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Abstract
Neural posterior estimation methods based on dis-
crete normalizing flows have become established
tools for simulation-based inference (SBI), but
scaling them to high-dimensional problems can be
challenging. Building on recent advances in gen-
erative modeling, we here present flow matching
posterior estimation (FMPE), a technique for SBI
using continuous normalizing flows. Like diffu-
sion models, and in contrast to discrete flows, flow
matching allows for unconstrained architectures,
providing enhanced flexibility for complex data
modalities. Flow matching, therefore, enables ex-
act density evaluation, fast training, and seamless
scalability to large architectures—making it ideal
for SBI. We show that FMPE achieves compet-
itive performance on an established SBI bench-
mark, and then demonstrate its improved scal-
ability on a challenging scientific problem: for
gravitational-wave inference, FMPE outperforms
methods based on comparable discrete flows, re-
ducing training time by 30% with substantially
improved accuracy. Our work underscores the
potential of FMPE to enhance performance in
challenging inference scenarios, thereby paving
the way for more advanced scientific applications.

1. Introduction
The ability to readily represent Bayesian posteriors of ar-
bitrary complexity using neural networks would herald a
revolution in scientific data analysis. Such networks could
be trained using simulated data and used for amortized in-
ference across observations—bringing tractable inference
and speed to a myriad of scientific models. Thanks to in-
novative architectures such as normalizing flows (Rezende
& Mohamed, 2015; Papamakarios et al., 2021), approaches
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Figure 1. Comparison of network architectures (left) and flow tra-
jectories (right). Discrete flows (NPE, top) require a specialized
architecture for the density estimator. Continuous flows (FMPE,
bottom) are based on a vector field parametrized with an uncon-
strained architecture. FMPE uses this additional flexibility to put
an enhanced emphasis on the conditioning data x, which in the
SBI context is typically high dimensional and in a complex do-
main. Further, the optimal transport path produces simple flow
trajectories from the base distribution (inset) to the target.

to neural simulation-based inference (SBI) (Cranmer et al.,
2020) have seen remarkable progress in recent years. Here,
we show that modern approaches to deep generative model-
ing (particularly flow matching) deliver substantial improve-
ments in simplicity, flexibility and scaling when adapted to
SBI. The Bayesian approach to data analysis is to compare
observations to models via the posterior distribution p(θ|x).
This gives our degree of belief that model parameters θ
gave rise to an observation x, and is proportional to the
model likelihood p(x|θ) times the prior p(θ). One is typi-
cally interested in representing the posterior in terms of a
collection of samples, however obtaining these through stan-
dard likelihood-based algorithms can be challenging for in-
tractable or expensive likelihoods. In such cases, SBI offers
an alternative based instead on data simulations x ∼ p(x|θ).
Combined with deep generative modeling, SBI becomes a
powerful paradigm for scientific inference (Cranmer et al.,
2020). Neural posterior estimation (NPE) (Papamakarios
& Murray, 2016; Lueckmann et al., 2017; Greenberg et al.,
2019), for instance, trains a conditional density estimator
q(θ|x) to approximate the posterior, allowing for rapid sam-
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pling and density estimation for any x.

The NPE density estimator q(θ|x) is commonly taken to be
a (discrete) normalizing flow (Rezende & Mohamed, 2015;
Papamakarios et al., 2021). Normalizing flows transform
noise to samples through a discrete sequence of basic trans-
forms. These have been carefully engineered to be invertible
with simple Jacobian determinant, enabling efficient maxi-
mum likelihood training, while producing expressive q(θ|x).
Although many such discrete flows are universal density ap-
proximators (Papamakarios et al., 2021), in practice, they
can be challenging to scale to very large networks.

Recent studies (Sharrock et al., 2022; Geffner et al.,
2022) propose neural posterior score estimation (NPSE),
an approach that models the posterior distribution with
score-matching (or diffusion) networks. These techniques
were originally developed for generative modeling (Sohl-
Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020),
achieving state-of-the-art results in many domains, includ-
ing image generation (Dhariwal & Nichol, 2021; Ho et al.,
2022). Like normalizing flows, diffusion models transform
noise into samples, but with trajectories parametrized by
a continuous “time” parameter t. The trajectories solve a
stochastic differential equation (Song et al., 2020) (SDE)
defined in terms of a vector field vt, which is trained to
match the score of the intermediate distributions pt. NPSE
has several advantages compared to NPE, in particular the
freedom to use unconstrained network architectures.

We here propose to use flow matching, another recent tech-
nique for generative modeling, for Bayesian inference, an
approach we refer to as flow-matching posterior estimation
(FMPE). Flow matching is also based on a vector field vt and
thereby also admits flexible network architectures (Fig. 1).
For flow matching, however, vt directly defines the veloc-
ity field of deterministic sample trajectories, which solve
ordinary differential equations (ODEs). As a consequence,
flow matching allows for additional freedom in designing
non-diffusion paths such as optimal transport, and provides
direct access to the density (Lipman et al., 2022). We eval-
uate FMPE on a standard SBI benchmark and parameter
inference of gravitational waves (see Section 3).

2. Flow matching posterior estimation
In this section, we give a brief introduction to the flow
matching technique (additional information in App. A) and
discuss key differences when applying flow matching to
simulation based inference instead of generative modelling.
In the supplemental material, we additionally investigate
mass coverage (App. D).

2.1. Flow matching

Flow matching was recently introduced as an efficient ap-
proach to train continuous normalizing flows. Continuous

flows (Chen et al., 2018) are a family qt(θ|x) of distributions
parametrized by “time” t ∈ [0, 1], where q0(θ|x) = q0(θ) is
a fixed base distribution and q1(θ|x) = q(θ|x) the target dis-
tribution. They can be generated by a time-dependent vector
field vt,x on the sample space describing the velocities of
the sample trajectories. The advantage of continuous flows
is that vt,x(θ) can be simply specified by a neural network
taking Rn+m+1 → Rn. In contrast, discrete normalizing
flows are built using highly restricted bijections.

While continuous flows cannot be efficiently trained by max-
imizing the likelihood, an alternative training objective is
provided by flow matching (Lipman et al., 2022). This di-
rectly regresses vt,x on a vector field ut,x that generates
a target probability path pt,x. Then, training does not re-
quire integration of ODEs, however it is not clear how to
choose (ut,x, pt,x), and how to make this objective tractable.
The key insight of Lipman et al. (2022) is that the training
objective becomes extremely simple, if the path is chosen
on a sample-conditional basis.1 Indeed, given a sample-
conditional probability path pt(θ|θ1) and a corresponding
vector field ut(θ|θ1), the sample-conditional loss is given
by

LSCFM = E t∼U [0,1], x∼p(x),
θ1∼p(θ|x), θt∼pt(θ|θ1)

∥vt,x(θt)− ut(θt|θ1)∥2 .

(1)
Remarkably, minimization of this loss is equivalent to re-
gressing vt,x(θ) on the marginal vector field ut,x(θ) that
generates pt(θ|x) (Lipman et al., 2022). There is a lot of
freedom in choosing a sample-conditional path pt(θ|θ1);
here we focus on the optimal transport path introduced by
Lipman et al. (2022) where pt(θ|θ1) = N (tθ1, σ

2
t ), with

σt = 1 − (1 − σmin)t for a small constant σmin. The
sample-conditional vector field then has the simple form
ut(θ|θ1) = σ−1

t (θ1 − (1− σmin)θ).

To apply flow matching to SBI we use Bayes’ theorem to
make the usual replacement Ep(x)p(θ|x) → Ep(θ)p(x|θ) in
the loss function (1), eliminating the intractable expectation
values. This gives the FMPE loss

LFMPE = E θ1∼p(θ),x∼p(x|θ1),
t∼p(t), θt∼pt(θt|θ1)

∥vt,x(θt)− ut(θt|θ1)∥2 ,

(2)
which we minimize using empirical risk minimization over
samples (θ, x) ∼ p(θ)p(x|θ), i.e. training data is generated
by sampling θ from the prior, and then simulating data x cor-
responding to θ. This is similar to NPE training, but replaces
the log likelihood maximization with the sample-conditional
flow matching objective. Note that in this expression we also
sample t ∼ p(t), t ∈ [0, 1] (see Sec. 2.3), which generalizes
the uniform distribution in (6).

1We refer to conditioning on θ1 as sample-conditioning to
distinguish from conditioning on x.
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Figure 2. Comparison of FMPE with NPE, a standard SBI method, across 10 benchmark tasks (Lueckmann et al., 2021).

2.2. Network architecture

Generative diffusion or flow matching models typically op-
erate on complicated and high dimensional data in the θ
space (e.g., images with millions of pixels). One typically
uses U-Net (Ronneberger et al., 2015) like architectures, as
they provide a natural mapping from θ to a vector field v(θ)
of the same dimension. The dependence on t and an condi-
tioning vector x is then added on top of this architecture.

For SBI, the data x is often associated with a complicated
domain, such as image or time series data, whereas param-
eters θ are typically low dimensional. In this context, it is
therefore useful to build the architecture starting as a map-
ping from x to v(x) and then add conditioning on θ and t.
In practice, one can therefore use any established feature ex-
traction architecture for data in the domain of x, and adjust
the dimension of the feature vector to n = dim(θ). In our
experiments, we found that the (t, θ)-conditioning is best
achieved using gated linear units (Dauphin et al., 2017) to
the hidden layers of the network (see also Fig. 1).

2.3. Re-scaling the time prior

The time prior U [0, 1] in (6) distributes the training capacity
uniformly across t. We observed that this is not always
optimal in practice, as the complexity of the vector field
may depend on t. For FMPE we therefore sample t in
(2) from a power-law distribution pα(t) ∝ t1/(1+α), t ∈
[0, 1], introducing an additional hyperparameter α. This
includes the uniform distribution for α = 0, but for α > 0,
assigns greater importance to the vector field for larger
values of t. We empirically found this to improve learning
for distributions with sharp bounds (e.g., Two Moons in
Section 3.1).

3. Experiments
3.1. SBI Benchmark

We evaluate FMPE on ten tasks included in the benchmark
presented in (Lueckmann et al., 2021), ranging from sim-
ple Gaussian toy models to more challenging SBI prob-
lems from epidemiology and ecology, with varying di-
mensions for parameters (dim(θ) ∈ [2, 10]) and obser-
vations (dim(x) ∈ [2, 100]). For each task, we train
three separate FMPE models with simulation budgets N ∈
{103, 104, 105}. We use a simple network architecture con-
sisting of fully connected residual blocks (He et al., 2015) to
parameterize the conditional vector field. For the two tasks
with dim(x) = 100 (B-GLM-Raw, SLCP-D), we condition
on (t, θ) via gated linear units, as described in Section 2.2.
For the remaining tasks with dim(x) ≤ 10 we concate-
nate (t, θ, x) instead. We reserve 5% of the simulations for
validation.

For each task and simulation budget, we evaluate the model
with the lowest validation loss by comparing q(θ|x) to the
reference posteriors p(θ|x) provided in (Lueckmann et al.,
2021) for ten different observations x in terms of the C2ST
score (Friedman, 2003; Lopez-Paz & Oquab, 2016). This
performance metric is computed by training a classifier to
discriminate inferred samples θ ∼ q(θ|x) from reference
samples θ ∼ p(θ|x). The C2ST score is then the test accu-
racy of this classifier, ranging from 0.5 (best) to 1.0. We
observe that FMPE exhibits comparable performance to an
NPE baseline model for most tasks and outperforms on sev-
eral (Fig. 2). As NPE is one of the highest ranking methods
for many tasks in the benchmark, these results show that
FMPE indeed performs competitively with other existing
SBI methods. Notably, a great performance improvement
of FMPE with GLU-conditioning over NPE is observed for
B-GLM-Raw and SLCP-D with large simulation budgets
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Figure 3. Results for GW150914 (Abbott et al., 2016). Top: Cor-
ner plot showing 1D marginals on the diagonal and 2D 50% cred-
ible regions. We display four GW parameters (distance dL, time
of arrival tc, and sky coordinates α, δ); these represent the least
accurate NPE parameters. Bottom: Deviation between inferred
posteriors and the reference, quantified by the Jensen-Shannon
divergence (JSD). The FMPE posterior matches the reference
more accurately than NPE, and performs similarly to symmetry-
enhanced GNPE (Dax et al., 2022). (We do not display GNPE
results on the top due to different data conditioning settings in
available networks.)

(N = 104, 105). This underscores the benefit of FMPE to
adopt new network architectures according to the structure
of the task at hand. For a comparison with the standard
architecture, see App. C.

3.2. Gravitational-wave inference

Gravitational waves (GWs) are ripples of spacetime pre-
dicted by Einstein and produced by cataclysmic cosmic
events such as the mergers of binary black holes (BBHs).
GWs propagate across the universe to Earth, where the
LIGO-Virgo-KAGRA observatories measure faint time-
series signals embedded in noise. These are analyzed using
Bayesian inference to draw conclusions about BBH parame-
ters including masses, spins and location. For further details
see App. B.

We here apply FMPE to GW inference. As a baseline, we

train an NPE network with the settings described in (Dax
et al., 2021) with a few minor changes (see App. B).2 We
train the NPE and FMPE networks with 5 · 106 simulations
for 400 epochs using a batch size of 4096 on an A100
GPU. The FMPE network (1.9 · 108 learnable parameters,
training takes ≈ 2 days) is larger than the NPE network
(1.3 · 108 learnable parameters, training takes ≈ 3 days),
but trains substantially faster. We evaluate both networks on
GW150914 (Abbott et al., 2016), the first detected GW. We
generate a reference posterior using the method described
in (Dax et al., 2023). Fig. 3 compares the inferred posterior
distributions qualitatively and quantitatively in terms of the
Jensen-Shannon divergence (JSD) to the reference.

FMPE substantially outperforms NPE in terms of accuracy,
with a mean JSD of 0.5 mnat (NPE: 3.6 mnat), and max
JSD < 2.0 mnat, an indistinguishability criterion for GW
posteriors (Romero-Shaw et al., 2020). We believe that this
is related to the network structure as follows. The NPE
network allocates roughly two thirds of its parameters to
the discrete normalizing flow and only one third to the em-
bedding network (i.e., the feature extractor for x). Since
FMPE parameterizes a much simpler vector field, it can
devote its network capacity to the interpretation of the high-
dimensional x ∈ R15744, and thereby scales much better
to larger networks and achieve much higher accuracy. Re-
markably, FMPE accuracy is even comparable to GNPE,
which leverages physical symmetries to simplify data and
has been validated in a variety of settings (Dax et al., 2021;
2022; 2023; Wildberger et al., 2023).

4. Conclusions
We introduced flow matching posterior estimation, a new
simulation-based inference technique based on continuous
normalizing flows. In contrast to existing neural posterior
estimation methods, it does not rely on restricted density
estimation architectures such as discrete normalizing flows,
and instead parametrizes a distribution in terms of a con-
ditional vector field. This enables more flexible network
architectures and seamless scaling (like score matching),
while enabling flexible path specification and direct access
to the posterior density.

We evaluated FMPE on a set of 10 benchmark tasks and
found competitive or better performance compared to other
simulation-based inference methods. On the challenging
task of gravitational-wave inference, FMPE substantially
outperformed comparable discrete flows, producing sam-
ples on par with a method that explicitly leverages sym-
metries to simplify training. Additionally, flow matching
latent spaces are more naturally structured than those of

2Our implementation builds on the public DINGO code from
https://github.com/dingo-gw/dingo.

https://github.com/dingo-gw/dingo
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discrete flows, particularly when using paths such as op-
timal transport. Looking forward, it would be interesting
to exploit such structure in designing learning algorithms.
This performance and flexibilty underscores the capability
of continuous normalizing flows to efficiently solve inverse
problems.
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Forteza, X. J., and Bohé, A. Frequency-domain gravi-
tational waves from nonprecessing black-hole binaries.
II. A phenomenological model for the advanced de-
tector era. Phys. Rev., D93(4):044007, 2016. doi:
10.1103/PhysRevD.93.044007.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M.,
and Le, M. Flow matching for generative modeling.
CoRR, abs/2210.02747, 2022. doi: 10.48550/arXiv.
2210.02747. URL https://doi.org/10.48550/
arXiv.2210.02747.

Lopez-Paz, D. and Oquab, M. Revisiting classifier two-
sample tests. arXiv preprint arXiv:1610.06545, 2016.
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A. Preliminaries
Normalizing flows. A normalizing flow (Rezende & Mohamed, 2015; Papamakarios et al., 2021) defines a probability
distribution q(θ|x) over parameters θ ∈ Rn in terms of an invertible mapping ψx : Rn → Rn from a simple base distribution
q0(θ),

q(θ|x) = (ψx)∗q0(θ) = q0(ψ
−1
x (θ)) det

∣∣∣∣∂ψ−1
x (θ)

∂θ

∣∣∣∣ , (3)

where (·)∗ denotes the pushforward operator, and for generality we have conditioned on additional context x ∈ Rm. Unless
otherwise specified, a normalizing flow refers to a discrete flow, where ψx is given by a composition of simpler mappings
with triangular Jacobians, interspersed with shuffling of the θ. This construction results in expressive q(θ|x) and also
efficient density evaluation (Papamakarios et al., 2021).

Continuous normalizing flows. A continuous flow (Chen et al., 2018) also maps from base to target distribution, but
is parametrized by a continuous “time” t ∈ [0, 1], where q0(θ|x) = q0(θ) and q1(θ|x) = q(θ|x). For each t, the flow is
defined by a vector field vt,x on the sample space. This corresponds to the velocity of the sample trajectories,

d

dt
ψt,x(θ) = vt,x(ψt,x(θ)), ψ0,x(θ) = θ. (4)

We obtain the trajectories θt ≡ ψt,x(θ) by integrating this ODE. The final density is given by

q(θ|x) = (ψ1,x)∗q0(θ) = q0(θ) exp

(
−
∫ 1

0

div vt,x(θt) dt

)
, (5)

which is obtained by solving the transport equation ∂tqt + div(qtvt,x) = 0.

The advantage of the continuous flow is that vt,x(θ) can be simply specified by a neural network taking Rn+m+1 → Rn, in
which case (4) is referred to as a neural ODE (Chen et al., 2018). Since the density is tractable via (5), it is in principle
possible to train the flow by maximizing the (log-)likelihood. However, this is often not feasible in practice, since both
sampling and density estimation require many network passes to numerically solve the ODE (4).

Flow matching. An alternative training objective for continuous normalizing flows is provided by flow matching (Lipman
et al., 2022). This directly regresses vt,x on a vector field ut,x that generates a target probability path pt,x. It has the
advantage that training does not require integration of ODEs, however it is not immediately clear how to choose (ut,x, pt,x).
The key insight of (Lipman et al., 2022) is that, if the path is chosen on a sample-conditional basis,3 then the training
objective becomes extremely simple. Indeed, given a sample-conditional probability path pt(θ|θ1) and a corresponding
vector field ut(θ|θ1), we specify the sample-conditional flow matching loss as

LSCFM = Et∼U [0,1], x∼p(x), θ1∼p(θ|x), θt∼pt(θ|θ1) ∥vt,x(θt)− ut(θt|θ1)∥2 . (6)

Remarkably, minimization of this loss is equivalent to regressing vt,x(θ) on the marginal vector field ut,x(θ) that generates
pt(θ|x) (Lipman et al., 2022). Note that in this expression, the x-dependence of vt,x(θ) is picked up via the expectation
value, with the sample-conditional vector field independent of x.

There exists considerable freedom in choosing a sample-conditional path. Ref. (Lipman et al., 2022) introduces the family
of Gaussian paths

pt(θ|θ1) = N (θ|µt(θ1), σt(θ1)
2In), (7)

where the time-dependent means µt(θ1) and standard deviations σt(θ1) can be freely specified (subject to boundary
conditions4). For our experiments, we focus on the optimal transport paths defined by µt(θ1) = tθ1 and σt(θ1) =
1− (1− σmin)t (also introduced in (Lipman et al., 2022)). The sample-conditional vector field then has the simple form

ut(θ|θ1) =
θ1 − (1− σmin)θ

1− (1− σmin)t
. (8)

3We refer to conditioning on θ1 as sample-conditioning to distinguish from conditioning on x.
4The sample-conditional probability path should be chosen to be concentrated around θ1 at t = 1 (within a small region of size σmin)

and to be the base distribution at t = 0.
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hyperparameter values

residual blocks 2048, 4096× 3, 2048× 3, 1024× 6, 512× 8, 256× 10,
128× 5, 64× 3, 32× 3, 16× 3

residual blocks (t, θ) embedding 16, 32, 64, 128, 256
batch size 4096
learning rate 5.e-4
α (for time prior) 1

residual blocks 2048× 2, 1024× 4, 512× 4, 256× 4, 128× 4, 64× 3,
32× 3, 16× 3

residual blocks (t, θ) embedding 16, 32, 64, 128, 256
batch size 4096
learning rate 5.e-4
α (for time prior) 1

Table 1. Hyperparameters for the FMPE models used in the main text (top) and in the ablation study (bottom, see Fig. 4). The network is
composed of a sequence of residual blocks, each consisting of two fully-connected hidden layers, with a linear layer between each pair of
blocks. The ablation network is the same as the embedding network that feeds into the NPE normalizing flow.

Neural posterior estimation (NPE). NPE is an SBI method that directly fits a density estimator q(θ|x) (usually a
normalizing flow) to the posterior p(θ|x) (Papamakarios & Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019).
NPE trains with the maximum likelihood objective LNPE = −Ep(θ)p(x|θ) log q(θ|x), using Bayes’ theorem to simplify the
expectation value with Ep(x)p(θ|x) → Ep(θ)p(x|θ). During training, LNPE is estimated based on an empirical distribution
consisting of samples (θ, x) ∼ p(θ)p(x|θ). Once trained, NPE can perform inference for every new observation using
q(θ|x), thereby amortizing the computational cost of simulation and training across all observations. NPE further provides
exact density evaluations of q(θ|x). Both of these properties are crucial for the physics application in section 3.2, so we aim
to retain these properties with FMPE.

B. Gravitational-wave inference
We here provide the missing details and additional results for the gravitational wave inference problem analyzed in
Section 3.2.

B.1. Network architecture and hyperparameters

Our network architecture extends the NPE network with settings described in (Dax et al., 2021). This uses an embedding
network (Radev et al., 2020) to compress x to a 128-dimensional feature vector, which is then used to condition a neural
spline flow (Durkan et al., 2019). The embedding network consists of a learnable linear layer initialized with principal
components of GW simulations followed by a series of dense residual blocks (He et al., 2015). This architecture is a
powerful feature extractor for GW measurements (Dax et al., 2021). As pointed out in Section 2.2, it is straightforward
to reuse such architectures for FMPE, with the following three modifications: (1) we provide the conditioning on (t, θ) to
the network via gated linear units in each hidden layer and use a small residual network to embed (t, θ) before applying
the gated linear units; (2) we change the dimension of the final feature vector to the dimension of θ so that the network
parameterizes the conditional vector field (t, x, θ) → vt,x(θ); (3) we increase the number and width of the hidden layers to
use the capacity freed up by removing the discrete normalizing flow (Tab. 1, top panel).

In this Appendix we also perform an ablation study, using the same embedding network as the NPE network (Tab. 1, bottom
panel). For this configuration, we additionally study the effect of conditioning on (t, θ) starting from different layers of the
main residual network.

B.2. Data settings

We use the data settings described in (Dax et al., 2021), with a few minor modifications. In particular, we use the
waveform model IMRPhenomPv2 (Hannam et al., 2014; Khan et al., 2016; Bohé et al., 2016) and the prior displayed in
Tab. 2. Compared to (Dax et al., 2021), we reduce the frequency range from [20, 1024] Hz to [20, 512] Hz to reduce the
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Description Parameter Prior

component masses m1, m2 [10, 120] M⊙, m1 ≥ m2

chirp mass Mc = (m1m2)
3
5 /(m1 +m2)

1
5 [20, 120] M⊙ (constraint)

mass ratio q = m2/m1 [0.125, 1.0] (constraint)
spin magnitudes a1, a2 [0, 0.99]
spin angles θ1, θ2, ϕ12, ϕJL standard as in (Farr et al., 2014)
time of coalescence tc [−0.03, 0.03] s
luminosity distance dL [100, 1000] Mpc
reference phase ϕc [0, 2π]
inclination θJN [0, π] uniform in sine
polarization ψ [0, π]
sky position α, β uniform over sky

Table 2. Priors for the astrophysical binary black hole parameters. Priors are uniform over the specified range unless indicated otherwise.
Our models infer the mass parameters in the basis (Mc, q) and marginalize over the phase parameter ϕc. We represent x in frequency
domain; for two LIGO detectors and complex f ∈ [20, 512] Hz, ∆f = 0.125 Hz, we have x ∈ R15744.

computational load for data preprocessing. We also omit the conditioning on the detector noise power spectral density (PSD)
introduced in (Dax et al., 2021) as we evaluate on a single GW event. Preliminary tests show that the performance with PSD
conditioning is similar to the results reported in this paper. All changes to the data settings have been applied to FMPE and
the NPE baselines alike to enable a fair comparison.

B.3. Additional results

Tab. B.3 displays the inference times for FMPE and NPE. NPE requires only a single network pass to produce samples and
(log-)probabilities, whereas many forwards passes are needed for FMPE to solve the ODE with a specific level of accuracy.
A significant portion of the additional time required for calculating (log-)probabilities in conjunction with the samples is
spent on computing the divergence of the vector field, see Eq. (5). Fig. 4 presents a comparison of the FMPE performance
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Figure 4. Jensen-Shannon divergence between inferred posteriors and the reference posteriors for GW150914 (Abbott et al., 2016). We
compare two FMPE models with the same architecture as the NPE embedding network, see Tab. 1 bottom panel. For the model in the first
row, the GLU conditioning of (θ, t) is only applied before the final 128-dim blocks. The model in the middle row is given the context
after the very first 2048 block.

using networks of the same hidden dimensions as the NPE embedding network (Tab. 1 bottom panel). This comparison
includes an ablation study on the timing of the (t, θ) GLU-conditioning. In the top-row network, the (t, θ) conditioning is
applied only after the 256-dimensional blocks. In contrast, the middle-row network receives (t, θ) immediately after the
initial residual block. With FMPE we can achieve performance comparable to NPE, while having only ≈ 1/3 of the network
size (most of the NPE network parameters are in the flow). This suggests that parameterizing the target distribution in terms
of a vector field requires less learning capacity, compared to directly learning its density. Delaying the (t, θ) conditioning
until the final layers impairs performance. However, the number of FLOPs at inference is considerably reduced, as the
context embedding can be cached and a network pass only involves the few layers with the (t, θ) conditioning. Consequently,
there’s a trade-off between accuracy and inference speed, which we will explore in a greater scope in future work.
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Network Passes Inference Time (per batch)

FMPE (sample only) 248 26s
FMPE (sample and log probs) 350 352s

NPE (sample and log probs) 1 1.5s

Table 3. Inference times per batch for FMPE and NPE on a single Nvidia A100 GPU, using the training batch size of 4096. We solve the
ODE for FMPE using the dopri5 discretization (Dormand & Prince, 1980) with absolute and relative tolerances of 1e-7. For FMPE,
generation of the (log-)probabilities additionally requires the computation of the divergence, see equation (5). This needs additional
memory and therefore limits the maximum batch size that can be used at inference.

Table 4. Sweep values for the hyperparamters for the SBI benchmark. We split the configurations according to simulation budgets, e.g. for
1000 simulations, we only swept over smaller values for network size and batch size. The network architecture has a diamond shape, with
increasing layer width from smallest to largest and then decreasing to the output dimension. Each block consists of two fully-connected
residual layers.

hyperparameter sweep values

hidden dimensions 2n for n ∈ {4, . . . , 10}
number of blocks 10, . . . , 18
batch size 2n for n ∈ {2, . . . , 9}
learning rate 1.e-3, 5.e-4, 2.e-4, 1.e-4
α (for time prior) -0.25, -0.5, 0, 1, 4

C. SBI Benchmark
In this section, we collect missing details and additional results for the analysis of the SBI benchmark in Section 3.1.

C.1. Network architecture and hyperparameters

For each task and simulation budget in the benchmark, we perform a mild hyperparameter optimization. We sweep over the
batch size and learning rate (which is particularly important as the simulation budgets differ by orders of magnitudes), the
network size and the α parameter for the time prior defined in Section 2.3 (see Tab. 4 for the specific values). We reserve 5%
of the simulation budget for validation and choose the model with the best validation loss across all configurations.

C.2. Additional results

We here provide various additional results for the SBI benchmark. First, we compare the performance of FMPE and NPE
when using the Maximum Mean Discrepancy metric (MMD). The results can be found in Fig. 5. FMPE shows superior
performance to NPE for most tasks and simulation budgets. Compared to the C2ST scores in Fig. 2 the improvement shown
by FMPE in MMD is more substantial.

Fig. 6 compares the FMPE results with the optimal transport path from the main text with a comparable score matching
model using the Variance Preserving diffusion path (Song et al., 2020). The score matching results were obtained using
the same batch size, network size and learning rate as the FMPE network, while optimizing for βmin ∈ {0.1, 1, 4} and
βmax ∈ {4, 7, 10}. FMPE with the optimal transport path clearly outperforms the score-based model on almost all
configurations.

Finally we compare FMPE using the architecture proposed in Section 2.2 with (t, θ)-conditioning via gated linear units to
FMPE with a naive architecture operating directly on the concatenated (t, θ, x) vector, see Fig. 7. For the two displayed
tasks the context dimension dim(x) = 100 is much larger than the parameter dimension dim(θ) ∈ {5, 10}, and there is a
clear performance gain in using the GLU conditioning. Our interpretation is that the low dimensionality of (t, θ) means that
it is not well-learned by the network when simply concatenated with x.
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Figure 5. Comparison of FMPE and NPE performance across 10 SBI benchmarking tasks (Lueckmann et al., 2021). We here quantify the
deviation in terms of the Maximum Mean Discrepancy (MMD) as an alternative metric to the C2ST score used in Fig. 2. MMD can be
sensitive to its hyperparameters (Lueckmann et al., 2021), so we use the C2ST score as a primary performance metric.
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Figure 6. Comparison of FMPE with the optimal transport path (as used throughout the main paper) with comparable models trained with
a Variance Preserving diffusion path (Song et al., 2020) by regressing on the score (SMPE). Note that the SMPE baseline shown here is
not directly comparable to NPSE (Sharrock et al., 2022; Geffner et al., 2022), as this method uses Langevin steps, which reduces the
dependence of the results on the vector field for small t (at the cost of a tractable density).
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Figure 7. Comparison of the architecture proposed in Section 2.2 with gated linear units for the (t, θ)-conditioning (red) and a naive
architecture based on a simple concatenation of (t, θ, x) (black). FMPE with the proposed architecture performs substantially better.

D. Mass coverage of FMPE
In this section we investigate the mass coverage of FMPE from a theoretical viewpoint. We here focus on our main results
and delegate the technical arguments to App. E and F.

As we show in our experiments, trained FMPE models q(θ|x) can achieve excellent results in approximating the true
posterior p(θ|x). However, it is not generally possible to achieve exact agreement due to limitations in training budget and
network capacity. It is therefore important to understand how inaccuracies manifest. Whereas sample quality is the main
criterion for generative modeling, for scientific applications one is often interested in the overall shape of the distribution. In
particular, an important question is whether q(θ|x) is mass-covering, i.e., whether it contains the full support of p(θ|x). This
minimizes the risk to falsely rule out possible explanations of the data. It also allows us to use importance sampling if the
likelihood p(x|θ) of the forward model can be evaluated, which can be used for precise estimation of the posterior (Müller
et al., 2019; Dax et al., 2023).

argminq DKL(q||p)

argminq DKL(p||q)

argminq LFM

Figure 8. A Gaussian (blue) fitted to a bimodal distri-
bution (gray) with various objectives.

Consider first the mass-covering property for NPE. NPE directly min-
imizes the forward KL divergence DKL(p(θ|x)||q(θ|x)), and thereby
provides probability-mass covering results. Therefore, even if NPE
is not accurately trained, the estimate q(θ|x) should cover the entire
support of the posterior p(θ|x) and the failure to do so can be ob-
served in the validation loss. As an illustration in an unconditional
setting, we observe that a unimodal Gaussian q fitted to a bimodal
target distribution p captures both modes when using the forward
KL divergence DKL(p||q), but only a single mode when using the
backwards direction DKL(q||p) (Fig. 8).

As a motivation we now consider a similar settings for FMPE. We fit a
Gaussian (i.e., restricting distributions to be Gaussian) flow-matching
model q(θ) = N (µ̂, σ̂2) to the same bimodal target, in this case,
parametrizing the vector field as

vt(θ) =
(σ2

t + (tσ̂)2 − σt)θt + tµ̂ · σt
t · (σ2

t + (tσ̂)2)
(9)

(see App. E), we also obtain a mass-covering distribution when fitting the learnable parameters (µ̂, σ̂) via (6). This provides
some indication that the flow matching objective induces mass-covering behavior, and leads us to investigate the more
general question of whether the mean squared error between vector fields ut and vt bounds the forward KL divergence.
Indeed, the former agrees up to constant with the sample-conditional loss (6) (see Sec. A).

We denote the flows of ut, vt, by ϕt, ψt, respectively, and we set qt = (ψt)∗q0, pt = (ϕt)∗q0. The precise question then is
whether we can bound DKL(p1||q1) by MSEp(u, v)

α for some positive power α. It was already observed in (Albergo et al.,



Flow Matching for Scalable Simulation-Based Inference

2023) that this is not true in general, and we provide a simple example to that effect in Lemma F.1 in App. F. Indeed, it
was found in (Albergo et al., 2023) that to bound the forward KL divergence we also need to control the Fisher divergence,∫
pt(dθ)(∇ ln pt(θ)−∇qt(θ))2.

Here we show instead that a bound can be obtained under sufficiently strong regularity assumptions on p0, ut, and vt.
Theorem D.1. Let p0 = q0 and assume ut and vt are two vector fields whose flows satisfy p1 = (ϕ1)∗p0 and q1 = (ψ1)∗q0.
Assume that p0 is square integrable and satisfies |∇ ln p0(θ)| ≤ c(1 + |θ|) and ut and vt have bounded second derivatives.
Then there is a constant C > 0 such that (for MSEp(u, v) < 1))

DKL(p1||q1) ≤ CMSEp(u, v)
1
2 . (10)

The proof of this result can be found in App. F. While the regularity assumptions are not guaranteed to hold in practice
when vt is parametrized by a neural net, the theorem nevertheless gives some indication that the flow-matching objective
encourages mass coverage. In Section 3.1 and 3.2, this is complemented with extensive empirical evidence that flow
matching indeed provides mass-covering estimates.

We remark that it was shown in (Song et al., 2021) that the KL divergence of SDE solutions can be bounded by the MSE of
the estimated score function. Thus, the smoothing effect of the noise ensures mass coverage, an aspect that was further
studied using the Fokker-Planck equation in (Albergo et al., 2023). For flow matching, imposing the regularity assumption
plays a similar role.

E. Gaussian flow
We here derive the form of a vector field vt(θ) that restricts the resulting continuous flow to a one dimensional Gaussian
with mean µ̂ variance σ̂2. With the optimal transport path µt(θ) = tθ1, σt(θ) = 1− (1− σmin)t ≡ σt from (Lipman et al.,
2022), the sample-conditional probability path (7) reads

pt(θ|θ1) = N [tθ1, σ
2
t ](θ). (11)

We set our target distribution

q1(θ1) = N [µ̂, σ̂2](θ1). (12)

To derive the marginal probability path and the marginal vector field we need two identities for the convolution ∗ of Gaussian
densities. Recall that the convolution of two function is defined by f ∗ g(x) =

∫
f(x− y)g(y) dy. We define the function

gµ,σ2(θ) = θ · N
[
µ, σ2

]
(θ). (13)

Then the following holds

N [µ1, σ
2
1 ] ∗ N [µ2, σ

2
2 ] = N [µ1 + µ2, σ

2
1 + σ2

2 ] (14)

g0,σ2
1
∗ N [µ2, σ

2
2 ] =

σ2
1

σ2
1 + σ2

2

(
gµ2,σ2

1+σ2
2
− µ2 N [µ2, σ

2
1 + σ2

2 ]
)

(15)

MARGINAL PROBABILITY PATHS

Marginalizing over θ1 in (11) with (12), we find

pt(θ) =

∫
pt(θ|θ1)q(θ1) dθ1

=

∫
N

[
tθ1, σ

2
t

]
(θ) N

[
µ̂, σ̂2

]
(θ1)dθ1

=

∫
N

[
0, σ2

t

]
(θ − tθ1) N (tµ̂, (tσ̂)2)(tθ1) · t dθ1

=

∫
N

[
0, σ2

t

]
(θ − θt1) N

[
tµ̂, (tσ̂)2

]
(θt1) dθ

t
1

= N
[
tµ̂, σ2

t + (tσ̂)2
]
(θ)

(16)

where we defined θt1 = tθ1 and used (14).
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MARGINAL VECTOR FIELD

We now calculate the marginalized vector field ut(θ) based on equation (8) in (Lipman et al., 2022). Using the sample-
conditional vector field (8) and the distributions (11) and (12) we find

ut(θ) =

∫
ut(θ|θ1)

pt(θ|θ1)q(θ1)
pt(θ)

dθ1

=
1

pt(θ)

∫
(θ1 − (1− σmin)θ)

σt
· N

[
tθ1, σ

2
t

]
(θ) · N

[
µ̂, σ̂2

]
(θ1) dθ1

=
1

pt(θ)

∫
(θ1 − (1− σmin)θ)

σt
· N

[
0, σ2

t

]
(θ − tθ1) · N

[
tµ̂, (tσ̂)2

]
(tθ1) · t dθ1

=
1

pt(θ)

∫
(θ′1 − (1− σmin)t · θ)

σt · t
· N

[
0, σ2

t

]
(θ − θ′1) · N

[
tµ̂, (tσ̂)2

]
(θ′1) · dθ′1

=
1

pt(θ)

∫
(−θ′′1 + (1− (1− σmin)t) · θ)

σt · t
· N

[
0, σ2

t

]
(θ′′1 ) · N

[
tµ̂, (tσ̂)2

]
(θ − θ′′1 ) · dθ′′1

=
1

pt(θ)

∫
(−θ′′1 + σt · θ)

σt · t
· N

[
0, σ2

t

]
(θ′′1 ) · N

[
tµ̂, (tσ̂)2

]
(θ − θ′′1 ) · dθ′′1

(17)

where we used the change of variables θ′1 = tθ1 and θ′′1 = θ − θ′1. Now we evaluate this expression using (13), then the
identities (14) and (15) and the marginal probability (16)

ut(θ) =
−1

pt(θ) · σt · t
(
g0,σ2

t
∗ N

[
tµ̂, (tσ̂)2

])
(θ) +

θ

pt(θ) · t
(
N

[
0, σ2

t

]
∗ N

[
tµ̂, (tσ̂)2

])
(θ)

=
−1

pt(θ) · σt · t
(θ − tµ̂) · σ2

t

σ2
t + (tσ̂)2

· N
[
tµ̂, (σ2

t + (tσ̂)2)
]
(θ) +

θ

pt(θ) · t
N

[
tµ̂, (σ2

t + (tσ̂)2)
]
(θ)

=
(σ2

t + (tσ̂)2)θ − (θ − tµ̂) · σt
pt(θ) · t · (σ2

t + (tσ̂)2)
· pt(θ)

=
(σ2

t + (tσ̂)2 − σt)θ + tµ̂ · σt
t · (σ2

t + (tσ̂)2)
.

(18)

By choosing a vector field vt of the form (18) with learnable parameters µ̂, σ̂2, we can thus define a continuous flow that is
restricted to a one dimensional Gaussian.

F. Mass covering properties of continuous flows
In this section, we provide the technical arguments for Section D and also address the mass covering properties of continuous
normalizing flows trained using mean squared error more broadly. We give two counterexamples and then prove Theorem D.1.
We first introduce some notation. We always assume that the data is distributed according to p1(θ). In addition, there is a
known and simple base distribution p0 and we assume that there is a vector field ut : [0, 1]×Rd → Rd that connects p0 and
p1 in the following sense. We denote by ϕt the flow generated by ut, i.e., ϕt satisfies

∂tϕt(θ) = ut(ϕt(θ)). (19)

Then we assume that (ϕ1)∗p0 = p1 and we also define the interpolations pt = (ϕt)∗p0.

We do not have access to the ground truth distributions pt and the vector field ut but we try to learn a vector field vt
approximating ut. We denote its flow by ψt and we define qt = (ψt)∗q0 and q0 = p0. We are interested in the mass covering
properties of the learned approximation q1 of p1. In particular, we want to relate the KL-divergence DKL(p1||q1) to the
mean squared error,

MSEp(u, v) =

∫ 1

0

dt

∫
pt(dθ)(ut(θ)− vt(θ))

2, (20)

of the generating vector fields. The first observation is that without any regularity assumptions on vt it is impossible to
obtain any bound on the KL-divergence in terms of the mean squared error.
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Lemma F.1. For every ε > 0 there are vector field ut and vt and a base distribution p0 = q0 such that

MSEp(u, v) < ε and DKL(p1||q1) = ∞. (21)

In addition we can construct ut and vt such that the support of p1 is larger than the support of q1.

Proof. We consider the uniform distribution p0 = q0 ∼ U([−1, 1]) and the vector fields

ut(θ) = 0 (22)

and

vt(θ) =

{
ε for 0 ≤ θ < ε,
0 otherwise.

(23)

As before, let ϕt denote the flow of the vector field ut and similarly ψt denote the flow of vt. Clearly ϕt(θ) = θ. On the
other hand

ψt(θ) =

{
min(θ + εt, ε) if 0 ≤ θ < ε,
θ otherwise.

(24)

In particular

ψ1(θ) =

{
ε if 0 ≤ θ < ε,
θ otherwise.

(25)

This implies that p1 = (ϕ1)∗p0 ∼ U([−1, 1]). On the other hand q1 = (ψ1)∗q0 has support in [−1, 0] ∪ [ε, 1]. In particular,
the distribution of q1 is not mass covering with respect to p1 and DKL(p1||q1) = ∞. Finally, we observe that the MSE can
be arbitrarily small

MSEp(u, v) =

∫ 1

0

dt

∫
pt(dθ)|ut(θ)− vt(θ)|2 =

∫ 1

0

∫ ε

0

1

2
ε2 =

ε3

2
. (26)

Here we used that the density of pt(dθ) is 1/2 for −1 ≤ θ ≤ 1.

We see that an arbitrary small MSE-loss cannot ensure that the probability distribution is mass covering and the KL-
divergence is finite. On a high level this can be explained by the fact that for vector fields vt that are not Lipschitz continuous
the flow is not necessarily continuous, and we can generate holes in the distribution. Note that we chose p0 to be a uniform
distribution for simplicity, but the result extends to any smooth distribution, in particular the result does not rely on the
discontinuity of p0.

Next, we investigate the mass covering property for Lipschitz continuous flows. When the flows ut and vt are Lipschitz
continuous (in θ) this ensures that the flows ψ1 and ϕ1 are continuous in x and it is not possible to create holes in the
distribution as shown above for non-continuous vector fields. We show a weaker bound in this setting.

Lemma F.2. For every 0 ≤ δ ≤ 1 there is a base distribution p0 = q0 and the are Lipschitz-continuous vector fields ut and
vt such that MSEp(u, v) = δ and

DKL(p1||q1) ≥
1

2
MSEp(u, v)

1/3. (27)

Proof. We consider p0, q0 and ut as in Lemma F.1, and we define

vt(θ) =


2θ for 0 ≤ θ < ε,
2ε− θ for ε ≤ θ < 2ε,
0 otherwise.

(28)
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Then we can calculate for 0 ≤ θ ≤ e−2ε that

ψt(θ) = θe2t. (29)

Similarly we obtain for ε ≤ θ ≤ 2ε (solving the ODE f ′ = 2f )

ψt(θ) = 2ε− (2ε− θ)e−2t. (30)

We find

ψ1(0) = 0, ψ1(e
−2ε) = ε, ψ1(ε) = 2− εe−2; ψ2(2ε) = 2ε. (31)

Next we find for the densities of q1 that

q1(ψ1(θ)) = q0(θ)|ψ′
1(θ)|−1 =

1

2

{
e−2 for 0 ≤ θ ≤ e−2ε,
e2 for ε ≤ θ ≤ 2ε.

(32)

Together with (31) this implies that the density of q1 is given by

q1(θ) =
1

2

{
e−2 for 0 ≤ θ ≤ ε,
e2 for 2ε− εe−2 ≤ θ ≤ 2ε.

(33)

Note that p1(θ) = 1/2 for −1 ≤ θ ≤ 1 and therefore∫ ε

0

ln
p1(θ)

q1(θ)
p1(dθ) =

∫ ε

0

ln(e2)
1

2
dθ = ε, (34)

and ∫ 2ε

2ε−εe−2

ln
p1(θ)

q1(θ)
p1(dθ) =

∫ 2ε

2ε−εe−2

ln(e−2)
1

2
dθ = −εe−2. (35)

Moreover we note ∫ 2ε−εe−2

ε

q1(dε) =

∫ ε

e−2ε

q0(dε) =
1

2
ε(1− e−2) =

∫ 2ε−εe−2

ε

p1(dε), (36)

which implies (by positivity of the KL-divergence) that∫ 2ε−εe−2

ε

ln

(
p1(θ)

q1(θ)

)
p1(dθ) ≥ 0. (37)

We infer using also p1(θ) = q1(θ) = 1/2 for θ ∈ [−1, 0] ∩ [2ε, 1] that

DKL(p1||q1) =
∫

ln

(
p1(θ)

q1(θ)

)
p1(dθ) ≥ ε(1− e−2). (38)

On the other hand we can bound∫ 1

0

dt

∫
pt(dθ)|vt(θ)− ut(θ)|2 =

1

2

∫ 1

0

dt

∫ 2ε

0

|ut(θ)|2 =

∫ ε

0

s2 ds =
ε3

3
. (39)

We conclude that

DKL(p1||q1) ≥
1

2
(MSEp(u, v))

1/3
. (40)

In particular, it is not possible to bound the KL-divergence by the MSE even when the vector fields are Lipschitz continuous.
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Let us put this into context. It was already shown in (Albergo et al., 2023) that we can, in general, not bound the forward
KL-divergence by the mean squared error and our Lemmas F.1 and F.2 are concrete examples. On the other hand, when
considering SDEs the KL-divergence can be bounded by the mean squared error of the drift terms as shown in (Song et al.,
2021). Indeed, in (Albergo et al., 2023) the favorable smoothing effect was carefully investigated.

Here we show that we can alternatively obtain an upper bound on the KL-divergence when assuming that ut, vt, and p0
satisfy additional regularity assumptions. This allows us to recover the mass covering property from bounds on the means
squared error for sufficiently smooth vector fields. The scaling is nevertheless still weaker than for SDEs.

We now state our assumptions. We denote the gradient with respect to θ by ∇ = ∇µ and second derivatives by ∇2 = ∇2
µν .

When applying the chain rule, we leave the indices implicit. We denote by | · | the Frobenius norm |A| =
(∑

ij A
2
ij

)1/2

of
a matrix. The Frobenius norm is submultiplicative, i.e., |AB| ≤ |A| · |B| and directly generalizes to higher order tensors.

Assumption F.3. We assume that

|∇ut| ≤ L, |∇vt| ≤ L, |∇2ut| ≤ L′, |∇2vt| ≤ L′. (41)

We require one further assumption on p0.

Assumption F.4. There is a constant C1 such that

|∇ ln p0(θ)| ≤ C1(1 + |θ|). (42)

We also assume that

Ep0 |θ|2 < C2 <∞. (43)

Note that (42) holds, e.g., if p0 follows a Gaussian distribution but also for smooth distribution with slower decay at ∞.
If we assume that |∇ ln p0(θ)| is bounded the proof below simplifies slightly. This is, e.g., the case if p0(θ) ∼ e−|θ| as
|θ| → ∞.

We need some additional notation. It is convenient to introduce ϕst = ϕt ◦ (ϕs)−1, i.e., the flow from time s to t (in particular
ϕ0t = ϕt) and similarly for ψ. We can now restate and prove Theorem D.1.

Theorem F.5. Let p0 = q0 and assume ut and vt are two vector fields whose flows satisfy p1 = (ϕ1)∗p0 and q1 = (ψ1)∗q0.
Assume that p0 satisfies Assumption F.4 and ut and vt satisfy Assumption F.3. Then there is a constant C > 0 depending on
L, L′, C1, C2, and d such that (for MSEp(u, v) < 1))

DKL(p1||q1) ≤ CMSEp(u, v)
1
2 . (44)

Remark F.6. We do not claim that our results are optimal, it might be possible to find similar bounds for the forward
KL-divergence with weaker assumptions. However, we emphasize that Lemma F.2 shows that the result of the theorem is
not true without the assumption on the second derivative of vt and ut.

Proof. We want to control DKL(p1||q1). It can be shown that (see equation above (25) in (Song et al., 2021) or Lemma 2.19
in (Albergo et al., 2023) )

∂tDKL(pt||qt) = −
∫
pt(dθ)(ut(θ)− vt(θ)) · (∇ ln pt(θ)−∇ ln qt(θ)). (45)

Using Cauchy-Schwarz we can bound this by

∂tDKL(pt||qt) ≤
(∫

pt(dθ)|ut(θ)− vt(θ)|2
) 1

2
(∫

pt(dθ)|∇ ln pt(θ)−∇ ln qt(θ)|2
) 1

2

. (46)

We use the relation (see (5))

ln(pt(ϕt(θ0)) = ln(p0(θ0))−
∫ t

0

(div us)(ϕs(θ0))ds, (47)
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which can be equivalently rewritten (setting θ = ϕtθ0) as

ln(pt(θ)) = ln(p0(ϕ
t
0θ))−

∫ t

0

(div us)(ϕ
t
sθ)ds. (48)

We use the following relation for ∇ϕts

∇ϕts(θ) = exp

(∫ s

t

dτ (∇uτ )(ϕtτ (θ))
)
. (49)

This relation is standard and can be directly deduced from the following ODE for ∇ϕts

∂s∇ϕts(θ) = ∇∂sϕts(θ) = ∇(us(ϕ
t
s(θ))) =

(
(∇us)(ϕts(θ))

)
· ∇ϕts(θ). (50)

We can conclude that for 0 ≤ s, t ≤ 1 the bound

|∇ϕts(θ)| ≤ eL (51)

holds. We find

|∇ ln(pt(θ))| =
∣∣∣∣∇ ln(p0)(ϕ

t
0θ) · ∇ϕt0(θ)−

∫ t

0

(∇div us)(ϕ
t
sθ) · ∇ϕts(θ)ds

∣∣∣∣
≤ |∇ ln(p0)(ϕ

t
0θ)|eL + L′eL,

(52)

and a similar bound holds for qt. In words, we have shown that the score of pt at θ can be bounded by the score of p0 of
theta transported along the vector field ut minus a correction which quantifies the change of score along the path. We now
bound using the definition pt = (ϕt)∗p0 and the assumption (42)∫

pt(dθ)|∇ ln p0(ϕ
t
0(θ))|2 =

∫
p0(dθ0)|∇ ln p0(ϕ

t
0ϕt(θ0))|2 = Ep0

|∇ ln p0(θ0)|2

≤ Ep0
(C1(1 + |θ0|)2) ≤ 2C2

1 (1 + Ep0
|θ0|2) ≤ 2C2

1 (1 + C2
2 ).

(53)

Similarly we obtain using q0 = p0∫
pt(dθ)|∇ ln q0(ψ

t
0θ)|2 =

∫
p0(dθ0)|∇ ln q0(ψ

t
0ϕtθ0)|2. (54)

In words, to control the score of q integrated with respect to pt we need to control the distortion we obtain when moving
forward with u and backwards with v. We investigate ψt

0ϕt(θ0). We find

∂hψ
t+h
t ϕtt+h(θ)|h=0 = ut(θ)− vt(θ). (55)

This implies

∂t(ψ
t
0ϕt)(θ0) = ∂h(ψ

t
0ψ

t+h
t ϕtt+hϕt)(θ0)|h=0 = (∇ψt

0)(ϕt(θ0)) · ((ut − vt)(ϕt(θ0))) . (56)

Using (51) we conclude that

|ψt
0ϕt(θ0)− θ0| ≤

∣∣∣∣∫ t

0

∂sψ
s
0ϕs(θ0) ds

∣∣∣∣ ≤ ∫ t

0

|(∇ψs
0)(ϕs(θ0))| · |us − vs|(ϕs(θ0)) ds

≤ eL
∫ t

0

|us − vs|(ϕs(θ0)) ds.
(57)
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We use this and the assumption (42) to continue to estimate (54) as follows∫
pt(dθ)|∇ ln q0(ψ

t
0θ)|2 =

∫
p0(dθ0)|∇ ln q0(ψ

t
0ϕt(θ0))|2

≤ C2
1

∫
p0(dθ0)(1 + |ψt

0ϕt(θ0)|)2

≤ C2
1

∫
p0(dθ0)(1 + |ψt

0ϕt(θ0)− θ0|+ |θ0|)2

≤ 3C2
1 + 3C2

1

∫
p0(dθ0)

(
|ψt

0ϕt(θ0)− θ0|2 + |θ0|2
)

≤ 3C2
1 (1 + Ep0

|θ0|2) + 3C2
1e

2L

∫
p0(dθ0)

(∫ t

0

ds |us − vs|(ϕs(θ0))
)2

.

(58)

Here we used (a+b+c)2 ≤ 3(a2+b2+c2) in the second to last step. We bound the remaining integral using Cauchy-Schwarz
as follows ∫

p0(dθ0)

(∫ t

0

|us − vs|(ϕs(θ0))
)2

≤
∫
p0(dθ0)

(∫ t

0

ds |us − vs|2(ϕs(θ0))
)(∫ t

0

ds 12
)

≤ t

∫ t

0

ds

∫
p0(dθ0)|us − vs|2(ϕs(θ0))

= t

∫ t

0

ds

∫
ps(dθs)|us − vs|2(θs)

≤
∫ 1

0

ds

∫
ps(dθs)|us − vs|2(θs) = MSEp(u, v).

(59)

The last displays together imply∫
pt(dθ)|∇ ln q0(ψ

t
0θ)|2 ≤ 3C2

1

(
1 + Ep0

|θ0|2 + e2L MSEp(u, v)
)
. (60)

Now we have all the necessary ingredients to bound the derivative of the KL-divergence. We control the second integral in
(46) using (52) (and again (

∑4
i=1 ai)

2 ≤ 4
∑
a2i ) as follows,∫

pt(dθ)|∇ ln pt(θ)−∇ ln qt(θ)|2

≤ 2 · 22 · L′2e2L + 4e2L
∫
pt(dθ)

(
|∇ ln q0(ψ

t
0)θ)|2 + |∇ ln p0(ϕ

t
0)θ)|2

)
.

(61)

Using (53) and (60) we finally obtain∫
pt(dθ)|∇ ln pt(θ)−∇ ln qt(θ)|2 ≤ 8 · L′2e2L + C2

1e
2L

(
20(1 + C2

2 ) + 12MSEp(u, v)
)

≤ C(1 +MSEp(u, v))

(62)

for some constant C > 0. Finally, we obtain

DKL(p1||q1) =
∫ 1

0

dt ∂tDKL(pt||qt)

≤ (C(1 +MSEp(u, v)))
1
2

∫ 1

0

dt

(∫
pt(dθ)|ut(θ)− vt(θ)|2

) 1
2

≤ (C(1 +MSEp(u, v)))
1
2

(∫ 1

0

dt

∫
pt(dθ)|ut(θ)− vt(θ)|2

) 1
2

≤ (C(1 +MSEp(u, v)))
1
2 MSEp(u, v)

1
2 .

(63)


