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Abstract

Semantic entity recognition is an important task
in the field of visually-rich document under-
standing. It distinguishes the semantic types of
text by analyzing the position relationship be-
tween text nodes and the relation between text
content. The existing document understand-
ing models mainly focus on entity categories
while ignoring the extraction of entity bound-
aries. We build a novel hypergraph attention
document semantic entity recognition frame-
work, HGA, which uses hypergraph attention
to focus on entity boundaries and entity cate-
gories at the same time. It can conduct a more
detailed analysis of the document text repre-
sentation analyzed by the upstream model and
achieves a better performance of semantic in-
formation. We apply this method on the basis
of GraphLayoutLLM to construct a new seman-
tic entity recognition model HGALayoutLM.
Our experiment results on FUNSD, CORD,
XFUND and SROIE show that our method can
effectively improve the performance of seman-
tic entity recognition tasks based on the origi-
nal model. The results of HGALayoutLLM on
FUNSD and XFUND reach the new state-of-
the-art results.

1 Introduction

With the development of information technology,
documents have become a main information car-
rier nowadays ,which contains kinds of informa-
tion type, such as text, table and image. Man-
ual recognition of these documents often requires
plenty of manpower. OCR tools can only help us
to identify the text, layout and other simple infor-
mation in the document. To further understand
documents, Visually-rich Document Understand-
ing (VRDU) (Xu et al., 2020b) is proposed to make
use of visual, textual and other information for
more in-depth analysis.

Semantic Entity Recognition (SER) is an impor-
tant task in the field of VRDU. Its purpose is to
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Figure 1: Difference in Document Task.

extract and classify the text with special seman-
tic information in documents. Different from text
sequences in traditional natural language process-
ing tasks, the information in documents is not one-
dimensional, single-modal and continuous, but two-
dimensional, multimodal and discrete. It is neces-
sary to analyze not only text information, but also
other modal information such as layout and vision
in the document. Figure 1 shows the difference
between the traditional named entity recognition
(NER) task on a single modal text and the semantic
entity recognition task on a document. Firstly, the
text form of a single modal text task is a fixed text
sequence, while the discrete text in a document is
composed of text nodes in different locations. Sec-
ondly, the named entity recognition task of a single
modal text only needs to consider the semantic re-
lationship between the tokens in the text sequence.
However, the semantic entity recognition task on
the document needs to consider not only the seman-
tic relationship between nodes, but also the position
relationship between nodes. Finally, the span range
of entity tags of NER task is flexible, while the
range of task tags of semantic entity recognition
task on document is affected by nodes. Texts of the
same node in the document share the same label in
most cases.

With the development of pre-training technol-
ogy, document pre-training model has become pop-
ular. LayoutLM (Xu et al., 2020b) is the first
multi-modal pre-trained model to associate text
with layout and vision, achieving leading results



on multiple downstream document understanding
tasks including semantic entity recognition. Subse-
quently, more multi-mode pretraining models, such
as LayoutLMv2 (Xu et al., 2020a), BROS (Hong
et al., 2022), ERNIE-Layout (Peng et al., 2022)
and LayoutLMv3 (Huang et al., 2022) have been
proposed successively. By integrating text, layout
and visual information, they realize the understand-
ing and information extraction of documents. So
far, GraphLayoutLM (Li et al., 2023) and GeoLay-
outLM (Luo et al., 2023) have the best performance
in semantic entity recognition tasks. GraphLay-
outLM achieves the best F1 score of 94.39 and
93.56 on the FUNSD (Jaume et al., 2019) and
XFUND (Xu et al., 2021) datasets, and GeoLay-
outLM achieves the best F1 score of 97.97 on the
CORD (Park et al., 2019) datasets. However, these
existing methods focus on the upstream document
understanding part and pay little attention to the
downstream task. GeoLayoutLLM has studied the
novel relational extraction head and achieves great
improvement in the relational extraction task. But
it has not done more research on the semantic entity
recognition task. We study the problem of ignoring
the downstream header and classification method
in the semantic entity recognition task in the ex-
isting document intelligence work and propose a
novel improvement scheme.

Traditional Semantic Entity Recognition. The
traditional document semantic entity recognition
task process is shown in (a) of the Figure 2. In
document understanding process, text nodes are
spliced into text sequences and become text to-
ken sequences of documents after tokenization.
These text nodes will be transformed to the high-
dimensional feature representations after the anal-
ysis of the document understanding model. To
extract semantic information from document to-
ken features, linear layer or multilayer perceptron
(MLP) will be used to convert high-dimensional
features into label probabilities, and the training ob-
jective is cross entropy loss. Although this method
can distinguish the node categories in the docu-
ment, it ignores the characteristics of the document
structure, and it is difficult to make the classifica-
tion layer pay attention to the node span.

Hypergraph Semantic Entity Recognition. In-
spired by Global Pointer (Su et al., 2022), we use
the idea of hypergraph to extract the semantic in-
formation of documents and propose a Hypergraph
Attention(HGA) strategy for document semantic

entity recognition. (b) of the Figure 2 shows us the
process of hypergraph semantic recognition. Differ-
ent from the traditional classification method, the
semantic entity recognition idea of HGA regard the
document token features as graph nodes. The target
entity is the set of nodes with the same hyperedge
and the hyperedge type represents the entity label
type. The process of hypergraph extraction is to
establish hyperedges between token feature nodes.
Besides, we use the span hyperedge encoding to
add the span information of text nodes. Through
the hypergraph and span position, header can better
focus on the entity boundary information and estab-
lish the relationship between the document discrete
text span and the entity boundary.
Our main contributions are as follows:

* We construct a novel hypergraph attention
document semantic entity recognition method,
HGA. It transforms the traditional token se-
quence classification problem into a hyper-
graph construction process. By establishing
different types of hyperedges between text
nodes, the header can extract semantic enti-
ties.

* We propose a novel span hyperedge posi-
tion encoding and balanced hyperedge loss.
Span hyperedge position encoding makes the
header focus more on the same text span
prompt during hyperedge construction. Bal-
anced hyperedge loss can help to solve the
problem of matrix sparsity caused by too
many hyperedge types in some scenarios.

* We construct a novel document semantic en-
tity recognition model HGALayoutLLM based
on the HGA method. The experiment results
show that the model has good performance in
the scene with few types of labels. HGALay-
outLM has obtained the best results on the
FUNSD, SROIE and XFUND datasets.

2 Related Work

In recent years, self-supervised pre-training tech-
nology has become the mainstream trend in the
fields of natural language processing (NLP) and
computer vision (CV). BERT (Devlin et al., 2018)
is a classic pre-training model that has shown great
effectiveness in various tasks such as question an-
swering, natural language generation and text clas-
sification. Masked Language Modeling (MLM) is
a significant pre-training task proposed by BERT
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Figure 2: Traditional Semantic Entity Recognition and Hypergraph Semantic Entity Recognition.The document
is from FUNSD dataset. Only the text sequence is shown in the figure. The rectangles with different colors in
the figure are text nodes. The colors on the document nodes represent the different class labels. The orange color
represents the label "HEADER". Blue is the label "QUESTION". Green is the label "ANSWER". Pink is the

nonmeaning label, which is "OTHER".

that enables models to learn textual representations
by predicting the raw vocabulary ids of randomly
masked word markers based on context. Since
then, a series of mask language models such as
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019) and XLNet (Yang et al., 2019) have been
proposed successively. These models achieve good
results on natural language understanding tasks.

However, the single modal language model can
not understand documents with complex formats
and diverse types well. To fully understand the
content of complex documents, LayoutLM (Xu
et al., 2020b) adds layout and document informa-
tion on the basis of BERT to supplement the doc-
ument format missing from plain text. Follow-
ing LayoutLM, BROS (Hong et al., 2022), Lay-
outLMv2 (Xu et al., 2020a), XYLayoutLM (Gu
et al., 2022), ERNIE-Layout (Peng et al., 2022),
LayoutLMv3 (Huang et al., 2022) and other multi-
modal pre-training document understanding mod-
els have been proposed successively and constantly
make breakthroughs in various tasks in the field
of document understanding. These models under-
stand the document through the fusion of text, lay-
out and vision information. Since document nodes
are suitable to be represented by graph structures,
some works begin to apply graph structures to
document understanding models, such as ERNIE-
mmlLayout (Wang et al., 2022), ROPE (Lee et al.,
2021), FormNet (Lee et al., 2022), and GraphLay-
outLM (Li et al., 2023).

The latest GraphLayoutLM and GeoLay-
outLM (Luo et al., 2023) are both built on the basis
of LayoutLMv3. They have achieved the most
excellent results in several tasks of document in-

formation extraction. GraphLayoutLM models the
document structure based on the hierarchical and
positional layout of the document and represents
the document layout modeling with a graph struc-
ture. To integrate graph structure information into
the process of document understanding, GraphLay-
outLM proposes graph reordering and graph mask-
ing strategies, adding graph information into the
document understanding model in the form of se-
quence and self-attention mask. GeoLayoutLM
implements geometric pre-training to enrich and
enhance feature representation through three spe-
cially designed geometry-related pre-training tasks.
In addition, GeoLayoutLM uses a novel relation
header in the fine-tuning phase and obtains a big
improvement over LayoutLLMv3 in the relation ex-
traction task. At present, little attention is paid to
the effects of downstream task heads on the perfor-
mance of various types of tasks. GeoLayoutLM
proposes a novel relational header, but there is still
a lack of research on the downstream task of se-
mantic entity recognition in the field of document
understanding. Most of the current models use a
linear layer and cross-entropy to predict BIO la-
bel probabilities when dealing with semantic entity
recognition tasks, such as LayoutLM, BROS, Lay-
outLMv2, etc. LayoutLMv3 and its derived models
utilize a linear layer in the few label case and em-
ploy MLP when number of label types is large.
These approaches are fundamentally the same. Dif-
ferently, UDop (Tang et al., 2023) is a new uni-
fied document intelligent framework, which adopts
encoder-decoder structure. However, the decoder
will cost a large computational cost. Taking inspi-
ration from Global Pointer (Su et al., 2022), we



design a simple hypergraph header that incorpo-
rates document span information to achieve better
SER task performance.

3 Methodology

3.1 Overview

The process of semantic entity recognition based
on Hypergraph Attention is shown in Figure 3. Dif-
ferent from traditional semantic entity recognition
methods, HGA focuses on extracting special enti-
ties. Instead of using BIO labels as annotations for
model input, we use each special labels. Labels
without semantics are no longer considered as an
entity label type. HGA regards token features as
unit nodes, and the process of establishing hyper-
edges between tokens can realize the extraction of
special entities. It is worth noting that the node
referred to here correspond to each token of token
sequence. Text nodes, as mentioned earlier, are
discrete pieces of text at different locations in the
document. A text node corresponds to one or more
token feature nodes. The process of hyperedge
extraction can realize the extraction of special se-
mantic entites and classification of different entity
labels. An entity without any hyperedge connec-
tion is an entity with no special semantic, which is
regarded as an Other label in BIO labeling.

To assist the construction of hyperedges, we use
the span of each text node to generate the span po-
sition corresponding to the feature sequence. Then
we use the span position encoding to add span in-
formation to the hypergraph construction process.
In this way, the model can divide the hyperedge
according to the text node span, so as to achieve
more accurate extraction of the special entity range.
In the stage of semantic entity extraction, we use
multi-label classification to determine whether a
node is connected by a hyperedge. Since there may
be more than one type of hyperedges satisfying
the join condition. To ensure the uniqueness of
the entity type, we select the hyperedge with the
maximum probability to establish the connection
based on multi-label classification result.

3.2 Hypergraph Attention Header

We use the multi-head self-attention to represent
the hypergraph. Consider a hypergraph with L
number of nodes and [V class of hyperedges. We
use a multihead attention score of shape NV x L x L
as the representation of this hypergraph. Hyper-
edge classes are represented by different heads of

multi-head attention. The attention matrix corre-
sponding to each head represents the distribution
of a type hyperedge.

In the hypergraph, each token corresponds to a
node. Assume the document token sequence is x =
{z1, z2,...x, }. After understanding the document
model, we convert the input token sequence into a
high-dimensional feature representation sequence
of the tokens:

h ={h1,ha,...h,} = DocModel({x1,x2,...xn}),

ey
where h € REXH ig the high-dimensional fea-
ture representation sequence of the token and
DocM odel is the document understanding model.
L indicates the token sequence length, which also
represents the number of token nodes. H is the
feature dimension size. Based on h, we can obtain
the query vector ¢ and the key vector k:

4= {ga : Woah +bga}, @
k= {ka : sz,ah + bk,a}a

where o € ZP is one head in multi-head attention,

which can be regarded as a type in D kinds of

hyperedges. With multi-head query vector and key

vector, hypergraphs can be represented by a self-

attention score calculated by ¢ and k:

s=q"k={sali,j): a} okja i €L jeL"}.

3)
Sa (i, 7) is the attention score at the « type hyper-
edge span with [i,j]. ¢;o and k;, are the start
and end of the span with [i, j] in the « type hyper-
edge matrix. In this way, we implement hypergraph
extraction of semantic entities.

3.3 Span Position Encoding

As we mentioned in Introduction, tokens of the
same text node normally share the same seman-
tic label in the process of semantic entity recogni-
tion of documents. We hope that the header can
consider this span boundary prompt during entity
extraction. Therefore, we construct the span posi-
tion of the token sequence based on the text nodes
and incorporate span information into the headers
through position encoding. As shown in Figure
3, token feature sequence h{hi, ha,...h,} and text
node sequence N = {Ny, N1,...N,,,} has a sur-
jective relation. We define this relational mapping
as:

f(hi):Nj,hiEh,NjEN. (4)
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Figure 3: Semantic Entity Recognition Process Based on Hypergraph Attention. Only the text processing part
of the model is shown in the figure. In the span position generation stage, the span position of the token feature
sequence needs to be created by using the text node range span. The token features will be linearly transformed and
encode the span position into a query vector Q and a key vector V. The multi-head hypergraph attention score is
calculated from Q, V and added with the lower triangle mask. We regard each attention head as a sub-hypergraph

corresponding to each hyperedge type.

Based on this relation mapping, we construct the
span position. For the same text node N, All token
feature nodes that have a mapping relationship with
the same text node [V; share the same position:

p; = Position(f(h;))
= Position(Nj)

:j,hl‘Eh,Nj € N,

&)

where p; is the span position of token feature
hi, Position is the index of N;. In this way,
we can obtain the span position sequence p =
{p1,p2,...pn}. On the basis of p, we use rotary
position coding (Su et al., 2021) to generate posi-
tion encoding R, which satisfies R?Rj =Rj_;.
Then the calulation of multi-head hypergraph score
will be adjust to the following form:

Sa(ihj) = (RiQi,a)T(Rjkj:a)
= ¢/ Rj-ikja-

(6)

Because the start is always before the end when the
span of token sequence is extracted. Span extrac-
tion nodes should not appear in the lower triangu-
lar region of the hypergraph attention score. For
the purpose of making the hyperedge construction
more reasonable, we add my,.; to the hypergraph
matrix and the final hypergraph score format is as

follow:

Sa(i,g) = anijikj,a + mera(iy ). (7

3.4 Balanced Hyperedge Loss

In the process of loss calculation, we collect posi-
tive samples P, and negative samples N, respec-
tively for each type of hyperedge o . The positive
sample indicates that there is a « type hyperedge
span with [i, j] in « type hypergraph, while the re-
verse is a negative sample. The formats of P, and
N, are as follows:

Pa = {Sa(ivj)“a(iaj) = 1}7
Na = {Sa(ivj)“a(iaj) = 0}’

where [ is the hypergraph label matrix correspond-
ing to s. With the sets of positive and negative
samples,we can get the positive sample loss £, and
the negative sample loss L,;:

(®)

L,=1log |1+ Z e~ sa(i:d) ,
i,7)EPa
(4.9)€ )
L,=log |1+ Z eSe ()
(4,J)ENa

Different from Global Pointer (Su et al., 2022), we
gain the final loss with a balance factor b € [0, 1)



to avoid the matrix sparsity caused by too many
label types. The final training loss of hypergraph
attention score can be expressed in the following
form:

L=(14b)Ly+ (1—0b)L,. (10)

3.5 HGALayoutLM

To verify the performance of the HGA method,
we applied HGA to the latest GraphLayoutLLM to
build a novel semantic entity recognition model,
HGALayoutLM. Consistent with GraphLayoutLM,
we leverage the hierarchical layout of documents
to build a hierarchical tree. Then we add position
relationships between sibling nodes in the tree to
construct the document structure graph G. The text
nodes will be sorted according to the hierarchical
and position relationship of GG before concatenation
to obtain a more reasonable reading order. In addi-
tion, we follow the architecture of GraphLayoutLM
and add a graph mask layer to model to encode the
relation information in G into the self-attention
score.

Based on the graph structure-prompted docu-
ment understanding model, we use the hypergraph
attention layer as the header for document seman-
tic entity recognition. The feature sequence of the
token and the generated span position are used as
the header input. The HGA method is used to help
the model extract and classify semantic entities
according to the text node span prompts.

4 Experiment

4.1 Experimental Setup

Model Settings. The model settings are consis-
tent with those of GraphLayoutLM. The text se-
quence length is 512 and the document image is
resized to 3 x 224 x 224 dimensions. The image is
cut into 196 patches in the size of 16 x 16. Trans-
former self-attention layer scaling factor « is set
to 32. For HGALayoutLMg, g, the hidden layer
dimensions, the number of encoder self-attention
layers, the number of self-attention heads and in-
termediate dimensions for feed-forward networks
are set to 768,12,12 and 3072, respectively. The
head number of graph mask layer is 6. The hid-
den layer dimension, encoder self-attention layer
number, self-attention head number and interme-
diate dimensions for feed-forward networks of
HGALayoutLM; srqg are set to 1024,24,16 and
4096, respectively. The head number of graph mask

layer is 8. The hidden size of hypergraph attention
layer in both base and large model is set to 64. To
ensure the fairness of the experiment, we convert
the results of hypergraph extraction into the format
of BIO annotations for comparison.

Datasets. We select four commonly used doc-
ument information extraction datasets. Three of
these datasets are in English, including FUNSD,
CORD and SROIE. One is the Chinese dataset,
XFUND. The current XFUND task semantic en-
tity recognition task of comparative experiment
results is less, and there is almost no LARGE ver-
sion experiment results. We only choose the BASE
version of the model for our experiments. Detailed
dataset information and hyper-parameters settings
can be viewed in Appendix A.1 and Appendix A.2.

Baselines. We choose the classical natural lan-
guage processing model BERT (Devlin et al., 2018)
as the single modal document understanding com-
parison model and select several classical mul-
timodal document understanding models, such
as LayoutLM (Xu et al., 2020b), BROS (Hong
et al., 2022), LayoutLMv2 (Xu et al., 2020a) and
LayoutXLLM (Xu et al., 2021). We also include
the latest works in document understanding for
comparison, such as ERNIE-Layout (Peng et al.,
2022), LayoutLMv3 (Huang et al., 2022), Geo-
LayoutLM (Luo et al., 2023), GraphLayoutLM (Li
et al., 2023) and UDop (Tang et al., 2023).

4.2 Main Results

The English datasets experiment results are shown
in Table 1. The BASE version of HGALayoutLM
using hypergraph attention layer as the header has
achieved the best results on FUNSD and SROIE
datasets (94.32 on FUNSD and 99.53 on SROIE),
even when compared to the LARGE versions of
models. Compared with GraphLayoutLMg, g us-
ing linear classification, HGALayoutLM achieves
improvements of 0.89, 0.39 and 0.54 on FUNSD,
CORD and SROIE datasets, respectively. The
LARGE version of HGALayoutLLM has achieved
F1 scores of 95.31 and 99.61 on FUNSD and
SROIE respectively, further updating the best
performance on these datasets. Compared with
GraphLayoutL.M in the LARGE version, HGALay-
outLM has F1 score 1.15 and 0.19 higher on
FUNSD and SROIE datasets, respectively. This
demonstrates the effectiveness of HGA on the task
of less labels.



Table 1: Precision, Recall and F1 Score of Results on FUNSD, CORD, SROIE Datasets. Model labeled with "1"
indicate that its results are obtained through replication in our experiments. Since some predictions on the web
based on LayoutLMv3 on the SROIE dataset are completely correct, we do not list the results on SROIE as the state

of the art.
FUNSD CORD SROIE
Model Header P R F p R F p R F
BERTRASE Linear 54.69 67.10 60.26 | 88.33 91.07 89.68 | 90.99 90.99 90.99
LayoutLMpaqp Linear 7597 81.55 78.66 | 9437 95.08 94.72 | 94.38 94.38 94.38
BROSgBASE Linear 81.16 85.01 83.05 - - 96.50 - - 96.28
LayoutLMv2p g5 Linear 80.29 85.39 82.76 | 94.53 9539 9495 | 96.25 96.25 96.25-
LayoutXLMgagp Linear - - 79.40 - - - - - -
XYLayoutLM Linear - - 83.35 - - - - - -
LayoutLMv3g g5 Linear/MLP | 90.82 91.55 91.19 | 96.35 96.71 96.53 - - 99.25
GraphLayoutLMp,gr | Linear/MLP | 92.46 93.85 93.15 | 97.02 97.53 97.28 - - 99.30
GraphLayoutLMlT3 asp | Linear/MLP | 93.62 9325 9343 | 96.87 97.38 97.13 | 9840 99.58 98.99
HGALayoutLMp s HGA 94.84 93.80 94.32 | 97.89 97.16 97.52 | 99.58 99.48 99.53
BERTARGE Linear 61.13 70.85 65.63 | 88.86 91.68 90.25 | 92.00 92.00 92.00
LayoutLMj srcr Linear 75.69 82.19 7895 | 9432 9554 9493 | 9524 9524 9524
BROSTARGE Linear 82.81 86.31 84.52 - - 97.28 - - 96.62
LayoutLMv2; srap Linear 83.24 85.19 84.20 | 95.65 96.37 96.01 | 99.04 96.61 97.81
ERNIE-Layout; ArcE Linear - - 93.12 - - 97.21 - - 97.55
LayoutLMV3; ArcE Linear/MLP | 91.51 92.70 92.10 | 9745 97.52 97.49 - - -
UDop Decoder - - 92.08 - - 97.58 - - -
GeoLayoutLM Linear/MLP - - 92.86 - - 97.97 - - -
GraphLayoutLM; srcg | Lineart/MLP | 9449 9430 94.39 | 97.75 97.75 97.75 - - -
GraphLayoutLM}: arcp | Lineart/MLP | 9437 9395 9416 | 97.32 97.68 97.50 | 99.27 99.58 99.42
HGALayoutLM; zpqr | HGA 95.67 9495 9531 | 97.97 9738 97.67 | 99.69 99.53 99.61

However, we can find that the performance of
HGA is not outstanding on the CORD dataset. We
think this is because the CORD dataset has a large
number of label categories. The number of labels
in CORD is an amazing 30, compared with the 3
or 4 label categories in other datasets. Since in the
process of constructing the hypergraph, different
types of hyperedges are built separately. Plenty
of label categories will make the effective span
nodes of hypergraph matrix sparse, which is not
conducive to semantic entity recognition. However,
by comparing GraphLayoutLM, we can find that
HGA header can still improve the performance.

The experiment results of XFUND dataset are
shown in Table 2. We can find that our HGALay-
outLLM has achieved the state of the art in XFUND.
This further verifies the effectiveness of HGA
header.

4.3 Ablation Study

To verify the effectiveness of our Span Position
Encoding. We conduct ablation study on FUNSD.
We can see from Figure 4 that the entity extrac-
tion effect without position encoding(w/o pos) is

Table 2: Precision, Recall and F1 Score of Results on
XFUND Datasets. Model labeled with "T" indicate that
its results are obtained through replication in our experi-
ments.

XFUND

Model Header P R F

LayoutXLMp sy Linear - - 89.24
XYLayoutLM Linear - - 91.76
LayoutLMv35qr Linear | 89.80 94.35 92.02
GraphLayoutLMgp g | Linear | 91.80 95.38 93.56
GraphLayoutLMJ]r3 asp | Linear | 9230 94.69 93.48
HGALayoutLMp,gg | HGA 92.79 95.70 94.22

much worse than that with position encoding. In
addition, we also compare the performance of our
span position encoding(w/ span pos) with that of
traditional position encoding(w/ pos). We can find
that the performance of our span position encoding
is obviously better than that of traditional position
encoding.This demonstrates the effectiveness of
our span position encoding with span prompt.

In order to prove that Balanced Hyperedge Loss
can solve the problem of sparse hyperedge matrix
caused by too many entity types. We conduct exper-
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Figure 5: Further Study of Balance Factor.

iment statistics on different value of balance factor
on CORD dataset with plenty of entity types and
present the results in Figure 5. We can see that the
performance of the unbalanced model (b = 0) is
not ideal, even worse than the performance of the
MLP header. However, proper balance factor allow
the model to pay more attention to the hyperedge
entities and achieve better results. For example, the
performance when b is 0.4 exceeds the performance
when the MLP layer is used as the header.

4.4 Anaysis of Different Header

To analyze the effects of different header, we adopt
GraphLayoutLMg g and HGALayoutLMg g as
the base model to conduct comparative experiments
on three different headers, linear layer, MLP and
HGA. The experiments are carried out on FUNSD,
CORD, SROIE and XFUND datasets.

The experiment results are shown in Table 3. As
the simplest network structure, the linear layer has

the worst classification effect. The MLP layer in-
creases the number of linear layers on top of the lin-
ear layer. It also joins activation layers and dropout
layers to linear layers. The more complex network
structure makes MLP slightly better than the se-
mantic entity recognition of a single linear layer
on most datasets. As our proposed hypergraph at-
tention method, HGA performs significantly better
than the other two classifiers,which shows the effec-
tiveness of HGA, which demonstrates the superior
performance of HGA.

Table 3: F1 Score of Different Header.

Header | FUNSD CORD SROIE XFUND
Linear 93.48 96.98 98.99 93.03
MLP 93.58 97.13 99.28 93.48
HGA 94.32 97.52 99.53 94.22

To test the complexity of HGA, we compare
HGALayoutLM with the model with traditional
headers. The number of entity types is set to 3. As
we can see from Table 4, HGA does not bring a
large cost of time and space calculation and HGA
is even less costly than MLP layer in terms of time
and space computation.

Table 4: Analysis of Time and Space Complexity.

Model Header | Params Flops
GraphLayoutLM | Linear | 88.02M 63.03G
GraphLayoutLM | MLP | 88.61M 63.45G
HGALayoutLM | HGA | 88.3IM 63.24G

5 Conclusion

In this work, we propose a semantic entity recogni-
tion method (HGA) based on hypergraph attention.
This method extracts semantic information from
documents by establishing different hyperedges
between feature nodes. On the basis of the hyper-
graph, we design span position encoding and bal-
anced hyperedge loss to enhance the entity extrac-
tion capability of the hypergraph attention header.
We use the HGA method to build a novel seman-
tic entity recognition model HGALayoutLM based
on GraphLayoutLLM. This model has good perfor-
mance in SER tasks. Experiments show that our
method achieves the state of art on semantic en-
tity recognition tasks on the FUNSD and XFUND
datasets.



6 Limitation

When there are more types of semantic entities, the
cost of improvement from HGA becomes higher.
The number of superedge matrices increases be-
cause of more semantic entity categories. This not
only leads to sparse matrix labels, but also to more
model parameters.
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A Appendix

A.1 Experiment Dataset
The data distribution and labeling of the dataset are
shown in Table 5.

Table 5: Detail Data of Datasets. The nonmeaning label
"OTHER" is not included.

Dataset Label Num Train Dev Test

FUNSD 3 149 - 50
CORD 30 800 100 100
SROIE 4 626 347
XFUND 3 149 - 50

A.2 Hyper-parameters Setting

We show the training hyper-parameters on each
dataset in Table 6.

Table 6: Finetuning Hyper-parameters. L, M, B and G
refer to learning rate, max steps, batch size and gradient
accumulation steps.

Dataset M?del Language L M B G
S1ze
BASE . le5 2000 4 1
FUNSD |y Arge | English | 105 2000 4 1
BASE . 5e-5 2000 4 1
CORD |y ARgg | English |55 3000 4 1
BASE . le5 2000 2 1
SROIE |y Argg | English 1105 2000 8 1
XFUND | BASE | CHINESE | 7e5 2000 8 4
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