L,m, S,B) : ∥f∥∞ ≤ 1

}
.

In nonparametric regressions, Suzuki (2018) showed that deep ReLU networks outperform any non-adaptive
linear estimator due to their higher adaptivity to spatial inhomogeneity.

3.2 Besov spaces

Our new dynamic condition relies on the regularity of Besov spaces. There are several ways to characterize
the smoothness in Besov spaces. Here, we pursue a characterization via multivariate moduli of smoothness
as it is more intuitive, following Giné & Nickl (2016).
Definition 3.1 (Multivariate moduli of smoothness). For any t > 0 and r ∈ N, the r-th multivariate modulus
of smoothness of any function f ∈ Lp(X ), p ∈ [1,∞] is defined as

ωt,p
r (f) := sup

0≤∥h∥≤t

∥∆r
h(f)∥p,
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where ∆r
h(f) is the r-th order translation-difference operator defined as

∆r
h(f)(·) :=

r∑
k=0

(
r

k

)
(−1)r−kf(·+ k · h).

Remark 3.1. The quantity ∆r
h(f) captures the local oscillation of f which is not necessarily differentiable.

In the case the r-th order weak derivative Drf exists and is locally integrable, we have

lim
h→0

∆r
h(f)(x)
∥h∥r

= Drf(x).

It also follows from Minkowski’s inequality that

ωt,p
r (f)
tr

≤ ∥Drf∥p and
ωt,p

r+r′(f)
tr

≤ ωt,p
r′ (Drf).

Definition 3.2 (Besov space Bα
p,q(X )). For 1 ≤ p, q ≤ ∞ and α > 0, we define the norm ∥ · ∥Bα

p,q
of the

Besov space Bα
p,q(X ) as ∥f∥Bα

p,q
:= ∥f∥p + |f |Bα

p,q
where

|f |Bα
p,q

:=


(∫

R+

(
ωt,p

⌊α⌋+1(f)
tα

)q

dt

t

)1/q

, 1 ≤ q <∞,

supt>0
ωt,p

⌊α⌋+1(f)
tα

, q =∞,

is the Besov seminorm. Then, Bα
p,q := {f ∈ Lp(X ) : ∥f∥Bα

p,q
<∞}.

Intuitively, the Besov seminorm |f |Bα
p,q

roughly describes the Lq-norm of the lp-norm of the α-order smooth-
ness of f . Besov spaces are considerably general that subsume Hölder spaces and Sobolev spaces as
well as functions with spatially inhomogeneous smoothness (Triebel, 1983; Sawano, 2018; Suzuki, 2018;
Cohen, 2009; Nickl & Pötscher, 2007). In particular, the Besov space Bα

p,q reduces into the Hölder
space Cα when p = q = ∞ and α is positive and non-integer while it reduces into the Sobolev space
Wα

2 when p = q = 2 and α is a positive integer. We further consider the unit ball of Bα
p,q(X ) as

B̄α
p,q(X ) := {g ∈ Bα

p,q : ∥g∥Bα
p,q
≤ 1 and ∥g∥∞ ≤ 1}. When the context is clear, we drop X from B̄α

p,q(X ).

4 Fitted Q-Iteration for Offline Reinforcement Learning

Algorithm 1 Fitted Q-Iteration with Neural Network Function Approximation
1: Input: Offline data D = {(si, ai, s

′
i, ri)}n

i=1, number of iterations K, function family FNN, target policy
π (for OPE Task only)

2: Initialize Q0 ∈ FNN
3: for k = 1, . . . ,K do
4: Compute the estimated state-action value Qk asQk ← arg minf∈FNN

1
n

∑n
i=1

(
f(si, ai)− ri − γEa′∼π(·|s′

i
) [Qk−1(s′

i, a)]
)2

if OPE Task
Qk ← arg minf∈FNN

1
n

∑n
i=1 (f(si, ai)− ri − γmaxa∈A Qk−1(s′

i, a))2 if OPL Task

5: end for
6: Output: Return the following estimates{

VK ← ∥QK∥ρπ :=
√
Eρ(s)π(a|s) [QK(s, a)2] if OPE Task

πK(·|s)← arg maxa QK(a|s) if OPL Task
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In this work, we study a variant of fitted Q-iteration (FQI) algorithm for offline RL, presented in Algorithm
1. This algorithm is appealingly simple as it iteratively constructs Q-estimate from the offline data and the
previous Q-estimate, as in Algorithm 1. This FQI-style algorithm has been largely studied for offline RL,
such as Munos & Szepesvári (2008); Chen & Jiang (2019a); Duan et al. (2021a) to name a few; yet there
has been no work studying this algorithm in offline RL with neural network function approximation except
Yang et al. (2019). However, Yang et al. (2019) use data splitting and rely on a more limited dynamic
condition than ours. Thus, the notable difference in Algorithm 1 is the use of neural network to approximate
Q-functions and we estimate each Qk using the entire offline data set, instead of splitting the data into
disjoint sets as in Yang et al. (2019). In particular, Yang et al. (2019) split the offline data into K disjoint
sets, resulting in the sample complexity linearly scaled with K, which is highly inefficient in long (effective)
horizon problems where the effective horizon length H = 1/(1− γ) is large.

As we do not split the data into disjoint sets, a correlated structure is induced. Specifically, at each iteration
k in Algorithm 1, Qk−1 also depends on (si, ai) which makes E [ri + γmaxa Qk−1(s′

i, a)] ̸= [T ∗Qk−1](si, ai)
in OPL Task (and E

[
ri + γEa∼π(·|s′

i
) [Qk−1(s′

i, a)]
]
̸= [TπQk−1](si, ai) in OPE Task, respectively). This

correlated structure hinders a direct use of the standard concentration inequalities such as Bernstein’s in-
equality that require a sequence of random variables to adapt to certain filtration. We overcome this technical
difficulty using uniform convergence argument.

In our analysis, we assume access to the minimizer of the optimization in Algorithm 1. In practice, we can
use (stochastic) gradient descent to effectively solve this optimization with L0 regularization (Louizos et al.,
2017). If the L0 constraint is relaxed in practice, (stochastic) gradient descent is guaranteed to converge to
a global minimum under certain structural assumptions (Du et al., 2019a;b; Allen-Zhu et al., 2019; Nguyen,
2021).

5 Main Result

To obtain a non-trivial guarantee, certain assumptions on the distribution shift and the MDP regularity are
necessary. We introduce the assumptions about the data generation in Assumption 5.1 and the regularity of
the underlying MDP 5.2.
Assumption 5.1 (Uniform concentrability coefficient (Munos & Szepesvári, 2008)). ∃κµ < ∞ such that∥∥∥∥dνdµ

∥∥∥∥
∞
≤ κµ for any admissible distribution ν. 1

The finite κµ in Assumption 5.1 asserts that the sampling distribution µ is not too far away from any
admissible distribution, which holds for a reasonably large class of MDPs, e.g., for any finite MDP, any
MDP with bounded transition kernel density, and equivalently any MDP whose top-Lyapunov exponent is
negative. We present a simple (though stronger than necessary) example for which Assumption 5.1 holds.
Example 5.1. If there exist absolute constants c1, c2 > 0 such that for any s, s′ ∈ S, there exists an action
a ∈ A such that P (s′|s, a) ≥ 1/c1 and η(a|s) ≥ 1/c2,∀s, a, then we can choose κµ = c1c2.

Chen & Jiang (2019a) further provided natural problems with rich observations generated from hidden states
that has a low concentrability coefficient. These suggest that low concentrability coefficients can be found
in fairly many interesting problems in practice.

We now state the assumption about the regularity of the underlying MDP.
Assumption 5.2 (Besov dynamic closure). Consider some fixed p, q ∈ [1,∞] and α > d

min{p,2} .

• For OPE Task: For a target policy π, and for some (L,m, S,B) ∈ N × N × N × R+ (which will be
specified later) we assume that: ∀f ∈ FNN(L,m, S,B) =⇒ Tπf ∈ B̄α

p,q.

• For OPL Task: For some (L,m, S,B) ∈ N × N × N × R+ (which will be specified later) we assume
that: ∀f ∈ FNN(L,m, S,B) =⇒ T ∗f ∈ B̄α

p,q.
1ν is said to be admissible if there exist t ≥ 0 and policy π̄ such that ν(s, a) = P(st = s, at = a|s1 ∼ ρ, π̄), ∀s, a.
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Assumption 5.2 signifies that for OPL task (for OPE task with target policy π, respectively) the Bellman
operator T ∗ (Tπ, respectively) applied on any ReLU network function in FNN(L,m, S,B) results in a new
function that sits in B̄α

p,q(X ). The smoothness constraint α > d
min{p,2} is necessary to guarantee the compact-

ness and the finite (local) Rademacher complexity of the Besov space, and α− d/p is called the differential
dimension of the Besov space. Note that when p < 2 (thus the condition above becomes α > d/p), a func-
tion in the corresponding Besov space contains both spiky parts and smooth parts, i.e., the Besov space has
inhomogeneous smoothness (Suzuki, 2018).

Our Besov dynamic closure is sufficiently general that subsumes almost all the previous completeness
assumptions in the literature. For example, a simple (yet considerably stronger than necessary) suffi-
cient condition for Assumption 5.2 is that the expected reward function r(s, a) and the transition density
P (s′|s, a) for each fixed s′ are functions in B̄α

p,q, regardless of any input function f and any target policy
π. 2 Such a condition on the transition dynamic is common in the RL literature; for example, linear
MDPs (Jin et al., 2020a) posit a linear structure on the expected reward and the transition density as
r(s, a) = ⟨ϕ(s, a), θ⟩ and P (s′|s, a) = ⟨ϕ(s, a), λ(s′)⟩ for some feature map ϕ : X → Rd0 and signed mea-
sures λ(s′) = (λ(s′)1, . . . , λ(s′)d0). To make it even more concrete, we present the following examples for
Assumption 5.2.
Example 5.2 (Reproducing kernel Hilbert space (RKHS)). Define kh,l the Matérn kernel with smoothness
parameter h > 0 and length scale l > 0. If both r(·) and gs′(·) := P (s′|·) at any s′ ∈ S are functions in the
RKHS of Matérn kernel kh,l where h = α− d/2 > 0 and l > 0, then Assumption 5.2 holds for p = q = 2. 3

Moreover, this particular case is equivalent to the dynamic condition considered in Yang et al. (2019).
Example 5.3 (Reduction to linear MDPs). Linear MDPs (Jin et al., 2020a) correspond to Assumption 5.2
with α = 1 and p = q on a p-norm bounded domain. 4

Note that Assumption 5.2 even allows the expected rewards r(·) and the transition densities gs′(·) := P (s′|·)
to contain both spiky parts and smooth parts, i.e., inhomogeneous smoothness, as long as p < 2 (thus the
constraint condition becomes α > d/p).

We are now ready to present our main result.
Theorem 5.1. Under Assumption 5.1 and Assumption 5.2 for some (L,m, S,B) satisfying (1), for any
ϵ > 0, δ ∈ (0, 1],K > 0, if n satisfies that n ≳

( 1
ϵ2

)1+ d
α log6 n+ 1

ϵ2 (log(1/δ) + log logn), then with probability
at least 1− δ, the sup-optimality of Algorithm 1 is

SubOpt(VK ;π) ≤
√
κµ

1− γ ϵ+ γK/2

(1− γ)1/2 for OPE,

SubOpt(πK) ≤
2γ√κµ

(1− γ)2 ϵ+ 2γ1+K/2

(1− γ)3/2 for OPL.

In addition, the optimal deep ReLU network Φ(L,m, S,B) that obtains such sample complexity (for both
OPE and OPL) satisfies

L ≍ logN,m ≍ N logN,S ≍ N, and B ≍ N1/d+(2ι)/(α−ι), (1)

where N ≍ n
1/2+(2+d2/(α(α+d)))−1

1+2α/d and ι := d(p−1 − (1 + ⌊α⌋)−1)+.

As the complete form of Theorem 5.1 is quite involved, we interpret and disentangle this result to understand
FQI algorithms with neural network function approximation for offline RL tasks. The sub-optimality in both

2This sufficient condition imposes the smoothness constraint solely on the underlying MDP regardless of the input function
f . Thus, the “max” over the input function f(s, a) does not affect the smoothness of the resulting function after f is passed
through the Bellman operator. This holds regardless of whether f is in the Besov space.

3This is due to the norm-equivalence between the above RKHS and the Sobolev space W α
2 (X ) (Kanagawa et al., 2018) and

the degeneration from Besov spaces to Sobolev spaces as Bα
2,2(X ) = W α

2 (X ).
4However, linear MDPs do not require the smoothness constraint α > d

min{p,2} to ensure a finite Rademacher complexity of
linear models. Of course, our analysis addresses significantly more complex and general settings than linear MDPs which we
believe is more important than recovering this particular condition of linear MDPs.
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OPE and OPL consists of the statistical error (the first term) and the algorithmic error (the second term).
While the algorithmic error enjoys the fast linear convergence to 0 as K gets large, the statistical error
reflects the fundamental difficulty of our problems. To make it more interpretable, we present a simplified
version of Theorem 5.1 where we state the sample complexity required to obtain a sub-optimality within ϵ.
Proposition 5.1 (Simplified version of Theorem 5.1). For any K ≳ H log(1/ϵ), the sample complexity of
Algorithm 1 for OPE Task and OPL Task is n = Õ(H2+2 d

ακ
1+ d

α
µ ϵ−2−2 d

α ) and n = Õ(H4+4 d
ακ

1+ d
α

µ ϵ−2−2 d
α ),

respectively. Moreover, the optimal deep ReLU network Φ(L,m, S,B) for both OPE and OPL Tasks that
obtains such sample complexity is L = O(logn),m = O(n2/5 logn), S = O(n2/5), and logB = O( n2/5

d ).

To discuss our result, we compare it with other existing works in Table 1. As the literature of offline RL is
vast, we only compare with representative works of FQI estimators for offline RL with function approximation
under a uniform data coverage assumption, as they are directly relevant to our work that uses FQI estimators
with neural network function approximation under uniform data coverage. Here, our sample complexity does
not scale with the number of states as in tabular MDPs (Yin & Wang, 2020; Yin et al., 2021; Yin & Wang,
2021a) or the inherent Bellman error as in the general function approximation (Munos & Szepesvári, 2008;
Le et al., 2019; Duan et al., 2021a). Instead, it explicitly scales with the (possible fractional) smoothness
α of the underlying MDP, the dimension d of the input space, the distributional shift measure κµ and the
effective episode length H = (1− γ)−1. Importantly, this guarantee is established under the Besov dynamic
closure that subsumes the dynamic conditions of the prior results. Compared to Yang et al. (2019), our
sample complexity has a strong advantage in long (effective) horizon problems where H > d

α−2d log(1/ϵ) 5

and improves it by a factor of H1−2d/αϵ−d/α log(H2/ϵ2). It also suggests that the data splitting in Yang
et al. (2019) should be preferred for short (effective) horizon problems. Though our bound has a tighter
dependence on H in the long horizon setting, the dependence on ϵ in our bound is compromised and does
not match the minimax rate in the regression setting. We leave as future direction to construct the lower
bound for the data-reuse setting of offline RL.

On the role of deep ReLU networks in offline RL. We make several remarks about the role of deep
networks in offline RL. The role of deep ReLU networks in offline RL is to guarantee a maximal adaptivity
to the (spatial) regularity of the functions in Besov space and obtain an optimal approximation error rate
that otherwise were not possible with other function approximation such as kernel methods (Suzuki, 2018).
Moreover, by the equivalence in the functions that a neural architecture can compute (Yarotsky, 2017),
Theorem 5.1 also readily holds for any other continuous piece-wise linear activation functions with finitely
many line segments M where the optimal network architecture only increases the number of units and weights
by constant factors depending only on M . Moreover, we observe that the optimal ReLU network is relatively
“thinner” than overparameterized neural networks that have been recently studied in the literature (Arora
et al., 2019; Allen-Zhu et al., 2019; Hanin & Nica, 2019; Cao & Gu, 2019; Belkin, 2021) where the width m
is a high-order polynomial of n. As overparameterization is a key feature for such overparameterized neural
networks to obtain a good generalization, it is natural to ask why a thinner neural network in Theorem 5.1
also guarantees a strong generalization for offline RL? Intuitively, the optimal ReLU network in Theorem
5.1 is regularized by a strong sparsity which resonates with our practical wisdom that a sparsity-based
regularization prevents over-fitting and achieve a better generalization. Indeed, as the total number of
parameters in the considered neural network is p = md+m+m2(L− 2) = O(N2 log3 N) while the number
of non-zeros parameters S only scales with N , the optimal ReLU network in Theorem 5.1 is relatively sparse.

6 Technical Review

In this section, we highlight the key technical challenges in our analysis. In summary, two key technical
challenges in our analysis are rooted in the consideration of the correlated structure in value regression
in Algorithm 1, and the use of deep neural network as function approximation (and their combination).
To address these challenges, we devise the so-called double uniform convergence argument and leverage a

5This condition is often easily satisfied as in practice we commonly set γ = 0.99 and ϵ = 0.001, thus we have H = 100 and
log(1/ϵ) = 3.
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localization argument via sub-root functions for local Rademacher complexities. In what follows, we briefly
discuss these technical challenges and our analysis approach.

The analysis and technical proofs of Yang et al. (2019); Le et al. (2019) heavily rely on the equation
E
[
ri + γEa′∼π(·|s′

i
) [Qk−1(s′

i, a)]
]

= [T ∗Qk−1](si, ai) to leverage the standard nonparametric regression
techniques (in a supervised learning setting). However, the correlated structure in Algorithm 1 implies
E
[
ri + γEa′∼π(·|s′

i
) [Qk−1(s′

i, a)]
]
̸= [T ∗Qk−1](si, ai) as Qk−1 also depends on (si, ai). Thus, the techniques

in these prior works could not be used here and we require a new analysis. It is worth noting that Le
et al. (2019) also re-use the data as in Algorithm 1 (instead of data splitting as in Yang et al. (2019)) but
mistakenly assume that E

[
ri + γEa′∼π(·|s′

i
) [Qk−1(s′

i, a)]
]

= [T ∗Qk−1](si, ai). To deal with the correlated
structure, we devise a double uniform convergence argument. The double uniform convergence argument is
appealingly intuitive: while in a standard regression problem, the (single) uniform convergence argument
seeks the generalization guarantee uniformly over an entire hypothesis space of a data-dependent empirical
risk minimizer, in the value regression problem of Algorithm 1, we additionally guarantee generalization
uniformly over the hypothesis space of the data-dependent regression target T ∗Qk−1. To make it concrete,
we highlight a key equality in our proof where the double uniform convergence argument is used:

max
k
∥Qk+1 − T ∗Qk∥2

µ = sup
Q∈FNN

(E− En)(lf̂Q − lfQ
∗

)︸ ︷︷ ︸
I1,empirical process term

+ sup
Q∈FNN

En(lfQ
⊥
− lfQ

∗
)︸ ︷︷ ︸

I2,bias term

,

where fQ
∗ (x) = E[r + γmaxa′ Q(s′, a′)|x], and fQ

⊥ := arg inff∈FNN
∥f − fQ

∗ ∥2,µ, and lfQ
⊥

:= (fQ
⊥ (x1) − r1 −

γmaxa′ Q(s′
1, a

′))2 and lfQ
∗

:= (fQ
∗ (x1) − r1 − γmaxa′ Q(s′

1, a
′))2 are random variables with respect to the

randomness of (x1, s
′
1, r1). We have learned that a similar general idea of the double uniform convergence

argument has been leveraged in Chen & Jiang (2019b) for general function classes. We remark they use
finite function classes, and in our case, the double uniform convergence argument is particularly helpful in
dealing with local Rademacher complexities under a data-dependent structure as local Rademacher complex-
ities already involve the supremum operator which can be naturally incorporated with the double uniform
convergence argument.

The double uniform convergence argument also requires a different technique to control an empirical process
term I1 as it now requires a uniform convergence over the regression target. We leverage local Rademacher
complexities to derive a bound on I1:

sup{(E− En)(lf̂Q − lfQ
∗

) : Q ∈ FNN, ∥f̂Q − fQ
∗ ∥2

µ ≤ r}

≤ 6ERn

{
f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r
}

+ 2
√

2r log(1/δ)
n

+ 28 log(1/δ)
3n .

where Rn is the local Rademacher complexity (Bartlett et al., 2005). An explicit bound is then derived via
a localization argument and the fixed point of a sub-root function.

The use of neural networks pose a new challenge mainly in bounding the bias term I2. We derive this bound
using the adaptivity of deep ReLU network to the regularity in Besov spaces, leveraging our Besov dynamic
condition in Assumption 5.2. Bounding the bias term also requires the use of a concentration inequality.
While Le et al. (2019) use Bernstein’s inequality, our bias term I2 requires a uniform convergence version of
Bernstein’s inequality as I2 requires a guarantee uniformly over FNN. We omit a detailed proof for Theorem
5.1 to Section A.

7 Conclusion and Discussion

We presented the sample complexity of FQI estimators for offline RL with deep ReLU network function
approximation under a uniform data coverage assumption. We proved that the FQI-type algorithm achieved
the sample complexity of n = Õ(H4+4 d

ακ
1+ d

α
µ ϵ−2−2 d

α ) under a correlated structure and a general dynamic
condition namely the Besov dynamic closure. In addition, we corrected the mistake in ignoring the correlated
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structure when reusing data with FQI estimators in Le et al. (2019), avoided the possibly inefficient data
splitting technique in Yang et al. (2019) for long (effective) horizon problems, and proposed a general dynamic
condition that subsumes all the previous Bellmen completeness assumptions. In the following, we discuss
future directions.

Relaxing the assumption about uniform data coverage. For a future work, we can include the
pessimistic approach in Jin et al. (2020b); Rashidinejad et al. (2021); Uehara & Sun (2021); Nguyen-Tang
et al. (2022a) to the current work with a more involved analysis of uncertainty quantifiers under non-linear
function approximation to relax the strictness of the uniform data coverage assumption.

Relaxing the assumption about optimization oracle. The present work assumes access to the op-
timization oracle when fitting a neural network to the offline data. It is desirable to understand how
optimization and generalization of a trained neural network can contribute to offline RL with neural func-
tion approximation. A promising approach to obtain a tight trajectory-dependent sub-optimality bound of
offline RL with neural function approximation is to characterize the SGD-based optimization via a stochastic
differential equation by allowing the stochastic noises to follow the fractional Brownian motion Tan et al.
(2022); Tong et al. (2022).
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A Appendix

A Proof of Theorem 5.1

We now provide a complete proof of Theorem 5.1. The proof has four main components: a sub-optimality
decomposition for error propagation across iterations, a Bellman error decomposition using a uniform con-
vergence argument, a deviation analysis for least squares with deep ReLU networks using local Rademacher
complexities and a localization argument, and a upper bound minimization step to obtain an optimal deep
ReLU architecture.
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Step 1: A sub-optimality decomposition

The first step of the proof is a sub-optimality decomposition, stated in Lemma A.1, that applies generally
to any least-squares Q-iteration methods.

Lemma A.1 (A sub-optimality decomposition). Under Assumption 5.1, the sub-optimality of VK returned
by Algorithm 1 is bounded as

SubOpt(VK) ≤


√

κµ

1−γ max
0≤k≤K−1

∥Qk+1 − TπQk∥µ + γK/2

(1− γ)1/2 for OPE,

4γ
√

κµ

(1−γ)2 max
0≤k≤K−1

∥Qk+1 − T ∗Qk∥µ + 4γ1+K/2

(1− γ)3/2 for OPL.

The lemma states that the sub-optimality decomposes into a statistical error (the first term) and an algo-
rithmic error (the second term). While the algorithmic error enjoys the fast linear convergence rate, the
statistical error arises from the distributional shift in the offline data and the estimation error of the target
Q-value functions due to finite data. Crucially, the contraction of the (optimality) Bellman operators Tπ and
T ∗ allows the sup-optimality error at the final iteration K to propagate across all iterations k ∈ [0,K − 1].
Note that this result is agnostic to any function approximation form and does not require Assumption 5.2.
The result uses a relatively standard argument that appears in a number of works on offline RL (Munos &
Szepesvári, 2008; Le et al., 2019).

Proof of Lemma A.1. We will prove the sup-optimality decomposition for both settings: OPE and OPL.

(i) For OPE. We denote the right-linear operator by Pπ· : {X → R} → {X → R} where

(Pπf)(s, a) :=
∫

X
f(s′, a′)π(da′|s′)P (ds′|s, a),

for any f ∈ {X → R}. Denote Denote ρπ(dsda) = ρ(ds)π(da|s). Let ϵk := Qk+1 − TπQk,∀k ∈ [0,K − 1]
and ϵK = Q0 −Qπ. Since Qπ is the (unique) fixed point of Tπ, we have

Qk −Qπ = TπQk−1 − TπQπ + ϵk−1 = γPπ(Qk−1 −Qπ) + ϵk−1.

By recursion, we have

QK −Qπ =
K∑

k=0
(γPπ)kϵk = 1− γK+1

1− γ

K∑
k=0

αkAkϵk

where αk := (1−γ)γk

1−γK+1 ,∀k ∈ [K] and Ak := (Pπ)k,∀k ∈ [K]. Note that
∑K

k=0 αk = 1 and Ak’s are probability
kernels. Denoting by |f | the point-wise absolute value |f(s, a)|, we have that the following inequality holds
point-wise:

|QK −Qπ| ≤ 1− γK+1

1− γ

K∑
k=0

αkAk|ϵk|.
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We have

∥QK −Qπ∥2
ρπ ≤

(1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

(
K∑

k=0
αkAk|ϵk|(s, a)

)2

(a)
≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkA
2
kϵ

2
k(s, a)

(b)
≤ (1− γK+1)2

(1− γ)2

∫
ρ(ds)π(da|s)

K∑
k=0

αkAkϵ
2
k(s, a)

(c)
≤ (1− γK+1)2

(1− γ)2

(∫
ρ(ds)π(da|s)

K−1∑
k=0

αkAkϵ
2
k(s, a) + αK

)
(d)
≤ (1− γK+1)2

(1− γ)2

(∫
µ(ds, da)

K−1∑
k=0

αkκµϵ
2
k(s, a) + αK

)

= (1− γK+1)2

(1− γ)2

(
K−1∑
k=0

αkκµ∥ϵk∥2
µ + αK

)

≤ κµ

(1− γ)2 max
0≤k≤K−1

∥ϵk∥2
µ + γK

(1− γ) .

The inequalities (a) and (b) follow from Jensen’s inequality, (c) follows from ∥Q0∥∞, ∥Qπ∥∞ ≤ 1, and (d)
follows from Assumption 5.1 that ρπAk = ρπ(Pπ)k ≤ κµµ. Thus we have

SubOpt(VK ;π) = |VK − V π|

=
∣∣∣∣Eρ,π[QK(s, a)]− Eρ[Qπ(s, a)]

∣∣∣∣
≤ Eρ,π [|QK(s, a)−Qπ(s, a)|]

≤
√
Eρ,π [(QK(s, a)−Qπ(s, a))2]

= ∥QK −Qπ∥ρπ

≤
√
κµ

1− γ max
0≤k≤K−1

∥ϵk∥µ + γK/2

(1− γ)1/2 .

(ii) For OPL. The sup-optimality for the OPL setting is more complex than the OPE setting but the tech-
nical steps are relatively similar. In particular, let ϵk−1 = T ∗Qk−1−Qk,∀k and π∗(s) = arg maxa Q

∗(s, a),∀s,
we have

Q∗ −QK = Tπ∗
Q∗ − Tπ∗

QK−1 + Tπ∗
QK−1 − T ∗QK−1︸ ︷︷ ︸

≤0

+ϵK−1

≤ γPπ∗
(Q∗ −QK−1) + ϵK−1

≤
K−1∑
k=0

γK−k−1(Pπ∗
)K−k−1ϵk + γK(Pπ∗

)K(Q∗ −Q0) (by recursion). (2)

Now, let πk be the greedy policy w.r.t. Qk, we have

Q∗ −QK = Tπ∗
Q∗︸ ︷︷ ︸

≥T πK−1 Q∗

−TπK−1QK−1 + TπK−1QK−1 − T ∗QK−1︸ ︷︷ ︸
≥0

+ϵK−1

≥ γPπK−1(Q∗ −QK−1) + ϵK−1

≥
K−1∑
k=0

γK−k−1(PπK−1 . . . Pπk+1)ϵk + γK(PπK−1 . . . Pπ0)(Q∗ −Q0). (3)

17



Published in Transactions on Machine Learning Research (12/2022)

Now, we turn to decompose Q∗ −QπK as

Q∗ −QπK = (Tπ∗
Q∗ − Tπ∗

QK) + (Tπ∗
QK − TπKQK)︸ ︷︷ ︸

≤0

+(TπKQK − TπKQπK )

≤ γPπ∗
(Q∗ −QK) + γPπK (QK −Q∗ +Q∗ −QπK ).

Thus, we have

(I − γPπK )(Q∗ −QπK ) ≤ γ(Pπ∗
− PπK )(Q∗ −QK).

Note that the operator (I − γPπK )−1 =
∑∞

i=0(γPπK )i is monotone, thus

Q∗ −QπK ≤ γ(I − γPπK )−1Pπ∗
(Q∗ −QK)− γ(I − γPπK )−1PπK (Q∗ −QK). (4)

Combining Equation (4) with Equations (2) and (3), we have

Q∗ −QπK ≤ (I − γPπK )−1

(
K−1∑
k=0

γK−k(Pπ∗
)K−kϵk + γK+1(Pπ∗

)K+1(Q∗ −Q0)
)
−

(I − γPπK )−1

(
K−1∑
k=0

γK−k(PπK . . . Pπk+1)ϵk + γK+1(PπK . . . Pπ0)(Q∗ −Q0)
)
.

Using the triangle inequality, the above inequality becomes

Q∗ −QπK ≤ 2γ(1− γK+1)
(1− γ)2

(
K−1∑
k=0

αkAk|ϵk|+ αKAK |Q∗ −Q0|

)
,

where

Ak = 1− γ
2 (I − γPπK )−1

(
(Pπ∗

)K−k + PπK . . . Pπk+1
)
,∀k < K,

AK = 1− γ
2 (I − γPπK )−1

(
(Pπ∗

)K+1 + PπK . . . Pπ0
)
,

αk = γK−k−1(1− γ)/(1− γK+1),∀k < K,

αK = γK(1− γ)/(1− γK+1).

Note that Ak is a probability kernel for all k and
∑

k αk = 1. Thus, similar to the steps in the OPE setting,
for any policy π, we have

∥Q∗ −QπK∥2
ρπ ≤

[
2γ(1− γK+1)

(1− γ)2

]2(∫
ρ(ds)π(da|s)

K−1∑
k=0

αkAkϵ
2
k(s, a) + αK

)

≤
[

2γ(1− γK+1)
(1− γ)2

]2(∫
µ(ds, da)

K−1∑
k=0

αkκµϵ
2
k(s, a) + αK

)

=
[

2γ(1− γK+1)
(1− γ)2

]2(K−1∑
k=0

αkκµ∥ϵk∥2
µ + αK

)

≤ 4γ2κµ

(1− γ)4 max
0≤k≤K−1

∥ϵk∥2
µ + 4γK+2

(1− γ)3 .

Thus, we have

SubOpt(πK) = ∥Q∗ −QπK∥ρπ ≤
2γ√κµ

(1− γ)2 max
0≤k≤K−1

∥ϵk∥µ + 2γK/2+1

(1− γ)3/2 .
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Step 2: A Bellman error decomposition

The next step of the proof is to decompose the Bellman errors ∥Qk+1−TπQk∥µ for OPE and ∥Qk+1−T ∗Qk∥µ

for OPL. Since these errors can be decomposed and bounded similarly, we only focus on OPL here.

The difficulty in controlling the estimation error ∥Qk+1 − T ∗Qk∥2,µ is that Qk itself is a random variable
that depends on the offline data D. In particular, at any fixed k with Bellman targets {yi}n

i=1 where
yi = ri+γmaxa′ Qk(s′

i, a
′), it is not immediate that E [[T ∗Qk](xi)− yi|xi] = 0 for each covariate xi := (si, ai)

as Qk itself depends on xi (thus the tower law cannot apply here). A naive and simple approach to break
such data dependency of Qk is to split the original data D into K disjoint subsets and estimate each Qk

using a separate subset. This naive approach is equivalent to the setting in Yang et al. (2019) where
a fresh batch of data is generated for different iterations. This approach is however not efficient as it
uses only n/K samples to estimate each Qk. This is problematic in high-dimensional offline RL when the
number of iterations K can be very large as it is often the case in practical settings. We instead prefer to
use all n samples to estimate each Qk. This requires a different approach to handle the complicated data
dependency of each Qk. To circumvent this issue, we leverage a uniform convergence argument by introducing
a deterministic covering of T ∗FNN. Each element of the deterministic covering induces a different regression
target {ri + γmaxa′ Q̃(s′

i, a
′)}n

i=1 where Q̃ is a deterministic function from the covering which ensures that
E
[
ri + γmaxa′ Q̃(s′

i, a
′)− [T ∗Q̃](xi)|xi

]
= 0. In particular, we denote

yQk

i = ri + γmax
a′

Qk(s′
i, a

′),∀i and f̂Qk := Qk+1 = arg inf
f∈FNN

n∑
i=1

l(f(xi), yQk

i ), and fQk
∗ = T ∗Qk,

where l(x, y) = (x − y)2 is the squared loss function. Note that for any deterministic Q ∈ FNN, we have
fQ

∗ (x1) = E[yQ
1 |x1],∀x1, thus

E(lf − lfQ
∗

) = ∥f − fQ
∗ ∥2

µ,∀f, (5)

where lf denotes the random variable (f(x1)−yQ
1 )2 for a given fixed Q. Now letting fQ

⊥ := arg inff∈FNN
∥f−

fQ
∗ ∥2,µ be the projection of fQ

∗ onto the function class FNN, we have

max
k
∥Qk+1 − T ∗Qk∥2

µ = max
k
∥f̂Qk − fQk

∗ ∥2
µ

(a)
≤ sup

Q∈FNN

∥f̂Q − fQ
∗ ∥2

µ

(b)= sup
Q∈FNN

E(lf̂Q − lfQ
∗

)

(c)
≤ sup

Q∈FNN

{
E(lf̂Q − lfQ

∗
) + En(lfQ

⊥
− lf̂Q)

}
= sup

Q∈FNN

{
(E− En)(lf̂Q − lfQ

∗
) + En(lfQ

⊥
− lfQ

∗
)
}

≤ sup
Q∈FNN

(E− En)(lf̂Q − lfQ
∗

)︸ ︷︷ ︸
I1,empirical process term

+ sup
Q∈FNN

En(lfQ
⊥
− lfQ

∗
)︸ ︷︷ ︸

I2,bias term

, (6)

where (a) follows from that Qk ∈ FNN, (b) follows from Equation (5), and (c) follows from that En[lf̂Q ] ≤
En[lfQ ],∀f,Q ∈ FNN. That is, the error is decomposed into two terms: the first term I1 resembles the
empirical process in statistical learning theory and the second term I2 specifies the bias caused by the
regression target fQ

∗ not being in the function space FNN.

Step 3: A deviation analysis

The next step is to bound the empirical process term and the bias term via an intricate concentration,
local Rademacher complexities and a localization argument. First, the bias term in Equation (6) is taken
uniformly over the function space, thus standard concentration arguments such as Bernstein’s inequality
and Pollard’s inequality used in Munos & Szepesvári (2008); Le et al. (2019) do not apply here. Second,
local Rademacher complexities (Bartlett et al., 2005) are data-dependent complexity measures that exploit
the fact that only a small subset of the function class will be used. Leveraging a localization argument for
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local Rademacher complexities (Farrell et al., 2018), we localize an empirical Rademacher ball into smaller
balls by which we can handle their complexities more effectively. Moreover, we explicitly use the sub-root
function argument to derive our bound and extend the technique to the uniform convergence case. That is,
reasoning over the sub-root function argument makes our proof more modular and easier to incorporate the
uniform convergence argument.

Localization is particularly useful to handle the complicated approximation errors induced by deep ReLU
network function approximation.

Step 3.a: Bounding the bias term via a uniform convergence concentration inequality

Before delving into our proof, we introduce relevant notations. Let F − G := {f − g : f ∈ F , g ∈ G}, let
N(ϵ,F , ∥ ·∥) be the ϵ-covering number of F w.r.t. ∥ ·∥ norm, H(ϵ,F , ∥ ·∥) := logN(ϵ,F , ∥ ·∥) be the entropic
number, let N[](ϵ,F , ∥ · ∥) be the bracketing number of F , i.e., the minimum number of brackets of ∥ · ∥-size
less than or equal to ϵ, necessary to cover F , let H[](ϵ,F , ∥ · ∥) = logN[](ϵ,F , ∥ · ∥) be the ∥ · ∥-bracketing
metric entropy of F ,let F|{xi}n

i=1 = {(f(x1), ..., f(xn)) ∈ Rn|f ∈ F}, and let T ∗F = {T ∗f : f ∈ F}. Finally,
for sample set {xi}n

i=1, we define the empirical norm ∥f∥n :=
√

1
n

∑n
i=1 f(xi)2.

We define the inherent Bellman error as dFNN := supQ∈FNN
inff∈FNN ∥f − T ∗Q∥µ. This implies that

d2
FNN

:= sup
Q∈FNN

inf
f∈FNN

∥f − T ∗Q∥2
µ = sup

Q∈FNN

E(lfQ
⊥
− lfQ

∗
). (7)

We have

|lf − lg| ≤ 4|f − g| and |lf − lg| ≤ 8.

We have

H(ϵ, {lfQ
⊥
− lfQ

∗
: Q ∈ FNN}|{xi, yi}n

i=1, n
−1∥ · ∥1)

≤ H( ϵ4 , {f
Q
⊥ − f

Q
∗ : Q ∈ FNN}|{xi}n

i=1, n
−1∥ · ∥1)

≤ H( ϵ4 , (F − T
∗FNN)|{xi}n

i=1, n
−1∥ · ∥1)

≤ H( ϵ8 ,FNN|{xi}n
i=1, n

−1∥ · ∥1) +H( ϵ8 , T
∗FNN|{xi}n

i=1, n
−1∥ · ∥1)

≤ H( ϵ8 ,FNN|{xi}n
i=1, ∥ · ∥∞) +H( ϵ8 , T

∗FNN, ∥ · ∥∞)

For any ϵ′ > 0 and δ′ ∈ (0, 1), it follows from Lemma B.2 with ϵ = 1/2 and α = ϵ′2, with probability at least
1− δ′, for any Q ∈ FNN, we have

En(lfQ
⊥
− lfQ

∗
) ≤ 3E(lfQ

⊥
− lfQ

∗
) + ϵ′2 ≤ 3d2

FNN
+ ϵ′2, (8)

given that

n ≈ 1
ϵ′2

(
log(4/δ′) + logEN(ϵ

′2

40 , (FNN − T ∗FNN)|{xi}n
i=1, n

−1∥ · ∥1)
)
.

Note that if we use Pollard’s inequality (Munos & Szepesvári, 2008) in the place of Lemma B.2, the RHS
of Equation (8) is bounded by ϵ′ instead of ϵ′2(i.e., n scales with O(1/ϵ′4) instead of O(1/ϵ′2)). In addition,
unlike Le et al. (2019), the uniform convergence argument hinders the application of Bernstein’s inequality.
We remark that Le et al. 2019 makes a mistake in their proof by ignoring the data-dependent structure in
the algorithm (i.e., they wrongly assume that Qk in Algorithm 1 is fixed and independent of {si, ai}n

i=1).
Thus, the uniform convergence argument in our proof is necessary.
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Step 3.b: Bounding the empirical process term via local Rademacher complexities

For any Q ∈ FNN, we have

|lfQ
⊥
− lfQ

∗
| ≤ 2|fQ

⊥ − f
Q
∗ | ≤ 2,

V[lfQ
⊥
− lfQ

∗
] ≤ E[(lfQ

⊥
− lfQ

∗
)2] ≤ 4E(fQ

⊥ − f
Q
∗ )2.

Thus, it follows from Lemma 1 (with α = 1/2) that with any r > 0, δ ∈ (0, 1), with probability at least 1− δ,
we have

sup{(E− En)(lf̂Q − lfQ
∗

) : Q ∈ FNN, ∥f̂Q − fQ
∗ ∥2

µ ≤ r}

≤ sup{(E− En)(lf − lg) : f ∈ FNN, g ∈ T ∗F , ∥f − g∥2
µ ≤ r}

≤ 3ERn

{
lf − lg : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r
}

+ 2
√

2r log(1/δ)
n

+ 28 log(1/δ)
3n

≤ 6ERn

{
f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r
}

+ 2
√

2r log(1/δ)
n

+ 28 log(1/δ)
3n .

Step 3.c: Bounding ∥Qk+1 − T ∗Qk∥µ using localization argument via sub-root functions

We bound ∥Qk+1 − T ∗Qk∥µ using the localization argument, breaking down the Rademacher complexities
into local balls and then build up the original function space from the local balls. Let ψ be a sub-root
function (Bartlett et al., 2005, Definition 3.1) with the fixed point r∗ and assume that for any r ≥ r∗, we
have

ψ(r) ≥ 3ERn

{
f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r
}
. (9)

We recall that a function ψ : [0,∞)→ [0,∞) is sub-root if it is non-negative, non-decreasing and r 7→ ψ(r)/
√
r

is non-increasing for r > 0. Consequently, a sub-root function ψ has a unique fixed point r∗ where r∗ = ψ(r∗).
In addition, ψ(r) ≤ √rr∗,∀r ≥ r∗. In the next step, we will find a sub-root function ψ that satisfies the
inequality above, but for this step we just assume that we have such ψ at hand. Combining Equations (6),
(8), and (9), we have: for any r ≥ r∗ and any δ ∈ (0, 1), if ∥f̂Qk−1 − fQk−1

∗ ∥2
2,µ ≤ r, with probability at least

1− δ,

∥f̂Qk−1 − fQk−1
∗ ∥2

2,µ ≤ 2ψ(r) + 2
√

2r log(2/δ)
n

+ 28 log(2/δ)
3n + 3d2

F + ϵ′2

≤
√
rr∗ + 2

√
2r log(2/δ)

n
+ 28 log(2/δ)

3n + (
√

3dF + ϵ′)2,

where

n ≈ 1
4ϵ′2

(
log(8/δ) + logEN(ϵ

′2

20 , (FNN − T ∗FNN)|{xi}n
i=1, n

−1∥ · ∥1)
)
.

Consider r0 ≥ r∗ (to be chosen later) and denote the events

Bk := {∥f̂Qk−1 − fQk−1
∗ ∥2

2,µ ≤ 2kr0},∀k ∈ {0, 1, ..., l},

where l = log2( 1
r0

) ≤ log2( 1
r∗

). We have B0 ⊆ B1 ⊆ ... ⊆ Bl and since ∥f − g∥2
µ ≤ 1,∀|f |∞, |g|∞ ≤ 1, we

have P (Bl) = 1. If ∥f̂Qk−1 − fQk−1
∗ ∥2

µ ≤ 2ir0 for some i ≤ l, then with probability at least 1− δ, we have

∥f̂Qk−1 − fQk−1
∗ ∥2

2,µ ≤
√

2ir0r∗ + 2
√

2i+1r0 log(2/δ)
n

+ 28 log(2/δ)
3n + (

√
3dFNN + ϵ′)2

≤ 2i−1r0,
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if the following inequalities hold

√
2ir∗ + 2

√
2i+1 log(2/δ)

n
≤ 1

22i−1√r0,

28 log(2/δ)
3n + (

√
3dFNN + ϵ′)2 ≤ 1

22i−1r0.

We choose r0 ≥ r∗ such that the inequalities above hold for all 0 ≤ i ≤ l. This can be done by simply setting

√
r0 = 2

2i−1

(√
2ir∗ + 2

√
2i+1 log(2/δ)

n

)∣∣∣∣
i=0

+

√
2

2i−1

(
28 log(2/δ)

3n + (
√

3dFNN + ϵ′)2
)∣∣∣∣

i=0

≲ dFNN + ϵ′ +
√

log(2/δ)
n

+√r∗.

Since {Bi} is a sequence of increasing events, we have

P (B0) = P (B1)− P (B1 ∩Bc
0) = P (B2)− P (B2 ∩Bc

1)− P (B1 ∩Bc
0)

= P (Bl)−
l−1∑
i=0

P (Bi+1 ∩Bc
i ) ≥ 1− lδ.

Thus, with probability at least 1− δ, we have

∥f̂Qk−1 − fQk−1
∗ ∥µ ≲ dFNN + ϵ′ +

√
log(2l/δ)

n
+√r∗ (10)

where

n ≈ 1
4ϵ′2

(
log(8l/δ) + logEN(ϵ

′2

20 , (FNN − T ∗FNN)|{xi}n
i=1, n

−1∥ · ∥1))
)
.

Step 3.d: Finding a sub-root function and its fixed point

It remains to find a sub-root function ψ(r) that satisfies Equation (9) and thus its fixed point. The main
idea is to bound the RHS, the local Rademacher complexity, of Equation (9) by its empirical counterpart as
the latter can then be further bounded by a sub-root function represented by a measure of compactness of
the function spaces FNN and T ∗FNN.

For any ϵ > 0, we have the following inequalities for entropic numbers:

H(ϵ,FNN − T ∗FNN, ∥ · ∥n) ≤ H(ϵ/2,FNN, ∥ · ∥n) +H(ϵ/2, T ∗FNN, ∥ · ∥n),

H(ϵ,FNN, ∥ · ∥n) ≤ H(ϵ,FNN|{xi}n
i=1, ∥ · ∥∞)

(a)
≲ N [(logN)2 + log(1/ϵ)], (11)

H(ϵ, T ∗FNN, ∥ · ∥n) ≤ H(ϵ, T ∗FNN, ∥ · ∥∞) ≤ H[](2ϵ, T ∗FNN, ∥ · ∥∞)
(b)
≤ H[](2ϵ, B̄α

p,q(X ), ∥ · ∥∞)
(c)
≲ (2ϵ)−d/α, (12)

where N is a hyperparameter of the deep ReLU network described in Lemma B.9, (a) follows from Lemma
B.9, and (b) follows from Assumption 5.2, and (c) follows from Lemma B.8. Let H := FNN − T ∗FNN, it
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follows from Lemma B.5 with {ξk := ϵ/2k}k∈N for any ϵ > 0 that

EσRn{h ∈ H −H : ∥h∥n ≤ ϵ} ≤ 4
∞∑

k=1

ϵ

2k−1

√
H(ϵ/2k−1,H, ∥ · ∥n)

n

≤ 4
∞∑

k=1

ϵ

2k−1

√
H(ϵ/2k,FNN, ∥ · ∥∞)

n
+ 4

∞∑
k=1

ϵ

2k−1

√
H(ϵ/2k, TπFNN, ∥ · ∥∞)

n

≤ 4ϵ√
n

∞∑
k=1

2−(k−1)
√
N ((logN)2 + log(2k/ϵ)) + 4ϵ√

n

∞∑
k=1

2−(k−1)

√( ϵ

2k−1

)−d/α

≲
ϵ√
n

√
N((logN)2 + log(1/ϵ)) + ϵ1− d

2α

√
n
,

where we use
√
a+ b ≤

√
a+
√
b,∀a, b ≥ 0,

∑∞
k=1

√
k

2k−1 <∞, and
∑∞

k=1

(
1

21− d
2α

)k−1
<∞.

It now follows from Lemma B.4 that

EσRn{f ∈ F , g ∈ T ∗F : ∥f − g∥2
n ≤ r}

≤ inf
ϵ>0

[
EσRn{h ∈ H −H : ∥h∥µ ≤ ϵ}+

√
2rH(ϵ/2,H, ∥ · ∥n)

n

]
≲

[
ϵ√
n

√
N((logN)2 + log(1/ϵ)) + ϵ1− d

2α

√
n

+
√

2r
n

√
N((logN)2 + log(4/ϵ)) +

√
2r
n

(ϵ/2)
−d
2α

]∣∣∣∣
ϵ=n−β

≍ n−β−1/2
√
N(log2 N + logn) + n−β(1− d

2α )−1/2 +
√
r

n

√
N(log2 N + logn) +

√
rn− 1

2 (1− βd
α ) =: ψ1(r),

where β ∈ (0, α
d ) is an absolute constant to be chosen later.

Note that V[(f − g)2] ≤ E[(f − g)4] ≤ E[(f − g)2] for any f ∈ FNN, g ∈ T ∗FNN. Thus, for any r ≥ r∗,
it follows from Lemma B.1 that with probability at least 1 − 1

n , we have the following inequality for any
f ∈ FNN, g ∈ T ∗FNN such that ∥f − g∥2

µ ≤ r,

∥f − g∥2
n

≤ ∥f − g∥2
µ + 3ERn{(f − g)2 : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r}+
√

2r logn
n

+ 56
3

logn
n

≤ ∥f − g∥2
µ + 3ERn{f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r}+
√

2r logn
n

+ 56
3

logn
n

≤ r + ψ(r) + r + r ≤ 4r,

if r ≥ r∗∨ 2logn
n ∨ 56logn

3n . For such r, denote Er = {∥f−g∥2
n ≤ 4r}∩{∥f−f∗∥2

µ ≤ r}, we have P (Er) ≥ 1−1/n
and

3ERn{f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2
µ ≤ r}

= 3EEσRn{f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2
µ ≤ r}

≤ 3E
[
1ErEσRn{f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

µ ≤ r}+ (1− 1Er )
]

≤ 3E
[
EσRn{f − g : f ∈ FNN, g ∈ T ∗FNN, ∥f − g∥2

n ≤ 4r}+ (1− 1Er
)
]

≤ 3(ψ1(4r) + 1
n

)

≲ n−β−1/2
√
N(log2 N + logn) + n−β(1− d

2α )−1/2 +
√
r

n

√
N(log2 N + logn)

+
√
rn− 1

2 (1− βd
α ) + n−1 =: ψ(r).
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It is easy to verify that ψ(r) defined above is a sub-root function. The fixed point r∗ of ψ(r) can be solved
analytically via the simple quadratic equation r∗ = ψ(r∗). In particular, we have

√
r∗ ≲ n−1/2

√
N(log2 N + logn) + n− 1

2 (1− βd
α ) + n− β

2 − 1
4 [N(log2 N + logn)]1/4

+ n− β
2 (1− d

2α )− 1
2 + n−1/2

≲ n− 1
4 ((2β)∧1)+1)

√
N(log2 N + logn) + n− 1

2 (1− βd
α ) + n− β

2 (1− d
2α )− 1

2 + n−1/2. (13)

It follows from Equation (10) (where l ≲ log(1/r∗)), the definition of dFNN , Lemma B.9, and Equation (13)
that for any ϵ′ > 0 and δ ∈ (0, 1), with probability at least 1− δ, we have

max
k
∥Qk+1 − T ∗Qk∥µ ≲ N−α/d + ϵ′ + n− 1

4 ((2β)∧1)+1)
√
N(log2 N + logn) + n− 1

2 (1− βd
α )

+ n− β
2 (1− d

2α )− 1
2 + n−1/2

√
log(1/δ) + log logn, (14)

where

n ≳
1

4ϵ′2

(
log(1/δ) + log logn+ logEN(ϵ

′2

20 , (FNN − T ∗FNN)|{xi}n
i=1, n

−1 · ∥ · ∥1))
)
. (15)

Step 4: Minimizing the upper bound

The final step for the proof is to minimize the upper error bound obtained in the previous steps w.r.t. two
free parameters β ∈ (0, α

d ) and N ∈ N. Note that N parameterizes the deep ReLU architecture Φ(L,m, S,B)
given Lemma B.9. In particular, we optimize over β ∈ (0, α

d ) and N ∈ N to minimize the upper bound in
the RHS of Equation (14). The RHS of Equation (14) is minimized (up to logn-factor) by choosing

N ≍ n
1
2 ((2β∧1)+1) d

2α+d and β =
(

2 + d2

α(α+ d)

)−1

, (16)

which results in N ≍ n
1
2 (2β+1) d

2α+d . At these optimal values, Equation (14) becomes

max
k
∥Qk+1 − T ∗Qk∥µ ≲ ϵ′ + n− 1

2 ( 2α
2α+d + d

α )−1
logn+ n−1/2

√
log(1/δ) + log logn, (17)

where we use inequalities n− β
2 (1− d

2α )− 1
2 ≤ n− 1

2 (1− βd
α ) ≍ N−α/d = n− 1

2 ( 2α
2α+d + d

α )−1
.

Now, for any ϵ > 0, we set ϵ′ = ϵ/3 and let

n− 1
2 ( 2α

2α+d + d
α )−1

logn ≲ ϵ/3 and n−1/2
√

log(1/δ) + log logn ≲ ϵ/3.

It then follows from Equation (17) that with probability at least 1− δ, we have maxk ∥Qk+1 − T ∗Qk∥µ ≤ ϵ
if n simultaneously satisfies Equation (15) with ϵ′ = ϵ/3 and

n ≳

(
1
ϵ2

) 2α
2α+d + d

α

(log2 n) 2α
2α+d + d

α and n ≳
1
ϵ2

(log(1/δ) + log logn) . (18)

Next, we derive an explicit formula of the sample complexity satisfying Equation (15). Using Equations
(14), (18), and (16), we have that n satisfies Equation (15) if

n ≳ 1
ϵ2

[
n

2β+1
2

d
2α+d (log2 n+ log(1/ϵ))

]
,

n ≳
( 1

ϵ2

)1+ d
α ,

n ≳ 1
ϵ2 (log(1/δ) + log logn) .

(19)
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Note that β ≤ 1/2 and d
α ≤ 2; thus, we have(

1− 2β + 1
2

d

2α+ d

)−1
≤ 1 + d

α
≤ 3.

Hence, n satisfies Equations (18) and (19) if

n ≳

(
1
ϵ2

)1+ d
α

log6 n+ 1
ϵ2

(log(1/δ) + log logn).

B Technical Lemmas

Lemma B.1 (Bartlett et al. (2005)). Let r > 0 and let

F ⊆ {f : X → [a, b] : V[f(X1)] ≤ r}.

1. For any λ > 0, we have with probability at least 1− e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α>0

(
2(1 + α)E [RnF ] +

√
2rλ
n

+ (b− a)
(

1
3 + 1

α

)
λ

n

)
.

2. With probability at least 1− 2e−λ,

sup
f∈F

(Ef − Enf) ≤ inf
α∈(0,1)

(
2(1 + α)
(1− α) Eσ [RnF ] +

√
2rλ
n

+ (b− a)
(

1
3 + 1

α
+ 1 + α

2α(1− α)

)
λ

n

)
.

Moreover, the same results hold for supf∈F (Enf − Ef).
Lemma B.2 (Györfi et al. (2002, Theorem 11.6)). Let B ≥ 1 and F be a set of functions f : Rd → [0, B].
Let Z1, ..., Zn be i.i.d. Rd-valued random variables. For any α > 0, 0 < ϵ < 1, and n ≥ 1, we have

P

{
sup
f∈F

1
n

∑n
i=1 f(Zi)− E[f(Z)]

α+ 1
n

∑n
i=1 f(Zi) + E[f(Z)]

> ϵ

}
≤ 4EN(αϵ5 ,F|Zn

1 , n
−1∥ · ∥1) exp

(
−3ϵ2αn

40B

)
.

Lemma B.3 (Contraction property (Rebeschini, 2019)). Let ϕ : R→ R be a L-Lipschitz, then

EσRn (ϕ ◦ F) ≤ LEσRnF .

Lemma B.4 (Lei et al. (2016, Lemma 1)). Let F be a function class and Pn be the empirical measure
supported on X1, ..., Xn ∼ µ, then for any r > 0 (which can be stochastic w.r.t Xi), we have

EσRn{f ∈ F : ∥f∥2
n ≤ r} ≤ inf

ϵ>0

[
EσRn{f ∈ F − F : ∥f∥µ ≤ ϵ}+

√
2r logN(ϵ/2,F , ∥ · ∥n)

n

]
.

Lemma B.5 (Lei et al. (2016, modification)). Let X1, ..., Xn be a sequence of samples and Pn be the
associated empirical measure. For any function class F and any monotone sequence {ξk}∞

k=0 decreasing to
0, we have the following inequality for any non-negative integer N

EσRn{f ∈ F : ∥f∥n ≤ ξ0} ≤ 4
N∑

k=1
ξk−1

√
logN (ξk,F , ∥ · ∥n)

n
+ ξN .
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Lemma B.6 (Pollard’s inequality). Let F be a set of measurable functions f : X → [0,K] and let ϵ > 0, N
arbitrary. If {Xi}N

i=1 is an i.i.d. sequence of random variables taking values in X , then

P

(
sup
f∈F

∣∣∣∣ 1
N

N∑
i=1

f(Xi)− E[f(X1)]
∣∣∣∣ > ϵ

)
≤ 8E [N(ϵ/8,F|X1:N )] e

−Nϵ2

128K2 .

Lemma B.7 (Properties of (bracketing) entropic numbers). Let ϵ ∈ (0,∞). We have

1. H(ϵ,F , ∥ · ∥) ≤ H[](2ϵ,F , ∥ · ∥);

2. H(ϵ,F|{xi}n
i=1, n

−1/p · ∥ · ∥p) = H(ϵ,F , ∥ · ∥p,n) ≤ H(ϵ,F|{xi}n
i=1, ∥ · ∥∞) ≤ H(ϵ,F , ∥ · ∥∞) for all

{xi}n
i=1 ⊂ dom(F).

3. H(ϵ,F − F , ∥ · ∥) ≤ 2H(ϵ/2,F , ∥ · ∥)), where F − F := {f − g : f, g ∈ F}.

Lemma B.8 (Entropic number of bounded Besov spaces (Nickl & Pötscher, 2007, Corollary 2.2)). For
1 ≤ p, q ≤ ∞ and α > d/p, we have

H[](ϵ, B̄α
p,q(X ), ∥ · ∥∞) ≲ ϵ−d/α.

Lemma B.9 (Approximation power of deep ReLU networks for Besov spaces (Suzuki, 2018, a modified
version)). Let 1 ≤ p, q ≤ ∞ and α ∈ ( d

p∧2 ,∞). For sufficiently large N ∈ N, there exists a neural network
architecture Φ(L,m, S,B) with

L ≍ logN,m ≍ N logN,S ≍ N, and B ≍ Nd−1+ν−1
,

where ν := α−δ
2δ and δ := d(p−1 − (1 + ⌊α⌋)−1)+ such that

sup
f∗∈B̄α

p,q(X )
inf

f∈Φ(L,W,S,B)
∥f − f∗∥∞ ≲ N−α/d.
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