

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INFOSENT: EXPLAINABILITY OF IMAGE CLASSIFICATION MODELS BY INFORMATION DISENTANGLEMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

In this work, we introduce InfoDisent, a hybrid approach to explainability based on the information bottleneck principle. InfoDisent enables the disentanglement of information in the final layer of any pretrained model into atomic concepts, which can be interpreted as prototypical parts. This approach merges the flexibility of post-hoc methods with the concept-level modeling capabilities of self-explainable neural networks, such as ProtoPNets. We demonstrate the effectiveness of InfoDisent through computational experiments and user studies across various datasets using modern backbones such as ViTs and convolutional networks. **While InfoDisent achieves competitive performance within the class of interpretable models, we observe an accuracy-interpretability trade-off when compared to black-box counterparts, especially visible in CNNs.** Notably, InfoDisent generalizes the prototypical parts approach to novel domains (ImageNet).

1 INTRODUCTION

Deep neural networks have demonstrated performance that matches or even surpasses human capabilities across various domains, such as image classification and generation, speech recognition, and natural language processing. Despite their impressive achievements, these networks often operate as "black boxes", offering little insight into the reasoning behind their decisions Rudin (2019). This lack of transparency poses significant challenges, particularly in high-stakes applications such as medicine and autonomous driving, where understanding a model's decision-making process is critical Bojarski et al. (2017); Khan et al. (2001); Nauta et al. (2023b); Patrício et al. (2023); Samek et al. (2021); Struski et al. (2024). To address this issue, the subfield of artificial intelligence known as eXplainable AI (XAI) Xu et al. (2019) has emerged, focusing on making AI systems more interpretable.

XAI methods can be classified into two major categories: post-hoc methods and inherently interpretable (ante-hoc) methods Rudin (2019). Post-hoc methods, such as GradCAM Selvaraju et al. (2017), are highly flexible because they can be applied to any neural network architecture. However, they are often unreliable Adebayo et al. (2018b), provide local explanations, and fail to reveal the characteristics of specific classes. In contrast, ante-hoc methods, such as ProtoPNet Chen et al. (2019), offer concept-level explanations by identifying prototypical parts from the training dataset. While this approach enhances interpretability, it is limited to fine-grained classification tasks and requires backbone fine-tuning in the case of ProtoPNet. Consequently, these

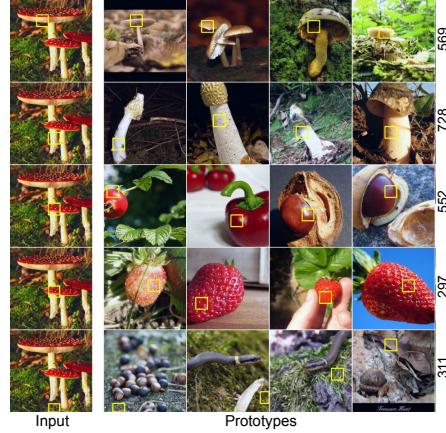


Figure 1: Decision explanation constructed by InfoDisent for the pre-trained ViT feature space on the *Agaric* mushrooms image from the ImageNet. We can trace the decision of ViT behind assigning the class *Agaric* to the image on the left to having a hat (569), a white leg (728), a reddish shine (552), a strawberry texture (297) and the appearance of ground with moss (311). Note that, Each row in the prototype block represents a specific prototypical part (channel number), and the first column shows their activation in the original image.

054 methods require substantially computational power to train, especially when backbones such as Vi-
 055 sion Transformers (ViTs) Dosovitskiy et al. (2020) are fine-tuned in ProtoViT Ma et al. (2024).
 056

057 To address this, we propose InfoDisent, a novel XAI approach that leverages information disentan-
 058 glement in the final layer of any pretrained model. In InfoDisent, each channel encapsulates a single
 059 atomic concept, interpretable as prototypical parts – similar to the approach used in PIPNet Nauta
 060 et al. (2023a). This is achieved through the application of an information bottleneck, in which we
 061 enforce activation sparsity in each prototypical channel. **We decided to use orthogonalization to en-**
 062 **force sparsity, as this mechanism can be successfully applied to ViTs Huang et al. (2022); Tang et al.**
 063 **(2022) and CNNs Wang et al. (2020).** As a result, InfoDisent provides both local and global-level
 064 explanations in the form of human-interpretable concepts, as illustrated in Fig. 1. Furthermore, In-
 065 foDisent offers significant flexibility, as it can be seamlessly applied to any pretrained architecture,
 066 including ViTs and convolutional networks.

067 We demonstrate the effectiveness of InfoDisent through both computational experiments and user
 068 studies. Our method is benchmarked on five datasets, including ImageNet, a challenging dataset
 069 where prototypical parts-based approaches have not been generalized to. **We observe that InfoDisent**
 070 **achieves competitive performance within the class of interpretable models, we observe an accuracy-**
 071 **interpretability trade-off when compared to black-box counterparts, especially visible in CNNs.**
 072 Additionally, results from the user study indicate that InfoDisent provides a competitive level of
 073 explanation understanding compared to other prototypical parts-based methods, while offering the
 074 advantage of flexibility in its application to any model backbone. We make the code available.

075 Our contributions can be summarized as follows:

- 076 • We propose InfoDisent, a hybrid XAI model that combines the interpretability of ante-hoc
 077 methods with the flexibility of post-hoc approaches.
- 078 • InfoDisent’s unique advantage is providing prototypical part-like interpretations for the
 079 feature space of any pretrained network without modification or retraining of a backbone.
- 080 • We validate the effectiveness of InfoDisent in terms of both accuracy and user understand-
 081 ing through extensive experimental evaluations.
- 082 • With InfoDisent, we generalize prototypical parts beyond fine-grained classification, which
 083 is a major limitation of existing methods Elhadri et al. (2025).

084 2 RELATED WORKS

085 Research in XAI can be divided into two disjoint categories: post-hoc interpretability Lundberg &
 086 Lee (2017); Ribeiro et al. (2016); Selvaraju et al. (2017), where we analyze the pre-trained model
 087 to explain its predictions, and inherently explained models Böhle et al. (2022); Chen et al. (2019),
 088 where the aim lies in building networks which decisions are easy to interpret. Both of the above
 089 approaches have their advantages and disadvantages which we discuss in the following paragraphs.
 090

091 **Post-hoc methods** In the post-hoc methods, we interpret existing pre-trained network architec-
 092 tures. The commonly used methods such as SHAP Lundberg & Lee (2017); Shapley (1951),
 093 LIME Ribeiro et al. (2016), LRP Bach et al. (2015) and Grad-CAM Selvaraju et al. (2017) pro-
 094 vide in practice only feature importance which can be visualized as a saliency map that shows on
 095 which part of the image the model has focused its attention. This allows us to check if the model
 096 does not focus its attention outside of the object of interest Ribeiro et al. (2016), however, it is in
 097 general not sufficient to really understand the reasons behind given predictions. Additionally, post-
 098 hoc methods allow typically only local explanations (per the prediction of a given image), and do
 099 not allow to understand of the prerequisites to the given class.

100 **Inherently explained models** While post-hoc methods are easy to implement due to their non-
 101 intrusive nature, they often produce biased and unreliable explanations Adebayo et al. (2018a). To
 102 address this, recent research has increasingly focused on designing self-explainable models that
 103 make the decision process directly visible Brendel & Bethge (2019); Alvarez Melis & Jaakkola
 104 (2018). Many of these interpretable solutions utilize attention mechanisms Liu et al. (2021); Zheng
 105 et al. (2019) or exploit the activation space, such as with adversarial autoencoders Guidotti et al.
 106 (2020). Among the most recent approaches, **two of the approaches has significantly influent the**
 107 **development of self-explainable models, which are Concept Bottlenecks Koh et al. (2020) and Pro-**

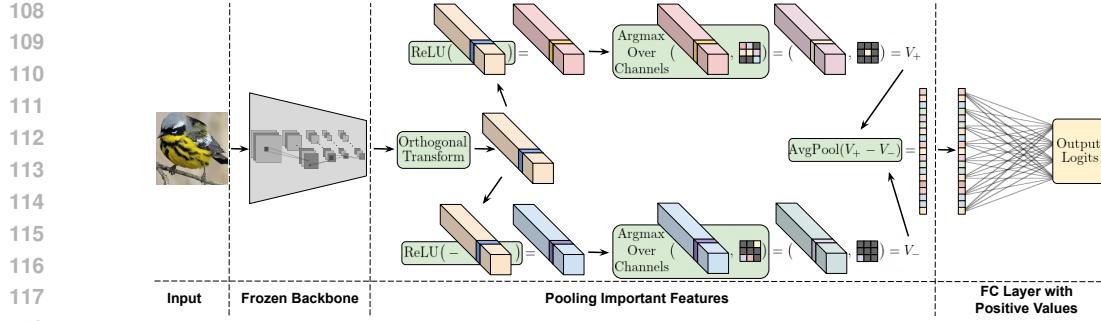


Figure 2: The architecture used for training of our proposed image classification interpretation model. InfoDissent is composed of three main components: a pre-trained backbone, a pooling layer for extracting important features, and a fully connected layer. The backbone is a pre-trained CNN or transformer with frozen weights, meaning it is not further trained. In the initial pooling layer, the model extracts representations from the last convolutional layer of the backbone and identifies key features within each channel, targeting both positive and negative activations through the application of the arg max operation. However, during training, we replace the arg max operation with the Gumbel-Softmax trick, which achieves a similar outcome in a differentiable manner. In the next step, these positive and negative features are pooled at the channel level to create a dense vector, where the vector’s dimensions correspond to the number of channels. Finally, this dense vector is passed through a fully connected linear layer with positive weights in the network’s final component. [toPNet Chen et al. \(2019\)](#). [Concept Bottleneck](#) originally learns to predict in a supervised fashion which concept are present on the image, and then decision is made based on that representation. Among others, this idea has been further developed by detecting the concept in an unsupervised way [Hu et al. \(2025\)](#); [Rao et al. \(2024\)](#). ProtoPNet learns class-specific prototypes, similar to concepts, with a fixed number per class. The model classifies inputs by calculating responses from each class’s prototypes and summarizing these responses through a fully connected layer, providing explanations as a weighted sum of all prototypes. This method inspired the development of several other self-explainable models [Donnelly et al. \(2022\)](#); [Nauta et al. \(2023a\)](#); [Pach et al. \(2024\)](#); [Rymarczyk et al. \(2021; 2022; 2023\)](#); [Wang et al. \(2021\)](#). Typically, in the prototypical parts-based model, the decision of a given class is decomposed into the appearance of a few selected prototypes, which are similar to some strongly localized parts of some chosen images from the training data.

3 INFODISENT

Our approach (presented in Fig. 2) is inspired by the core principles of prototypical models, which aim to ground classification decisions in the co-occurrence of localized, visualizable prototypes within an image. Specifically, these models typically: (i) attribute the final class prediction to the presence of specific prototypes in the input; (ii) allow for the interpretation of these prototypes through their correspondence to training examples; and (iii) ensure that prototypes represent spatially constrained, meaningful image parts.

We hypothesize that even within the feature representations of pre-trained models, it is possible to identify and isolate channels that inherently possess those properties. To achieve this, InfoDissent introduces a mechanism for disentangling the channels in the feature space. Specifically, we apply an orthogonal transformation directly in the pixel space of the feature maps. This operation preserves the inner-lying distance and scalar products, ensuring that the expressiveness of the representation of the pre-trained model is maintained.

By focusing on disentangling the feature channels, our method operates directly on the feature maps produced by the backbone network. Consequently, we consider a dataset of feature space images, characterized by potentially varying spatial resolutions but a consistent number of channels d .

Default classification head in deep networks. To establish notation, let us first describe the typical classification head. In the case of a classification task with k classes, we apply the following operations for the image I in the feature space:

$$1. I \rightarrow v_I = \text{avg_pool_over_channels}(I) \in \mathbb{R}^d$$

162 2. $v_I \rightarrow w_I = Av_I$, where A is a matrix of dimensions $d \times k$
 163 3. $w_I \rightarrow p_I = \text{softmax}(w_I)$.

165 In the case of InfoDisent we apply a few mechanisms to ensure the desired properties. First, we need
 166 to be able to disentangle the channel space. To do so we apply the unitary map U in the pixel space.
 167 Next, we apply the information bottleneck – for a given channel instead of the average pool where
 168 all pixels participate, we use extremely sparse analog where only the value of the highest positive
 169 and negative pixels are used. Finally, as is common in interpretable methods we use matrix A , but
 170 only with nonnegative coefficients to allow only positive reasoning.

172 **The sparse pooling features mechanism** Most
 173 interpretable models involve retraining certain parts
 174 of the CNN Chen et al. (2019); Rymarczyk et al.
 175 (2022), whereas others, like PIP-Net Nauta et al.
 176 (2023a), retrain the entire CNN. In contrast, our
 177 method utilizes a pre-trained CNN or transformer
 178 without further modification during training. We
 179 first employ a trainable orthogonal transformation
 180 U on pixel space to enable the disentanglement of
 181 hidden features from feature maps¹. To enforce the
 182 disentanglement we follow by an introduced sparse
 183 analogue of average pooling over channel K given
 184 by $K \rightarrow \text{mx_pool}(K) = \max(\text{ReLU}(K))$
 185 $\quad \quad \quad - \max(\text{ReLU}(-K))$.

186 Observe that to compute $\text{mx_pool}(K)$ we need to
 187 know only the highest positive and negative pixel
 188 values of K , contrary to avg_pool , where all the
 189 pixel values are needed. Subsequently, we identify
 190 sparse representations (superpixels) within the
 191 channels that contribute positively or negatively to
 192 predictions. This enables us to generate heatmaps similar to Grad-CAM Selvaraju et al. (2017) without
 193 necessitating a backward model step, as shown in Fig. 4a. Importantly, unlike Grad-CAM, our
 194 technique supports the visualization of negative heatmaps, resembling the LRP Bach et al. (2015)
 195 method that requires a backward pass in a neural network. Our method operates solely during the
 196 forward step. Finally, as is common in XAI models, to allow only positive reasoning we allow the
 197 matrix A to have only nonnegative values.

198 **Classification head in InfoDisent.** Finally, the classification head in InfoDisent is given by:
 199

200 1. $I = (I_{rs})_{rs} \rightarrow J = (UI_{rs})$, where $U : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is an orthogonal matrix and I_{rs} denotes
 201 the pixel value of I with coordinates r and s ,
 202 2. $J \rightarrow v_J = \text{mx_pool_over_channels}(J) \in \mathbb{R}^d$, where for a given channel K we have

$$\text{mx_pool}(K) = \max(\text{ReLU}(K)) - \max(\text{ReLU}(-K)),$$

 203 3. $v_J \rightarrow w_J = Av_J$, where A is a matrix with nonnegative coefficients of dimensions $d \times k$
 204 4. $w_J \rightarrow p_J = \text{softmax}(w_J)$

208 **InfoDisent model.** Thus InfoDisent consists of two main components: the frozen CNN or trans-
 209 former Backbone, and InfoDisent classification head, as illustrated in Fig. 2.

211 The first component is a backbone, CNN or ViT, which is a frozen pre-trained network up to the
 212 final layer that generates the last feature map. Importantly, this part of the network and its weights

213 ¹To parametrize orthogonal maps, we restrict to those with positive determinants and use the formula $U =$
 214 $\exp(W - W^T)$, where $\exp(\cdot)$ denote the matrix exponential Hall & Hall (2013). We utilize the fact that
 215 the space of orthogonal matrices with positive determinants coincide with exponentials of skew-symmetric
 matrices Shepard et al. (2015).

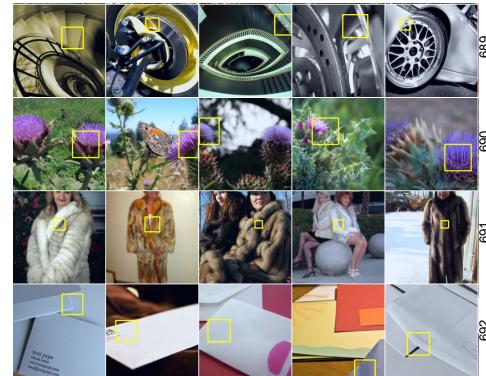
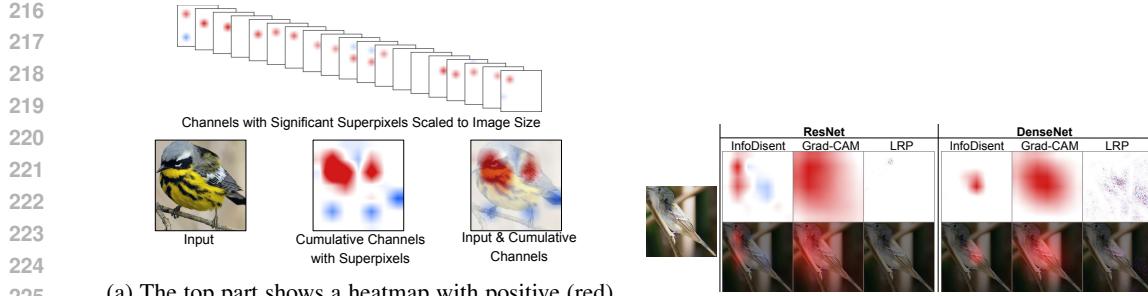


Figure 3: The image shows prototypes from channels 689 to 692 in a trained ResNet-50 on the ImageNet. Each row displays the 5 most significant patches from a single prototypical channel. The prototype's activations are highlighted by yellow boxes.



(a) The top part shows a heatmap with positive (red) and negative (blue) sparse representations, each channel displaying one positive and one negative superpixel. These sparse representations are then aggregated and rescaled to the image size in the lower part.

(b) Example compares visual explanations from InfoDisent, Grad-CAM, and LRP. On the left we show the input, with the columns displaying consecutive explanation types for ResNet and DenseNet.

Figure 4: The image demonstrates how to analyze and visualize decisions made by InfoDisent.

remain unaltered during the training of InfoDisent, ensuring that the learned feature representations are preserved. The second component involves pooling important features from the final feature maps produced by the frozen backbone. This pooling mechanism encourages the network to use information bottlenecks to build maximally informative channels independent of each other. This leads to constructing prototypical channels, which can be easily interpreted. The final element is the fully connected layer, which consists of only positive weight values. This restriction on positivity, except biases handled as in conventional linear layers, ensures that the information about the positive or negative contributions of selected features from the previous part of the model is preserved. This constraint is beneficial for the interpretability of the model’s predictions, as it clarifies the contribution of each feature to the final output. Observe, that contrary to some of the post-hoc methods, InfoDisent needs training of the model on the whole dataset.

Gumbel-Softmax To maximize the extraction of information from prototypical channels, we introduce an information bottleneck within our model architecture. This is achieved by applying the arg max operation to individual channels, see Fig. 2. While the arg max function can be used to extract a sparse representation from feature maps, our goal is to enable the model to learn to select the most important values. To achieve this, we require a differentiable arg max function. The ideal solution for this is the Gumbel-Softmax estimator Jang et al. (2016). Given $x = (x_1, \dots, x_D) \in \mathbb{R}^D$ and $\tau \in (0, \infty)$,

$$\text{Gumbel-Softmax}(x, \tau) = (y_1, \dots, y_D) \in \mathbb{R}^D,$$

where

$$y_i = \frac{\exp((x_i + \eta_i)/\tau)}{\sum_{d=1}^D \exp((x_d + \eta_d)/\tau)},$$

and η_d for $d \in \{1, \dots, D\}$ are samples taken from the standard Gumbel distribution.

The Gumbel-Softmax distribution serves as an interpolation between continuous categorical densities and discrete one-hot encoded categorical distributions, with the discrete form being approached as the temperature τ decreases within the range of $[0.1, 0.5]$. In our experiments, we initialized τ at 1 and progressively reduced it to 0.2. Finally, at the end of the training, we applied a hard softmax.

Following the extraction of key features using the sparse operation – specifically, the arg max operation via the Gumbel-Softmax trick – we preserve the original structure of the network’s output, maintaining the classical form of the convolutional network’s output, as shown in Fig. 2. During the subsequent aggregation of positive and negative features, we utilize an average pooling operation to consolidate the information. This approach ensures that the pooled features capture a balanced representation of the activations, contributing to a robust final output.

3.1 UNDERSTANDING THE CLASSIFICATION DECISIONS

270
 271 **Prototypes in InfoDisent.** The main feature of Info-
 272 Disent is its ability to disentangle the channels
 273 making them interpretable. Thus, similarly to PiP-
 274 Net Nauta et al. (2023a), we identify channels as
 275 prototypes. To illustrate a given prototype channel,
 276 we present five images from the training dataset on
 277 which the activation of the channel is the greatest,
 278 see Fig. 3, where we present consecutive prototypes
 279 for the pre-trained ResNet-50 model. This follows
 280 the fact that for better interpretability of model de-
 281 cisions, it is beneficial for humans to be presented
 282 from 4 to 9 concepts Rymarczyk et al. (2022). For-
 283 mally, similarly as in prototypical models, as the
 284 prototypical part, we understand the part of the im-
 285 age corresponding to pixels in feature space with
 286 maximal activation, marked by the yellow box in
 287 Fig. 3. Observe that the presented prototypes seem
 288 consistent with each other, and could be well in-
 289 terpreted.
 290

291 **Understanding the Decision for a Given Image by**
 292 **Prototypes.** Now that we can understand and vi-
 293 sualize prototypes, there appears to be a question of
 294 how to visualize crucial prototypes from the model’s
 295 decision perspective for a given image. To do this we
 296 chose 5 prototypical channels which are most impor-
 297 tant for the prediction² in Fig. 5. For each channel,
 298 we identified 5 images from the training dataset that
 299 exhibit the strongest activation values for that chan-
 300 nel, as depicted by the red spots in Fig. 4a. Sim-
 301 ply, we selected the top 5 images based on the high-
 302 est activation values, or arg-top5, for each channel.
 303 The model’s proposed prototypes are easy to in-
 304 terpret. Moreover, unlike current state-of-the-art proto-
 305 type methods, our model excels at interpreting im-
 306 ages from the ImageNet dataset. More examples
 307 from various datasets and models are presented in
 308 the Supplementary Materials.
 309

310 **Heatmaps.** Our approach, which relies on rep-
 311 resentation channels, enables us to easily generate
 312 heatmaps similar to those produced by the Grad-
 313 CAM method, see Fig. 4a. To do this we accumulate
 314 the activations of all prototypes (both positive and
 315 negative ones) over all channels. Since in InfoDisent
 316 we use information bottleneck, we obtain more
 317 localized results than other standard approaches.
 318

319 Observe that, unlike Grad-CAM, our heatmaps also
 320 illustrate negative activations, similarly to the Layer-
 321 Wise Relevance Propagation (LRP). While LRP ef-
 322 fectively highlights both positive and negative con-
 323 tributions, it can be complex to implement and sensi-
 324 tive to changes in model architecture. Our approach,
 325 by using a non-negative last layer and a prototypical-parts-based architecture, directly addresses
 326 these issues. This design results in clear and interpretable visualizations (see Fig. 23) that can be
 327 compared with those produced by methods such as GradCAM and LRP.
 328

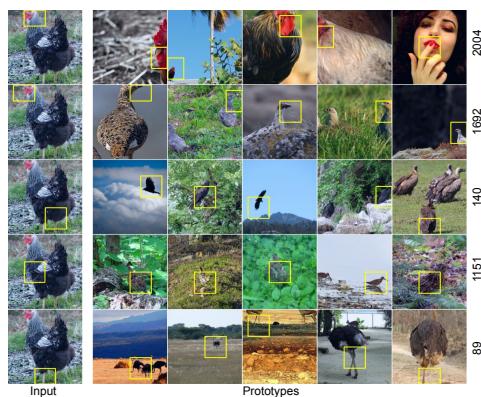


Figure 5: Exemplary explanation (*hen*) for ResNet-50 backbone provided by InfoDisent in a form of prototypical parts.

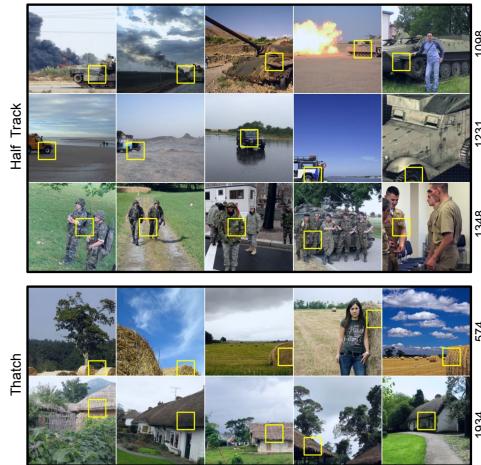


Figure 6: Prototypes of two classes (from top to bottom): Half Track and Thatch from the ImageNet dataset. Each row displays the 5 most significant prototypes for a specific channel, with the channel numbers listed on the right. The order of the prototypes within each row reflects their importance for explaining the given class. In the Half Track class, the prototypes from channel 1098 are the most crucial, followed by those from channels 1231 and 1348. These prototypes effectively explain the Half Track class, as they highlight elements of a tank (from channel 1098), a car, and the possible presence of soldiers on board. Note that the prototypes are all generated at the same resolution. If they appear to be of different sizes across images, it’s because the original test images themselves varied in resolution.

²One can assume more subtle strategies, see Supplementary Materials.

324 **Understanding the Decision Behind Class.** We examine the model’s decision-making process
 325 on a per-class basis by utilizing prototypes. To identify prototypes for a given class, we focus on
 326 key channels that are prominently activated across all test set images belonging to that class. These
 327 key channels are selected based on their consistent presence and strong activation in images of the
 328 same class. Once we have identified these crucial channels, we visualize the prototypes as previously
 329 described, providing a clear representation of what the model finds important for a given class. Fig. 6
 330 illustrates the prototypes for selected classes from the ImageNet dataset. Each prototype captures
 331 essential features such as material types, structural elements, or specific textures that are related to
 332 the class.

334 4 NUMERICAL EXPERIMENTS

335 This section outlines the experiments conducted to compare our approach with current state-of-
 336 the-art methods, highlighting the most significant results. Our experiments utilized a variety of
 337 datasets, including well-established benchmarks for evaluating the explainability of artificial mod-
 338 els: The Caltech-UCSD Birds-200-2011 (CUB-200-2011) Wah et al. (2011), Stanford Cars Krause
 339 et al. (2013), and Stanford Dogs Khosla et al. (2011). Additionally, we incorporated the full Im-
 340 ageNet Russakovsky et al. (2015) dataset for the first time in the class of prototypical networks.
 341 Additional results, including ablation study and analysis of inter-channel correlation, and details
 342 concerning those experiments are provided in the Supplementary Materials. **Those experiments**
 343 **show that InfoDisent consistently achieves superior or matching Disentanglement metrics in most**
 344 **of the cases, demonstrating high concept coherence with minimal variability between data-classes**
 345 **of a concept. Furthermore, we show that InfoDisent yields robust prototypical parts and outper-**
 346 **forms ProtoViT on 2 out of 3 metrics related to spatial misalignment. We conclude by presenting**
 347 **qualitative examples and additional detailed results that complement those from the main body.**

349 4.1 CLASSIFICATION PERFORMANCE

350 To compare our approach, we selected several state-of-the-art, interpretable models based on the
 351 same CNN architectures as our approach. We categorized the models into a few groups based on
 352 their CNN architecture – ResNet-34/50 He et al. (2016), DenseNet-121 Huang et al. (2017), and
 353 ConvNeXt-Tiny Liu et al. (2022b) – and the experiments we conducted on these datasets. Specifi-
 354 cally, we performed two experiments: the first used cropped images for training and testing, and the
 355 second used full images.

356 In the first experiment, we utilized two key datasets: CUB-200-2011 and Stanford Cars, which
 357 are frequently employed in prototype model evaluations. We trained both the base models and
 358 InfoDisent on these cropped images, with the results shown in Tab. 1. In the second experiment, we
 359 used CUB-200-2011 and Stanford Dogs datasets, but this time with the full images. The results of
 360 this experiment are detailed in Tab. 2.

361 **In both experiments, our approach consistently outperformed or matches the compared black-box**
 362 **models. When compared to interpretable models, InfoDisent’s performance varied by backbone,**
 363 **achieving comparable or slightly lower results than state-of-the-art models, especially with ViT.**
 364 **This minor difference is attributable to the competing interpretable models, which modify and fine-**
 365 **tune the backbone during training. This adaptation allows them to specialize a generally-trained**
 366 **backbone for the fine-grained task, which InfoDisent, being non-modifying the backbone, does not**
 367 **benefit from. Crucially, however, these backbone modifications require significantly greater compu-**
 368 **tational resources and more complex training procedures. In sharp contrast, our method simplifies**
 369 **the training process by only adjusting the last two parts of the model while leaving the original back-**
 370 **bone unchanged, leading to a substantial reduction in both required resources and training time (see**
 371 **Tab. 8).**

372 In the next experiment, we utilized the full ImageNet dataset and evaluated both traditional
 373 CNN models – such as ResNet-34/50, DenseNet-121, and ConvNeXt-Large – and popular trans-
 374 former models, including VisionTransformer (ViT-B/16) Dosovitskiy et al. (2020), SwinTrans-
 375 former (Swin-S) Liu et al. (2022a), and MaxViT Tu et al. (2022). Given that current prototype mod-
 376 els did not perform well on the ImageNet dataset and thus lack evaluation results, Tab. 3 presents
 377 a comparison between the classical models and our approach. **Typically, prototype models exhibit**

lower performance on more complex datasets compared to traditional models as shown in Tab. 3, but it also offers enhanced explainability. This difference with accuracy we identify as accuracy-interpretability trade-off. We hypothesize that the orthogonal disentanglement enforces a "part-based" sparsity that conflicts with the distributed, texture-biased representations of ResNets Hermann et al. (2020), whereas ViTs (which process patches globally) have better adaptability capabilities Naseer et al. (2021).

Table 1: Accuracy comparison of interpretability models using standard CNN architectures (utilized in explainable models) trained on cropped bird images of CUB-200-2011, and Stanford Cars (Cars). Our approach demonstrates superior performance across nearly all the datasets and models considered. For each dataset and backbone, we boldface the best result in the class of interpretable models.

Model	Dataset	
	CUB-200-2011 [%]	Cars [%]
ResNet-34	82.4	92.6
	83.5 ± 0.02	92.8 ± 0.04
	79.2 ± 0.3	86.1 ± 0.2
	74.7	86.4
	80.3 ± 0.2	89.3 ± 0.1
	83.5 ± 0.2	91.4 ± 0.3
ResNet-50	82.7 ± 0.2	90.9 ± 0.3
	83.2	93.1
	83.0 ± 0.07	92.9 ± 0.02
	—	88.9 ± 0.1
	—	86.6 ± 0.7
	82.0 ± 0.2	86.5 ± 0.3
DenseNet-121	81.8	92.1
	82.6 ± 0.02	92.7 ± 0.02
	79.2 ± 0.3	86.8 ± 0.1
	74.7	84.8
	73.6 ± 0.2	86.4 ± 0.3
	85.4 ± 0.1	92.3 ± 0.2
ConvNeXt	84.8 ± 0.2	92.0 ± 0.3
	83.8	91.0
	84.1 ± 0.08	90.2 ± 0.01
	84.3 ± 0.2	88.2 ± 0.5
	84.3	—
	83.7 ± 0.03	—
DeiT	85.4 ± 0.5	91.8
	84.3	—

Table 2: Classification accuracy on full CUB-200-2011, and Stanford Dogs datasets by competing approaches using different CNN backbones. For each dataset and backbone, we boldface the best result in the class of interpretable models.

Model	Dataset	
	CUB-200-2011 [%]	Dogs [%]
ResNet-34	76.0	84.5
	78.3 ± 0.15	83.9 ± 0.21
	74.1 ± 0.2	76.1 ± 0.3
	78.2 ± 0.1	83.4 ± 0.5
ResNet-50	76.5 ± 0.1	81.2 ± 0.3
	78.7	87.4
	79.5 ± 0.56	86.6 ± 0.25
	84.8 ± 0.4	78.1 ± 0.3
DenseNet-121	88.0 ± 0.2	83.3 ± 0.3
	87.3 ± 0.2	85.7 ± 0.4
	78.2	84.1
	80.6 ± 0.37	83.8 ± 0.07
ConvNeXt	76.6 ± 0.5	75.4 ± 0.3
	81.8 ± 0.3	82.9 ± 0.4
	80.9 ± 0.2	82.1 ± 0.3
	84.1	—

Table 3: Classification accuracy (ACC) on ImageNet dataset by competing approaches using different CNN backbones.

CNN Model	ACC [%]	Transformer Model	ACC [%]
ResNet-34	73.3	ViT-B/16	81.1
	64.1 ± 0.39	79.2 ± 0.21	—
ResNet-50	76.1	Swin-S	83.4
	67.8 ± 0.05	81.4 ± 0.06	—
DenseNet-121	74.4	MaxVit	83.4
	66.6 ± 0.02	83.3 ± 0.11	—
ConvNeXt-L	84.1	—	—
	82.8 ± 0.09	—	—

Does InfoDisent reduce channel correlation To evaluate the effectiveness of our method in reducing channel correlation, we employed the RV coefficient Robert & Escoufier (1976), a standard metric for measuring linear dependence between sets of variables. As shown in Tab. 4, the results across 14 experimental configurations (spanning 3 datasets and 7 backbone architectures) reveal that our model achieves lower (i.e., better) RV coefficients than the baseline in 9 cases, performs comparably in 3 cases, and underperforms in only 2 cases. Notably, although our approach does not include an explicit loss term designed to minimize the RV coefficient, it consistently demonstrates superior or equivalent capability in reducing channel correlations compared to the baseline.

Table 4: RV correlation between channels for InfoDisent and baseline models.

Model	Cars		CUB		ImageNet	
	InfoDisent	Baseline	InfoDisent	Baseline	InfoDisent	Baseline
ConvNeXt-L	—	—	—	—	8.7	3.0
ConvNeXt-Tiny	6.7	6.9	5.5	5.5	—	—
DenseNet121	6.2	6.9	7.2	7.9	8.4	4.5
ResNet34	6.0	7.1	6.5	7.2	5.2	6.0
ResNet50	6.2	7.6	4.9	7.8	3.0	6.5
Swin-S	—	—	—	—	2.5	2.5
ViT-B/16	—	—	—	—	9.9	9.9

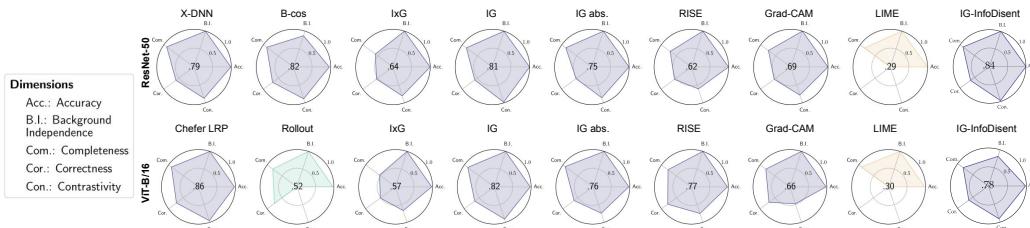


Figure 7: FunnyBirds evaluation results for various XAI methods. Model-agnostic methods are assessed on ResNet-50 and ViT-B/16. Results are averaged over the entire test set, including the center score representing the mean of completeness (Com.), correctness (Cor.), and contrastivity (Con.) dimensions. Additionally, accuracy (Acc.) and background independence (B.I.) are reported. Our approach (at the end on the right) enhances model explainability, showing significant improvements for ResNet-50 and satisfactory results for the transformer model. In the Appendix Tab. 9 are detailed results.

5 EVALUATION OF INTERPRETABILITY

We showcase the performance of InfoDisent on explainability metrics using FunnyBirds dataset Hesse et al. (2023) and Spatial Misalignement (SM) Sacha et al. (2024) which are dedicated benchmarks for XAI methods. Results for SM are presented in the Appendix Tab. 7. Also, we performed tests related to diversity of the concepts Tab. 15, prototype robustness Tab. 10, and number of utilized concepts in Appendix Tab. 16. In addition to the computational validation of InfoDisent, we conducted two user studies. The first study followed the design of the HIVE benchmark Kim et al. (2022), aiming to assess the impact of explanations on user overconfidence in the model’s predictions. The second study evaluated the disambiguation of explanations derived from prototypical parts. For this, we adopted a study design from prior works on prototypical parts Ma et al. (2023); Pach et al. (2024).

FunnyBirds results. To evaluate explainability of InfoDisent approach, we utilized the FunnyBirds Hesse et al. (2023) dataset, which is constructed to evaluate the semantic appropriateness of explanations through semantically meaningful image interventions, such as removing individual object parts. This enables a more nuanced analysis of explanations at the part level, which aligns more closely with human understanding compared to pixel-level evaluations. We compare InfoDisent approach to a range of XAI methods for two different backbones Fig. 7. InfoDisent enhances the explainability of models based on classic CNN architectures and ranks best when using the ResNet50 backbone. While still highly competitive, it achieves the third-best result for the ViT.

5.1 USER STUDY RESULTS

We performed two user studies. Each of them involved 60 participants per dataset, with a balanced gender representation. Participants were aged between 18 and 60, with an average age of 35 years. The studies were conducted on the Clickworker platform, using two datasets: CUB-200-2011 and ImageNet. Each participant answered 20 questions, with images randomly selected from the testing dataset for each question. Example questions are provided in the Supplementary Materials.

486 **Confidence in Model Predictions** In the first study, which assessed user overconfidence, participants
 487 were presented with an image alongside the model’s explanation. They were then asked,
 488 “What do you think about the model’s prediction?” and were instructed to indicate their confidence
 489 in whether the model was correct or incorrect as it was done in HIVE benchmark Kim et al. (2022).

490 The results of this user study are shown in Tab. 5. They demonstrate that users evaluating the
 491 model’s predictions based on explanations from InfoDisent are statistically significantly less over-
 492 confident than random guessing (as indicated by the p-values). Additionally, InfoDisent generalizes
 493 to ImageNet and achieves statistically significantly better results than random.

494
 495 **Disambiguity of prototypical parts.** In the second study, which assessed the disambiguation of
 496 prototypical parts, participants were shown an image classified by the model alongside two expla-
 497 nations corresponding to the two most activated classes. Their task was to determine, based on the
 498 explanations, which decision the model had made.

499 The results of this user study, presented in Tab. 6, demonstrate that users who saw explanations
 500 from InfoDisent performed statistically significantly better than random guessing.

501
 502 For both of the user study we present results from other user groups in the Appendix Tabs. 13 and 14
 503 just for a reference.

504
 505 Table 5: Results showcasing user confidence
 506 in model predictions reveal that when users
 507 answered questions informed by explanations
 508 from our InfoDisent model, they exhibited sub-
 509 stantial confidence in the model’s correct de-
 510 cisions across both datasets (mean confidence
 511 ober 60% for ImageNet and over 80% for CUB).
 512 However, a notable challenge emerged: users
 513 struggled to detected samples where the model’s
 514 predictions were incorrect, even when provided
 515 with the explanations. This finding echoes ob-
 516 servations reported for other XAI methods. We
 517 denote statistically significant values in bold.

Method	Prediction	ImageNet [%]	CUB-200 [%]
InfoDisent	Correct	60.2 ± 9.0	80.7 ± 13.3
	Incorrect	55.3 ± 9.9	42.7 ± 11.7
	p-value	0.001	$3 \cdot 10^{-15}$

504
 505 Table 6: A user study assessing the perceived
 506 ambiguity of prototypical parts shows that ex-
 507 planations provided by InfoDisent allows users
 508 to understand the model’s decisions signifi-
 509 cantly better than random guessing on both Im-
 510 ageNet and CUB ($p < 0.05$). Notably, In-
 511 foDisent is the only method leveraging pro-
 512 tototypical parts that operates on the ImageNet.
 513 Furthermore, users interacting with InfoDisent
 514 achieved a level of understanding that is stastis-
 515 tically significant We report the p-value associ-
 516 ated with the comparison against random guess-
 517 ing.

Method	Dataset	User Acc. [%]	p-value
InfoDisent	ImageNet	59.3 ± 14.9	$8 \cdot 10^{-6}$
	CUB-200	64.7 ± 13.1	10^{-14}

523 6 CONCLUSIONS

524
 525 In this work, we introduce InfoDisent, an innovative model that combines the strengths of both post-
 526 hoc and inherently interpretable methods. InfoDisent provides the flexibility to be applied to any
 527 backbone, while offering both local (per image) and global (per class) explanations in the form of
 528 atomic concepts, addressing key limitations of existing approaches. Additionally, as demonstrated
 529 by user studies, InfoDisent performs comparably to state-of-the-art methods in disambiguating pro-
 530 tototypical parts and managing user overconfidence. Notably, InfoDisent is the first attempt to gen-
 531 eralize the prototypical parts-based methodology to big scale datasets such as the whole ImageNet.
 532 In future work, we plan to explore pruning techniques to optimize the size of concepts used in
 533 explanations.

534
 535 **Limitations.** While achieving interpretability, InfoDisent requires training its classification head
 536 on the complete dataset. Unlike prototypical parts models, the model’s decisions are not constrained
 537 to a fixed number of prototypes. Furthermore, because InfoDisent avoids backbone fine-tuning,
 538 the quality of its explanations is inherently limited by the expressiveness of the initial backbone
 539 representations. **Moreover, all prototypical-parts based model may have generate concepts that are**
not human understandable, which is also a limitation of our InfoDisent model.

540
Ethics statement. InfoDisent advances the field of Explainable AI (XAI) by introducing a novel
541 method that generalizes prototypical parts-based explanations to ImageNet-like datasets, while
542 maintaining the post-hoc flexibility of application. InfoDisent holds potential for further exploration
543 in downstream applications, such as medical diagnosis.

544
Reproducibility Statement. We make the code available through zip file in the submission sys-
545 tem, and we plan to put public github into the camera ready version. Moreover, we ran experiments
546 on NVIDIA RTX4090 and NVIDIA A100 40GB. Also, we provided all details regarding the hyper-
547 parameters to reproduce the results in the Appendix Section C.

550 **REFERENCES**

551
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. San-
552 ity checks for saliency maps. In *Advances in Neural Information Processing Systems*, volume 31.
553 Curran Associates, Inc., 2018a.

554
Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim.
555 Sanity checks for saliency maps. *Advances in neural information processing systems*, 31, 2018b.

556
Ayman Al-Kababji, Faycal Bensaali, and Sarada Prasad Dakua. Scheduling techniques for liver seg-
557 mentation: Reducelronplateau vs onecyclelr. In *International Conference on Intelligent Systems*
558 and *Pattern Recognition*, pp. 204–212. Springer, 2022.

559
David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
560 neural networks. In *Advances in Neural Information Processing Systems*, volume 31. Curran
561 Associates, Inc., 2018.

562
Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
563 and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
564 relevance propagation. *PloS one*, 10(7):e0130140, 2015.

565
Moritz Böhle, Mario Fritz, and Bernt Schiele. B-cos networks: Alignment is all we need for in-
566 terpretability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
567 *Recognition*, pp. 10329–10338, 2022.

568
Mariusz Bojarski, Philip Yeres, Anna Choromanska, Krzysztof Choromanski, Bernhard Firner,
569 Lawrence Jackel, and Urs Muller. Explaining how a deep neural network trained with end-to-
570 end learning steers a car. *arXiv preprint arXiv:1704.07911*, 2017.

571
Wieland Brendel and Matthias Bethge. Approximating CNNs with bag-of-local-features models
572 works surprisingly well on imagenet. In *International Conference on Learning Representations*,
573 2019.

574
Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
575 like that: deep learning for interpretable image recognition. *Advances in neural information*
576 *processing systems*, 32, 2019.

577
Jon Donnelly, Alina Jade Barnett, and Chaofan Chen. Deformable protopnet: An interpretable
578 image classifier using deformable prototypes. In *Proceedings of the IEEE/CVF conference on*
579 *computer vision and pattern recognition*, pp. 10265–10275, 2022.

580
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
581 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
582 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
583 *arXiv:2010.11929*, 2020.

584
Khawla Elhadri, Tomasz Michalski, Adam Wróbel, Jörg Schlötterer, Bartosz Zieliński, and Christin
585 Seifert. This looks like what? challenges and future research directions for part-prototype models.
586 *arXiv preprint arXiv:2502.09340*, 2025.

594 Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Explaining image classifiers
 595 generating exemplars and counter-exemplars from latent representations. *Proceedings of the AAAI*
 596 *Conference on Artificial Intelligence*, 34(09):13665–13668, Apr. 2020. doi: 10.1609/aaai.v34i09.
 597 7116.

598 Brian C Hall and Brian C Hall. *Lie groups, Lie algebras, and representations*. Springer, 2013.

599

600 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 601 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 602 770–778, 2016.

603 Katherine Hermann, Ting Chen, and Simon Kornblith. The origins and prevalence of texture bias in
 604 convolutional neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
 605 (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 19000–19015. Cur-
 606 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/db5f9f42a7157abe65bb145000b5871a-Paper.pdf.

607

608 Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Funnybirds: A synthetic vision dataset for
 609 a part-based analysis of explainable ai methods. In *Proceedings of the IEEE/CVF International*
 610 *Conference on Computer Vision*, pp. 3981–3991, 2023.

611

612 Lijie Hu, Tianhao Huang, Huanyi Xie, Xilin Gong, Chenyang Ren, Zhengyu Hu, Lu Yu, Ping Ma,
 613 and Di Wang. Semi-supervised concept bottleneck models. In *Proceedings of the IEEE/CVF*
 614 *International Conference on Computer Vision (ICCV)*, pp. 2110–2119, October 2025.

615

616 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 617 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern*
 618 *recognition*, pp. 4700–4708, 2017.

619

620 Huaibo Huang, Xiaoqiang Zhou, and Ran He. Orthogonal transformer: An efficient
 621 vision transformer backbone with token orthogonalization. In S. Koyejo, S. Mo-
 622 hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural In-*
 623 *formation Processing Systems*, volume 35, pp. 14596–14607. Curran Associates, Inc.,
 624 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/5d8c01de2dc698c54201c1c7d0b86974-Paper-Conference.pdf.

625

626 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
 627 *arXiv:1611.01144*, 2016.

628

629 Daniel Kermany. Labeled optical coherence tomography (oct) and chest x-ray images for classifica-
 630 tion. *Mendeley data*, 2018.

631

632 Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank
 633 Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, et al. Classification and
 634 diagnostic prediction of cancers using gene expression profiling and artificial neural networks.
 635 *Nature medicine*, 7(6):673–679, 2001.

636

637 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-
 638 grained image categorization: Stanford dogs. In *Proc. CVPR workshop on fine-grained visual*
 639 *categorization (FGVC)*, volume 2, 2011.

640

641 Sunnie SY Kim, Nicole Meister, Vikram V Ramaswamy, Ruth Fong, and Olga Russakovsky. Hive:
 642 Evaluating the human interpretability of visual explanations. In *European Conference on Com-*
 643 *puter Vision*, pp. 280–298. Springer, 2022.

644

645 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 646 Percy Liang. Concept bottleneck models. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of*
 647 *the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine*
 648 *Learning Research*, pp. 5338–5348. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/koh20a.html>.

649

650 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 651 categorization. In *Proceedings of the IEEE international conference on computer vision work-*
 652 *shops*, pp. 554–561, 2013.

648 Nian Liu, Ni Zhang, Kaiyuan Wan, Ling Shao, and Junwei Han. Visual saliency transformer. In
 649 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4722–4732,
 650 2021.

651 Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
 652 Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In *Proceedings of*
 653 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 12009–12019, 2022a.

654 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 655 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and*
 656 *pattern recognition*, pp. 11976–11986, 2022b.

657 Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. *Advances*
 658 *in neural information processing systems*, 30, 2017.

659 Chiyu Ma, Brandon Zhao, Chaofan Chen, and Cynthia Rudin. This looks like those: Illuminating
 660 prototypical concepts using multiple visualizations. *Advances in Neural Information Processing*
 661 *Systems*, 36:39212–39235, 2023.

662 Chiyu Ma, Jon Donnelly, Wenjun Liu, Soroush Vosoughi, Cynthia Rudin, and Chaofan Chen. Interpretable
 663 image classification with adaptive prototype-based vision transformers. *Advances in Neural Information Processing*
 664 *Systems*, 37:41447–41493, 2024.

665 Muhammad Muzammal Naseer, Kanchana Ranasinghe, Salman H Khan, Munawar Hayat, Fa-
 666 had Shahbaz Khan, and Ming-Hsuan Yang. Intriguing properties of vision transformers.
 667 In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
 668 *Advances in Neural Information Processing Systems*, volume 34, pp. 23296–23308. Curran
 669 Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/c404a5adb90e09631678b13b05d9d7a-Paper.pdf.

670 Meike Nauta, Jörg Schlotterer, Maurice van Keulen, and Christin Seifert. Pip-net: Patch-based
 671 intuitive prototypes for interpretable image classification. 2023a.

672 Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
 673 Schlotterer, Maurice Van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
 674 evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*,
 675 55(13s):1–42, 2023b.

676 Mateusz Pach, Dawid Rymarczyk, Koryna Lewandowska, Jacek Tabor, and Bartosz Zieliński. Lu-
 677 cidppn: Unambiguous prototypical parts network for user-centric interpretable computer vision.
 678 *arXiv preprint arXiv:2405.14331*, 2024.

679 Cristiano Patrício, João C Neves, and Luís F Teixeira. Explainable deep learning methods in medical
 680 image classification: A survey. *ACM Computing Surveys*, 56(4):1–41, 2023.

681 Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-agnostic
 682 concept bottlenecks via automated concept discovery. In Aleš Leonardis, Elisa Ricci, Stefan
 683 Roth, Olga Russakovsky, Torsten Sattler, and Gü̈l Varol (eds.), *Computer Vision – ECCV 2024*,
 684 pp. 444–461, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-72980-5.

685 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the
 686 predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference*
 687 *on knowledge discovery and data mining*, pp. 1135–1144, 2016.

688 Paul Robert and Yves Escoufier. A unifying tool for linear multivariate statistical methods: the rv-
 689 coefficient. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 25(3):257–265,
 690 1976.

691 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 692 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

693 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
 694 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
 695 recognition challenge. *International journal of computer vision*, 115:211–252, 2015.

702 Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński. Protopshare: Prototypical
 703 parts sharing for similarity discovery in interpretable image classification. In *Proceedings of the*
 704 *27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining*, pp. 1420–1430, 2021.
 705

706 Dawid Rymarczyk, Łukasz Struski, Michał Górszczak, Koryna Lewandowska, Jacek Tabor, and
 707 Bartosz Zieliński. Interpretable image classification with differentiable prototypes assignment. In
 708 *European Conference on Computer Vision*, pp. 351–368. Springer, 2022.

709 Dawid Rymarczyk, Joost van de Weijer, Bartosz Zieliński, and Bartłomiej Twardowski. Icicle:
 710 Interpretable class incremental continual learning. In *Proceedings of the IEEE/CVF International*
 711 *Conference on Computer Vision*, pp. 1887–1898, 2023.

712 Mikołaj Sacha, Bartosz Jura, Dawid Rymarczyk, Łukasz Struski, Jacek Tabor, and Bartosz Zieliński.
 713 Interpretability benchmark for evaluating spatial misalignment of prototypical parts explanations.
 714 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 21563–21573,
 715 2024.

716 Wojciech Samek, Grégoire Montavon, Sebastian Lapuschkin, Christopher J Anders, and Klaus-
 717 Robert Müller. Explaining deep neural networks and beyond: A review of methods and applica-
 718 tions. *Proceedings of the IEEE*, 109(3):247–278, 2021.

719 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 720 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 721 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 722 2017.

723 Lloyd S Shapley. Notes on the n-person game-ii: The value of an n-person game. 1951.

724 Ron Shepard, Scott R Brozell, and Gergely Gidofalvi. The representation and parametrization of
 725 orthogonal matrices. *The Journal of Physical Chemistry A*, 119(28):7924–7939, 2015.

726 Łukasz Struski, Szymon Janusz, Jacek Tabor, Michał Markiewicz, and Arkadiusz Lewicki. Multiple
 727 instance learning for medical image classification based on instance importance. *Biomedical*
 728 *Signal Processing and Control*, 91:105874, 2024.

729 Hao Tang, Jiaxin Li, Xiaohui Li, Meng-Hui Li, Longhui Wei, Jinxing Hu, Guoliang Song, Shuo
 730 Chen, and Wu-Jun Li. O-vit: Orthogonal vision transformer. *arXiv preprint arXiv:2201.12133*,
 731 2022.

732 Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Peyman Milanfar, Alan Bovik, and Yinxiao
 733 Li. Maxvit: Multi-axis vision transformer. In *European conference on computer vision*, pp. 459–
 734 479. Springer, 2022.

735 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 736 birds-200-2011 dataset. 2011.

737 Jiaqi Wang et al. Interpretable image recognition by constructing transparent embedding space. In
 738 *ICCV*, pp. 895–904, 2021.

739 Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X. Yu. Orthogonal convolutional neural
 740 networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 741 nition (CVPR)*, June 2020.

742 Feiyu Xu, Hans Uszkoreit, Yangzhou Du, Wei Fan, Dongyan Zhao, and Jun Zhu. Explainable
 743 ai: A brief survey on history, research areas, approaches and challenges. In *Natural language*
 744 *processing and Chinese computing: 8th cCF international conference, NLPCC 2019, dunhuang,*
 745 *China, October 9–14, 2019, proceedings, part II 8*, pp. 563–574. Springer, 2019.

746 Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. Looking for the devil in the details:
 747 Learning trilinear attention sampling network for fine-grained image recognition. In *Proceedings*
 748 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 5012–5021, 2019.

749

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
SUPPLEMENTARY MATERIAL

A ABLATION STUDY

InfoDisent organizes information into channels with sparse representations, which can be later utilized in the model’s prediction process. In the following experiment, we investigate how the number of channels affects the model’s predictions. Specifically, we assess how many channels are required to account for at least 95% of the information used in the model’s predictions. Formally, if $\text{logits} = \sum_{i=0}^N a_{ki}v_i + b_k$, where N is a number of all channels, k represents the image class, and $a_{ki}, v_i, b_k \in \mathbb{R}$, then for each image from class k , we determine the smallest number n channels such that $\sum_{i \in I_k} |a_{ki}v_i| / \sum_{i=0}^N |a_{ki}v_i| \geq 0.95$, where I_k is the set of indexes of the $n \leq N$ largest values of $|a_{ki}v_i|$. This analysis allows us to identify the most critical channels contributing to the model’s decisions, providing deeper insights into the model’s interpretability and efficiency.

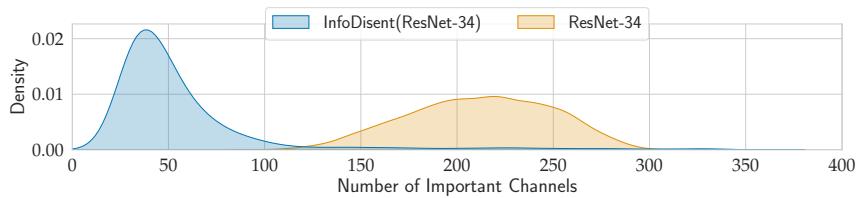


Figure 8: Density estimate of the number of significant channels for each class and image in the CUB-200-2011 test set using the ResNet-34 network. InfoDisent uses significantly fewer channels and has less variance.

Fig. 8 shows the density estimate of the number of significant channels for each class and image in the CUB-200-2011 test set. In this experiment, we used the ResNet-34 network that utilizes a significantly larger number of channels in its predictions compared to InfoDisent model. By reducing the number of significant channels while preserving classification performance, our model demonstrates efficient resource utilization and improved interpretability, as illustrated below. This efficiency shows that our model is more effective at isolating the critical features necessary for accurate predictions, thereby validating our approach. This also validates the disentangling role of the orthogonal matrix U .

Optimization of \mathbf{U} and \mathbf{W} Our objective is to represent a matrix $A \in \mathbb{R}^{n \times m}$ as a product of matrices $A \approx SU$, where S is sparse and U is unitary. Given the equality $A = SU$, we would have $S = AU^{-1}$. To obtain the sparsest possible S , we can formulate the minimization problem:

$$\min_{U \text{ unitary}} \|AU^{-1}\|_1.$$

We leverage the following key properties:

- For any square matrix $B \in \mathbb{R}^{n \times n}$, the matrix $\frac{1}{2}(B - B^T)$ is skew-symmetric.
- If B is skew-symmetric, then its matrix exponential $\exp(B)$ is orthogonal (and consequently unitary for real matrices).

This leads to the reformulated optimization problem:

$$\min_{B \text{ skew-symmetric}} \|A \exp(-B)\|_1,$$

where our solution becomes $S = A \exp(-B)$.

The final unitary matrix is computed as:

$$U = \exp\left(-\frac{1}{2}(W - W^T)\right),$$

where:

810 • W is a randomly initialized matrix
 811 • The optimization is performed using gradient descent
 812 • We employ the Adam optimizer for efficient convergence

814 This parametrization guarantees that U remains unitary throughout the optimization process while
 815 allowing efficient computation of gradients through the matrix exponential operation.
 816

817 **Additional definitions** Here we present a more precise, quantitative definition of "prominently"
 818 and "consistency" in our channel selection process. For each test image x_t from the test set X_{test} ,
 819 we first identify the top 10 most activated channels. Let $A(C_i, x_t)$ denote the activation value of
 820 channel C_i for image x_t . We select the set of 10 channels, K_t , such that for any $C_j \in K_t$ and
 821 $C_k \notin K_t$, $A(C_k, x_t) \geq A(C_j, x_t)$ after sorting activations in descending order.

822 To define "prominently" and "consistency" for a given class Y , we then count how many times each
 823 channel C_i appears within the top 10 activated channels across all test images belonging to that
 824 class. Let $N(C_i, Y)$ be this count:
 825

$$826 \quad N(C_i, Y) = \sum_{x_t \in X_{test}, \text{label}(x_t) = Y} \mathbf{1}[C_i \text{ is among the top 10 activated channels for } x_t]$$

827 A channel C_i is then selected for visualization for class Y if its count $N(C_i, Y)$ exceeds a predefined
 828 threshold. Specifically, we select channels where:
 829

$$832 \quad N(C_i, Y) > 0.50 \times |\{x_t \in X_{test} \mid \text{label}(x_t) = Y\}|$$

834 This procedure ensures that only channels that are consistently among the most activated (i.e., promi-
 835 nently contributing) across a significant portion (more than 50%) of the test images for a given class
 836 are selected for visualization.
 837

838 B DETAILS OF THE EXPERIMENTS PERFORMED

840 **Datasets** In our experiments, we leveraged several diverse datasets to evaluate performance. The
 841 first dataset is the Caltech-UCSD Birds-200-2011 (CUB-200-2011)Wah et al. (2011), which con-
 842 tains 11,788 images meticulously labeled across 200 bird species, divided into 200 subcategories.
 843 Of these, 5,994 images are allocated for training, while 5,794 are reserved for testing. The second
 844 dataset, known as Stanford CarsKrause et al. (2013), is designed to classify various car models. It
 845 includes 16,185 images, each capturing a rear view of different car types across 196 classes, with an
 846 almost even distribution between training (8,144 images) and testing (8,041 images) subsets. Each
 847 class details the car's make, model, and year. The third dataset, Stanford Dogs Khosla et al. (2011),
 848 features a collection of 20,580 images representing 120 dog breeds from around the globe. This
 849 dataset, sourced and annotated through ImageNet, is intended for fine-grained image classification,
 850 with 12,000 images for training and the remainder for testing.
 851

852 Additionally, we incorporated the FunnyBirds Hesse et al. (2023) dataset, consisting of 50,500 im-
 853 ages representing 50 synthetic bird species, with 50,000 images for training and 500 for testing.
 854 This dataset was designed with a focus on "concepts," or mental representations crucial for cate-
 855 gorization, and is particularly relevant for explainable AI (XAI). The concepts are linked to specific
 856 bird anatomy parts, such as the beak, wings, feet, eyes, and tail, ensuring they are both granular and
 857 intuitive for practical use in XAI.

858 Finally, we utilized ImageNet Russakovsky et al. (2015), a highly recognized dataset in computer
 859 vision, often employed for pretraining deep learning models. ImageNet encompasses 1,281,167
 860 training images, 50,000 validation images, and 100,000 test images, spanning 1,000 object classes.
 861

862 **Training Details** We train the architectures using stochastic gradient descent (SGD) with standard
 863 categorical cross-entropy loss. The momentum, damping, and weight decay are set to 0.9, 0.9, and
 864 0.001, respectively. For the baseline networks, the initial learning rates are 0.1, 0.05, and 0.01, which
 865 are reduced by a factor of 0.1 when the validation loss converges. In our approach, we train only

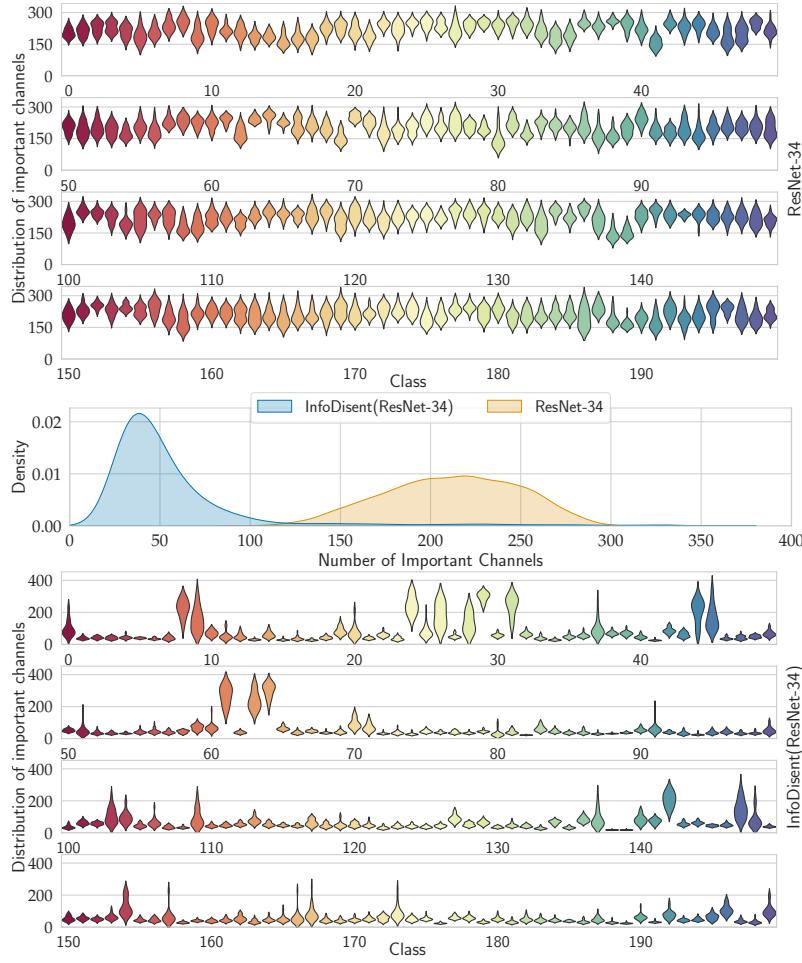


Figure 9: Density estimate of the number of significant channels for each class and image in the CUB-200-2011 test set using the ResNet-34 network. InfoDisent uses significantly fewer channels, particularly evident in the middle image, which shows the density estimation of the number of significant channels for all classes.

the last two segments of the network, thus we use lower learning rates of 0.001 and 0.0001, utilizing the 'ReduceLROnPlateau' Al-Kababji et al. (2022) mechanism that reduces the learning rate when the cost function stops improving. All numerical experiments were conducted using NVIDIA RTX 4090 and NVIDIA A100 40 GB graphics cards.

For cropped images, we follow previous studies Chen et al. (2019) by applying on-the-fly data augmentations (e.g., random rotation, skew, shear, and left-right flip) on the cropped CUB and cropped Cars datasets using the provided bounding boxes. We also validate our method on the full (uncropped) CUB and Dogs datasets, employing the same online data augmentation techniques (e.g., random affine transformation and left-right flip). For the FunnyBirds dataset, we adhered to the detailed instructions provided in the framework's documentation, which can be found at <https://github.com/visinf/funnybirds>. For training various CNN and transformer models on the ImageNet dataset, we utilized the augmentation techniques described at <https://github.com/pytorch/vision/tree/main/references/classification>.

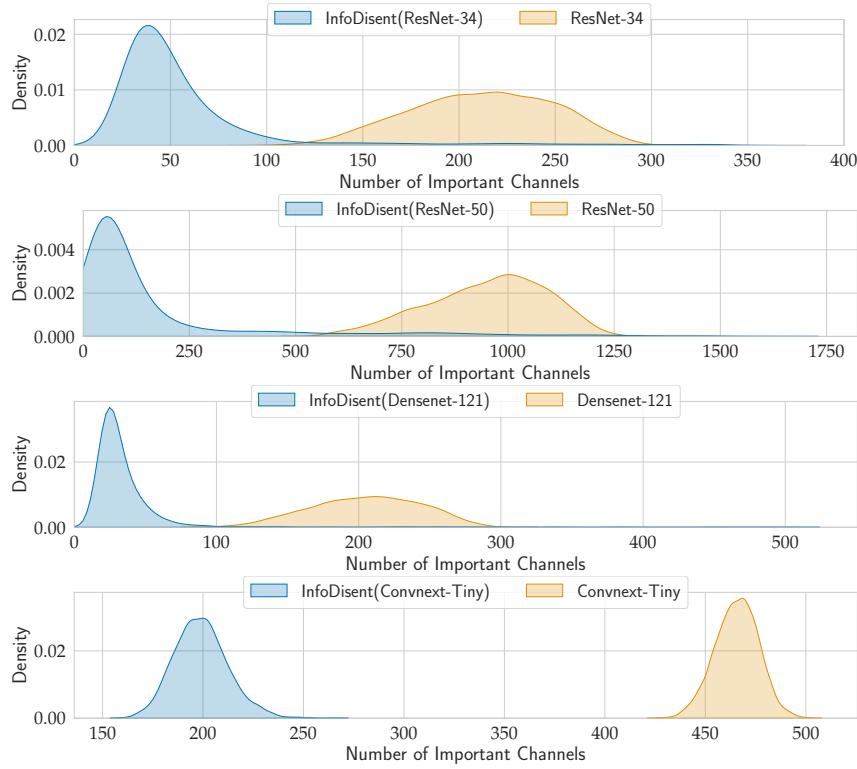


Figure 10: Density estimate of the number of significant channels for each class and image in the CUB-200-2011 test set using various networks.

C ADDITIONAL RESULTS

In this section, we provide additional results to supplement and expand upon the findings presented in the main part of the paper. We delve deeper into the behavior of our model across various experiments and datasets, offering a more comprehensive analysis.

Spatial Misalignement Our method, InfoDisent, trained on the CUB-200-2011 dataset with a DeiT backbone, achieves the best scores in two of the three metrics on this benchmark. However, it is more susceptible to a loss in accuracy. This may be related to the difference in backbones; other methods fine-tune their backbones, whereas InfoDisent does not.

Table 7: Results on challenging Spatial Misalignement Benchmark. Note that InfoDisent scores best in 2 out of 3 interpretability metrics.

Model	PAC	PLC	PRC	Acc. Before	Acc. After	AC
InfoDisent	0.11	0.37	13.66	83.66	67.21	16.45
ProtoViT	2.92	21.68	1.28	85.40	82.80	2.60
ProtoPNet	23.70	24.00	13.50	76.40	68.20	8.20
TesNet	3.40	16.00	2.90	81.60	75.80	5.80
ProtoPool	11.20	31.80	4.50	80.80	76.00	4.80
ProtoTree	23.70	27.70	13.50	76.40	68.20	8.20

Performance gains We measured and compared the following: (1)Training time per epoch for our InfoDisent model with a frozen backbone versus a full version of the model. (2) The number of parameters being optimized in each scenario. (3) The GPU memory usage.

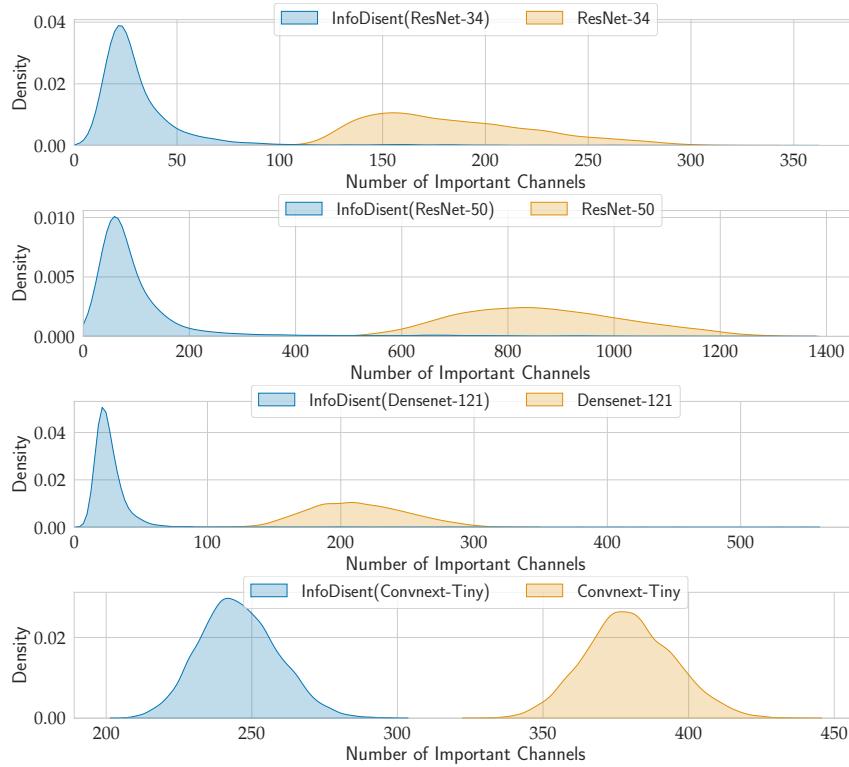


Figure 11: Density estimate of the number of significant channels for each class and image in the Stanford Cars test set using various networks.

As can be observed in the table below, with InfoDisent we need to spend 3 times less time on average per training epoch, significantly less parameters needs to be optimized and we need up to 75% less GPU memory.

The averaged results from these experiments will be included in the manuscript.

Note that, to ensure a fair evaluation, we used the same hardware (NVIDIA A100), dataset (CUB), and batch size.

Table 8: Model Training and Resource Consumption Comparison.

Model	Time p. Epoch [s]	No. Param.	Mem. GPU [GB]
ConvNeXt-Tiny (Full)	664	28,563,752	5.84
ConvNeXt-Tiny (InfoD)	205	745,160	1.85
ResNet50 (Full)	652	28,112,136	5.26
ResNet50 (InfoD)	498	4,604,104	2.67
Swin-S (Full)	1500	49,712,066	11.16
Swin-S (InfoD)	480	743,624	2.37

Ablation study In this part, we present additional results from a series of analyses investigating the significance of the number of channels on model predictions across various datasets and models. The results of these analyses are illustrated in Figs. 9 to 12. Recall, that InfoDisent model organizes information into channels with sparse representations, which are later utilized in the model’s prediction process. We specifically examine how the number of channels influences the model’s predictions by determining the minimum number of channels required to account for at least 95% of the information used in the model’s predictions.

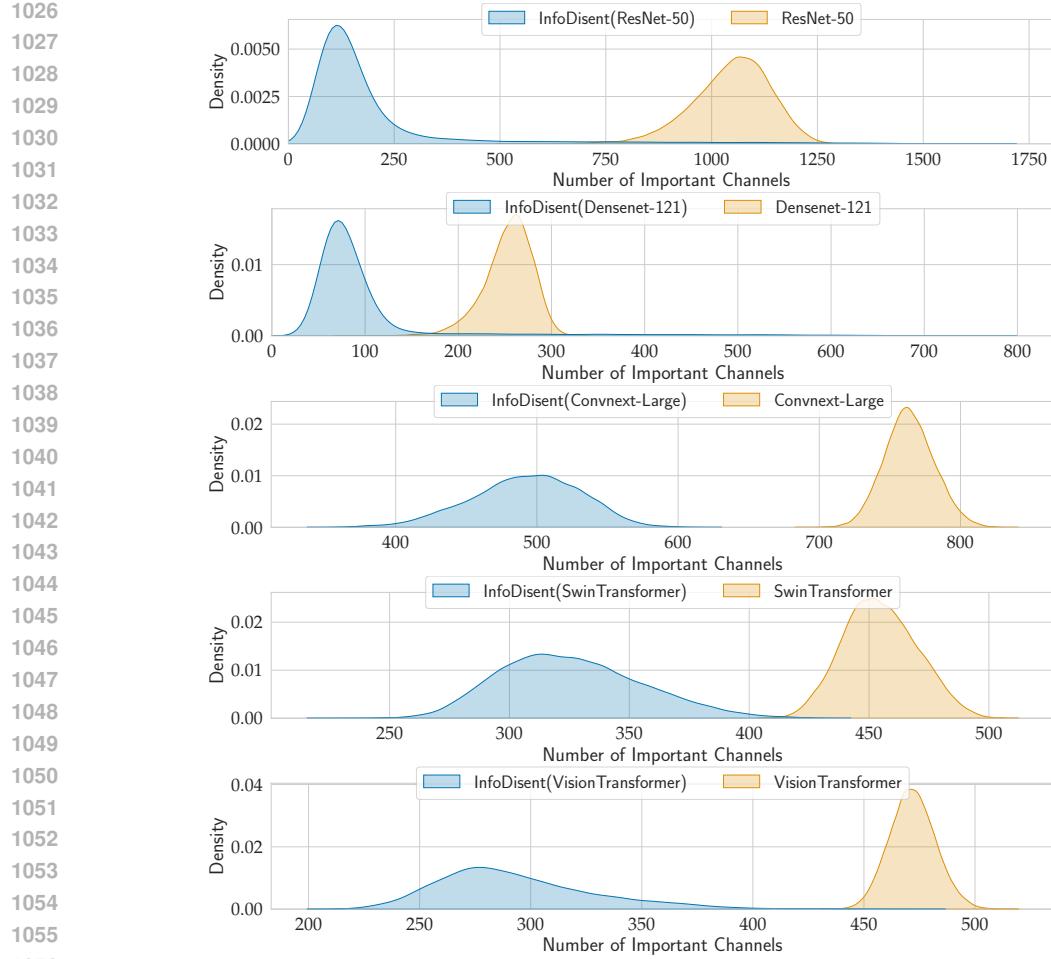


Figure 12: Density estimate of the number of significant channels for each class and image in the ImageNet test set using various networks.

Formally, if

$$\text{logits} = \sum_{i=0}^N a_{ki} v_i + b_k,$$

where N is the total number of channels, k represents the image class, and $a_{ki}, v_i, b_k \in \mathbb{R}$, then for each image from class k , we identify the smallest number n of channels such that

$$\frac{\sum_{i \in I_k} |a_{ki} v_i|}{\sum_{i=0}^N |a_{ki} v_i|} \geq 0.95,$$

where I_k is the set of indexes of the $n \leq N$ largest values of $|a_{ki} v_i|$.

This analysis highlights the most critical channels contributing to the model's decisions, providing deeper insights into the model's interpretability and efficiency. Note that the InfoDisent approach consistently utilizes significantly fewer channels, a trend observed across all models and datasets analyzed.

Figs. 13 and 14 also present the channel values before the final linear layer in our model for randomly selected images from various datasets and models. As evident from the images, our model utilizes a significantly smaller number of channels in its predictions compared to the baseline models.

Explaining Classification Decision for a Given Image by Prototypes InfoDisent employs prototypes, similar to the approach used in PiPNet Nauta et al. (2023a), to explain individual decisions



Figure 13: Channel activations before the final linear layer for a randomly selected image processed by different models trained on the CUB-200-2011 dataset are shown. The results are displayed in three groups, each containing two graphs. Model names are listed on the right side of the graphs. Unlike the baseline models, our network activates significantly fewer channels while still maintaining strong performance.

made on an image. Below, we describe the process for identifying prototypes for a given input image. An average pooling operation makes the aggregation of information from individual channels. The outcome of this operation is a scalar for each channel K , computed as

$$\text{mx_pool}(K) = \max(\text{ReLU}(K)) - \max(\text{ReLU}(-K))$$

(as explained in the main paper). This dense representation, formed by aggregating all the channels, is then processed by a linear layer that outputs logits, see Fig. 2. The logits can be represented in a format similar to the output of a convolutional layer, as illustrated by V_+ and V_- in Fig. 2. This approach maintains the pictorial structure of the logits, allowing us to extract individual channels.

Note that each channel in InfoDisent model can contain only two possible values (refer to Fig. 4a in the main paper, where these values are depicted as red or blue areas within the channels). To identify the prototype, i.e., the relevant channel, we focus solely on the positive values within the channels (represented by red areas in Fig. 4a). These positive values indicate the significant part of the channel/prototype (marked by the yellow frame on the prototype) and define the channel's importance for the model prediction (since the linear layer uses only nonnegative coefficients). As demonstrated in Figs. 13 and 14, the number of such channels is limited (alternatively, we could also focus on channels with the strongest values). Once we have identified the important channels (by knowing their indices), we represent each channel using prototypes. Prototypes are images from the training set that exhibit the five strongest positive values for a given channel. Example results illustrating how model predictions are explained using prototypes are shown in Figs. 15 to 19 (which are after the references).

Figs. 15 to 17 showcase the performance of our prototype models on standard benchmarks: CUB-200-2011, Stanford Cars, and Stanford Dogs. Fig. 15 demonstrates the model's ability to focus on distinctive features like the Scissor-tailed Flycatcher's elongated tail feathers, underwing yellow coloration, or the Red-legged Kittiwake's red feet.

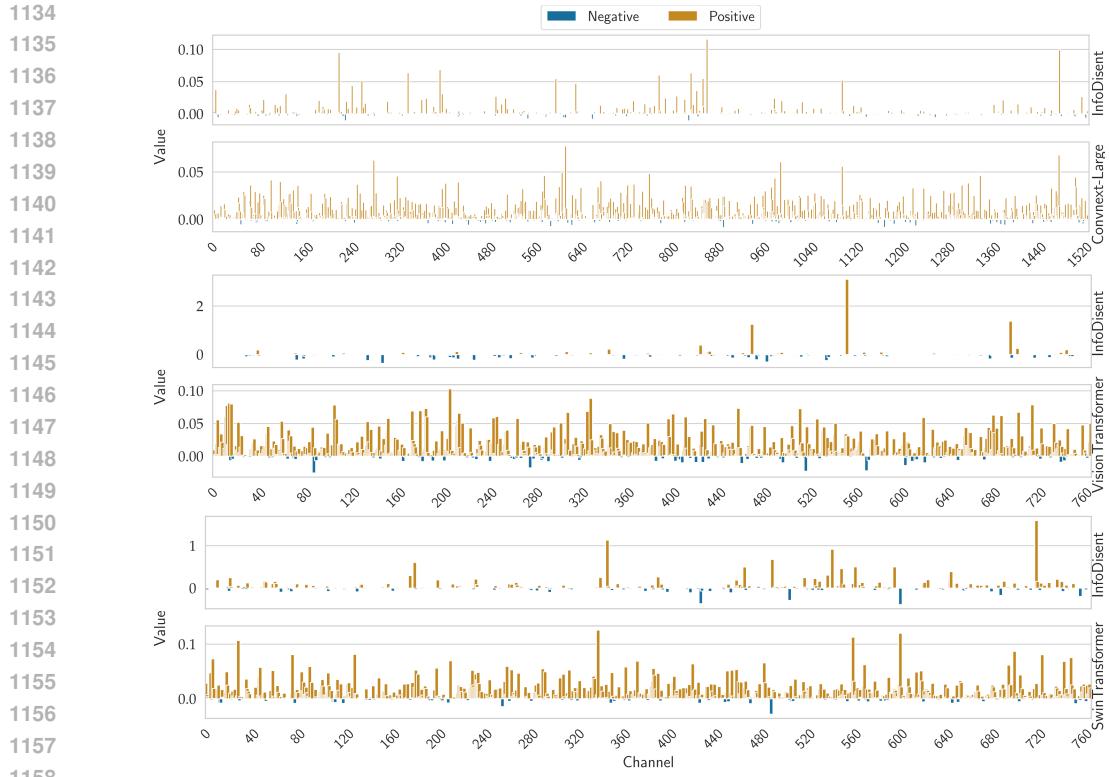


Figure 14: Channel activations before the final linear layer for a random image processed through various ConvNeXt, Vision Transformer, and Swin Transformer models trained on ImageNet. The results are displayed in three groups, each containing two graphs. Model names are listed on the right side of the graphs. InfoDisent activates significantly fewer channels compared to the baseline models while maintaining high effectiveness.

Similarly, Fig. 16 highlights the model’s capacity to identify key vehicle components. For instance, it accurately pinpoints the fender, bumper, and body of a Jeep Wrangler SUV 2012, and the characteristic stripes on a Ford GT Coupe 2006.

Complementing our experiments with widely used CNN models, we investigated the performance of transformer architectures, specifically VisionTransformer (ViT-B/16) Dosovitskiy et al. (2020), SwinTransformer (Swin-S) Liu et al. (2022a). Their results are visualized in Figs. 18 and 19. Our analysis reveals that transformer models concentrate on smaller image regions than CNNs. Nevertheless, both model types generate interpretable prototypes that offer insights into the input image content.

Decision Behind Class To delve deeper into the model’s decision-making process, we employ a prototype-based analysis at the class level. For each class, we identify key channels that consistently exhibit strong activation across the entire test set. These channels, indicative of the model’s focus on specific visual features, are selected based on their prominence and reliability in representing the class. By visualizing these key channels as prototypes, as demonstrated in our previous image analysis, we obtain a clear representation of the model’s class-specific decision criteria.

Figs. 20 to 22 present the results of our prototype analysis for selected classes in the CUB-200-2011 and Stanford Cars datasets, using both InfoDisent(ResNet-50) and transformer models. This visualization allows for a granular understanding of how these models differentiate between various classes, highlighting the underlying patterns recognized by the network.

Heatmaps Figs. 23 and 24 present example heatmaps generated by our model, resembling those produced by Grad-CAM Selvaraju et al. (2017). Our method, rooted in representational channels, simplifies heatmap generation by accumulating activations from all prototypes (positive and nega-

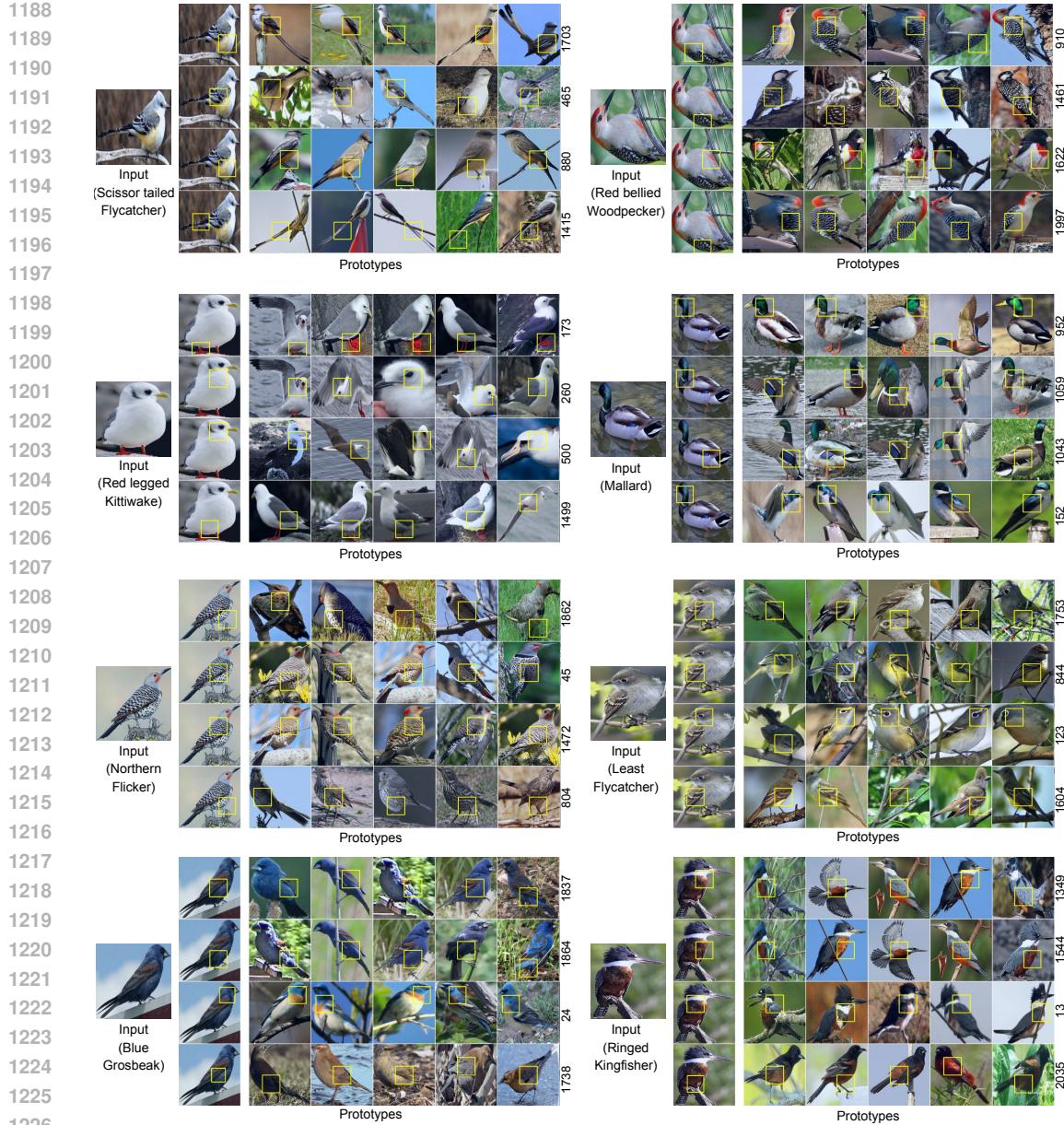


Figure 15: Example prototypes generated by InfoDisent(ResNet-50) models for random input images from the test set of the CUB-200-2011 dataset. The display includes 8 input images, each with a corresponding column where yellow boxes highlight specific regions, followed by the prototypes (images on the right). Each row represents prototypes from a different channel, with the channel index on the right. Observe that the prototypes identified by the model effectively capture distinct parts of the body in the images.

tive) across all channels. Leveraging the information bottleneck principle, our approach yields more focused heatmaps compared to traditional methods.

Detailed results on FunnyBirds In Tab. 9, we present details regarding the results on FunnyBirds framework.

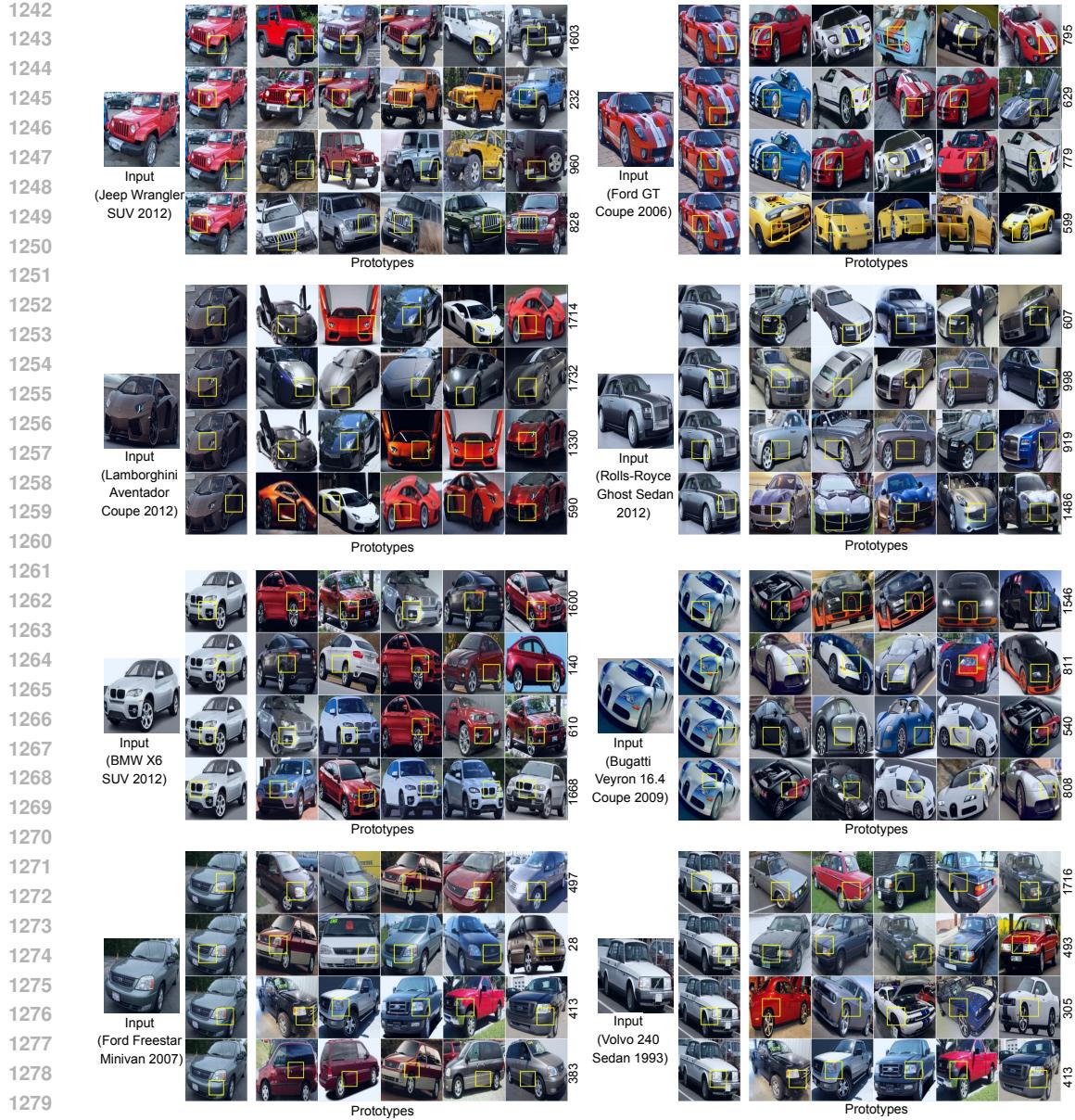


Figure 16: To demonstrate InfoDissent(ResNet-50) model’s capability, we visualize prototypes generated for arbitrary test images from the Stanford Cars dataset. Each image is paired with highlighted areas and its associated prototypes, grouped by channel. The results indicate that the model has learned to extract meaningful features representing different vehicle parts.

Prototypical parts robustness We evaluated stability against Gaussian noise and transformations (brightness, contrast, saturation) as in ProtoPShare Rymarczyk et al. (2021) to measure the robustness of prototypical parts.

For the evaluation, we examined how InfoDissent's prototypes adapted to perturbed inputs using two similarity measures: Jaccard Similarity Index (J). Cosine Similarity (C).

InfoDisent consistently demonstrated strong performance across these metrics.

More details on user study Each worker was paid €2.00 for completing a short 20-question survey. The survey questions were randomly composed, so the specific questions differed between

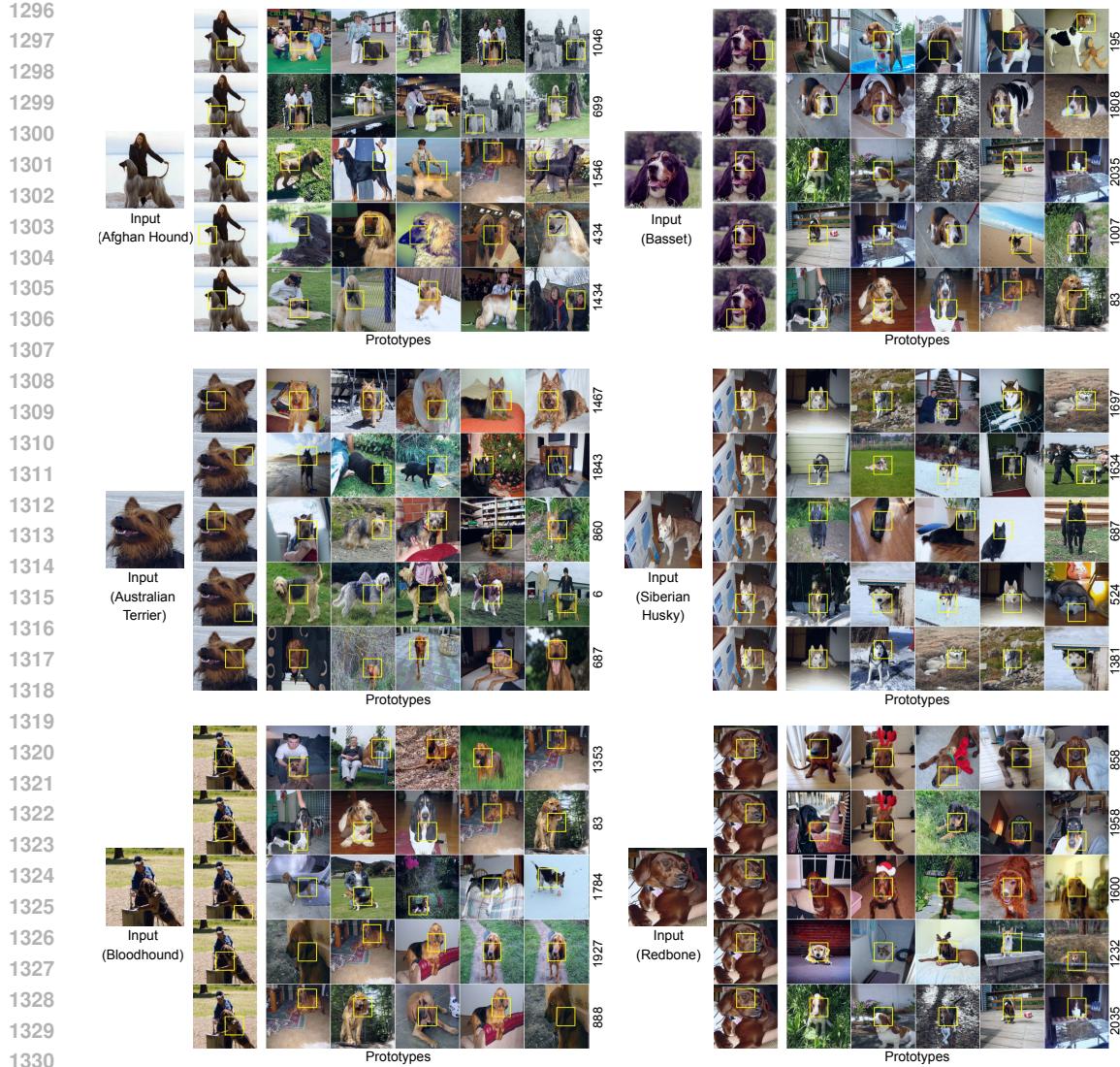


Figure 17: Visualized prototypes from the Stanford Dogs dataset. Each row highlights prototypes from a specific channel, focusing on different dog features such as ears, nose, and fur.

participants. The participants were gender-balanced and ranged in age from 18 to 60. They were given 30 minutes to complete the survey.

To ensure data quality, we excluded responses where users selected the same answer for all questions. Surveys were repeated until we obtained 60 valid responses. Figs. 25 and 26 illustrate example questions used in both user studies.

Before starting the survey, participants were provided with an example and detailed instructions to familiarize them with the study setup, including the explanation composition and visualization. The distribution of answers is summarized in Tabs. 11 and 12.

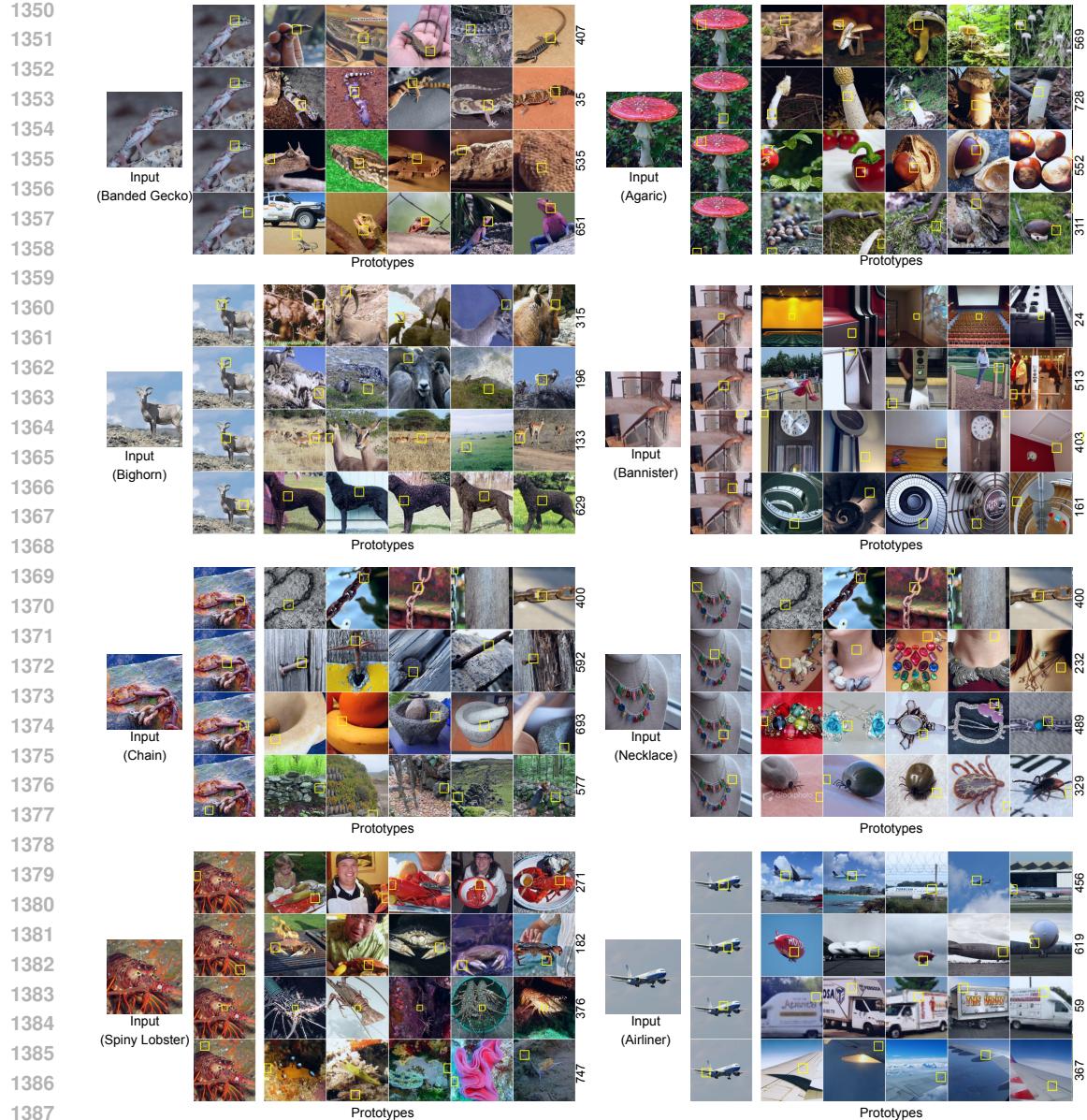


Figure 18: This figure showcases the prototypical explanations provided by InfoDisent(ViT-B/16) model. We visualize prototypes for arbitrary ImageNet images, highlighting relevant regions and their corresponding channel-specific prototypes.

Table 13: Results showcasing user confidence in model predictions. We denote statistically significant values in bold. Results for ProtoPNet and GradCAM, marked with an asterisk (*), are sourced from the original HIVE study Kim et al. (2022).

Method	Prediction	ImageNet [%]	CUB-200 [%]
ProtoPNet*	Correct	NA	73.2 ± 24.9
	Incorrect	NA	46.4 ± 35.9
GradCAM*	Correct	70.8 ± 26.6	72.4 ± 21.5
	Incorrect	44.8 ± 31.6	32.8 ± 24.3

Table 14: Results from other work from similar user studies to ours, which is assessing the perceived ambiguity of prototypical parts. Results for ProtoPNet and ProtoConcepts are referenced from Ma et al. (2023), while findings for PIPNet and LucidPPN are cited from Pach et al. (2024), as indicated by the asterisk symbol (*).

Method	Dataset	User Acc. [%]	p-value
ProtoPNet*		51.5 ± 5.2	0.288
ProtoConcepts*		62.1 ± 5.4	$3 \cdot 10^{-5}$
PIP-Net*	CUB	60.0 ± 18.1	0.002
LucidPPN*		67.9 ± 16.9	$2 \cdot 10^{-6}$

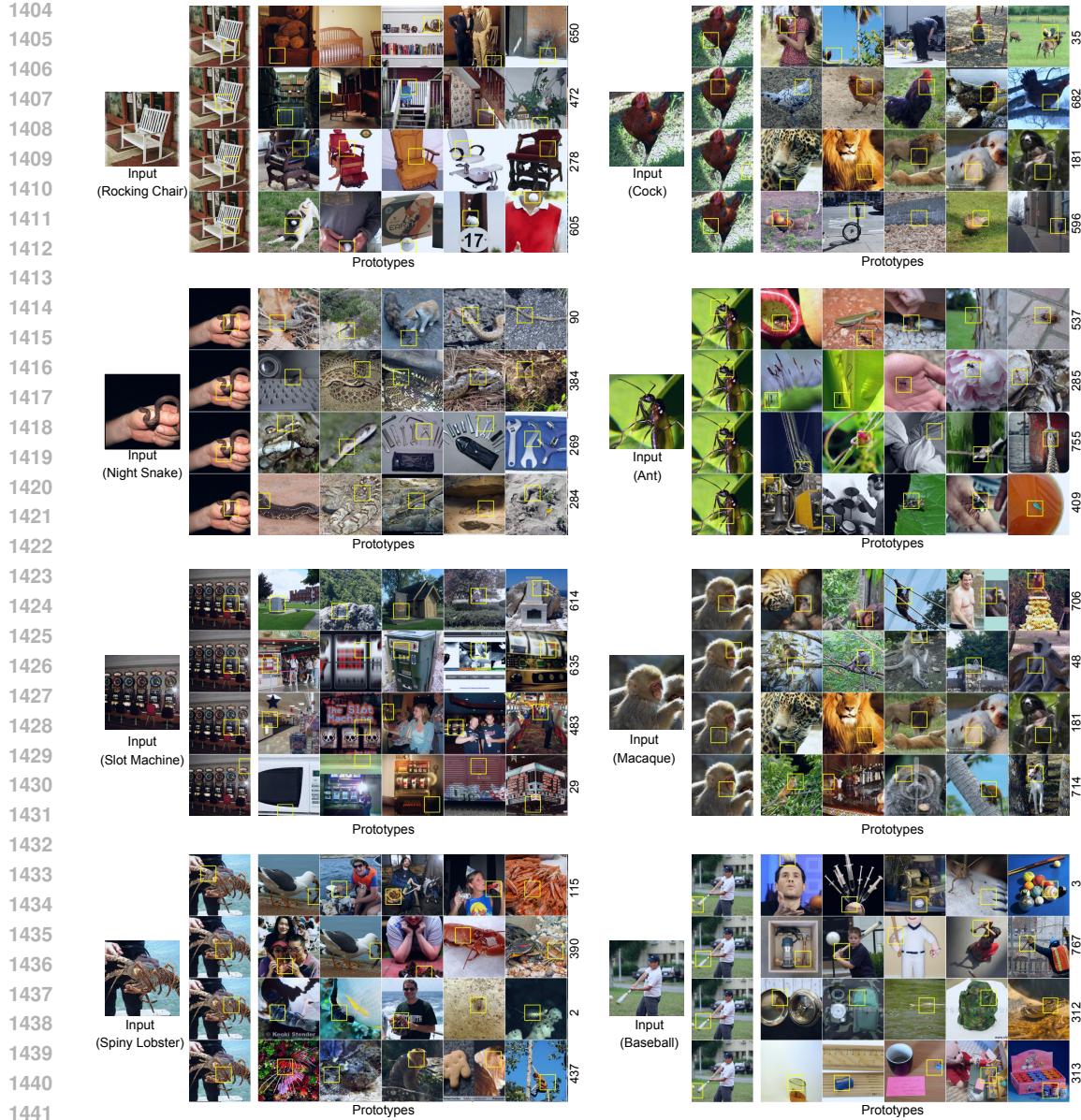


Figure 19: The figure demonstrates the prototypical explainability of InfoDisent(Swin-S) model by visualizing prototypes generated for arbitrary ImageNet images, highlighting relevant image regions and their corresponding channel-specific prototypes.

Disentanglement metrics First we focus on the prototype diversity, we check what is the overlap of patches used to represent a prototype between different prototypes. Additionally, we've quantified prototype distribution using three key metrics, derived from the five most significant prototype activations per image:

- Intra-Class Diversity (0-1): Calculated from the mean normalized occurrence frequency of prototypes within their respective classes, averaged globally. This measures within-class prototype consistency.
- Inter-Class Diversity (0-1): Assesses prototype sharing between different classes by measuring their cross-class appearance frequency.

Figure 20: Prototypes of sample classes from InfoDisent(ResNet-50) model trained on the cropped Stanford Cars dataset (left) and the CUB-200-2011 dataset (right). Yellow frames highlight the class prototypes.

- Diversity Ratio: Computed as the ratio of Inter-Class to Intra-Class diversity. This normalized measure highlights the balance between consistent within-class prototypes and their specificity across classes.

Subsequently, we investigated the sparsity of activations and found that InfoDisent activates significantly fewer channels than its black-box baseline.

Theoretically, this sparsity stems from InfoDisent’s frozen backbone and disentangling matrix, which effectively prune non-discriminative pathways and encourage concept localization. This syn-

Figure 21: Visualizations of InfoDisent(ViT-B/16) model-generated prototypes for selected ImageNet categories.

ergy between sparsity and disentanglement not only enhances interpretability by simplifying concept attribution but also maintains scalability.

D MEDICAL DATASET EXPERIMENT

To validate the versatility of InfoDisent, we applied it to medical dataset of chest X-Rays to identify patients with pneumonia Kermany (2018). Below we present both, results of numerical experiments (accuracy) in Tab. 17 and exemplary explanations Fig. 27a for healthy patients and Fig. 27b for sick patients. One can observe, that prototypical explanations focus on different anatomical locations of

Figure 22: Representative ImageNet class prototypes produced by the InfoDisent(Swin-S) model.

the lungs, while performance of the model is slightly worse than its black-box counterpart (ResNet-18). Moreover, InfoDisent operates on ImageNet-pretrained backbone, while baseline ResNet-18 is unfrozen during training.

E LLM USAGE

We have utilized LLMs such as ChatGPT and Gemini to refine the grammar, identify typos and polish the writing style of this work.

1620

1621

1622

Table 9: Detailed results on FunnyBirds.

Backbone	Method	ACC	B.I.	Com.	Cor.	Con.	mX
ViT-B/16	IG	0.98	1.00	0.88	0.65	0.91	0.82
	IG abs.	0.98	1.00	0.92	0.63	0.74	0.76
	RISE	0.98	1.00	0.78	0.79	0.75	0.77
	LIME	0.98	1.00	0.90	0.00	0.00	0.30
	IxG	0.98	1.00	0.54	0.51	0.67	0.57
	Grad-CAM	0.98	1.00	0.81	0.70	0.48	0.66
	Rollout	0.98	1.00	0.81	0.76	0.00	0.52
	Chefer-LRP	0.98	1.00	0.90	0.74	0.95	0.86
	InfoDisent	0.98	0.81	0.82	0.63	0.91	0.78
	IG	1.00	1.00	0.86	0.59	0.98	0.81
ResNet50	IG abs.	1.00	1.00	0.87	0.53	0.86	0.75
	RISE	1.00	1.00	0.70	0.56	0.61	0.62
	LIME	1.00	1.00	0.86	0.00	0.00	0.29
	IxG	1.00	1.00	0.58	0.54	0.80	0.64
	Grad-CAM	1.00	1.00	0.74	0.55	0.78	0.69
	B-cos	0.96	0.87	0.89	0.69	0.89	0.82
	X-DNN	0.99	1.00	0.91	0.60	0.87	0.79
	InfoDisent	1.00	1.00	0.91	0.65	0.97	0.84

1640

1641

1642

Table 10: Performance under Image Perturbations. Note that J stands for Jaccard Similarity Index, and C stands for Cosine Similarity.

1644

Data	Model	Param.	Brightness		Contrast		Gaussian		Saturation	
			(J)	(C)	(J)	(C)	(J)	(C)	(J)	(C)
CARS	ConvNeXt-Tiny	0.01	0.9921		0.9997		0.9903		0.9996	
		0.1	0.9552		0.9985		0.9628		0.9987	
		0.5	0.8640		0.9921		0.8830		0.9933	
	DenseNet121	0.01	0.9979		0.9999		0.9981		0.9999	
		0.1	0.9859		0.9997		0.9756		0.9997	
		0.5	0.9273		0.9985		0.9271		0.9985	
	ResNet50	0.01	0.9961		1.0000		0.9948		1.0000	
		0.1	0.9825		0.9998		0.9835		0.9998	
		0.5	0.9291		0.9993		0.9314		0.9990	
CUB	ConvNeXt-Tiny	0.01	0.9890		0.9992		0.9824		0.9987	
		0.1	0.9531		0.9967		0.9607		0.9971	
		0.5	0.8463		0.9856		0.8521		0.9865	
	DenseNet121	0.01	0.9969		0.9995		0.9912		0.9994	
		0.1	0.9735		0.9992		0.9735		0.9990	
		0.5	0.9101		0.9964		0.9022		0.9960	
	ResNet50	0.01	0.9888		0.9998		0.9880		0.9998	
		0.1	0.9666		0.9992		0.9673		0.9993	
		0.5	0.8983		0.9966		0.8963		0.9966	

1665

1666

1667

Table 11: Distribution of answers in user study on user confidence in model’s prediction based on explanation.

1669

1670

1671

1672

1673

Dataset	Fairly ... correct	Somewhat ... correct	Somewhat ... incorrect	Fairly ... incorrect
CUB	585	316	208	91
ImageNet	449	248	189	314

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

Table 12: Distribution of answers in user study on prototypical part disambiguity.

	Dataset	Correct	Incorrect
	CUB	776	424
	ImageNet	712	488

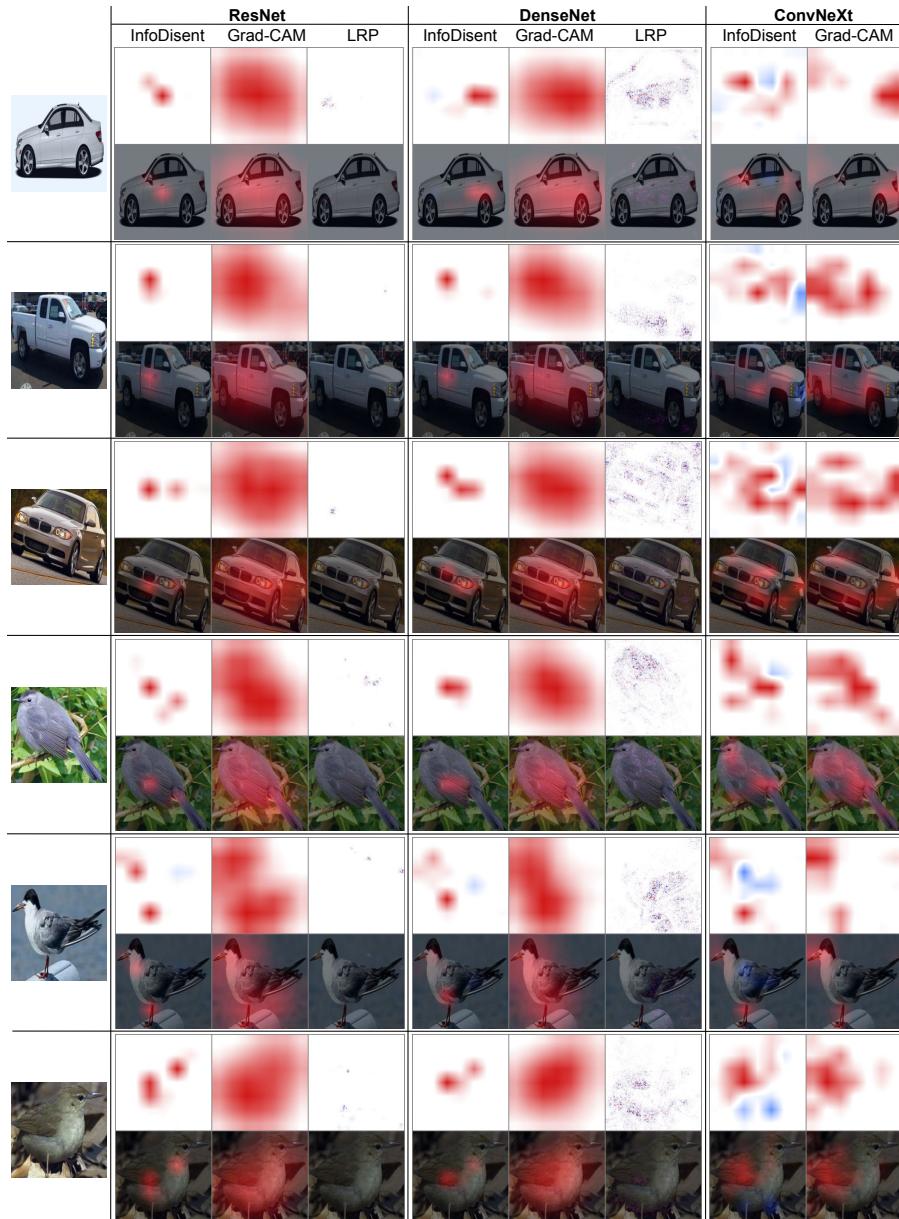
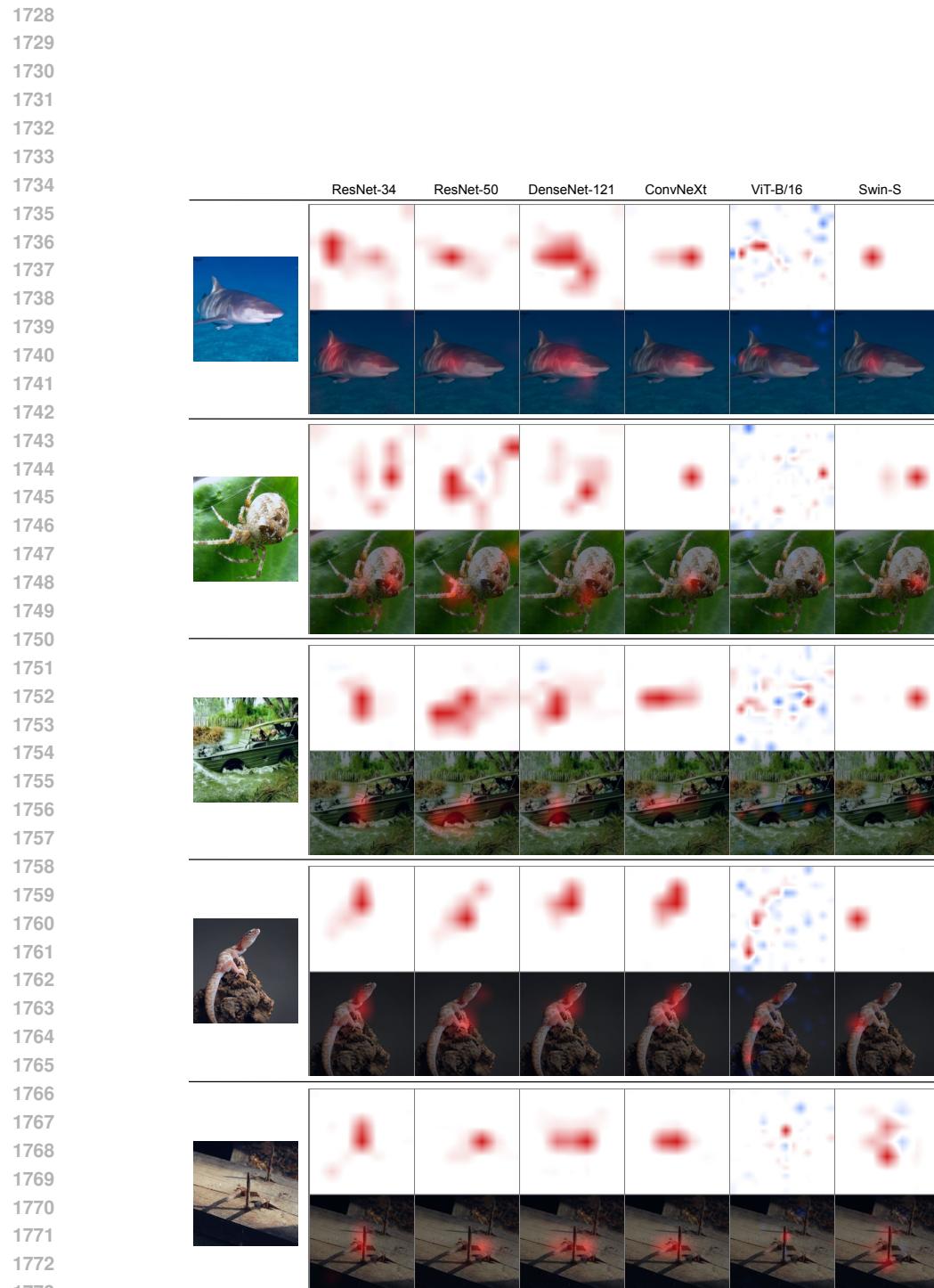


Figure 23: Comparison of example heat maps generated by InfoDisent proposed model and competing approaches. Our technique produces more focused heat maps by leveraging representational channels and the information bottleneck principle, outperforming traditional methods like Grad-CAM. InfoDisent maps channel activations from the last but one layer. These activations highlight precise and important regions of the input. Their interpretation aligns directly with other attribution-based approaches we compare against, such as LRP and Grad-CAM.



1774 Figure 24: Example heatmaps generated by InfoDisent, our proposed method, demonstrating activation regions on sample photos from the ImageNet test set.
1775
1776
1777
1778
1779
1780
1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

An image has been classified by the model. Below the image there is an explanation that the model gave to justify its decision. Based on the explanation, what do you think about the model's prediction?

- A. Fairly confident that the model is correct.
- B. Somewhat confident that the model is correct.
- C. Somewhat confident that the model is incorrect.
- D. Fairly confident that the model is incorrect.

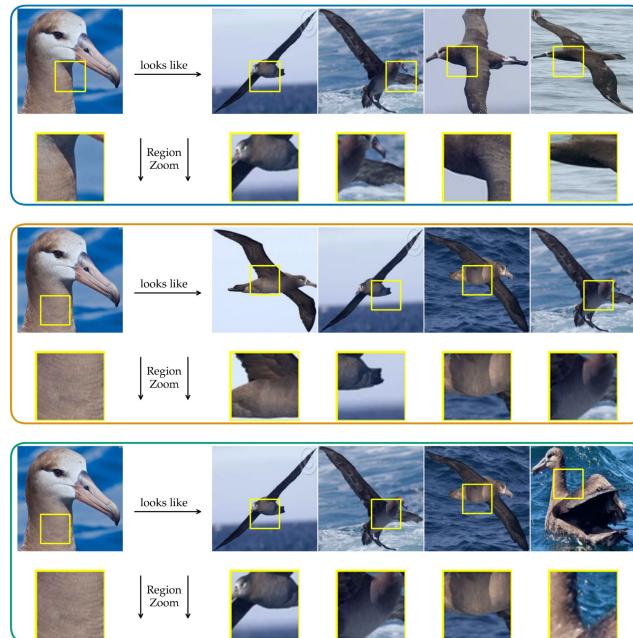


Figure 25: An exemplary question from the user study on user confidence.

Table 15: Disentanglement metrics.

Dataset	Model	Intra-Class	Inter-Class	Diversity
CAR	ConvNeXt-Tiny (InfoD)	0.261	0.033	0.132
	ConvNeXt-Tiny (Base)	0.218	0.040	0.188
	DenseNet121 (InfoD)	0.639	0.011	0.018
	DenseNet121 (Base)	0.371	0.014	0.039
	ResNet50 (InfoD)	0.741	0.010	0.014
	ResNet50 (Base)	0.428	0.013	0.031
CUB	ConvNeXt-Tiny (InfoD)	0.253	0.021	0.087
	ConvNeXt-Tiny (Base)	0.169	0.016	0.098
	DenseNet121 (InfoD)	0.562	0.011	0.021
	DenseNet121 (Base)	0.337	0.015	0.047
	ResNet50 (InfoD)	0.617	0.017	0.029
	ResNet50 (Base)	0.369	0.015	0.041
ImageNet	ConvNeXt-L-InfoD	0.285	0.022	0.081
	ConvNeXt-L (Base)	0.149	0.018	0.124
	DenseNet121 (InfoD)	0.334	0.012	0.038
	DenseNet121 (Base)	0.277	0.012	0.046
	Swin-S (InfoD)	0.393	0.011	0.028
	Swin-S (Base)	0.159	0.011	0.074

1836

1837

An image has been classified by the model. Below the image there are two explanations for two most probable bird species that the model predicted. Based on the explanations, which species did the model predict?

1838

1839

A. Species A

B. Species B

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

Figure 26: An exemplary question from the user study on disambiguity of prototypical parts.

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Table 16: Number of channel used to make predictions. One can observe that InfoDisent is much sparser than a baseline model.

Dataset	Model	Baseline	InfoDisent
CARS	ConvNeXt-Tiny	380 ± 8.6	246 ± 8.1
	DenseNet121	214.1 ± 19.9	28.1 ± 12.1
	ResNet50	868.2 ± 77.3	111 ± 113.2
CUB	ConvNeXt-Tiny	466.1 ± 71	99.2 ± 9.7
	DenseNet121	208.7 ± 26.4	37.7 ± 30.1
	ResNet50	961.9 ± 99.3	187.3 ± 249.6
ImageNet	ConvNeXt-L	764.2 ± 12.4	495.7 ± 35.7
	DenseNet121	254.3 ± 17.1	112.8 ± 103.6
	MaxVit	261.4 ± 12.3	250.2 ± 10.6
	ResNet50	1049 ± 59.3	226.7 ± 240.6
	Swin-S	455.9 ± 11	328.3 ± 26.9
	ViT-B/16	16472.4 ± 6.7	294 ± 34.3

Model	Accuracy [%]
InfoDisent	90.55 ± 0.45
ResNet-18	92.57 ± 1.14

Table 17: Pneumonia detection performance comparison. We compare our proposed InfoDisent method (using a frozen, ImageNet-pretrained backbone) against a standard black-box ResNet-18 (fully unfrozen). InfoDisent achieves results comparable to, though slightly lower than, the fully fine-tuned baseline.

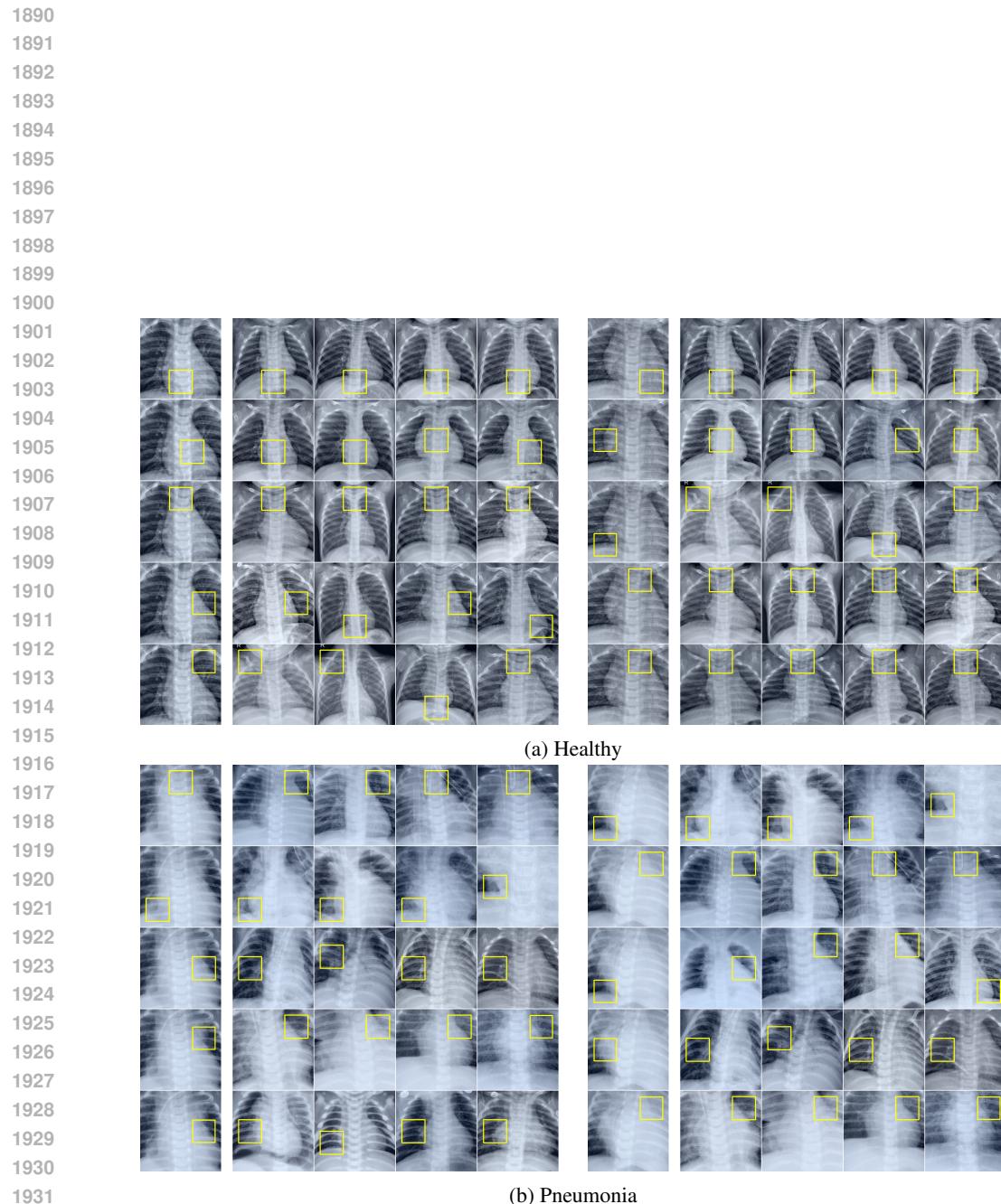


Figure 27: Exemplary explanation for pneumonia detection based on Kermany (2018) dataset.