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ABSTRACT

In this work, we introduce InfoDisent, a hybrid approach to explainability based
on the information bottleneck principle. InfoDisent enables the disentanglement
of information in the final layer of any pretrained model into atomic concepts,
which can be interpreted as prototypical parts. This approach merges the flexi-
bility of post-hoc methods with the concept-level modeling capabilities of self-
explainable neural networks, such as ProtoPNets. We demonstrate the effective-
ness of InfoDisent through computational experiments and user studies across
various datasets using modern backbones such as ViTs and convolutional net-
works. While InfoDisent achieves competitive performance within the class of
interpretable models, we observe an accuracy-interpretability trade-off when com-
pared to black-box counterparts, especially visible in CNNs. Notably, InfoDisent

generalizes the prototypical parts approach to novel domains (ImageNet).

1 INTRODUCTION

Deep neural networks have demonstrated perfor-
mance that matches or even surpasses human capa-
bilities across various domains, such as image classi-
fication and generation, speech recognition, and nat-
ural language processing. Despite their impressive
achievements, these networks often operate as “’black
boxes”, offering little insight into the reasoning be-
hind their decisions (2019). This lack of trans-
parency poses significant challenges, particularly in
high-stakes applications such as medicine and au-
tonomous driving, where understanding a model’s
decision-making process is critical Bojarski et al.
(2017); [Khan et al. (2001); [Nauta et al.| (2023b);
Patricio et al.| (2023); Samek et al.| (2021)); |Struski|
et al.|(2024). To address this issue, the subfield of arti-
ficial intelligence known as eXplainable AI (XAI)

(2019) has emerged, focusing on making Al sys-
tems more interpretable.

XAI methods can be classified into two major cate-
gories: post-hoc methods and inherently interpretable
(ante-hoc) methodsRudin| (2019). Post-hoc methods,
such as GradCAM [Selvaraju et al.| (2017), are highly

flexible because they can be applied to any neural net-
work architecture. However, they are often unreli-

able [Adebayo et al] (2018b)), provide local explana-

] Prototypes

Figure 1: Decision explanation constructed
by InfoDisent for the pre-trained ViT fea-
ture space on the Agaric mushrooms im-
age from the ImageNet. We can trace the
decision of ViT behind assigning the class
Agaric to the image on the left to having a
hat (569), a white leg (728), a reddish shine
(552), a strawberry texture (297) and the ap-
pearance of ground with moss (311). Note
that,Each row in the prototype block repre-
sents a specific prototypical part (channel
number), and the first column shows their
activation in the original image.

tions, and fail to reveal the characteristics of specific classes. In contrast, ante-hoc methods, such

as ProtoPNet (2019), offer concept-level explanations by identifying prototypical parts
from the training dataset. While this approach enhances interpretability, it is limited to fine-grained

classification tasks and requires backbone fine-tuning in the case of ProtoPNet. Consequently, these
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methods require substantially computational power to train, especially when backbones such as Vi-
sion Transformers (ViTs) Dosovitskiy et al.[(2020) are fine-tuned in ProtoViT Ma et al.| (2024)).

To address this, we propose InfoDisent, a novel XAl approach that leverages information disentan-
glement in the final layer of any pretrained model. In InfoDisent, each channel encapsulates a single
atomic concept, interpretable as prototypical parts — similar to the approach used in PIPNet |Nauta
et al.| (2023a). This is achieved through the application of an information bottleneck, in which we
enforce activation sparsity in each prototypical channel. We decided to use orthoganilization to en-
force sparsity, as this mechanism can be successfully applied to ViTs|Huang et al.[(2022); Tang et al.
(2022) and CNNs Wang et al.| (2020). As a result, InfoDisent provides both local and global-level
explanations in the form of human-interpretable concepts, as illustrated in Fig. [T} Furthermore, In-
foDisent offers significant flexibility, as it can be seamlessly applied to any pretrained architecture,
including ViTs and convolutional networks.

We demonstrate the effectiveness of InfoDisent through both computational experiments and user
studies. Our method is benchmarked on five datasets, including ImageNet, a challenging dataset
where prototypical parts-based approaches have not been generalized to. We observe that InfoDisent
achieves competitive performance within the class of interpretable models, we observe an accuracy-
interpretability trade-off when compared to black-box counterparts, especially visible in CNNs.
Additionally, results from the user study indicate that InfoDisent provides a competitive level of
explanation understanding compared to other prototypical parts-based methods, while offering the
advantage of flexibility in its application to any model backbone. We make the code available.

Our contributions can be summarized as follows:

* We propose InfoDisent, a hybrid XAI model that combines the interpretability of ante-hoc
methods with the flexibility of post-hoc approaches.

* InfoDisent’s unique advantage is providing prototypical part-like interpretations for the
feature space of any pretrained network without modification or retraining of a backbone.

* We validate the effectiveness of InfoDisent in terms of both accuracy and user understand-
ing through extensive experimental evaluations.

* With InfoDisent, we generalize prototypical parts beyond fine-grained classification, which
is a major limitation of existing methods |[Elhadri et al.| (2025).

2 RELATED WORKS

Research in XAI can be divided into two disjoint categories: post-hoc interpretability [Lundberg &
Lee| (2017); Ribeiro et al.| (2016); |Selvaraju et al.| (2017), where we analyze the pre-trained model
to explain its predictions, and inherently explained models |Bohle et al.| (2022); |Chen et al.| (2019),
where the aim lies in building networks which decisions are easy to interpret. Both of the above
approaches have their advantages and disadvantages which we discuss in the following paragraphs.

Post-hoc methods In the post-hoc methods, we interpret existing pre-trained network architec-
tures. The commonly used methods such as SHAP Lundberg & Lee| (2017); |Shapley| (1951)),
LIME [Ribeiro et al.| (2016), LRP Bach et al.| (2015) and Grad-CAM |Selvaraju et al.| (2017) pro-
vide in practice only feature importance whic can be visualized as a saliency map that shows on
which part of the image the model has focused its attention. This allows us to check if the model
does not focus its attention outside of the object of interest |Ribeiro et al.| (2016), however, it is in
general not sufficient to really understand the reasons behind given predictions. Additionally, post-
hoc methods allow typically only local explanations (per the prediction of a given image), and do
not allow to understand of the prerequisites to the given class.

Inherently explained models While post-hoc methods are easy to implement due to their non-
intrusive nature, they often produce biased and unreliable explanations |/Adebayo et al.|(2018a). To
address this, recent research has increasingly focused on designing self-explainable models that
make the decision process directly visible Brendel & Bethge| (2019); |Alvarez Melis & Jaakkola
(2018)). Many of these interpretable solutions utilize attention mechanisms |Liu et al.[(2021)); Zheng
et al.| (2019) or exploit the activation space, such as with adversarial autoencoders (Guidotti et al.
(2020). Among the most recent approaches, two of the approaches has significantly influent the
development of self-explainable models, which are Concept Bottlenecks |Koh et al.| (2020) and Pro-
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Figure 2: The architecture used for training of our proposed image classification interpretation
model. InfoDisent is composed of three main components: a pre-trained backbone, a pooling layer
for extracting important features, and a fully connected layer. The backbone is a pre-trained CNN
or transformer with frozen weights, meaning it is not further trained. In the initial pooling layer,
the model extracts representations from the last convolutional layer of the backbone and identifies
key features within each channel, targeting both positive and negative activations through the appli-
cation of the arg max operation. However, during training, we replace the arg max operation with
the Gumbel-Softmax trick, which achieves a similar outcome in a differentiable manner. In the next
step, these positive and negative features are pooled at the channel level to create a dense vector,
where the vector’s dimensions correspond to the number of channels. Finally, this dense vector is
passed through a fully connected linear layer with positive weights in the network’s final component.
toPNet (Chen et al.| (2019). Concept Bottleneck originaly learns to predict in a supervised fashion
which concept are present on the image, and then decision is made based on that representation.
Among others, this idea has been further developed by detecting the concept in an unsupervised
way Hu et al.| (2025); Rao et al.| (2024)). ProtoPNet learns class-specific prototypes, similar to con-
cepts, with a fixed number per class. The model classifies inputs by calculating responses from
each class’s prototypes and summarizing these responses through a fully connected layer, providing
explanations as a weighted sum of all prototypes. This method inspired the development of several
other self-explainable models [Donnelly et al.| (2022); Nauta et al.| (2023a)); Pach et al.| (2024)); Ry-
marczyk et al| (2021; 2022} [2023)); Wang et al.| (2021). Typically, in the prototypical parts-based
model, the decision of a given class is decomposed into the appearance of a few selected prototypes,
which are similar to some strongly localized parts of some chosen images from the training data.

3 INFODISENT

Our approach (presented in Fig. [2)) is inspired by the core principles of prototypical models, which
aim to ground classification decisions in the co-occurrence of localized, visualizable prototypes
within an image. Specifically, these models typically: (i) attribute the final class prediction to the
presence of specific prototypes in the input; (ii) allow for the interpretation of these prototypes
through their correspondence to training examples; and (iii) ensure that prototypes represent spa-
tially constrained, meaningful image parts.

We hypothesize that even within the feature representations of pre-trained models, it is possible to
identify and isolate channels that inherently possess those properties. To achieve this, InfoDisent
introduces a mechanism for disentangling the channels in the feature space. Specifically, we apply
an orthogonal transformation directly in the pixel space of the feature maps. This operation preserves
the inner-lying distance and scalar products, ensuring that the expressiveness of the representation
of the pre-trained model is maintained.

By focusing on disentangling the feature channels, our method operates directly on the feature maps
produced by the backbone network. Consequently, we consider a dataset of feature space images,
characterized by potentially varying spatial resolutions but a consistent number of channels d.

Default classification head in deep networks. To establish notation, let us first describe the typ-
ical classification head. In the case of a classification task with k classes, we apply the following
operations for the image [ in the feature space:

1. I — v; = avg_pool_over_channels(I) € R?
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2. vy — wy = Avy, where A is a matrix of dimensions d X k

3. wy — p; = softmax(wy).

In the case of InfoDisent we apply a few mechanisms to ensure the desired properties. First, we need
to be able to disentangle the channel space. To do so we apply the unitary map U in the pixel space.
Next, we apply the information bottleneck — for a given channel instead of the average pool where
all pixels participate, we use extremely sparse analog where only the value of the highest positive
and negative pixels are used. Finally, as is common in interpretable methods we use matrix A, but
only with nonnegative coefficients to allow only positive reasoning.

The sparse pooling features mechanism Most
interpretable models involve retraining certain parts
of the CNN |Chen et al. (2019); Rymarczyk et al.

2022), whereas others, like PIP-Net [Nauta et al.
2023al), retrain the entire CNN. In contrast, our

method utilizes a pre-trained CNN or transformer
without further modification during training. We
first employ a trainable orthogonal transformation
U on pixel space to enable the disentanglement of
hidden features from feature mapsﬂ To enforce the
disentanglement we follow by an introduced sparse
analogue of average pooling over channel K given

by K — mx_pool(K) = max(ReLU(K))
— max(ReLU(-K)).

Figure 3: The image shows prototypes from
Observe that to compute mx_pool(K) we need to channels 689 to 692 in a trained ResNet-50

know only the highest positive and negative pixel
values of K, contrary to avg_pool, where all the
pixel values are needed. Subsequently, we identify
sparse representations (superpixels) within the chan-
nels that contribute positively or negatively to pre-
dictions. This enables us to generate heatmaps similar to Grad-CAM [Selvaraju et al.| (2017) without
necessitating a backward model step, as shown in Fig. fa] Importantly, unlike Grad-CAM, our
technique supports the visualization of negative heatmaps, resembling the LRP
method that requires a backward pass in a neural network. Our method operates solely during the
forward step. Finally, as is common in XAl models, to allow only positive reasoning we allow the
matrix A to have only nonnegative values.

on the ImageNet. Each row displays the 5
most significant patches from a single proto-
typical channel. The prototype’s activations
are highlighted by yellow boxes.

Classification head in InfoDisent. Finally, the classification head in InfoDisent is given by:
1. I = (Is)rs = J = (Uly), where U : R — R? is an orthogonal matrix and I,.; denotes
the pixel value of I with coordinates 7 and s,
2. J — vy = mx_pool_over_channels(J) € RY, where for a given channel K we have
mx_pool(K) = max(ReLU(K)) — max(ReLU(—K)),
3. vy — wy = Avy, where A is a matrix with nonnegative coefficients of dimensions d x k
4. wy — p; = softmax(wy)

InfoDisent model. Thus InfoDisent consists of two main components: the frozen CNN or trans-
former Backbone, and InfoDisent classification head, as illustrated in Fig. |Zl

The first component is a backbone, CNN or ViT, which is a frozen pre-trained network up to the
final layer that generates the last feature map. Importantly, this part of the network and its weights

!To parametrize orthogonal maps, we restrict to those with positive determinants and use the formula U =

exp(W — WT), where exp(-) denote the matrix exponential [Hall & Hall| (2013). We utilize the fact that
the space of orthogonal matrices with positive determinants coincide with exponentials of skew-symmetric

matrices Shepard et al.| (2015).
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with Superpixels Channels W
(a) The top part shows a heatmap with positive (red)

and negative (blue) sparse representations, each chan-  (b) Example compares visual explanations from In-
nel displaying one positive and one negative super-  foDisent, Grad-CAM, and LRP. On the left we show
pixel. These sparse representations are then aggre- the input, with the columns displaying consecutive
gated and rescaled to the image size in the lower part.  explanation types for ResNet and DenseNet.

Figure 4: The image demonstrates how to analyze and visualize decisions made by InfoDisent.

remain unaltered during the training of InfoDisent, ensuring that the learned feature representations
are preserved. The second component involves pooling important features from the final feature
maps produced by the frozen backbone. This pooling mechanism encourages the network to use
information bottlenecks to build maximally informative channels independent of each other. This
leads to constructing prototypical channels, which can be easily interpreted. The final element is the
fully connected layer, which consists of only positive weight values. This restriction on positivity,
except biases handled as in conventional linear layers, ensures that the information about the posi-
tive or negative contributions of selected features from the previous part of the model is preserved.
This constraint is beneficial for the interpretability of the model’s predictions, as it clarifies the con-
tribution of each feature to the final output. Observe, that contrary to some of the post-hoc methods,
InfoDisent needs training of the model on the whole dataset.

Gumbel-Softmax To maximize the extraction of information from prototypical channels, we in-
troduce an information bottleneck within our model architecture. This is achieved by applying the
arg max operation to individual channels, see Fig.[2] While the arg max function can be used to
extract a sparse representation from feature maps, our goal is to enable the model to learn to select
the most important values. To achieve this, we require a differentiable arg max function. The ideal
solution for this is the Gumbel-Softmax estimator (2016). Given z = (x1,...,xp) € RP
and 7 € (0, 00),

Gumbel-Softmax(z, 7) = (y1,...,yp) € R”,

where
yi = exp ((zi +m:)/7) ,
Sy exp (wa +na)/7)
and g ford € {1,..., D} are samples taken from the standard Gumbel distribution.

The Gumbel-Softmax distribution serves as an interpolation between continuous categorical densi-
ties and discrete one-hot encoded categorical distributions, with the discrete form being approached
as the temperature T decreases within the range of [0.1, 0.5]. In our experiments, we initialized T at
1 and progressively reduced it to 0.2. Finally, at the end of the training, we applied a hard softmax.

Following the extraction of key features using the sparse operation — specifically, the arg max op-
eration via the Gumbel-Softmax trick — we preserve the original structure of the network’s output,
maintaining the classical form of the convolutional network’s output, as shown in Fig.[2] During the
subsequent aggregation of positive and negative features, we utilize an average pooling operation
to consolidate the information. This approach ensures that the pooled features capture a balanced
representation of the activations, contributing to a robust final output.

3.1 UNDERSTANDING THE CLASSIFICATION DECISIONS
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Prototypes in InfoDisent. The main feature of In-
foDisent is its ability to disentangle the channels
making them interpretable. Thus, similarly to PiP-
Net [Nauta et al.| (2023a), we identify channels as
prototypes. To illustrate a given prototype channel,
we present five images from the training dataset on
which the activation of the channel is the greatest,
see Fig.[3] where we present consecutive prototypes
for the pre-trained ResNet-50 model. This follows
the fact that for better interpretability of model de-
cisions, it is beneficial for humans to be presented
from 4 to 9 concepts [Rymarczyk et al/ (2022). For-
mally, similarly as in prototypical models, as the
prototypical part, we understand the part of the im-
age corresponding to pixels in feature space with
maximal activation, marked by the yellow box in
Fig.[3] Observe that the presented prototypes seem
consistent with each other, and could be well inter-
preted.

Understanding the Decision for a Given Image by
Prototypes. Now that we can understand and vi-
sualize prototypes, there appears to be a question of
how to visualize crucial prototypes from the model’s
decision perspective for a given image. To do this we
chose 5 prototypical channels which are most impor-
tant for the predictimﬂ in Fig. |5} For each channel,
we identified 5 images from the training dataset that
exhibit the strongest activation values for that chan-
nel, as depicted by the red spots in Fig. fa] Sim-
ply, we selected the top 5 images based on the high-
est activation values, or arg-top5b, for each channel.
The model’s proposed prototypes are easy to inter-
pret. Moreover, unlike current state-of-the-art proto-
type methods, our model excels at interpreting im-
ages from the ImageNet dataset. More examples
from various datasets and models are presented in
the Supplementary Materials.

Heatmaps. Our approach, which relies on rep-
resentation channels, enables us to easily generate
heatmaps similar to those produced by the Grad-
CAM method, see Fig.[#a To do this we accumulate
the activations of all prototypes (both positive and
negative ones) over all channels. Since in InfoDis-
ent we use information bottleneck, we obtain more
localized results than other standard approaches.

Observe that, unlike Grad-CAM, our heatmaps also
illustrate negative activations, similarly to the Layer-
Wise Relevance Propagation (LRP). While LRP ef-
fectively highlights both positive and negative con-
tributions, it can be complex to implement and sensi-
tive to changes in model architecture. Our approach,
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Figure 5: Exemplary explanation (hen) for
ResNet-50 backbone provided by InfoDisent
in a form of prototypical parts.
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Figure 6: Prototypes of two classes (from
top to bottom): Half Track and Thatch from
the ImageNet dataset. Each row displays the
5 most significant prototypes for a specific
channel, with the channel numbers listed on
the right. The order of the prototypes within
each row reflects their importance for ex-
plaining the given class. In the Half Track
class, the prototypes from channel 1098 are
the most crucial, followed by those from
channels 1231 and 1348. These prototypes
effectively explain the Half Track class, as
they highlight elements of a tank (from chan-
nel 1098), a car, and the possible presence
of soldiers on board. Note that the proto-
types are all generated at the same resolution.
If they appear to be of different sizes across
images, it’s because the original test images
themselves varied in resolution.

by using a non-negative last layer and a prototypical-parts-based architecture, directly addresses
these issues. This design results in clear and interpretable visualizations (see Fig. that can be
compared with those produced by methods such as GradCAM and LRP.

2One can assume more subtle strategies, see Supplementary Materials.
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Understanding the Decision Behind Class. We examine the model’s decision-making process
on a per-class basis by utilizing prototypes. To identify prototypes for a given class, we focus on
key channels that are prominently activated across all test set images belonging to that class. These
key channels are selected based on their consistent presence and strong activation in images of the
same class. Once we have identified these crucial channels, we visualize the prototypes as previously
described, providing a clear representation of what the model finds important for a given class. Fig.[6]
illustrates the prototypes for selected classes from the ImageNet dataset. Each prototype captures
essential features such as material types, structural elements, or specific textures that are related to
the class.

4 NUMERICAL EXPERIMENTS

This section outlines the experiments conducted to compare our approach with current state-of-
the-art methods, highlighting the most significant results. Our experiments utilized a variety of
datasets, including well-established benchmarks for evaluating the explainability of artificial mod-
els: The Caltech-UCSD Birds-200-2011 (CUB-200-2011) |Wah et al.| (2011}, Stanford Cars Krause
et al.| (2013), and Stanford Dogs |Khosla et al.| (2011). Additionally, we incorporated the full Im-
ageNet Russakovsky et al.| (2015) dataset for the first time in the class of prototypical networks.
Additional results, including ablation study and analysis of inter-channel correlation, and details
concerning those experiments are provided in the Supplementary Materials. Those experiments
show that InfoDisent consistently achieves superior or mathing Disentanglement metrics in most
of the cases, demonstrating high concept coherence with minimal variability between data-classes
of a concept. Furthermore, we show that InfoDisent yields robust prototypical parts and outper-
forms ProtoViT on 2 out of 3 metrics related to spatial misalignment. We conclude by presenting
qualitative examples and additional detailed results that complement those from the main body.

4.1 CLASSIFICATION PERFORMANCE

To compare our approach, we selected several state-of-the-art, interpretable models based on the
same CNN architectures as our approach. We categorized the models into a few groups based on
their CNN architecture — ResNet-34/50 He et al.| (2016), DenseNet-121 |[Huang et al.| (2017), and
ConvNeXt-Tiny [Liu et al.| (2022b)) — and the experiments we conducted on these datasets. Specifi-
cally, we performed two experiments: the first used cropped images for training and testing, and the
second used full images.

In the first experiment, we utilized two key datasets: CUB-200-2011 and Stanford Cars, which
are frequently employed in prototype model evaluations. We trained both the base models and
InfoDisent on these cropped images, with the results shown in Tab.[I} In the second experiment, we
used CUB-200-2011 and Stanford Dogs datasets, but this time with the full images. The results of
this experiment are detailed in Tab. 2]

In both experiments, our approach consistently outperformed or matches the compared black-box
models. When compared to interpretable models, InfoDisent’s performance varied by backbone,
achieving comparable or slightly lower results than state-of-the-art models, especially with ViT.
This minor difference is attributable to the competing interpretable models, which modify and fine-
tune the backbone during training. This adaptation allows them to specialize a generally-trained
backbone for the fine-grained task, which InfoDisent, being non-modifying the backbone, does not
benefit from. Crucially, however, these backbone modifications require significantly greater compu-
tational resources and more complex training procedures. In sharp contrast, our method simplifies
the training process by only adjusting the last two parts of the model while leaving the original back-
bone unchanged, leading to a substantial reduction in both required resources and training time (see
Tab. 3).

In the next experiment, we utilized the full ImageNet dataset and evaluated both traditional
CNN models — such as ResNet-34/50, DenseNet-121, and ConvNeXt-Large — and popular trans-
former models, including VisionTransformer (ViT-B/16) [Dosovitskiy et al.| (2020), SwinTrans-
former (Swin-S) Liu et al.| (2022a), and Max Vit Tu et al|(2022)). Given that current prototype mod-
els did not perform well on the ImageNet dataset and thus lack evaluation results, Tab. [3] presents
a comparison between the classical models and our approach. Typically, prototype models exhibit
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lower performance on more complex datasets compared to traditional models as shown in Tab. [3]
but it also offers enhanced explainability. This difference with accuracy we identify as accuracy-
interpretability trade-off. We hypothesize that the orthogonal disentanglement enforces a “part-
based” sparsity that conflicts with the distributed, texture-biased representations of ResNets |Her-
mann et al.| (2020), whereas ViTs (which process patches globally) have better adaptability capabil-
ities Naseer et al.| (2021).

Table 1: Accuracy comparison of interpretabil-
ity models using standard CNN architectures
(utilized in explainable models) trained on
cropped bird images of CUB-200-2011, and
Stanford Cars (Cars). Our approach demon-
strates superior performance across nearly all

Table 2: Classification accuracy on full CUB-
200-2011, and Stanford Dogs datasets by com-
peting approaches using different CNN back-
bones. For each dataset and backbone, we bold-
face the best result in the class of interpretable
models.

the datasets and models considered. For each
dataset and backbone, we boldface the best re-

Dataset
. . Model
sult in the class of interpretable models. CUB-200-2011 (%]  Dogs [%]
+ ResNet-34 76.0 84.5
o
Model Dataset % LnfoDisent(ours) 78.34+0.15  83.9 4 0.21
200 s 2 m— o m— oo
CUB-200-2011 (%] Cars [%] Z ProtoPNet 74.140.2 76.1 4+ 0.3
ResNet-34 82.4 92.6 ST-ProtoPNet 78.2£0.1 83.4£+0.5
3 LmnfoDisent(ours)  83.54+0.02  92.8 +0.04 TesNet 76.540.1 81.2+40.3
< ProtoPNet 79.2+0.3 86.14 0.2 g ResNet-50 787 87.4
< ProtoPShare 74.7 86.4 % L)InfoDisent (ours) 79.5+ 0.56 86.6 1 0.25
Z 77777777777777777777
ProtoPool 80.3 £ 0.2 89.3 £ 0.1 % ProtoPNet Q4.8 + 0.4 781+ 0.3
ST-ProtoPNet 83.5 + 0.2 91.4+0.3 € T prowopNet $8.0 £ 0.2 83.3 1 0.3
TesNet 82.7+0.2 90.9 + 0.3 TesNet 87.3 L 0.2 857 L 0.4
S REN“‘” 832 931 S DenseNet-121 782 84.1
: . X o
3 DlnfoDisent(ours) ~ 83.0£0.07 929 +0.02 E Ls infoDisent (ours)  80.6 +0.37  83.8 + 0.07
Z — - - - - -3 RN T el ST
< Protopool - i g ProtoPNet 76.6 0.5 75.4+0.3
P;;“I’\I ree 9.0+ 0.2 865 £ 0.3 & ST-ProtoPNet 81.8 +0.3 82.9+0.4
-Net : : : : TesNet 80.9 + 0.2 82.1+0.3
DenseNet-121 81.8 92.1
~
S bLmfobisentours) 2.6 4£0.02  92.74£0.02  Table 3: Classification accuracy (ACC) on Im-
2 ProtoPNet 79.2 4 0.3 86.8 £ 0.1 ageNet dataset by competing approaches using
2 ProtoPShare 74.7 84.8 :
& ProtoPool 73.6 £ 0.2 86.44 0.3 different CNN backbones.
ST-ProtoPNet 85.4 + 0.1 92.3 4 0.2 CNN Transformer
TesNet 84.8 0.2 92.04+0.3 Model ACC[%] Model ACC[%]
53 ConvNeXt-Tiny 83.8 91.0 ResNet-34 733 ViT-B/16 81.1
E InfoDisent (ours) ~ 84.1+£0.08  90.2 £ 0.01 Ls infoDisent 64.1+£0.39 L InfoDisent 79.2 4 0.21
§ - oo oo ot 2R ph el 2 e
© PIP-Net 84.3 + 0.2 88.2+ 0.5 ResNet-50 76.1 Swin-S 83.4
 DeiT-Small 84.3 - L)InfoDisent 67.8 £ 0.05 L)InfoDisent 81.4 £+ 0.06
3 L)InfoDisent (ours) 83.7£0.03 - DenseNet-121 74.4 Max Vit 83.4
ProtoViT 85.4 +£ 0.5 91.8 L)InfoDisent 66.6 £+ 0.02 L)InfoDisent 83.3 +£0.11
ConvNeXt-L 84.1
Ls InfoDisent  82.8 + 0.09

Does InfoDisent reduce channel correlation To evaluate the effectiveness of our method in re-
ducing channel correlation, we employed the RV coefficient Robert & Escoufier|(1976)), a standard
metric for measuring linear dependence between sets of variables. As shown in Tab. 4] the results
across 14 experimental configurations (spanning 3 datasets and 7 backbone architectures) reveal that
our model achieves lower (i.e., better) RV coefficients than the baseline in 9 cases, performs com-
parably in 3 cases, and underperforms in only 2 cases. Notably, although our approach does not
include an explicit loss term designed to minimize the RV coefficient, it consistently demonstrates
superior or equivalent capability in reducing channel correlations compared to the baseline.



Under review as a conference paper at ICLR 2026

Table 4: RV correlation between channels for InfoDisent and baseline models.

Cars CUB ImageNet
Model InfoDisent Baseline InfoDisent Baseline InfoDisent Baseline
ConvNeXt-L - - - - 8.7 3.0
ConvNeXt-Tiny 6.7 6.9 5.5 5.5 - -
DenseNet121 6.2 6.9 7.2 79 8.4 4.5
ResNet34 6.0 7.1 6.5 7.2 5.2 6.0
ResNet50 6.2 7.6 4.9 7.8 3.0 6.5
Swin-S - - - - 2.5 2.5
ViT-B/16 - - - - 9.9 9.9
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Figure 7: FunnyBirds evaluation results for various XAI methods. Model-agnostic methods are as-
sessed on ResNet-50 and ViT-B/16. Results are averaged over the entire test set, including the center
score representing the mean of completeness (Com.), correctness (Cor.), and contrastivity (Con.) di-
mensions. Additionally, accuracy (Acc.) and background independence (B.1.) are reported. Our
approach (at the end on the right) enhances model explainability, showing significant improvements
for ResNet-50 and satisfactory results for the transformer model. In the Appendix Tab. [0 are de-
tailed results.

5 EVALUATION OF INTERPRETABILITY

We showcase the performance of InfoDisent on explainability metrics using FunnyBirds
dataset |Hesse et al.| (2023)) and Spatial Misalignement (SM) [Sacha et al. (2024) which are dedi-
cated benchmarks for XAI methods. Results for SM are presented in the Appendix Tab.[/] Also,
we performed tests related to diversity of the concepts Tab. prototype robustness Tab. and
number of utilized concepts in Appendix Tab. [[6] In addition to the computational validation of
InfoDisent, we conducted two user studies. The first study followed the design of the HIVE bench-
mark |[Kim et al.| (2022)), aiming to assess the impact of explanations on user overconfidence in the
model’s predictions. The second study evaluated the disambiguation of explanations derived from
prototypical parts. For this, we adopted a study design from prior works on prototypical parts Ma
et al.[|(2023)); |Pach et al. (2024).

FunnyBirds results. To evaluate explainability of InfoDisent approach, we utilized the Funny-
Birds |[Hesse et al.| (2023) dataset, which is constructed to evaluate the semantic appropriateness
of explanations through semantically meaningful image interventions, such as removing individual
object parts. This enables a more nuanced analysis of explanations at the part level, which aligns
more closely with human understanding compared to pixel-level evaluations. We compare InfoDis-
ent approach to a range of XAI methods for two different backbones Fig.[/| InfoDisent enhances
the explainability of models based on classic CNN architectures and ranks best when using the
ResNet50 backbone. While still highly competitive, it achieves the third-best result for the ViT.

5.1 USER STUDY RESULTS

We performed two user studies. Each of them involved 60 participants per dataset, with a balanced
gender representation. Participants were aged between 18 and 60, with an average age of 35 years.
The studies were conducted on the Clickworker platform, using two datasets: CUB-200-2011 and
ImageNet. Each participant answered 20 questions, with images randomly selected from the testing
dataset for each question. Example questions are provided in the Supplementary Materials.
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Confidence in Model Predictions In the first study, which assessed user overconfidence, partic-
ipants were presented with an image alongside the model’s explanation. They were then asked,
“What do you think about the model’s prediction?” and were instructed to indicate their confidence
in whether the model was correct or incorrect as it was done in HIVE benchmark |[Kim et al.| (2022).

The results of this user study are shown in Tab. [5] They demonstrate that users evaluating the
model’s predictions based on explanations from InfoDisent are statistically significantly less over-
confident than random guessing (as indicated by the p-values). Additionally, InfoDisent generalizes
to ImageNet and achieves statistically significantly better results than random.

Disambiguity of prototypical parts. In the second study, which assessed the disambiguation of
prototypical parts, participants were shown an image classified by the model alongside two expla-
nations corresponding to the two most activated classes. Their task was to determine, based on the
explanations, which decision the model had made.

The results of this user study, presented in Tab. [6| demonstrate that users who saw explanations
from InfoDisent performed statistically significantly better than random guessing.

For both of the user study we present results from other user groups in the Appendix Tabs.[I3]and[[4]
just for a reference.

Table 5: Results showcasing user confidence
in model predictions reveal that when users
answered questions informed by explanations
from our InfoDisent model, they exhibited sub-
stantial confidence in the model’s correct de-
cisions across both datasets (mean confidence
ober 60% for ImageNet and over 80% for CUB).
However, a notable challenge emerged: users
struggled to detected samples where the model’s
predictions were incorrect, even when provided
with the explanations. This finding echoes ob-
servations reported for other XAI methods. We
denote statistically significant values in bold.

Table 6: A user study assessing the perceived
ambiguity of prototypical parts shows that ex-
planations provided by InfoDisent allows users
to understand the model’s decisions signifi-
cantly better than random guessing on both Im-
ageNet and CUB (p < 0.05). Notably, In-
foDisent is the only method leveraging pro-
totypical parts that operates on the ImageNet.
Furthermore, users interacting with InfoDisent
achieved a level of understanding that is stastis-
tically significant We report the p-value associ-
ated with the comparison against random guess-

ing.

Method Prediction ImageNet[%] CUB-200 [%] Method Dataset  User Acc. [%] p-value
Correct 60.2+9.0 80.7+13.3 InfoDisent ImageNet 59.3+14.9 8.10"°

InfoDisent Incorrect 55.3+9.9 42.7+11.7 MOV~ 100 64.74+13.1 104
p-value 0.001 3.-107%

6 CONCLUSIONS

In this work, we introduce InfoDisent, an innovative model that combines the strengths of both post-
hoc and inherently interpretable methods. InfoDisent provides the flexibility to be applied to any
backbone, while offering both local (per image) and global (per class) explanations in the form of
atomic concepts, addressing key limitations of existing approaches. Additionally, as demonstrated
by user studies, InfoDisent performs comparably to state-of-the-art methods in disambiguating pro-
totypical parts and managing user overconfidence. Notably, InfoDisent is the first attempt to gen-
eralize the prototypical parts-based methodology to big scale datasets such as the whole ImageNet.
In future work, we plan to explore pruning techniques to optimize the size of concepts used in
explanations.

Limitations. While achieving interpretability, InfoDisent requires training its classification head
on the complete dataset. Unlike prototypical parts models, the model’s decisions are not constrained
to a fixed number of prototypes. Furthermore, because InfoDisent avoids backbone fine-tuning,
the quality of its explanations is inherently limited by the expressiveness of the initial backbone
representations. Moreover, all prototypical-parts based model may have generate concepts that are
not human understandable, which is also a limitation of our InfoDisent model.

10
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Ethics statement. InfoDisent advances the field of Explainable Al (XAI) by introducing a novel
method that generalizes prototypical parts-based explanations to ImageNet-like datasets, while
maintaining the post-hoc flexibility of application. InfoDisent holds potential for further exploration
in downstream applications, such as medical diagnosis.

Reproducibility Statement. We make the code available through zip file in the submission sys-
tem, and we plan to put public github into the camera ready version. Moreover, we ran experiments
on NVIDIA RTX4090 and NVIDIA A100 40GB. Also, we provided all details regarding the hyper-
parameters to reproduce the results in the Appendix Section C.
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SUPPLEMENTARY MATERIAL

A ABLATION STUDY

InfoDisent organizes information into channels with sparse representations, which can be later uti-
lized in the model’s prediction process. In the following experiment, we investigate how the number
of channels affects the model’s predictions. Specifically, we assess how many channels are re-
quired to account for at least 95% of the information used in the model’s predictions. Formally, if
logits = Zf.vzo ag;v; + by, where N is a number of all channels, k represents the image class, and
aki, Vi, by € R, then for each image from class k, we determine the smallest number n channels
such that 3~ [agvil/ va:o |ak;v;| > 0.95, where I, is the set of indexes of the n < N largest
values of |ag;v;|. This analysis allows us to identify the most critical channels contributing to the
model’s decisions, providing deeper insights into the model’s interpretability and efficiency.

1 InfoDisent(ResNet-34) ResNet-34
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Figure 8: Density estimate of the number of significant channels for each class and image in the
CUB-200-2011 test set using the ResNet-34 network. InfoDisent uses significantly fewer channels
and has less variance.

Fig. [§] shows the density estimate of the number of significant channels for each class and image
in the CUB-200-2011 test set. In this experiment, we used the ResNet-34 network that utilizes a
significantly larger number of channels in its predictions compared to InfoDisent model. By re-
ducing the number of significant channels while preserving classification performance, our model
demonstrates efficient resource utilization and improved interpretability, as illustrated below. This
efficiency shows that our model is more effective at isolating the critical features necessary for ac-
curate predictions, thereby validating our approach. This also validates the disentangling role of the
orthogonal matrix U.

Optimization of U and W Our objective is to represent a matrix A € R™*"™ ag a product of
matrices A ~ SU, where S is sparse and U is unitary. Given the equality A = SU, we would have
S = AU, To obtain the sparsest possible S, we can formulate the minimization problem:

min [|AU " Y);.

U unitary

We leverage the following key properties:

* For any square matrix B € R™"*", the matrix %(B — BT) is skew-symmetric.

 If B is skew-symmetric, then its matrix exponential exp(W) is orthogonal (and conse-
quently unitary for real matrices).

This leads to the reformulated optimization problem:

min ||Aexp(=B)|1,

B skew-symmetric
where our solution becomes S = A exp(—B).

The final unitary matrix is computed as:

USSGE

1
U = exp <2

where:
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* W is a randomly initialized matrix
* The optimization is performed using gradient descent
* We employ the Adam optimizer for efficient convergence

This parametrization guarantees that U remains unitary throughout the optimization process while
allowing efficient computation of gradients through the matrix exponential operation.

Additional definitions Here we present a more precise, quantitative definition of ”prominently”
and “consistency” in our channel selection process. For each test image x; from the test set X,
we first identify the top 10 most activated channels. Let A(C;, x;) denote the activation value of
channel C; for image x;. We select the set of 10 channels, K, such that for any C; € K; and
Cr ¢ Ky, A(Cj,2¢) > A(Cy, x¢) after sorting activations in descending order.

To define “prominently” and “consistency” for a given class Y, we then count how many times each
channel C; appears within the top 10 activated channels across all test images belonging to that
class. Let N(C;,Y) be this count:

N(C;,Y) = Z 1[C; is among the top 10 activated channels for z]
21 E€X¢est,label(x)=Y

A channel C; is then selected for visualization for class Y if its count N (C;, Y') exceeds a predefined
threshold. Specifically, we select channels where:

N(C.,Y) > 050 x [{z; € Xpeqt | label(z;) = Y}

This procedure ensures that only channels that are consistently among the most activated (i.e., promi-
nently contributing) across a significant portion (more than 50%) of the test images for a given class
are selected for visualization.

B DETAILS OF THE EXPERIMENTS PERFORMED

Datasets In our experiments, we leveraged several diverse datasets to evaluate performance. The
first dataset is the Caltech-UCSD Birds-200-2011 (CUB-200-2011)Wah et al.| (2011), which con-
tains 11,788 images meticulously labeled across 200 bird species, divided into 200 subcategories.
Of these, 5,994 images are allocated for training, while 5,794 are reserved for testing. The second
dataset, known as Stanford CarsKrause et al.|(2013), is designed to classify various car models. It
includes 16,185 images, each capturing a rear view of different car types across 196 classes, with an
almost even distribution between training (8,144 images) and testing (8,041 images) subsets. Each
class details the car’s make, model, and year. The third dataset, Stanford Dogs [Khosla et al.| (2011),
features a collection of 20,580 images representing 120 dog breeds from around the globe. This
dataset, sourced and annotated through ImageNet, is intended for fine-grained image classification,
with 12,000 images for training and the remainder for testing.

Additionally, we incorporated the FunnyBirds [Hesse et al.| (2023) dataset, consisting of 50,500 im-
ages representing 50 synthetic bird species, with 50,000 images for training and 500 for testing.
This dataset was designed with a focus on “concepts,” or mental representations crucial for catego-
rization, and is particularly relevant for explainable Al (XAI). The concepts are linked to specific
bird anatomy parts, such as the beak, wings, feet, eyes, and tail, ensuring they are both granular and
intuitive for practical use in XAl

Finally, we utilized ImageNet |Russakovsky et al.| (2015), a highly recognized dataset in computer
vision, often employed for pretraining deep learning models. ImageNet encompasses 1,281,167
training images, 50,000 validation images, and 100,000 test images, spanning 1,000 object classes.

Training Details We train the architectures using stochastic gradient descent (SGD) with standard
categorical cross-entropy loss. The momentum, damping, and weight decay are set to 0.9, 0.9, and
0.001, respectively. For the baseline networks, the initial learning rates are 0.1, 0.05, and 0.01, which
are reduced by a factor of 0.1 when the validation loss converges. In our approach, we train only
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Figure 9: Density estimate of the number of significant channels for each class and image in the
CUB-200-2011 test set using the ResNet-34 network. InfoDisent uses significantly fewer channels,
particularly evident in the middle image, which shows the density estimation of the number of
significant channels for all classes.

the last two segments of the network, thus we use lower learning rates of 0.001 and 0.0001, utilizing
the "ReduceLROnPlateau’ [Al-Kababyji et al.| (2022) mechanism that reduces the learning rate when
the cost function stops improving. All numerical experiments were conducted using NVIDIA RTX
4090 and NVIDIA A100 40 GB graphics cards.

For cropped images, we follow previous studies [Chen et al| (2019) by applying on-the-fly data
augmentations (e.g., random rotation, skew, shear, and left-right flip) on the cropped CUB and
cropped Cars datasets using the provided bounding boxes. We also validate our method on the
full (uncropped) CUB and Dogs datasets, employing the same online data augmentation techniques
(e.g., random affine transformation and left-right flip). For the FunnyBirds dataset, we adhered to the
detailed instructions provided in the framework’s documentation, which can be found at https:
//github.com/visinf/funnybirds. For training various CNN and transformer models on
the ImageNet dataset, we utilized the augmentation techniques described at https://github.
com/pytorch/vision/tree/main/references/classificationl
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Figure 10: Density estimate of the number of significant channels for each class and image in the
CUB-200-2011 test set using various networks.

C ADDITIONAL RESULTS

In this section, we provide additional results to supplement and expand upon the findings presented
in the main part of the paper. We delve deeper into the behavior of our model across various experi-
ments and datasets, offering a more comprehensive analysis.

Spatial Misalignement Our method, InfoDisent, trained on the CUB-200-2011 dataset with a
DeiT backbone, achieves the best scores in two of the three metrics on this benchmark. However, it
is more susceptible to a loss in accuracy. This may be related to the difference in backbones; other
methods fine-tune their backbones, whereas InfoDisent does not.

Table 7: Results on challenging Spatial Misalignement Benchmark. Note that InfoDisent scores best
in 2 out of 3 interpretability metrics.

Model PAC PLC PRC  Acc. Before Acc. After AC

InfoDisent  0.11 0.37 13.66 83.66 67.21 16.45
ProtoViT 292 21.68 1.28 85.40 82.80 2.60
ProtoPNet 23.70 24.00 13.50 76.40 68.20 8.20
TesNet 340 16.00 2.90 81.60 75.80 5.80
ProtoPool  11.20 31.80 4.50 80.80 76.00 4.80
ProtoTree  23.70 27.70 13.50 76.40 68.20 8.20

Performance gains We measured and compared the following: (1)Training time per epoch for
our InfoDisent model with a frozen backbone versus a full version of the model. (2) The number of
parameters being optimized in each scenario. (3) The GPU memory usage.
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Figure 11: Density estimate of the number of significant channels for each class and image in the

Stanford Cars test set using various networks.

As can be observed in the table below, with InfoDisent we need to spend 3 times less time on average
per training epoch, significantly less parameters needs to be optimized and we need up to 75% less

GPU memory.

The averaged results from these experiments will be included in the manuscript.

Note that, to ensure a fair evaluation, we used the same hardware (NVIDIA A100), dataset (CUB),

and batch size.

Table 8: Model Training and Resource Consumption Comparison.

Model Time p. Epoch [s] No. Param. Mem. GPU [GB]
ConvNeXt-Tiny (Full) 664 28,563,752 5.84
ConvNeXt-Tiny (InfoD) 205 745,160 1.85
ResNet50 (Full) 652 28,112,136 5.26
ResNet50 (InfoD) 498 4,604,104 2.67
Swin-S (Full) 1500 49,712,066 11.16
Swin-S (InfoD) 480 743,624 2.37

Ablation study

In this part, we present additional results from a series of analyses investigating

the significance of the number of channels on model predictions across various datasets and models.
The results of these analyses are illustrated in Figs. [0 to[T2] Recall, that InfoDisent model orga-
nizes information into channels with sparse representations, which are later utilized in the model’s
prediction process. We specifically examine how the number of channels influences the model’s
predictions by determining the minimum number of channels required to account for at least 95%

of the information used in the model’s predictions.
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Figure 12: Density estimate of the number of significant channels for each class and image in the
ImageNet test set using various networks.

Formally, if

N
logits = Z axiV; + by,
i=0
where N is the total number of channels, k represents the image class, and ag;, v;, b, € R, then for
each image from class k, we identify the smallest number 7 of channels such that

. ;U5
Lier, lorivil > 0.95,
N
Zi:o |lakivi|
where I}, is the set of indexes of the n < N largest values of |ag;v;].

This analysis highlights the most critical channels contributing to the model’s decisions, providing
deeper insights into the model’s interpretability and efficiency. Note that the InfoDisent approach
consistently utilizes significantly fewer channels, a trend observed across all models and datasets
analyzed.

Figs.[[3]and[T4]also present the channel values before the final linear layer in our model for randomly
selected images from various datasets and models. As evident from the images, our model utilizes a
significantly smaller number of channels in its predictions compared to the baseline models.

Explaining Classification Decision for a Given Image by Prototypes InfoDisent employs pro-
totypes, similar to the approach used in PiPNet |Nauta et al.| (2023a)), to explain individual decisions
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Figure 13: Channel activations before the final linear layer for a randomly selected image processed
by different models trained on the CUB-200-2011 dataset are shown. The results are displayed in
three groups, each containing two graphs. Model names are listed on the right side of the graphs.
Unlike the baseline models, our network activates significantly fewer channels while still maintain-
ing strong performance.

made on an image. Below, we describe the process for identifying prototypes for a given input im-
age. An average pooling operation makes the aggregation of information from individual channels.
The outcome of this operation is a scalar for each channel K, computed as

mx_pool(K) = max(ReLU(K)) — max(ReLU(—K))

(as explained in the main paper). This dense representation, formed by aggregating all the channels,
is then processed by a linear layer that outputs logits, see Fig. 2] The logits can be represented in
a format similar to the output of a convolutional layer, as illustrated by V. and V_ in Fig. Q This
approach maintains the pictorial structure of the logits, allowing us to extract individual channels.

Note that each channel in InfoDisent model can contain only two possible values (refer to Fig. [4a]
in the main paper, where these values are depicted as red or blue areas within the channels). To
identify the prototype, i.e., the relevant channel, we focus solely on the positive values within the
channels (represented by red areas in Fig. fa). These positive values indicate the significant part
of the channel/prototype (marked by the yellow frame on the prototype) and define the channel’s
importance for the model prediction (since the linear layer uses only nonnegative coefficients). As
demonstrated in Figs. [I3] and [T4] the number of such channels is limited (alternatively, we could
also focus on channels with the strongest values). Once we have identified the important channels
(by knowing their indices), we represent each channel using prototypes. Prototypes are images from
the training set that exhibit the five strongest positive values for a given channel. Example results
illustrating how model predictions are explained using prototypes are shown in Figs. [T3]to[T9)(which
are after the references).

Figs. [T3]to [I7] showcase the performance of our prototype models on standard benchmarks: CUB-
200-2011, Stanford Cars, and Stanford Dogs. Fig. [I5] demonstrates the model’s ability to focus
on distinctive features like the Scissor-tailed Flycatcher’s elongated tail feathers, underwing yellow
coloration, or the Red-legged Kittiwake’s red feet.
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Figure 14: Channel activations before the final linear layer for a random image processed through
various ConvNeXt, Vision Transformer, and Swin Transformer models trained on ImageNet. The
results are displayed in three groups, each containing two graphs. Model names are listed on the
right side of the graphs. InfoDisent activates significantly fewer channels compared to the baseline
models while maintaining high effectiveness.

Similarly, Fig. [[6]highlights the model’s capacity to identify key vehicle components. For instance,
it accurately pinpoints the fender, bumper, and body of a Jeep Wrangler SUV 2012, and the charac-
teristic stripes on a Ford GT Coupe 2006.

Complementing our experiments with widely used CNN models, we investigated the performance
of transformer architectures, specifically VisionTransformer (ViT-B/16) Dosovitskiy et al.| (2020),
SwinTransformer (Swin-S) [Liu et al.| (2022a). Their results are visualized in Figs. @ and @ Our
analysis reveals that transformer models concentrate on smaller image regions than CNNs. Never-
theless, both model types generate interpretable prototypes that offer insights into the input image
content.

Decision Behind Class To delve deeper into the model’s decision-making process, we employ a
prototype-based analysis at the class level. For each class, we identify key channels that consistently
exhibit strong activation across the entire test set. These channels, indicative of the model’s focus
on specific visual features, are selected based on their prominence and reliability in representing
the class. By visualizing these key channels as prototypes, as demonstrated in our previous image
analysis, we obtain a clear representation of the model’s class-specific decision criteria.

Figs. 20] to 22] present the results of our prototype analysis for selected classes in the CUB-200-
2011 and Stanford Cars datasets, using both InfoDisent(ResNet-50) and transformer models. This
visualization allows for a granular understanding of how these models differentiate between various
classes, highlighting the underlying patterns recognized by the network.

Heatmaps Figs. 23] and 24 present example heatmaps generated by our model, resembling those
produced by Grad-CAM [Selvaraju et al|(2017). Our method, rooted in representational channels,
simplifies heatmap generation by accumulating activations from all prototypes (positive and nega-
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Figure 15: Example prototypes generated by InfoDisent(ResNet-50) models for random input im-
ages from the test set of the CUB-200-2011 dataset. The display includes 8 input images, each with
a corresponding column where yellow boxes highlight specific regions, followed by the prototypes
(images on the right). Each row represents prototypes from a different channel, with the channel
index on the right. Observe that the prototypes identified by the model effectively capture distinct
parts of the body in the images.

tive) across all channels. Leveraging the information bottleneck principle, our approach yields more
focused heatmaps compared to traditional methods.

Detailed results on FunnyBirds In Tab.[9] we present details regarding the results on FunnyBirds
framework.
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Figure 16: To demonstrate InfoDisent(ResNet-50) model’s capability, we visualize prototypes gen-
erated for arbitrary test images from the Stanford Cars dataset. Each image is paired with high-
lighted areas and its associated prototypes, grouped by channel. The results indicate that the model
has learned to extract meaningful features representing different vehicle parts.

Prototypical parts robustness We evaluated stability against Gaussian noise and transformations
(brightness, contrast, saturation) as in ProtoPShare Rymarczyk et al.| (2021)) to measure the robust-
ness of prototypical parts.

For the evaluation, we examined how InfoDisent’s prototypes adapted to perturbed inputs using two
similarity measures: Jaccard Similarity Index (J). Cosine Similarity (C).

InfoDisent consistently demonstrated strong performance across these metrics.

More details on user study Each worker was paid €2.00 for completing a short 20-question
survey. The survey questions were randomly composed, so the specific questions differed between
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Figure 17: Visualized prototypes from the Stanford Dogs dataset. Each row highlights prototypes
from a specific channel, focusing on different dog features such as ears, nose, and fur.

participants. The participants were gender-balanced and ranged in age from 18 to 60. They were
given 30 minutes to complete the survey.

To ensure data quality, we excluded responses where users selected the same answer for all ques-
tions. Surveys were repeated until we obtained 60 valid responses. Figs.[25]and[26]illustrate example
questions used in both user studies.

Before starting the survey, participants were provided with an example and detailed instructions to
familiarize them with the study setup, including the explanation composition and visualization. The
distribution of answers is summarized in Tabs. [[T]and [2}
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Figure 18: This figure showcases the prototypical explanations provided by InfoDisent(ViT-B/16)
model. We visualize prototypes for arbitrary ImageNet images, highlighting relevant regions and

their corresponding channel-specific prototypes.

Table 13: Results showcasing user confidence in
model predictions. We denote statistically sig-
nificant values in bold. Results for ProtoPNet
and GradCAM, marked with an asterisk (*), are

Table 14: Results from other work from similar
user studies to ours, which is assessing the per-
ceived ambiguity of prototypical parts. Results
for ProtoPNet and ProtoConcepts are referenced

sourced from the original HIVE study Kim et al.|

from|Ma et al.|(2023)), while findings for PIPNet

(2022)

Method Prediction ImageNet [%] CUB-200 [%]

. Correct NA 73.2+24.9

ProtoPNet
Incorrect NA 46.4 + 35.9
GradCAM® Correct 70.8 +£26.6 72.4+21.5
Incorrect 44.8 £31.6 32.8 +24.3

26

and LucidPPN are cited from [Pach et al.| (2024),

as indicated by the asterisk symbol (¥).

Method Dataset User Acc. [%] p-value

ProtoPNet™* 51.54+5.2 0.288
ProtoConcepts™ CUB 621+54 3.10°°
PIP-Net* 60.0 +£18.1 0.002
LucidPPN* 67.9+16.9 2-10°°
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Figure 19: The figure demonstrates the prototypical explainability of InfoDisent(Swin-S) model by
visualizing prototypes generated for arbitrary ImageNet images, highlighting relevant image regions
and their corresponding channel-specific prototypes.

Disentanglement metrics First we focus on the prototype diversity, we check what is the overlap
of patches used to represent a prototype between different prototypes. Additionally, we’ve quanti-
fied prototype distribution using three key metrics, derived from the five most significant prototype
activations per image:

* Intra-Class Diversity (0-1): Calculated from the mean normalized occurrence frequency of
prototypes within their respective classes, averaged globally. This measures within-class
prototype consistency.

* Inter-Class Diversity (0-1): Assesses prototype sharing between different classes by mea-
suring their cross-class appearance frequency.
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Figure 20: Prototypes of sample classes from InfoDisent(ResNet-50) model trained on the cropped
Stanford Cars dataset (left) and the CUB-200-2011 dataset (right). Yellow frames highlight the class
prototypes.

* Diversity Ratio: Computed as the ratio of Inter-Class to Intra-Class diversity. This normal-
ized measure highlights the balance between consistent within-class prototypes and their
specificity across classes.

Subsequently, we investigated the sparsity of activations and found that InfoDisent activates signifi-
cantly fewer channels than its black-box baseline.

Theoretically, this sparsity stems from InfoDisent’s frozen backbone and disentangling matrix,
which effectively prune non-discriminative pathways and encourage concept localization. This syn-
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Figure 21: Visualizations of InfoDisent(ViT-B/16) model-generated prototypes for selected Ima-
geNet categories.

ergy between sparsity and disentanglement not only enhances interpretability by simplifying concept
attribution but also maintains scalability.

D MEDICAL DATASET EXPERIMENT

To validate the versatility of InfoDisent, we applied it to medical dataset of chest X-Rays to identify
patients with pneumonia [Kermany| (2018). Below we present both, results of numerical experiments
(accuracy) in Tab.[T7]and exemplary explanations Fig.[27a|for healthy patients and Fig.[27b]for sick
patients. One can observe, that prototypical explanations focus on different anatomical locations of
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Figure 22: Representative ImageNet class prototypes produced by the InfoDisent(Swin-S) model.

the lungs, while performance of the model is slightly worse than its black-box counterpart (ResNet-
18). Moreover, InfoDisent operates on ImageNet-pretrained backbone, while baseline ResNet-18 is
unfrozen during training.

E LLM USAGE

We have utilized LLMs such as ChatGPT and Gemini to refine the grammar, identify typos and
polish the writing style of this work.
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Table 9: Detailed results on FunnyBirds.

Backbone Method ACC BI Com. Cor. Con. mX
1G 098 1.00 088 065 091 0.82
IG abs. 098 1.00 092 063 0.74 0.76
RISE 098 1.00 078 079 0.75 0.77
LIME 098 100 090 000 0.00 0.30
ViT-B/16  IxG 098 1.00 054 051 0.67 057
Grad-CAM 098 1.00 081 070 048 0.66
Rollout 098 1.00 081 076 0.00 0.52

Chefer-LRP 098 1.00 090 0.74 095 0.86
InfoDisent 098 081 082 063 091 0.78

1G 1.00 1.00 086 059 098 0.81
IG abs. 1.00 1.00 087 053 086 0.75
RISE 1.00 1.00 070 056 0.61 0.62
LIME 1.00 1.00 086 0.00 0.00 0.29
ResNet50 IxG 1.00 1.00 058 054 080 0.64
Grad-CAM 1.00 1.00 074 055 078 0.69
B-cos 096 087 0.89 069 089 0.82
X-DNN 099 100 091 060 087 0.79

InfoDisent 1.00 1.00 091 065 097 0.84

Table 10: Performance under Image Perturbations. Note that J stands for Jaccard Similarity Index,
and C stands for Cosine Similarity.

Data Model Param. Brightness Contrast Gaussian Saturation
g © o © GO © O ©O
0.01 0.9921 0.9997 0.9903 0.9996
ConvNeXt-Tiny 0.1 0.9552 0.9985 0.9628 0.9987
0.5 0.8640 0.9921 0.8830 0.9933
CARS 0.01 0.9979 0.9999 0.9981 0.9999
DenseNet121 0.1 0.9859 0.9997 0.9756 0.9997
0.5 0.9273 0.9985 0.9271 0.9985
0.01 0.9961 1.0000 0.9948 1.0000
ResNet50 0.1 0.9825 0.9998 0.9835 0.9998
0.5 0.9291 0.9993 0.9314 0.9990
0.01 0.9890 0.9992 0.9824 0.9987
ConvNeXt-Tiny 0.1 0.9531 0.9967 0.9607 0.9971
0.5 0.8463 0.9856 0.8521 0.9865
CUB 0.01 0.9969 0.9995 0.9912 0.9994
DenseNet121 0.1 0.9735 0.9992 0.9735 0.9990
0.5 0.9101 0.9964 0.9022 0.9960
0.01 0.9888 0.9998 0.9880 0.9998
ResNet50 0.1 0.9666 0.9992 0.9673 0.9993
0.5 0.8983 0.9966 0.8963 0.9966

Table 11: Distribution of answers in user study on user confidence in model’s prediction based on
explanation.

Dataset Fairly ... correct Somewhat ... correct  Somewhat ... incorrect  Fairly ... incorrect
CUB 585 316 208 91
ImageNet 449 248 189 314
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Table 12: Distribution of answers in user study on prototypical part disambiguity.

Dataset Correct  Incorrect
CUB 776 424
ImageNet 712 488
ResNet DenseNet

ConvNeXt

InfoDisent ~ Grad-CAM LRP

InfoDisent  Grad-CAM

LRP

InfoDisent  Grad-CAM

@

i-iE

B

L

Figure 23: Comparison of example heat maps generated by InfoDisent proposed model and com-
peting approaches. Our technique produces more focused heat maps by leveraging representational
channels and the information bottleneck principle, outperforming traditional methods like Grad-
CAM. InfoDisent maps channel activations from the last but one layer. These activations highlight
precise and important regions of the input. Their interpretation aligns directly with other attribution-

based approaches we compare against, such as LRP and Grad-CAM.
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ResNet-34 ResNet-50 DenseNet-121 ConvNeXt ViT-B/16 Swin-S

Figure 24: Example heatmaps generated by InfoDisent, our proposed method, demonstrating acti-
vation regions on sample photos from the ImageNet test set.
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An image has been classified by the model. Below the image there is an
explanation that the model gave to justify its decision. Based on the
explanation, what do you think about the model’s prediction?

A. Fairly confident that the model is correct.

B. Somewhat confident that the model is correct.

C. Somewhat confident that the model is incorrect.
D. Fairly confident that the model is incorrect.

Region
Zoom

Region
Zoom
\—

Figure 25: An exemplary question from the user study on user confidence.

Table 15: Disentanglement metrics.

Dataset Model Intra-Class  Inter-Class  Diversity
CAR ConvNeXt-Tiny (InfoD) 0.261 0.033 0.132
ConvNeXt-Tiny (Base) 0.218 0.040 0.188
DenseNet121 (InfoD) 0.639 0.011 0.018
DenseNet121 (Base) 0.371 0.014 0.039
ResNet50 (InfoD) 0.741 0.010 0.014
ResNet50 (Base) 0.428 0.013 0.031
CUB ConvNeXt-Tiny (InfoD) 0.253 0.021 0.087
ConvNeXt-Tiny (Base) 0.169 0.016 0.098
DenseNetl121 (InfoD) 0.562 0.011 0.021
DenseNet121 (Base) 0.337 0.015 0.047
ResNet50 (InfoD) 0.617 0.017 0.029
ResNet50 (Base) 0.369 0.015 0.041
ImageNet ConvNeXt-L-InfoD 0.285 0.022 0.081
ConvNeXt-L (Base) 0.149 0.018 0.124
DenseNetl121 (InfoD) 0.334 0.012 0.038
DenseNet121 (Base) 0.277 0.012 0.046
Swin-S (InfoD) 0.393 0.011 0.028
Swin-S (Base) 0.159 0.011 0.074
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An image has been classified by the model. Below the image there are two explanations for two most probable bird species that the model predicted. Based
on the explanations, which species did the model predict?

A. Species A

B. Species B

Figure 26: An exemplary question from the user study on disambiguity of prototypical parts.

Table 16: Number of channel used to make predictions. One can observe that InfoDisent is much
sparser than a baseline model.

Dataset Model Baseline InfoDisent
CARS ConvNeXt-Tiny 380 £ 8.6 246 £ 8.1
DenseNet121 214.1 £ 199 28.1+12.1
ResNet50 868.2 +77.3 111 £113.2
CUB ConvNeXt-Tiny 466.1 £ 71 99.2+9.7
DenseNet121 208.7 +26.4 37.7+£30.1
ResNet50 961.9+99.3 187.3+249.6
ImageNet ConvNeXt-L 764.2+12.4 495.7 +35.7
DenseNet121 2543 +17.1 112.8 +£103.6
Max Vit 261.4+12.3 250.2 £ 10.6
ResNet50 1049 +£59.3  226.7 +240.6
Swin-S 4559+ 11 328.3 +£26.9
ViT-B/16 16472.4 £ 6.7 294 +34.3
Model Accuracy [%]
InfoDisent 90.55 4 0.45

ResNet-18 92.57 +1.14

Table 17: Pneumonia detection performance comparison. We compare our proposed InfoDisent
method (using a frozen, ImageNet-pretrained backbone) against a standard black-box ResNet-18
(fully unfrozen). InfoDisent achieves results comparable to, though slightly lower than, the fully
fine-tuned baseline.
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(b) Pneumonia

Figure 27: Exemplary explanation for pneumonia detection based on (2018) dataset.
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