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ABSTRACT

Test-time scaling is a promising new approach to language modeling that uses
extra test-time compute to improve performance. Recently, OpenAI’s o1 model
showed this capability but did not publicly share its methodology, leading to many
replication efforts. We seek the simplest approach to achieve test-time scaling
and strong reasoning performance. First, we curate a small dataset s1K of 1,000
questions paired with reasoning traces relying on three criteria we validate through
ablations: difficulty, diversity, and quality. Second, we develop budget forcing to
control test-time compute by forcefully terminating the model’s thinking process
or lengthening it by appending “Wait” multiple times to the model’s generation
when it tries to end. This can lead the model to double-check its answer, often
fixing incorrect reasoning steps. After supervised finetuning the Qwen2.5-32B-
Instruct language model on s1K and equipping it with budget forcing, our model
s1-32B exceeds o1-preview on competition math questions by up to 27% (MATH
and AIME24). Further, scaling s1-32B with budget forcing allows extrapolating
beyond its performance without test-time intervention: from 50% to 57% on
AIME24. Our model, data, and code are open-source at https://github.
com/simplescaling/s1.
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Figure 1: Test-time scaling with s1-32B. We benchmark s1-32B on reasoning-intensive tasks and
vary test-time compute.

1 INTRODUCTION

Performance improvements of language models (LMs) over the past years have largely relied on
scaling up train-time compute using large-scale self-supervised pretraining (Kaplan et al., 2020;
Hoffmann et al., 2022). The creation of these powerful models has set the stage for a new scaling
paradigm built on top of them: test-time scaling. The aim of this approach is to increase the compute
at test time to get better results. There has been much work exploring this idea (Snell et al., 2024;
Welleck et al., 2024), and the viability of this paradigm was recently validated by OpenAI o1 (OpenAI,
2024). o1 has demonstrated strong reasoning performance with consistent gains from scaling test-time
compute. OpenAI describes their approach as using large-scale reinforcement learning (RL) implying

∗Equal contribution. ZY and NM started the project. WS, NM and ZY collected the prompts, XL, ZY and
NM, built the data pipeline, LZ and WS proposed using a 1K subset and ZY and NM built budget forcing.
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the use of sizable amounts of data (OpenAI, 2024). This has led to various attempts to replicate
their models relying on techniques like Monte Carlo Tree Search (Gao et al., 2024b; Zhang et al.,
2024b), multi-agent approaches (Qin et al., 2024), and others (Wang et al., 2024a; Huang et al.,
2024b; 2025). Among these approaches, DeepSeek R1 (DeepSeek-AI et al., 2025) has successfully
replicated o1-level performance, also employing reinforcement learning via millions of samples and
multiple training stages. However, despite the large number of o1 replication attempts, none have
openly replicated a clear test-time scaling behavior. Thus, we ask: what is the simplest approach to
achieve both test-time scaling and strong reasoning performance?

We show that training on only 1,000 samples with next-token prediction and controlling thinking
duration via a simple test-time technique we refer to as budget forcing leads to a strong reasoning
model that scales in performance with more test-time compute. Specifically, we construct s1K,
which consists of 1,000 carefully curated questions paired with reasoning traces and answers distilled
from Gemini Thinking Experimental (Google, 2024). We perform supervised fine-tuning (SFT) of
an off-the-shelf pretrained model on our small dataset requiring just 26 minutes of training on 16
H100 GPUs. After training, we control the amount of test-time compute our model spends using
budget forcing: (I) If the model generates more thinking tokens than a desired limit, we forcefully
end the thinking process by appending an end-of-thinking token delimiter. Ending the thinking this
way makes the model transition to generating its answer. (II) If we want the model to spend more
test-time compute on a problem, we suppress the generation of the end-of-thinking token delimiter
and instead append “Wait” to the model’s current reasoning trace to encourage more exploration.
Equipped with this simple recipe – SFT on 1,000 samples and test-time budget forcing – our model
s1-32B exhibits test-time scaling (Figure 1). Further, s1-32B is the most sample-efficient reasoning
model and outperforms closed-source models like OpenAI’s o1-preview (Figure 2).

We conduct extensive ablation experiments targeting (a) our selection of 1,000 (1K) reasoning samples
and (b) our test-time scaling. For (a), we find that jointly incorporating difficulty, diversity, and
quality measures into our selection algorithm is important. Random selection, selecting samples with
the longest reasoning traces, or only selecting maximally diverse samples all lead to significantly
worse performance (around −30% on AIME24 on average). Training on our full data pool of 59K
examples, a superset of s1K, does not offer substantial gains over our 1K selection. This highlights
the importance of careful data selection and echoes prior findings for instruction tuning (Zhou et al.,
2023). For (b), we define desiderata for test-time scaling methods to compare different approaches.
Budget forcing leads to the best scaling as it has perfect controllability with a clear positive slope
leading to strong performance.

In summary, our contributions are: We develop simple methods for creating a sample-efficient
reasoning dataset (§2) and test-time scaling (§3); Based on these we build s1-32B which is competitive
with o1-preview (§4); We ablate subtleties of data (§5.1) and test-time scaling (§5.2). We end with
a discussion to motivate future work on simple reasoning (§6). Our code, model, and data are
open-source at https://github.com/simplescaling/s1.

2 REASONING DATA CURATION TO CREATE S1K

In this section, we describe our process for creating a large dataset first in §2.1 and then filtering it
down to s1K in §2.2.

2.1 INITIAL COLLECTION OF 59K SAMPLES

We collect an initial 59,029 questions from 16 diverse sources following three guiding principles.
Quality: Datasets should be of high quality; we always inspect samples and ignore datasets with,
e.g., poor formatting; Difficulty: Datasets should be challenging and require significant reasoning
effort; Diversity: Datasets should stem from different fields to cover different reasoning tasks. We
collect datasets of two categories:

Curation of existing datasets Our largest source is NuminaMATH (LI et al., 2024) with 30,660
mathematical problems from online websites. We also include historical AIME problems (1983-
2021). To enhance diversity, we add OlympicArena (Huang et al., 2024a) with 4,250 questions
spanning Astronomy, Biology, Chemistry, Computer Science, Geography, Mathematics, and Physics
from various Olympiads. OmniMath (Gao et al., 2024a) adds 4,238 competition-level mathematics
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Figure 2: s1K and s1-32B. (left) s1K is a dataset of 1,000 high-quality, diverse, and difficult questions
with reasoning traces. (right) s1-32B, a 32B parameter model finetuned on s1K is on the sample-
efficiency frontier. See Table 1 for details on other models.

problems. We also include 2,385 problems from AGIEval (Zhong et al., 2023), which features
questions from standardized tests like SAT and LSAT, covering English, Law, and Logic. We refer to
Table 6 in §C for our other sources.

New datasets in quantitative reasoning To complement these existing datasets, we create two orig-
inal datasets. s1-prob consists of 182 questions from the probability section of Stanford University’s
Statistics Department’s PhD Qualifying Exams (https://statistics.stanford.edu),
accompanied by handwritten solutions that cover difficult proofs. The probability qualifying
exam is held yearly and requires professional-level mathematical problem-solving. s1-teasers
comprises 23 challenging brain-teasers commonly used in interview questions for quantitative
trading positions. Each sample consists of a problem and solution taken from PuzzledQuant
(https://www.puzzledquant.com/). We only take examples with the highest difficulty
level ("Hard").

For each question, we generate a reasoning trace and solution using the Google Gemini Flash
Thinking API (Google, 2024) extracting its reasoning trace and response. This yields 59K triplets
of a question, generated reasoning trace, and generated solution. Examples from our dataset are in
§D.2. We decontaminate all samples against our evaluation questions (MATH500, GPQA Diamond,
AIME24; §C.5) using 8-grams and deduplicate the data.

2.2 FINAL SELECTION OF 1K SAMPLES

We could directly train on our pool of 59K questions, however, our goal is to find the simplest
approach with minimal resources. Thus, we go through three stages of filtering to arrive at a minimal
set of 1,000 samples relying on our three guiding data principles: Quality, Difficulty, and Diversity.

Quality We first remove any questions where we ran into any API errors reducing our dataset to
54,116 samples. Next, we filter out low-quality examples by checking if they contain any string
patterns with formatting issues, such as ASCII art diagrams, non-existent image references, or
inconsistent question numbering reducing our dataset to 51,581 examples. From this pool, we identify
384 samples for our final 1,000 samples from datasets that we perceive as high-quality and not in
need of further filtering (see §C.4 for details).

Difficulty For difficulty, we use two indicators: model performance and reasoning trace length. We
evaluate two models on each question: Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct (Qwen et al.,
2024), with correctness assessed by Claude 3.5 Sonnet comparing each attempt against the reference
solution (see §C.3 for the grading protocol). We measure the token length of each reasoning trace to
indicate problem difficulty using the Qwen2.5 tokenizer. This relies on the assumption that more
difficult problems require more thinking tokens. Based on the grading, we remove questions that
either Qwen2.5-7B-Instruct or Qwen2.5-32B-Instruct can solve correctly and thus may be too easy.
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By using two models we reduce the likelihood of an easy sample slipping through our filtering due
to a rare mistake on an easy question of one of the models. This brings our total samples down to
24,496, setting the stage for the next round of subsampling based on diversity. While filtering with
these two models may be optimized for our setup as we will also use Qwen2.5-32B-Instruct as our
model to finetune, the idea of model-based filtering generalizes to other setups.

Diversity To quantify diversity we classify each question into specific domains using Claude 3.5
Sonnet based on the Mathematics Subject Classification (MSC) system (e.g., geometry, dynamic
systems, real analysis, etc.) from the American Mathematical Society.1 The taxonomy focuses on
topics in mathematics but also includes other sciences such as biology, physics, and economics. To
select our final examples from the pool of 24,496 questions, we first choose one domain uniformly
at random. Then, we sample one problem from this domain according to a distribution that favors
longer reasoning traces (see §C.4 for details) as motivated in Difficulty. We repeat this process until
we have 1,000 total samples.

In §5.1, we will show that using our three criteria in combination is important, as only relying on
quality, diversity, or difficulty in isolation leads to worse datasets. Some distilled generations are
incorrect, which we allow in our data as we focus on capturing the reasoning process rather than
entirely correct solutions. Our grader (§C.3) deems 53.6% correct in s1K and 63.0% in our follow-up
s1K-1.1 (see §A).

3 TEST-TIME SCALING

3.1 METHOD

We classify test-time scaling methods into 1) Sequential, where later computations depend on earlier
ones (e.g., a long reasoning trace), and 2) Parallel, where computations run independently (e.g.,
majority voting) (Snell et al., 2024; Brown et al., 2024). We focus on sequential scaling as we
intuitively believe it should scale better since later computations can build on intermediate results,
allowing for deeper reasoning and iterative refinement. We propose new sequential scaling methods
and ways to benchmark them.

How many r in raspberry?

Let's break down the process of counting the letter 'r' in the 
word "raspberry" ...

* First letter: 'r' - This is an 'r', count = 1.

* Second letter: 'a' - Not an 'r', count remains 1 ...

* Sixth letter: 'e' - Not an 'r', count remains 1.

* Seventh letter: 'r' - This is an 'r', count = 2.

* Eighth letter: 'y' - Not an 'r', count remains 2 ...

The number of 'r's in "raspberry" is 2.


, let's re-read the question carefully. It asks "How many r 
in raspberry?" ... * r - a - s - p - b - e - r - r - y ... * First 'r' ... * 
Second 'r' ... * Third 'r' ... Count = 3 ...

Wait

My initial answer of 2 was incorrect due to a quick reading of 
the word. Final Answer: The final answer is

Question

Reasoning trace

Response


Figure 3: Budget forcing with s1-32B. The model
tries to stop after “...is 2.”, but we suppress the end-
of-thinking token delimiter instead appending “Wait”
leading s1-32B to self-correct its answer.

Budget forcing We propose a simple
decoding-time intervention by forcing a
maximum and/or minimum number of
thinking tokens at test time. Specifically,
we enforce a maximum token count by
simply appending the end-of-thinking to-
ken delimiter and “Final Answer:” to
early exit the thinking stage and make the
model provide its current best answer. To
enforce a minimum, we suppress the gener-
ation of the end-of-thinking token delimiter
and optionally append the string “Wait” to
the model’s current reasoning trace to en-
courage the model to reflect on its current
generation. Figure 3 contains an example
of how this simple approach can lead the
model to arrive at a better answer.

Baselines We benchmark budget forc-
ing with: (I) Conditional length-control
methods, which rely on telling the model

in the prompt how long it should generate for. We group them by granularity into (a) Token-
conditional control: We specify an upper bound of thinking tokens in the prompt; (b) Step-conditional
control: We specify an upper bound of thinking steps, where each step is around 100 tokens; (c)
Class-conditional control: We write two generic prompts that tell the model to either think for a
short or long amount of time (see §E.1 for details). (II) Rejection sampling, which samples until a

1https://mathscinet.ams.org/mathscinet/msc/msc2020.html
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Forcing 2048/4096 max thinking 

tokens

Ignoring end-of-thinking 2x/4x/6x and 
appending “Wait” thus forcing it to continue 
reasoning when it tries to stop

(a) Sequential scaling via budget forcing

Parallel scaling via Majority 
voting with base model 
(Qwen2.5-32B-Instruct)

Sequential scaling 
via Forcing with s1

60% accuracy

(b) Parallel scaling via majority voting

Figure 4: Sequential and parallel test-time scaling. (a): Budget forcing shows clear scaling
trends and extrapolates to some extent. For the three rightmost dots, we prevent the model from
stopping its thinking 2/4/6 times, each time appending “Wait” to its current reasoning trace. (b):
For Qwen2.5-32B-Instruct we perform 64 evaluations for each sample with a temperature of 1 and
visualize the performance when majority voting across 2, 4, 8, 16, 32, and 64 of these.

generation fits a predetermined compute budget. This oracle captures the posterior over responses
conditioned on its length.

3.2 METRICS

We establish a set of desiderata as evaluation metrics to measure test-time scaling across methods.
Importantly, we do not only care about the accuracy a method can achieve but also its controllability
and test-time scaling slope. For each method we consider, we run a set of evaluations 𝑎 ∈  varying
test-time compute on a fixed benchmark, e.g. AIME24. This produces a piece-wise linear function
𝑓 with compute as the x-axis measured in thinking tokens and accuracy as the y-axis (see Figure 1,
where the rightmost dot for AIME24 corresponds to 𝑓 (7320) = 57%). We measure three metrics:

Control = 1
||

∑

𝑎∈
𝕀(𝑎min ≤ 𝑎 ≤ 𝑎max) (1)

where 𝕀 is the indicator function; 𝑎min, 𝑎max are pre-specified minimum/maximum amounts of test-
time compute. We usually only constrain 𝑎max and measure test-time compute in generated thinking
tokens. This metric thus captures the extent to which a method allows controllability over the amount
of test-time compute used. We report it as a percentage where 100% is perfect control.

Scaling = 1
(

||

2

)

∑

𝑎,𝑏∈
𝑏>𝑎

𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

(2)

Scaling is the average slope of the piece-wise linear function. It must be positive for useful methods
and larger is better.

Performance = max
𝑎∈

𝑓 (𝑎) (3)

Performance is simply the maximum performance the method achieves on the benchmark. A method
with monotonically increasing scaling achieves 100% performance on any benchmark in the limit.
However, the methods we investigate eventually flatten out or further scaling fails due to control or
context window limitations.

4 RESULTS

4.1 SETUP

Training We perform supervised finetuning on Qwen2.5-32B-Instruct using s1K to obtain our
model s1-32B using basic hyperparameters outlined in §D. Finetuning took 26 minutes on 16
NVIDIA H100 GPUs with PyTorch FSDP.
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Evaluation We select three representative reasoning benchmarks widely used in the field:
AIME24 (of America, 2024) consists of 30 problems that were used in the 2024 American In-
vitational Mathematics Examination (AIME) held from Wednesday, January 31 – Thursday, February
1, 2024. AIME tests mathematical problem-solving with arithmetic, algebra, counting, geometry,
number theory, probability, and other secondary school math topics. High-scoring high school
students in the test are invited to participate in the United States of America Mathematics Olympiad
(USAMO). All AIME answers are integers ranging from 000 to 999, inclusive. Some AIME prob-
lems rely on figures that we provide to our model using the vector graphics language Asymptote,
as it cannot take image inputs. MATH500 (Hendrycks et al., 2021) is a benchmark of competition
math problems of varying difficulty. We evaluate on the same 500 samples selected by OpenAI in
prior work (Lightman et al., 2023). GPQA Diamond (Rein et al., 2023) consists of 198 PhD-level
science questions from Biology, Chemistry and Physics. Experts with PhDs in the corresponding
domains only achieved 69.7% on GPQA Diamond (OpenAI, 2024). When we write “GPQA” in
the context of evaluation in this work, we always refer to the Diamond subset. We build on the
“lm-evaluation-harness” framework (Gao et al., 2021; Biderman et al., 2024).

Table 1: s1-32B is an open and sample-efficient rea-
soning model. We evaluate s1-32B, Qwen, and Gemini
(some entries are unknown (N.A.), see §4). Other results
are from the respective reports (Qwen et al., 2024; Team,
2024b; OpenAI, 2024; DeepSeek-AI et al., 2025; Labs,
2025; Team, 2025). # ex. = number examples used for
reasoning finetuning; BF = budget forcing.

Model # ex. AIME
2024

MATH
500

GPQA
Diamond

API only
o1-preview N.A. 44.6 85.5 73.3
o1-mini N.A. 70.0 90.0 60.0
o1 N.A. 74.4 94.8 77.3
Gemini 2.0 N.A. 60.0 N.A. N.A.Flash Think.

Open Weights
Qwen2.5- N.A. 26.7 84.0 49.032B-Instruct
QwQ-32B N.A. 50.0 90.6 65.2
r1 ≫800K 79.8 97.3 71.5
r1-distill 800K 72.6 94.3 62.1

Open Weights and Open Data
Sky-T1 17K 43.3 82.4 56.8
Bespoke-32B 17K 63.3 93.0 58.1

s1 w/o BF 1K 50.0 92.6 56.6
s1-32B 1K 56.7 93.0 59.6

Other models We benchmark s1-32B
against: OpenAI o1 series (OpenAI,
2024), which are closed-source models
that popularized the idea of test-time
scaling; DeepSeek r1 series (Team,
2024a), which are open-weight reason-
ing models with up to o1-level perfor-
mance, concurrently released to ours;
Qwen’s QwQ-32B-preview (Team,
2024b), a 32B open-weight reasoning
model without disclosed methodology;
Sky-T1-32B-Preview (Team, 2025) and
Bespoke-32B (Labs, 2025), which are
open models with open reasoning data
distilled from QwQ-32B-preview and
r1; Google Gemini 2.0 Flash Thinking
Experimental (Google, 2024), the API
that we distill from. As it has no official
evaluation scores, we use the Gemini
API to benchmark it ourselves. How-
ever, the “recitation error” of the Gemini
API makes evaluation challenging.2 We
circumvent this, by manually inserting
all 30 AIME24 questions in its web in-
terface where the error does not appear.
However, we leave out MATH500 (500
questions) and GPQA Diamond (198
questions), thus they are N.A. in Table 1.
Our model, s1-32B, is fully open includ-
ing weights, reasoning data, and code.

4.2 PERFORMANCE

Test-time scaling Figure 1 shows the performance of s1-32B with budget forcing scales with more
test-time compute. In Figure 4 (left), we expand the plot from Figure 1 (middle) showing that while
we can improve AIME24 performance using our budget forcing technique (§3) and more test-time
compute it does eventually flatten out at six times. Suppressing the end-of-thinking token delimiter
too often can lead the model into repetitive loops instead of continued reasoning. In Figure 4 (right),
we show that after training Qwen2.5-32B-Instruct on our 1,000 samples to produce s1-32B and
equipping it with the simple budget forcing technique, it operates in a different scaling paradigm.
Scaling test-time compute on the base model via majority voting cannot catch up with the performance

2https://github.com/google/generative-ai-docs/issues/257
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of s1-32B which validates our intuition from §3 that sequential scaling is more effective than parallel.
We provide example generations of s1-32B in Figure 5.

Sample-efficiency In Figure 2 (right) and Table 1 we compare s1-32B with other models. We find
that s1-32B is the most sample-efficient open data reasoning model. It performs significantly better
than our base model (Qwen2.5-32B-Instruct) despite just training it on an additional 1,000 samples.
The concurrently released r1-32B shows stronger performance than s1-32B while also only using
SFT (DeepSeek-AI et al., 2025). However, it is trained on 800 × more reasoning samples. It is an
open question whether one can achieve their performance with just 1,000 samples. Finally, our model
nearly matches Gemini 2.0 Thinking on AIME24. As s1-32B is distilled from Gemini 2.0, this shows
our distillation procedure was likely effective.

5 ABLATIONS

5.1 DATA QUANTITY, DIVERSITY, AND DIFFICULTY

Table 2: s1K data ablations. We budget force (BF) a
maximum of around 30,000 thinking tokens for all scores
in this table. This performs slightly better than the scores
without BF (Table 1) as it allows the model to finish with
a best guess when stuck in an infinite loop. We report
95% paired bootstrap confidence intervals for differences
relative to the s1K model using 10,000 bootstrap samples.
E.g., the interval [-13%, 20%] means that, with 95% con-
fidence, the true difference between 59K-full and s1K is
between -13% and +20%. If the entire interval is nega-
tive, e.g. [-27%, -3%], we can confidently say that the
performance is worse than s1K.

Model AIME
2024

MATH
500

GPQA
Diamond

1K-random 36.7 90.6 52.0
[-26.7%, -3.3%] [-4.8%, 0.0%] [-12.6%, 2.5%]

1K-diverse 26.7 91.2 54.6
[-40.0%, -10.0%] [-4.0%, 0.2%] [-10.1%, 5.1%]

1K-longest 33.3 90.4 59.6
[-36.7%, 0.0%] [-5.0%, -0.2%] [-5.1%, 10.1%]

59K-full 53.3 92.8 58.1
[-13.3%, 20.0%] [-2.6%, 2.2%] [-6.6%, 8.6%]

s1K 50.0 93.0 57.6

In §2 we outlined our three guiding prin-
ciples in curating s1K: Quality, Diffi-
culty, and Diversity. Here we test the
importance of combining them and the
overall efficacy of our selection. Only
Quality (1K-random): After obtaining
our high-quality reasoning chains from
Gemini, we select 1,000 samples at ran-
dom; not relying on our difficulty and
diversity filtering at all. Table 2 shows
this approach performs much worse than
s1K across all benchmarks. Only Diver-
sity (1K-diverse): For this dataset, we
sample uniformly across domains to max-
imize diversity disregarding any notion
of difficulty. This approach also leads to
poor performance similar to 1K-random.
Only Difficulty (1K-longest): Here we
rely on one of our difficulty indicators
introduced in §2 by selecting the 1,000
samples with the longest reasoning traces.
This approach significantly boosts GPQA
performance but overall still falls short of
using s1K. Maximize Quantity: Finally,
we compare with just training on all of
our 59K samples, a superset of all the

1K-sample versions. This leads to a strong model but uses much more resources. To finetune on 59K
samples, we use 394 H100 GPU hours while s1-32B only required 7 H100 GPU hours. Moreover,
relying only on s1K is extremely competitive as shown in §2. Overall, combining all three criteria –
Quality, Difficulty, Diversity – via our approach in §2 is key for sample-efficient reasoning training.

5.2 TEST-TIME SCALING METHODS Table 3: Ablations on scaling test-time compute on
AIME24. || is the number of evaluation runs used to
estimate the metrics. BF = budget forcing, TCC/SCC/CCC
= token/step/class-cond. control, RS = rejection sampling.

Method Control Scaling Performance ||

BF 100% 15 56.7 5

TCC 40% -24 40.0 5
TCC + BF 100% 13 40.0 5
SCC 60% 3 36.7 5
SCC + BF 100% 6 36.7 5
CCC 50% 25 36.7 2

RS 100% -35 40.0 5

Budget forcing In Table 3 we com-
pare the test-time scaling methods we
have introduced in §3. Overall, we find
that budget forcing provides perfect con-
trol, good scaling, and leads to our best
AIME24 score. Thus, this is the method
we use for s1-32B in Figure 1 and in
§4. In §E.1 (Table 11), we compare
different strings for extrapolating perfor-
mance. We find that “Wait” generally
gives the best performance.
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[AIME24]

Alice and Bob play the following game.
A stack of 𝑛 tokens lies before them.
The players take turns with Alice go-
ing first. On each turn, the player re-
moves either 1 token or 4 tokens from
the stack. Whoever removes the last to-
ken wins. Find the number of positive
integers 𝑛 less than or equal to 2024 for
which there exists a strategy for Bob
that guarantees that Bob will win the
game regardless of Alice’s play.

The problem asks for the number of posi-
tive integers 𝑛 ≤ 2024 such that Bob has a
winning strategy. This is a typical impar-
tial game that can be analyzed using the
Sprague-Grundy theorem or by directly
finding the winning and losing positions.
Let 𝑊 be the set of winning positions
(number of tokens 𝑛 such that the player
whose turn it is can force a win) and 𝐿 be
the set of losing positions. [...]

Let 𝑃 (𝑛) be the statement "the player
whose turn it is when there are 𝑛 tokens
has a winning strategy. 𝑃 (0) is false (the
player whose turn it is and faces 0 tokens
has already lost). Consider the small val-
ues of 𝑛:
𝑛 = 1: The player whose turn it is can
take 1 token and win. So 𝑃 (1) is true.
1 ∈ 𝑊 .
𝑛 = 2: The player whose turn it is can
take 1 token, leaving 1 token for the op-
ponent. Since 1 ∈ 𝑊 , the opponent wins.
So 𝑃 (2) is false. 2 ∈ 𝐿.
𝑛 = 3: The player whose turn it is
can take 1 token, leaving 2 tokens for
the opponent. Since 2 ∈ 𝐿, the player
whose turn it is wins. So 𝑃 (3) is true.
3 ∈ 𝑊 .[...]

We are looking for the number of positive
integers 𝑛 ≤ 2024 for which Bob has a
winning strategy. This means that if the
game starts with 𝑛 tokens, and Alice goes
first, Bob can win. This happens if and
only if 𝑛 is a losing position (because if
𝑛 ∈ 𝐿, then Alice’s first move must lead
to a winning position for Bob). [...]

The total number of positive integers 𝑛 ≤
2024 that are losing positions is 404 +
405 = 809 .

[MATH500]

Find the projection of 𝑎 onto

𝑏 =

(2
6
3

)

if 𝑎 ⋅ 𝑏 = 8.

The projection of vector 𝐚 onto
vector 𝐛 is given by the formula:

proj𝐛𝐚 = 𝐚 ⋅ 𝐛
‖𝐛‖2

𝐛

We are given 𝐛 =

(2
6
3

)

and 𝐚⋅𝐛 =

8.

First, we need to find the magni-
tude squared of 𝐛, which is ‖𝐛‖2.

‖𝐛‖2 = 𝐛 ⋅ 𝐛 = 22 + 62 + 32 =

4 + 36 + 9 = 49.

Now we can plug the values into
the projection formula:

proj𝐛𝐚 = 8
49

𝐛

Substitute the vector 𝐛:

proj𝐛𝐚 = 8
49

(2
6
3

)

Multiply the scalar by each com-
ponent of the vector:

proj𝐛𝐚 =

⎛

⎜

⎜

⎜

⎝

8
49

× 2
8
49

× 6
8
49

× 3

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

16
49
48
49
24
49

⎞

⎟

⎟

⎟

⎠

Final Answer: The final answer is

⎛

⎜

⎜

⎜

⎝

16
49
48
49
24
49

⎞

⎟

⎟

⎟

⎠

[GPQA]

A quantum mechanical particle
of mass 𝑚 moves in two dimen-
sions in the following potential,
as a function of the polar coor-
dinates (𝑟, 𝜃):

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2 + 3

2
𝑘𝑟2 cos2(𝜃)

Find the energy spectrum. Hint:
Write the potential in Cartesian
coordinates.

The problem asks for the energy
spectrum of a particle in a given
2D potential. The potential is
given in polar coordinates (𝑟, 𝜃):

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2 + 3

2
𝑘𝑟2 cos2(𝜃).

We can rewrite the potential as:

𝑉 (𝑟, 𝜃) = 1
2
𝑘𝑟2(1 + 3 cos2(𝜃)).

The Hamiltonian for a particle in
2D is given by:

𝐻 = − ℏ
2

2𝑚

(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)

+𝑉 (𝑥, 𝑦).

In polar coordinates (𝑟, 𝜃), the
Laplacian operator is:

∇2 = 1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕
𝜕𝑟

)

+ 1
𝑟2

𝜕2

𝜕𝜃2
.

So the Hamiltonian in polar coor-
dinates is:

𝐻 = − ℏ
2

2𝑚

[

1
𝑟
𝜕
𝜕𝑟

(

𝑟 𝜕
𝜕𝑟

)

+ 1
𝑟2

𝜕2

𝜕𝜃2

]

+𝑉 (𝑟, 𝜃).

The time-independent
Schrödinger equation is
𝐻𝜓 = 𝐸𝜓 . We can try to
separate variables by assum-
ing a solution of the form
𝜓(𝑟, 𝜃) = 𝑅(𝑟)Θ(𝜃). [...]

This confirms the energy spec-
trum is:

𝐸 = ℏ
√

𝑘
𝑚

(

2𝑛𝑥 + 𝑛𝑦 +
3
2

)

.

Final Answer: 𝐸 =
ℏ
√

𝑘
𝑚

(

2𝑛𝑥 + 𝑛𝑦 +
3
2

)

.

Figure 5: Example model outputs. We pick a question from AIME24 (left), MATH500 (middle),
and GPQA (right), where our model generates the correct answer. The black text is the prompt, the
light blue text is the reasoning trace, and the blue text is the answer of s1-32B. The gray ellipsis [...]
indicates that the text was trimmed to fit this page, but the generated text is actually longer.
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Class-conditional control We provide benchmark scores for this method in §E.1 and summarize
three findings here: (1) Token-conditional control fails without budget forcing, as our model cannot
reliably count tokens - even when trained to do so. (2) Under step-conditional control, the model
generates a similar total number of tokens when given different step targets, as the model goes
from few steps with many tokens per step, to many steps with few tokens in each step. Thus, the
model learns to hack its way around the compute constraint making the controllability of this method
mediocre. (3) Class-conditional control can work - telling a model to simply think longer can increase
its test-time compute and performance, which leads good scaling in Table 3.

3072 4096 5120
Average thinking time (tokens)

22

27

32

37

42
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cu
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cy

 (%
)

Figure 6: Rejection sampling on AIME24
with s1-32B. We sample with a temperature
of 1 until all generations have less than (from
left to right) 3500, 4000, 5000, 8000, and
16000 thinking tokens requiring an average
of 655, 97, 8, 3, 2, and 1 tries per sample.

Rejection sampling Surprisingly, we find that sim-
ply sampling until the generation fits a specific length
leads to an inverse scaling trend as depicted in Fig-
ure 6. In §E.2 we inspect a question, which was
answered correctly by the model when rejection sam-
pling for ≤ 4000, but not for the ≤ 8000 token set-
ting. In the ≤ 4000 setting the model directly jumps
to the correct approach, while for the ≤ 8000 set-
ting it backtracks a lot. We hypothesize that there
is a correlation such that shorter generations tend to
be the ones where the model was on the right track
from the start, whereas longer ones tend to be ones
where the model made mistakes and thus backtracks
or questions itself. This leads to longer samples often
being wrong when rejection sampling and thus the
inverse scaling trend.

6 DISCUSSION AND RELATED WORK

6.1 SAMPLE-EFFICIENT REASONING

Models There are a number of concurrent efforts to build models that replicate the performance
of o1 (OpenAI, 2024). For example, DeepSeek-r1 and k1.5 (DeepSeek-AI et al., 2025; Team et al.,
2025) are built with reinforcement learning methods, while others rely on SFT using tens of thousands
of distilled examples (Team, 2025; Xu et al., 2025; Labs, 2025). We show that SFT on only 1,000
examples suffices to build a competitive reasoning model matching o1-preview and produces a model
that lies on the pareto frontier (Figure 2). Further, we introduce budget forcing which combined with
our reasoning model leads to the first reproduction of OpenAI’s test-time scaling curves (OpenAI,
2024). Why does supervised finetuning on just 1,000 samples lead to such performance gains? We
hypothesize that the model is already exposed to large amounts of reasoning data during pretraining
which spans trillions of tokens. Thus, the ability to perform reasoning is already present in our model.
Our sample-efficient finetuning stage just activates it and we scale it further at test time with budget
forcing. This is similar to the "Superficial Alignment Hypothesis" presented in LIMA (Zhou et al.,
2023), where the authors find 1,000 examples suffice to align a model to adhere to user preferences.

Benchmarks and methods To evaluate and push the limits of these models, increasingly challeng-
ing benchmarks have been introduced, such as Olympiad-level science competitions He et al. (2024);
Jain et al. (2024); Zhong et al. (2023) and others (Srivastava et al., 2023; Glazer et al., 2024; Su et al.,
2024; Kim et al., 2024; Phan et al., 2025). To enhance models’ performance on reasoning-related
tasks, researchers have pursued several strategies: Prior works have explored continuing training
language models on specialized corpora related to mathematics and science (Azerbayev et al., 2023;
Yang et al., 2024), sometimes even synthetically generated data (Yu et al., 2024). Others have
developed training methodologies specifically aimed at reasoning performance (Zelikman et al.,
2022; 2024; Luo et al., 2025; Yuan et al., 2025; Wu et al., 2024a). Another significant line of work
focuses on prompting-based methods to elicit and improve reasoning abilities, including methods like
Chain-of-Thought prompting (Wei et al., 2023; Yao et al., 2023a;b; Bi et al., 2023; Fu et al., 2023;
Zhang et al., 2024a; Xiang et al., 2025; Hu et al., 2024). These combined efforts aim to advance the
reasoning ability of language models, enabling them to handle more complex and abstract tasks.
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6.2 TEST-TIME SCALING

Methods As we introduce in §3, we differentiate two methods to scale test-time compute: parallel
and sequential. The former relies on multiple solution attempts generated in parallel and selecting
the best outcome via specific criteria. These criteria include choosing the most frequent response
for majority voting or the best response based on an external reward for Best-of-N (Brown et al.,
2024; Irvine et al., 2023; Snell et al., 2024). Unlike repeated sampling, previous sequential scaling
methods let the model generate solution attempts sequentially based on previous attempts, allowing it
to refine each attempt based on previous outcomes (Snell et al., 2024; Hou et al., 2025; Lee et al.,
2025). Tree-based search methods (Gandhi et al., 2024; Wu et al., 2024b) offer a hybrid approach
between sequential and parallel scaling, such as Monte-Carlo Tree Search (MCTS) (Liu et al., 2024;
Zhang et al., 2023; Zhou et al., 2024; Choi et al., 2023) and guided beam search (Xie et al., 2023).
REBASE (Wu et al., 2024b) employs a process reward model to balance exploitation and pruning
during tree search. Empirically, REBASE has been shown to outperform sampling-based methods
and MCTS (Wu et al., 2024b). Reward models Lightman et al. (2023); Wang et al. (2024b;c) play a
key role in these methods. They come in two variants: outcome reward models and process reward
models. Outcome reward models Xin et al. (2024); Ankner et al. (2024) assign a score to complete
solutions and are particularly useful in Best-of-N selection, while process reward models (Lightman
et al., 2023; Wang et al., 2024b; Wu et al., 2024b) assess individual reasoning steps and are effective
in guiding tree-based search methods.

Limits to further test-time scaling We have shown that budget forcing allows extrapolating test-
time compute in §4, e.g., improving AIME24 performance from 50% to 57%. However, it has two
key limitations when scaling further: it eventually flattens out (Figure 4), and the context window
of the underlying language model constrains it. Despite these constraints, our work shows test-time
scaling across a wide range of accuracies (Figure 1), partly because scaling down test-time compute
behaves predictably and does not suffer from these constraints.

Continuing test-time scaling will require approaches that can further extrapolate test-time compute.
How can we get such extrapolation? There may be improvements to budget forcing such as rotating
through different strings, not only “Wait”, or combining it with frequency penalties or higher
temperature to avoid repetitive loops. An exciting direction for future work is also researching
whether applying budget forcing to a reasoning model trained with reinforcement learning yields
better extrapolation; or if RL allows for new ways of test-time scaling beyond budget forcing. Our
work defines the right metrics (§3.2) – Control, Scaling, and Performance – to enable future research
and progress on extrapolating test-time compute.
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REBASE
Majority
Sequential
scaling

Figure 7: Scaling further with parallel scal-
ing methods. All metrics averaged over the 30
questions in AIME24. Average thinking tokens
for REBASE do not account for the additional
compute from the reward model. For sequen-
tial scaling, we prompt the model to use up to
(from left to right) 32, 64, 256, and 512 steps.
For REBASE and majority voting we generate
16 parallel trajectories to aggregate across. The
dashed sequential scaling line indicates a perfor-
mance drop due to running out of context length.

Parallel scaling as a solution Parallel scaling
offers one solution to the limits of sequential
scaling, thus we augment our sequentially scaled
model with two methods: (I) Majority voting:
After generating 𝑘 solutions, the final solution
is the most frequent one across generations; (II)
Tree search via REBASE: We use the RE-
BASE process reward model, which is initial-
ized from LLaMA-34B and further finetuned on
a synthetic process reward modeling dataset (Wu
et al., 2024b). We then aggregate the solutions
generated by REBASE via majority voting. As
shown in Figure 7, augmenting our model with
REBASE scales better than majority voting, and
even sequential scaling in this scenario. However,
REBASE requires an additional forward pass at
each step for the reward model adding some com-
putation overhead. For sequential scaling, when
prompted to use up to 512 steps, for 12 out of
the 30 evaluation questions the model generates a
response that exceeds the context window leading to a large performance drop. Overall, we find that
these parallel scaling methods complement sequential scaling thus they offer an avenue for scaling
test-time compute even further; beyond fixed context windows.
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IMPACT STATEMENT

Language models with strong reasoning capabilities have the potential to greatly enhance human
productivity, from assisting in complex decision-making to driving scientific breakthroughs. However,
recent advances in reasoning, such as OpenAI’s o1 and DeepSeek’s r1, lack transparency, limiting
broader research progress. Our work aims to push the frontier of reasoning in a fully open manner,
fostering innovation and collaboration to accelerate advancements that ultimately benefit society.
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A S1.1

Seven days after our release of s1, we released s1.1. We regenerated traces for our 1,000 samples
in s1K using DeepSeek r1 (DeepSeek-AI et al., 2025) to create s1K-1.1. We use the same training
procedure to train our model s1.1. Other updates since our launch include the release of o3 (OpenAI,
2025), LIMO (Ye et al., 2025a), and AIME 2025. We consider all these new developments in Table 4.
We find that s1.1 performs much better than s1, likely due to r1 writing longer reasoning traces as
we show in Figure 8. We also tried distilling from Claude 3.7, which led to worse performance than
from r1.3

Table 4: s1-32B is an open and sample-efficient reasoning model. We evaluate s1-32B, Qwen,
and Gemini (some entries are unknown (N.A.), see §4). Other results are from the respective
reports (Qwen et al., 2024; Team, 2024b; OpenAI, 2024; 2025; DeepSeek-AI et al., 2025; Labs, 2025;
Team, 2025) except for AIME 2025 (Ye et al., 2025b). # ex. = number examples used for reasoning
finetuning; BF = budget forcing.

Model # Examples MATH500 GPQA AIME 2024 AIME 2025

API only
o3-mini-low N/A 95.8 70.6 56.3 42.1
o3-mini-medium N/A 97.3 76.8 75.8 70.4
o3-mini-high N/A 97.9 79.7 83.8 80.9

Open Weights
QwQ-32B N.A. 90.6 54.5 46.7 32.7
r1 ≫800K 07.3 71.5 79.8 70.0
r1-distill-Llama-70B 800K 94.5 65.2 57.1 56.3
r1-distill-Qwen-14B 800K 93.9 59.1 61.7 48.0
r1-distill-Qwen-32B 800K 94.3 62.1 58.3 49.6

Open Weights and Open Data
LIMO 817 94.8 66.7 56.3 44.6
s1 w/o BF 1K 92.6 56.6 50.0 26.7
s1 with BF “Wait” 1x 1K 92.8 59.6 53.3 30.0
s1 with BF “Wait” 2x 1K 93.0 59.6 53.3 33.3
s1 with BF “Wait” 4x 1K 92.2 58.6 56.7 36.7
s1.1 w/o BF 1K 94.4 60.6 56.7 50.0
s1.1 with BF “Wait” 1x 1K 95.4 62.6 56.7 50.0
s1.1 with BF “Wait” 2x 1K 95.4 63.6 56.7 50.0
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Figure 8: Length of our Gemini and DeepSeek r1 thinking traces.

3See https://github.com/simplescaling/s1/issues/90#
issuecomment-2698398686 for details
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B EVALUATION DETERMINISM

We run our evaluations using vLLM (Kwon et al., 2023) as it is faster than the alternatives we tried.
However, we find that even when using the same random seeds and greedy sampling, evaluation
scores can change significantly across runs:

• Different batch sizes causing different results see https://github.com/
vllm-project/vllm/issues/5898

• Continuing generations causing different results see https://github.com/
vllm-project/vllm/issues/11783

• Changes in tensor parallelism causing different results

As our model generates long reasoning traces prior to its answer, small numeric changes can snowball
into large differences. We encounter many generations that are exactly the same for thousands of
tokens and then suddenly differ in one token, eventually ending up with an entirely different answer.
To partly counter this issue we generally run our final evaluations using full precision unless otherwise
indicated.

C S1K DETAILS

C.1 S1K SUMMARY

Table 5: Summary of our dataset s1K. Token count measured by the Qwen-2.5 tokenizer. We
prompt Claude to produce keywords given several questions from the domain.

Domain #questions Total token count Keywords

Geometry 109 560.2K Area, Triangle, Distance
Number theory 98 522.5K Sequences, Divisibility
Combinatorics 75 384.7K Permutations, Counting
Real functions 43 234.8K Trigonometry, Calculus
Biology 41 120.9K Organic reactions
Complex functions 32 170.2K Complex roots
Quantum theory 32 127.9K Particles, Wave functions
Field theory 28 150.1K Polynomials, Roots
Calculus of variations 28 155.5K Optimization, Control
Difference equations 24 132.5K Recurrence, Recursion
Electromagnetic theory 23 95.8K Optics, Waves, Diffraction
Group theory 22 100.0K Groups, Automorphisms
Linear algebra 22 128.3K Matrices, Determinants
Probability theory 20 114.6K Random walk, Expectation
Algebraic systems 19 109.9K Functional equations
Mechanics 19 103.6K Forces, Motion, Energy
Thermodynamics 19 74.2K Heat engines, Entropy
Differential equations 18 89.6K Substitution, Existence
Computer science 18 34.2K Complexity theory, Algorithms
Numerical analysis 18 76.5K Error analysis, Stability
Calculus 17 96.3K Convergence, Summation
Algebraic structures 17 90.4K Inequalities, Sets
Astronomy 16 37.7K Stellar populations, Orbits
Remaining 27 domains 242 982.2K Domains with ≤ 16 questions

All domains (51) 1000 4.7M s1K

C.2 DATASET COMPOSITION FOR FULL 59K QUESTIONS
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Table 6: Composition of full 59K questions. Thinking and response lengths are measured in tokens
using the Qwen2.5-32B-Instruct tokenizer (Qwen et al., 2024). In addition to excluding our evaluation
benchmark, AIME24, we also exclude AIME questions from 2022-2023 as we use these 90 questions
during our development stage of s1-32B.

Source Description #Samples Avg.
thinking
length

NuminaMATH (LI et al., 2024) Math problems from online websites 30660 4.1K
MATH (Hendrycks et al., 2021) Math problems from competitions 11999 2.9K
OlympicArena (Huang et al.,
2024a)

Astronomy, Biology, Chemistry, Com-
puter Science, Geography, Math, and
Physics olympiad questions

4250 3.2K

OmniMath (Gao et al., 2024a) Math problems from competitions 4238 4.4K
AGIEval (Zhong et al., 2023;
Ling et al., 2017; Hendrycks
et al., 2021; Liu et al., 2020;
Zhong et al., 2019; Wang et al.,
2021)

English, Law, Logic and Math prob-
lems from the SAT, LSAT and other
exams

2385 1.2K

xword Crossword puzzles 999 0.7K
OlympiadBench (He et al., 2024) Math and Physics olympiad questions 896 3.9K
AIME (1983-2021) American Invitational Mathematics Ex-

amination
890 4.7K

TheoremQA (Chen et al., 2023) Computer Science, Finance, Math, and
Physics university-level questions relat-
ing to theorems

747 2.1K

USACO (Shi et al., 2024) Code problems from the USA Comput-
ing Olympiad

519 3.6K

JEEBench (Arora et al., 2023) Chemistry, Math, and Physics prob-
lems used in the university entrance
examination of the Indian Institute of
Technology

515 2.9K

GPQA (Rein et al., 2023) PhD-Level Science Questions 348 2.9K
SciEval (Sun et al., 2024) Biology, Chemistry, and Physics prob-

lems from various sources
227 0.7K

s1-prob Stanford statistics qualifying exams 182 4.0K
LiveCodeBench (Jain et al., 2024) Code problems from coding websites

(LeetCode, AtCoder, and CodeForces)
151 3.5K

s1-teasers Math brain-teasers crawled from the
Internet

23 4.1K

All 59K questions Composite of the above datasets with
reasoning traces and solutions

59029 3.6K
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C.3 S1K GRADING PROMPT

To grade whether an example is correct for our dataset selection in §2, we use the prompt in Figure 9.
We grade using Claude 3.5 except for the correctness among the final 1,000 samples, which we
graded with Claude 3.7.

You are an AI assistant for grading a science problem. The user will provide you with the question
itself, an attempt made by a student and the correct answer to the problem. Your job is to judge
whether the attempt is correct by comparing it with the correct answer. If the expected solution
concludes with a number or choice, there should be no ambiguity. If the expected solution involves
going through the entire reasoning process, you should judge the attempt based on whether the
reasoning process is correct with correct answer if helpful.

The user will provide the attempt and the correct answer in the following format:

# Problem
{problem}

## Attempt
{attempt}

## Correct answer
{solution}

Explain your reasoning, and end your response on a new line with only "Yes" or "No" (without
quotes).

Figure 9: Grading prompt.

C.4 S1K DIVERSITY SELECTION

Algorithm 1 provides our algorithm for selecting data in our diversity selection stage. As mentioned
in §2, we also include samples from some specific benchmarks we perceive as high-quality. None of
the samples overlap with our final evaluation.

C.5 DECONTAMINATION

We filter all samples by checking for an 8-gram overlap between the selected examples and the
evaluation benchmarks: MATH500, GPTQA Diamond, and AIME24. We exclude questions with
more than an 8-gram overlap.
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Algorithm 1 Two-stage sampling for s1K
1: Input:  := Set of 24,496 questions with features
2: Output:  := Set of 1,000 selected questions
3:  ← ∅ Initialize the output set (only tracks unique elements)
4: for 𝑞 ∈  do
5: if IsGeminiCorrect(𝑞) and (IsAIME(𝑞) or IsGPQA(𝑞)) then
6:  ←  ∪ {𝑞}
7: Select all correct AIME/GPQA solutions
8: else if IsGeminiCorrect(𝑞) and IsMATH(𝑞) and ThinkingLength(𝑞) > 5600 then
9:  ←  ∪ {𝑞}

10: Select correct MATH500 solutions with long chains
11: end if
12: end for
13:  ← All available domains
14: Initialize domain pool
15: while || < 1000 do
16: 𝑑 ← RandomChoice()
17: Randomly select a domain
18: 𝑄𝑑 ← Questions in domain 𝑑
19: Get questions from this domain
20: ranks ← RankByThinkingLength(𝑄𝑑)
21: Rank by thinking length
22: weights ← 2−ranks

23: Apply power-law weighting
24: 𝑞 ← WeightedSample(𝑄𝑑 , weights)
25: Sample favoring longer chains
26:  ←  ∪ {𝑞}
27: Add selected question
28: 𝑄𝑑 ← 𝑄𝑑 ⧵ {𝑞}
29: if 𝑄𝑑 = ∅ then
30:  ←  ⧵ {𝑑}
31: Remove exhausted domains
32: end if
33: end while
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D TRAINING DETAILS

We take a model that has already been pretrained and instruction tuned and further finetune it for
reasoning. Specifically, we use Qwen2.5-32B-Instruct (Qwen et al., 2024), which on math tasks
generally matches or outperforms the larger Qwen2.5-72B-Instruct (Qwen et al., 2024) or other
open models (Dubey et al., 2024; Groeneveld et al., 2024; Muennighoff et al., 2024). We use token
delimiters to separate the thinking stage from the answering stage. We enclose the thinking stage with
<|im_start|>think and <|im_start|>answer; both preceded and followed by a newline.
Samples from our dataset are in §D.2. We use basic fine-tuning hyperparameters: we train for 5
epochs with a batch size of 16 for a total of 315 gradient steps. We train in bfloat16 precision with
a learning rate of 1𝑒 − 5 warmed up linearly for 5% (16 steps) and then decayed to 0 over the rest
of training (299 steps) following a cosine schedule. We use the AdamW optimizer (Loshchilov &
Hutter, 2019) with 𝛽1 = 0.9, 𝛽2 = 0.95 and weight decay of 1𝑒 − 4. We do not compute loss on
questions, only on reasoning traces and solutions. We ensure the sequence length is large enough to
avoid cutting off any samples; a setting we ablate in §D.1. The training takes just 26 minutes on 16
NVIDIA H100 GPUs.

0 100 200 300
Training Steps

0.0

0.2

0.4

Lo
ss

Training Loss

0 100 200 300
Training Steps

0.0

0.5

1.0

Le
ar

ni
ng

 R
at

e

1e 5
Learning Rate Schedule

0 100 200 300
Training Steps

1

2

3

Gr
ad

ie
nt

 N
or

m

Gradient Norm

Figure 10: Training dynamics of s1-32B on s1K.

D.1 TRAINING ABLATIONS: SEQUENCE LENGTH

Table 7: Training sequence length ablation. We report “accuracy / average thinking tokens per
sample”; the higher the accuracy and the fewer the thinking tokens (inference cost) the better.

Model A Model B

Training sequence length 4096 32768
% training samples cutoff 74% 0%

AIME24 30.0% / 20721 50.0% / 6984
MATH500 90.0% / 5324 91.0% / 3268
GPQA 52.5% / 6841 53.0% / 3568

Besides our scaling ablations in §5.2, the main training hyperparameter we ablate is the sequence
length used during training. We find that a shorter training sequence length leads to longer reasoning
traces at test time. This is because when training with a shorter sequence length the answer section of
the training sample is more commonly cut off. Inversely, when the training sequence length is longer,
more samples appear in their entirety with the section where the model answers. Thus the model
receives more gradient updates where it learns to generate an answer following its chain. This in turn
leads to a higher log probability of the answer section at any point during the generation and thus
shorter reasoning traces at test time. Performance-wise, we also find that the model trained with a
longer sequence length performs better. Thus we opt for the longest training sequence length as it
leads to better performance and makes inference more efficient by leading to shorter reasoning traces.

D.2 TRAINING SAMPLES

Table 8, Table 9, Table 10 contain training samples from s1K.
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Table 8: s1K sample stemming from s1-prob. The black text is the question and the yellow text
is the solution. Based solely on the question we generate the light blue reasoning trace and blue
response with Gemini, which we use for training.

You are given integrable random variables 𝑋, 𝑌0 and 𝑍0 on the same probability space (Ω, ,ℙ), and
two 𝜎-algebras  ⊂  , ⊂  . For 𝑘 = 1, 2,… ,, let

𝑌𝑘 ∶= 𝔼[𝑋|𝜎(, 𝑍0,… , 𝑍𝑘−1)], 𝑍𝑘 ∶= 𝔼[𝑋|𝜎(, 𝑌0,… , 𝑌𝑘−1)].

(a) Show that there exist integrable random variables 𝑌∞ and 𝑍∞ such that as 𝑛 → ∞ both 𝔼[|𝑌𝑛 −
𝑌∞|] → 0 and 𝔼[|𝑍𝑛 −𝑍∞|] → 0. (b) Prove that almost surely 𝑌∞ = 𝑍∞.

1. Introduce the notations, 𝑛 ∶= 𝜎(, 𝑍0,… , 𝑍𝑛−1) and 𝑛 ∶= 𝜎(, 𝑌0,… , 𝑌𝑛−1), for all
𝑛 ≥ 1 and 0 ∶= , 0 ∶= . Clearly, both are filtrations and by definition, 𝑌𝑛 = 𝔼

[

𝑋|𝑛
]

and 𝑍𝑛 = 𝔼
[

𝑋|𝑛
]

, for all 𝑛 ≥ 0. Thus
{

𝑌𝑛
}

𝑛≥0 (or
{

𝑍𝑛
}

𝑛≥0 ) is a Doob’s Martingale
with respect to filtration

{

𝑛
}

𝑛≥0 (or
{

𝑛
}

𝑛≥0) and hence is U.I., 𝑋 being integrable. Now
apply the fact that a Martingale is U.I. if and only if it converges in 𝐿1 and conclude.

2. We provide two different proofs.

1. Observe the following identity which follows from Tower Property.

𝔼
[

𝑌𝑛|𝑛
]

= 𝔼
[

𝔼
[

𝑋|𝑛
]

|𝑛
]

= 𝔼
[

𝔼
[

𝑋|𝑛
]

|𝑛
]

= 𝔼
[

𝑍𝑛|𝑛
]

. (4)

Note that 𝔼|𝔼
[

𝑌𝑛|𝑛
]

− 𝔼
[

𝑌∞|𝑛
]

| ≤ 𝔼|𝑌𝑛 − 𝑌∞| = 𝑜(1) and by Levy’s Upward Theorem,

𝔼
[

𝑌∞|𝑛
] 𝐿1

←→ 𝔼
[

𝑌∞|∞
]

, where ∞ = 𝜎
(

∪𝑛≥0𝑛
)

= 𝜎(, 𝑌0, 𝑌1…). It is evident that
𝑌∞ ∈ 𝑚∞ (since it is almost sure limit of 𝑌𝑛 ∈ 𝑚𝑛) and hence 𝔼

[

𝑌∞|∞
]

= 𝑌∞ almost

surely. Combining the above observations we conclude that 𝔼
[

𝑌𝑛|𝑛
] 𝐿1

←→ 𝑌∞. Similarly,

𝔼
[

𝑍𝑛|𝑛
] 𝐿1

←→ 𝑍∞. Now invoke Equation (4), to conclude that 𝑌∞ = 𝑍∞ almost surely.
2. Since 𝑋 is integrable, we have by Levy’s Upward Theorem, 𝑌∞ = lim𝑛→∞ 𝑌𝑛 =

lim𝑛→∞ 𝔼
[

𝑋|𝑛
]

= 𝔼
[

𝑋|∞
]

. Similarly, 𝑍∞ = 𝔼
[

𝑋|∞
]

. On the otherhand, in first
proof we have observed that 𝑌∞ ∈ 𝑚∞ and hence 𝑌∞ ∈ 𝑚∞ ∩ 𝑚∞ = 𝑚

(

∞ ∩ ∞
)

.
This yields the following.

𝑌∞ = 𝔼
[

𝑌∞|∞ ∩ ∞
]

= 𝔼
[

𝔼
[

𝑋|∞
]

|∞ ∩ ∞
]

= 𝔼
[

𝑋|∞ ∩ ∞
]

.

Similarly, 𝑍∞ = 𝔼
[

𝑋|∞ ∩ ∞
]

. This proves that 𝑌∞ = 𝑍∞ almost surely.

Let’s analyze the problem. We are given two sequences of random variables 𝑌𝑘 and 𝑍𝑘 defined by
conditional expectations. We need to show that these sequences converge in 𝐿1 and that their limits
are equal almost surely.
Part (a): Convergence in 𝐿1.
The sigma-algebras involved are increasing:
𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1)
𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1)
For the 𝑌𝑘 sequence:
𝑌1 = 𝔼[𝑋|𝜎()]
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)]
𝑌3 = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1)]
...
The sequence of sigma-algebras 𝜎(, 𝑍0,… , 𝑍𝑘−1) is increasing. By the Martingale Convergence
Theorem (for conditional expectations), since 𝑋 is integrable, the sequence 𝑌𝑘 converges almost
surely and in 𝐿1 to 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)]. Let 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
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Similarly, for the 𝑍𝑘 sequence:
𝑍1 = 𝔼[𝑋|𝜎()]
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)]
𝑍3 = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1)]
...
The sequence of sigma-algebras 𝜎(, 𝑌0,… , 𝑌𝑘−1) is increasing. By the Martingale Convergence
Theorem, the sequence 𝑍𝑘 converges almost surely and in 𝐿1 to 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)]. Let 𝑍∞ =
𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Part (b): Prove that almost surely 𝑌∞ = 𝑍∞.
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
Then 𝑌∞ = 𝔼[𝑋|∞] and 𝑍∞ = 𝔼[𝑋|∞].
Consider 𝑌1 = 𝔼[𝑋|]. 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)]. Since 𝑍0 = 𝔼[𝑋|], 𝜎(, 𝑍0) = 𝜎(,𝔼[𝑋|]).
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)]. Since 𝑌0 is not defined, let’s assume 𝑌0 and 𝑍0 are given.
Let’s consider the sigma-algebra generated by all the 𝑌𝑖 and 𝑍𝑖.
Let  = 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Both 𝑌𝑘 and 𝑍𝑘 are measurable with respect to . Thus, 𝑌∞ and 𝑍∞ are measurable with respect to
.
Consider 𝔼[𝑌𝑛+1|, 𝑍0,… , 𝑍𝑛−1] = 𝔼[𝔼[𝑋|𝜎(, 𝑍0,… , 𝑍𝑛)]|, 𝑍0,… , 𝑍𝑛−1] = 𝑌𝑛.
Consider 𝔼[𝑍𝑛+1|, 𝑌0,… , 𝑌𝑛−1] = 𝔼[𝔼[𝑋|𝜎(, 𝑌0,… , 𝑌𝑛)]|, 𝑌0,… , 𝑌𝑛−1] = 𝑍𝑛.
Let  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…)).
Consider 𝔼[𝑋|, 𝑍0,… , 𝑍𝑘−1] = 𝑌𝑘.
Consider 𝔼[𝑋|, 𝑌0,… , 𝑌𝑘−1] = 𝑍𝑘.
Let’s consider the limit sigma-algebras ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
We know that 𝑌∞ is ∞-measurable and 𝑍∞ is ∞-measurable.
Let  = 𝜎( ∪ ).
𝑌1 = 𝔼[𝑋|]. 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(, 𝑍0)] = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
𝑍2 = 𝔼[𝑋|𝜎(, 𝑌0)] = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
Consider the case when  and  are independent. Then 𝑌1 = 𝔼[𝑋|] and 𝑍1 = 𝔼[𝑋|].
𝑌2 = 𝔼[𝑋|𝜎(,𝔼[𝑋|])].
Let’s consider the sigma-algebra generated by all the information. Let ∞ =
𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then both 𝑌∞ and 𝑍∞ are ∞-measurable.
We have 𝑌∞ = lim𝑛→∞ 𝑌𝑛 and 𝑍∞ = lim𝑛→∞𝑍𝑛 a.s. and in 𝐿1.
Consider 𝔼[𝑋|, 𝑍0, 𝑍1,…] = 𝑌∞ and 𝔼[𝑋|, 𝑌0, 𝑌1,…] = 𝑍∞.
Let ∞ = 𝜎( ∪ ).
Consider 𝔼[𝑋|∞].
Let’s try to show that both 𝑌∞ and 𝑍∞ are equal to 𝔼[𝑋|𝜎( ∨ )]. This seems too simple.
Let’s consider the definition of conditional expectation. For any set 𝐴 ∈ ∞, 𝔼[𝑌∞1𝐴] = 𝔼[𝑋1𝐴].
For any set 𝐵 ∈ ∞, 𝔼[𝑍∞1𝐵] = 𝔼[𝑋1𝐵].
Consider 𝔼[𝑌𝑘+1|𝑘] = 𝑌𝑘 where 𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1).
Consider 𝔼[𝑍𝑘+1|𝑘] = 𝑍𝑘 where 𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1).
Consider the sigma-algebra 𝜎( ∪ ).
Let 𝑊 = 𝔼[𝑋|𝜎( ∪ )].
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
Since 𝑍𝑘 depends on 𝑌𝑘−1 which depends on 𝑍𝑘−2 etc., it is complex.
Let’s consider the case where 𝑌0 = 𝔼[𝑋|] and 𝑍0 = 𝔼[𝑋|].
Then 𝑌1 = 𝔼[𝑋|] = 𝑌0.
𝑍1 = 𝔼[𝑋|] = 𝑍0.
If this were the case, then 𝑌𝑘 = 𝑌0 and 𝑍𝑘 = 𝑍0, so 𝑌∞ = 𝑌0 and 𝑍∞ = 𝑍0.
We need 𝑌0 = 𝑍0 a.s., i.e., 𝔼[𝑋|] = 𝔼[𝑋|] a.s. This is not generally true.
Consider the sigma-algebra generated by all 𝑌𝑖 and 𝑍𝑖, denoted by ∞ = 𝜎(𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then ∞ = 𝜎(, 𝑍0, 𝑍1,…) ⊆ 𝜎(,∞).
∞ = 𝜎(, 𝑌0, 𝑌1,…) ⊆ 𝜎(,∞).
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Consider 𝔼[𝑋|, 𝑍0, 𝑍1,…] = 𝑌∞. This means for any 𝐴 ∈ 𝜎(, 𝑍0, 𝑍1,…), 𝔼[𝑋1𝐴] =
𝔼[𝑌∞1𝐴].
Consider 𝔼[𝑋|, 𝑌0, 𝑌1,…] = 𝑍∞. This means for any 𝐵 ∈ 𝜎(, 𝑌0, 𝑌1,…), 𝔼[𝑋1𝐵] = 𝔼[𝑍∞1𝐵].
Let  = 𝜎(,).
Consider 𝔼[𝑋|].
Consider 𝔼[𝑌∞|, 𝑌0, 𝑌1,…] = 𝔼[𝔼[𝑋|, 𝑍0, 𝑍1,…]|, 𝑌0, 𝑌1,…].
Let’s use the fact that 𝑌∞ is 𝜎(, 𝑍0, 𝑍1,…)-measurable and 𝑍∞ is 𝜎(, 𝑌0, 𝑌1,…)-measurable.
Consider the smallest sigma-algebra containing both 𝜎(, 𝑍0, 𝑍1,…) and 𝜎(, 𝑌0, 𝑌1,…).
This is 𝜎( ∪  ∪ {𝑌𝑖}𝑖≥0 ∪ {𝑍𝑖}𝑖≥0).
Let’s try to show that 𝔼[(𝑌∞ −𝑍∞)2] = 0.
𝔼[(𝑌∞ −𝑍∞)2] = 𝔼[𝑌 2

∞] + 𝔼[𝑍2
∞] − 2𝔼[𝑌∞𝑍∞].

Consider the definition of 𝑌𝑘 and 𝑍𝑘.
𝔼[𝑌𝑘+1|, 𝑍0,… , 𝑍𝑘−1] = 𝑌𝑘.
𝔼[𝑍𝑘+1|, 𝑌0,… , 𝑌𝑘−1] = 𝑍𝑘.
Consider 𝔼[𝑌∞|, 𝑌0, 𝑌1,…].
Since 𝑌∞ is measurable with respect to 𝜎(, 𝑍0, 𝑍1,…), this does not simplify easily.
Let’s assume 𝑌∞ ≠ 𝑍∞ on a set of positive measure.
Consider the case where  and  are trivial.
Then 𝑌𝑘 = 𝔼[𝑋|𝜎(𝑍0,… , 𝑍𝑘−1)] and 𝑍𝑘 = 𝔼[𝑋|𝜎(𝑌0,… , 𝑌𝑘−1)].
Let ∞ = 𝜎( ∪  ∪ {𝑌𝑖, 𝑍𝑖}𝑖≥0).
Consider 𝔼[𝑋|∞].
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)].
By the properties of conditional expectation, 𝔼[𝑌∞|] = 𝔼[𝔼[𝑋|, 𝑍0, 𝑍1,…]|].
Consider the sigma-algebra  generated by all the random variables involved.
 = 𝜎( ∪  ∪ {𝑌𝑖}𝑖≥0 ∪ {𝑍𝑖}𝑖≥0).
Let 𝑀∞ = 𝔼[𝑋| ∨ ].
Consider the limits. As 𝑛→ ∞, 𝜎(, 𝑍0,… , 𝑍𝑛−1) ↑ 𝜎(, 𝑍0, 𝑍1,…).
As 𝑛→ ∞, 𝜎(, 𝑌0,… , 𝑌𝑛−1) ↑ 𝜎(, 𝑌0, 𝑌1,…).
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
We have 𝑌∞ = 𝔼[𝑋|∞] and 𝑍∞ = 𝔼[𝑋|∞].
Consider 𝔼[𝑌∞ −𝑍∞]2 = 𝔼[(𝑌∞ −𝑋) + (𝑋 −𝑍∞)]2
= 𝔼[(𝑌∞ −𝑋)2] + 𝔼[(𝑋 −𝑍∞)2] + 2𝔼[(𝑌∞ −𝑋)(𝑋 −𝑍∞)]
= 𝔼[(𝑋 − 𝔼[𝑋|∞])2] + 𝔼[(𝑋 − 𝔼[𝑋|∞])2] + 2𝔼[𝑌∞𝑋 − 𝑌∞𝑍∞ −𝑋2 +𝑋𝑍∞]
= 𝔼[𝑋2] − 𝔼[𝑌 2

∞] + 𝔼[𝑋2] − 𝔼[𝑍2
∞] + 2𝔼[𝑌∞𝑋] − 2𝔼[𝑌∞𝑍∞] − 2𝔼[𝑋2] + 2𝔼[𝑋𝑍∞]

= −𝔼[𝑌 2
∞] − 𝔼[𝑍2

∞] + 2𝔼[𝑌 2
∞] − 2𝔼[𝑌∞𝑍∞] + 2𝔼[𝑍2

∞]
= 𝔼[𝑌 2

∞] + 𝔼[𝑍2
∞] − 2𝔼[𝑌∞𝑍∞]

Consider the sigma-algebra  = 𝜎( ∪ ).
Let 𝑊 = 𝔼[𝑋|].
Consider the limit sigma-algebra generated by all the information.
Let ∞ = 𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…).
Then ∞ ⊆ ∞ and ∞ ⊆ ∞.
We have 𝔼[𝑋|∞] = 𝑌∞ and 𝔼[𝑋|∞] = 𝑍∞.
Consider 𝔼[𝑌∞|∞] and 𝔼[𝑍∞|∞].
Let  = 𝜎( ∪ ).
Consider 𝔼[𝑋|].
Consider the sequence of pairs (𝑌𝑘, 𝑍𝑘).
If the limits are the same, then for any bounded measurable function 𝑓 , 𝔼[𝑓 (𝑌∞)] = 𝔼[𝑓 (𝑍∞)].
Consider the sigma-algebra  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
Then both 𝑌∞ and 𝑍∞ are measurable with respect to .
Consider 𝔼[(𝑌𝑛 −𝑍𝑛)2].
Let  = 𝜎( ∪ ).
Consider 𝑊 = 𝔼[𝑋|].
Then 𝔼[𝑊 |] = 𝔼[𝑋|] and 𝔼[𝑊 |] = 𝔼[𝑋|].
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Consider the limit sigma-algebra  = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
We have 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let  = 𝜎(, 𝑍0, 𝑍1,…) ∨ 𝜎(, 𝑌0, 𝑌1,…).
Consider 𝔼[𝑋|].
Consider the random variable 𝑋. Then 𝑌∞ = lim𝑛 𝔼[𝑋|𝑛] and 𝑍∞ = lim𝑛 𝔼[𝑋|𝑛].
Let ∞ = 𝜎( ∪  ∪ 𝜎(𝑌0, 𝑍0,…)).
Consider 𝐸 = {𝜔 ∶ 𝑌∞(𝜔) ≠ 𝑍∞(𝜔)}. Suppose 𝑃 (𝐸) > 0.
Consider the conditional expectation with respect to the join of the sigma-algebras.
Let ∞ = 𝜎(,, 𝑌0, 𝑍0,…).
Consider 𝔼[𝑋|∞].
Then 𝔼[𝔼[𝑋|∞]|, 𝑍0,…] = 𝔼[𝑋|, 𝑍0,…] = 𝑌𝑛+1.
And 𝔼[𝔼[𝑋|∞]|, 𝑌0,…] = 𝔼[𝑋|, 𝑌0,…] = 𝑍𝑛+1.
So 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)] and 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…).
Consider 𝔼[𝑋|∞ ∨ ∞].
Then 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
And 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑍∞.
This means 𝑌∞ = 𝔼[𝑋|∞ ∨ ∞] a.s. and 𝑍∞ = 𝔼[𝑋|∞ ∨ ∞] a.s.
Therefore, 𝑌∞ = 𝑍∞ a.s.
Solution:
(a) For the sequence 𝑌𝑘, the 𝜎-algebras 𝑘 = 𝜎(, 𝑍0,… , 𝑍𝑘−1) are increasing as 𝑘 increases. Since
𝑋 is integrable, by the Martingale Convergence Theorem for conditional expectations, the sequence
𝑌𝑘 = 𝔼[𝑋|𝑘] converges almost surely and in 𝐿1 to 𝑌∞ = 𝔼[𝑋|𝜎(, 𝑍0, 𝑍1,…)]. Similarly, for the
sequence 𝑍𝑘, the 𝜎-algebras 𝑘 = 𝜎(, 𝑌0,… , 𝑌𝑘−1) are increasing. Since 𝑋 is integrable, by the
Martingale Convergence Theorem, the sequence 𝑍𝑘 = 𝔼[𝑋|𝑘] converges almost surely and in 𝐿1

to 𝑍∞ = 𝔼[𝑋|𝜎(, 𝑌0, 𝑌1,…)].
(b) Let ∞ = 𝜎(, 𝑍0, 𝑍1,…) and ∞ = 𝜎(, 𝑌0, 𝑌1,…). We have 𝑌∞ = 𝔼[𝑋|∞] and 𝑍∞ =
𝔼[𝑋|∞]. Consider the 𝜎-algebra  = ∞ ∨ ∞ = 𝜎(,, 𝑌0, 𝑍0, 𝑌1, 𝑍1,…). Consider 𝑊 =
𝔼[𝑋|].
We have ∞ ⊆ , so 𝔼[𝑊 |∞] = 𝔼[𝔼[𝑋|]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
Since 𝑊 is -measurable, 𝔼[𝑊 |∞] = 𝑌∞ implies that 𝑌∞ is the conditional expectation of 𝑊
given ∞. But since 𝑌∞ is already ∞-measurable, we have 𝔼[𝑊 |∞] = 𝑊 if𝑊 is ∞-measurable,
which is not necessarily true.
However, we know that 𝔼[𝑌∞|∞] = 𝑌∞ and 𝔼[𝑍∞|∞] = 𝑍∞.
Consider 𝔼[𝑋|∞ ∨ ∞].
Then 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑌∞.
This implies that 𝔼[𝑋|∞ ∨ ∞] = 𝑌∞ almost surely.
Similarly, 𝔼[𝔼[𝑋|∞ ∨ ∞]|∞] = 𝔼[𝑋|∞] = 𝑍∞.
This implies that 𝔼[𝑋|∞ ∨ ∞] = 𝑍∞ almost surely.
Therefore, 𝑌∞ = 𝑍∞ almost surely.
Final Answer: The final answer is 𝑌∞ = 𝑍∞
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Table 9: s1K sample stemming from s1-teasers. The black text is the question and the yellow text
is the solution. Based solely on the question we generate the light blue reasoning trace and blue
response with Gemini, which we use for training.

Alice and Bob each have a coin and flip it until they get a heads. If Bob flipped his coin more times
than Alice, what is the expected number of times Alice flipped her coin?

4/3

The problem asks for the expected number of times Alice flipped her coin, given that Bob flipped his
coin more times than Alice.
Let 𝑋 be the number of flips Alice makes until she gets a head.
Let 𝑌 be the number of flips Bob makes until he gets a head.
𝑋 and 𝑌 are independent random variables following a geometric distribution with parameter 𝑝 = 0.5
(probability of getting a head).
The probability mass function for a geometric distribution is 𝑃 (𝐾 = 𝑘) = (1−𝑝)𝑘−1𝑝, for 𝑘 = 1, 2,… .
In this case, 𝑝 = 0.5, so 𝑃 (𝐾 = 𝑘) = (0.5)𝑘−1(0.5) = (0.5)𝑘 = 1

2𝑘 .
We are given the condition that Bob flipped his coin more times than Alice, which means 𝑌 > 𝑋.
We want to find the expected value of 𝑋 given that 𝑌 > 𝑋, i.e., 𝐸[𝑋|𝑌 > 𝑋].
The formula for conditional expectation is 𝐸[𝑋|𝐴] =

∑

𝑥 𝑥𝑃 (𝑋 = 𝑥|𝐴).
Also, 𝑃 (𝑋 = 𝑥|𝐴) = 𝑃 (𝑋=𝑥∩𝐴)

𝑃 (𝐴) .
In our case, 𝐴 is the event 𝑌 > 𝑋.
We need to find 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦)

Since 𝑋 and 𝑌 are independent, 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 = 𝑦) = 1
2𝑥

1
2𝑦 = 1

2𝑥+𝑦 .

𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

∑∞
𝑦=𝑥+1

1
2𝑥+𝑦 =

∑∞
𝑥=1

1
2𝑥

∑∞
𝑦=𝑥+1

1
2𝑦

The inner sum is a geometric series:
∑∞
𝑦=𝑥+1(

1
2 )
𝑦 = ( 12 )

𝑥+1 + ( 12 )
𝑥+2 +…

This is a geometric series with first term 𝑎 = ( 12 )
𝑥+1 and common ratio 𝑟 = 1

2 .

The sum is 𝑎
1−𝑟 =

( 12 )
𝑥+1

1− 1
2

=
( 12 )

𝑥+1

1
2

= ( 12 )
𝑥.

So, 𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

1
2𝑥 (

1
2 )
𝑥 =

∑∞
𝑥=1(

1
4 )
𝑥.

This is another geometric series with first term 𝑎 = 1
4 and common ratio 𝑟 = 1

4 .

The sum is 𝑎
1−𝑟 =

1
4

1− 1
4
=

1
4
3
4
= 1

3 .

Now, we need to find 𝑃 (𝑋 = 𝑥 ∩ 𝑌 > 𝑋) = 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥).
𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥), due to independence.
𝑃 (𝑌 > 𝑥) =

∑∞
𝑦=𝑥+1 𝑃 (𝑌 = 𝑦) =

∑∞
𝑦=𝑥+1

1
2𝑦 = ( 12 )

𝑥+1 + ( 12 )
𝑥+2 +⋯ = ( 12 )

𝑥.

So, 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 1
2𝑥 × ( 12 )

𝑥 = ( 14 )
𝑥.

Now, we can find 𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥∩𝑌 >𝑋)
𝑃 (𝑌 >𝑋) =

( 14 )
𝑥

1
3

= 3( 14 )
𝑥.

Finally, we can calculate the conditional expectation:
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥 ⋅ 3(

1
4 )
𝑥 = 3

∑∞
𝑥=1 𝑥(

1
4 )
𝑥.

Consider the series 𝑆 =
∑∞
𝑥=1 𝑥𝑟

𝑥, where |𝑟| < 1.
𝑆 = 𝑟 + 2𝑟2 + 3𝑟3 + 4𝑟4 +…
𝑆
𝑟 = 1 + 2𝑟 + 3𝑟2 + 4𝑟3 +…
Consider the geometric series 𝐺 = 1 + 𝑟 + 𝑟2 + 𝑟3 +⋯ = 1

1−𝑟 .
Differentiating with respect to 𝑟:
𝑑𝐺
𝑑𝑟 = 1 + 2𝑟 + 3𝑟2 + 4𝑟3 +⋯ = 𝑑

𝑑𝑟 (
1

1−𝑟 ) =
1

(1−𝑟)2 .

So, 𝑆𝑟 = 1
(1−𝑟)2 , which means 𝑆 = 𝑟

(1−𝑟)2 .

In our case, 𝑟 = 1
4 .
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∑∞
𝑥=1 𝑥(

1
4 )
𝑥 =

1
4

(1− 1
4 )

2
=

1
4

( 34 )
2
=

1
4
9
16

= 1
4 ×

16
9 = 4

9 .

Therefore, 𝐸[𝑋|𝑌 > 𝑋] = 3 × 4
9 = 12

9 = 4
3 .

Alternative approach: Symmetry.
Consider the events 𝑌 > 𝑋, 𝑋 > 𝑌 , and 𝑋 = 𝑌 .
𝑃 (𝑌 > 𝑋) = 𝑃 (𝑋 > 𝑌 ) due to symmetry.
𝑃 (𝑋 = 𝑌 ) =

∑∞
𝑘=1 𝑃 (𝑋 = 𝑘, 𝑌 = 𝑘) =

∑∞
𝑘=1 𝑃 (𝑋 = 𝑘)𝑃 (𝑌 = 𝑘) =

∑∞
𝑘=1(

1
2𝑘 )

2 =
∑∞
𝑘=1(

1
4 )
𝑘 =

1
4

1− 1
4
=

1
4
3
4
= 1

3 .

We have 𝑃 (𝑌 > 𝑋) + 𝑃 (𝑋 > 𝑌 ) + 𝑃 (𝑋 = 𝑌 ) = 1.
𝑃 (𝑌 > 𝑋) + 𝑃 (𝑌 > 𝑋) + 1

3 = 1.

2𝑃 (𝑌 > 𝑋) = 1 − 1
3 = 2

3 .

𝑃 (𝑌 > 𝑋) = 1
3 . This confirms our previous calculation.

Let 𝐸[𝑋|𝑌 > 𝑋] = 𝜇.
We are looking for the expected number of flips Alice made, given Bob flipped more times.
Consider the case where the first flip for both is tails. Then the process restarts, and the condition
remains.
Let 𝐴1 be Alice’s first flip, 𝐵1 be Bob’s first flip.
𝑃 (𝐴1 = 𝐻) = 1∕2, 𝑃 (𝐴1 = 𝑇 ) = 1∕2.
𝑃 (𝐵1 = 𝐻) = 1∕2, 𝑃 (𝐵1 = 𝑇 ) = 1∕2.
Case 1: 𝐴1 = 𝐻,𝐵1 = 𝐻 . 𝑋 = 1, 𝑌 = 1, so 𝑌 > 𝑋 is false.
Case 2: 𝐴1 = 𝐻,𝐵1 = 𝑇 . Alice stops at 1, Bob continues. 𝑌 > 1.
Case 3: 𝐴1 = 𝑇 , 𝐵1 = 𝐻 . Bob stops at 1, Alice continues.
Case 4: 𝐴1 = 𝑇 , 𝐵1 = 𝑇 . Both continue.
Consider the conditional probabilities given 𝑌 > 𝑋.
Let 𝐸 = 𝐸[𝑋|𝑌 > 𝑋].
If the first flips are HH, the condition 𝑌 > 𝑋 is not met.
If the first flips are HT, Alice’s number of flips is 1.
If the first flips are TH, Bob’s number of flips is 1, Alice’s is at least 2, so 𝑌 < 𝑋.
If the first flips are TT, the problem restarts, and the expected number of additional flips for Alice is
still 𝐸.
Let 𝑁𝐴 be the number of flips Alice makes, 𝑁𝐵 be the number of flips Bob makes.
We are given 𝑁𝐵 > 𝑁𝐴.
Consider the first flips:
HH (prob 1/4): Condition not met.
HT (prob 1/4): Alice flips 1 time.
TH (prob 1/4): Bob flips 1 time, Alice > 1, so 𝑁𝐴 > 𝑁𝐵 , condition not met.
TT (prob 1/4): Both continue.
Let 𝐸 be the expected number of Alice’s flips given Bob flipped more.
If the first flips are HT, Alice flipped 1 time, and the condition is met.
If the first flips are TT, the situation is the same as the beginning, so the expected number of additional
flips for Alice is 𝐸.
Consider the event 𝑌 > 𝑋.
Conditioning on the first flips:
𝐸[𝑋|𝑌 > 𝑋] = 𝐸[𝑋|𝑌 > 𝑋,𝐻𝐻]𝑃 (𝐻𝐻|𝑌 > 𝑋) + 𝐸[𝑋|𝑌 > 𝑋,𝐻𝑇 ]𝑃 (𝐻𝑇 |𝑌 > 𝑋) +
𝐸[𝑋|𝑌 > 𝑋, 𝑇𝐻]𝑃 (𝑇𝐻|𝑌 > 𝑋) + 𝐸[𝑋|𝑌 > 𝑋, 𝑇 𝑇 ]𝑃 (𝑇𝑇 |𝑌 > 𝑋)
𝑃 (𝑌 > 𝑋|𝐻𝐻) = 0.
𝑃 (𝑌 > 𝑋|𝐻𝑇 ) = 1.
𝑃 (𝑌 > 𝑋|𝑇𝐻) = 0.
𝑃 (𝑌 > 𝑋|𝑇𝑇 ) depends on the future flips.
Let’s use the definition of conditional expectation directly.
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥

𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋)

Consider the probabilities of the first flips given 𝑌 > 𝑋.
𝑃 (𝐻𝐻|𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝐻𝐻)𝑃 (𝐻𝐻)

𝑃 (𝑌 >𝑋) = 0⋅1∕4
1∕3 = 0.

𝑃 (𝐻𝑇 |𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝐻𝑇 )𝑃 (𝐻𝑇 )
𝑃 (𝑌 >𝑋) = 1⋅1∕4

1∕3 = 3
4 .
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𝑃 (𝑇𝐻|𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝑇𝐻)𝑃 (𝑇𝐻)
𝑃 (𝑌 >𝑋) = 0⋅1∕4

1∕3 = 0.

𝑃 (𝑇𝑇 |𝑌 > 𝑋) = 𝑃 (𝑌 >𝑋|𝑇𝑇 )𝑃 (𝑇𝑇 )
𝑃 (𝑌 >𝑋)

If the first flips are TT, the future behavior is the same, and the condition 𝑌 > 𝑋 holds if Bob takes
more flips than Alice in the subsequent trials.
𝑃 (𝑌 > 𝑋|𝑇𝑇 ) = 𝑃 (Bob needs more flips than Alice starting from scratch) = 𝑃 (𝑌 > 𝑋) = 1∕3.
𝑃 (𝑇𝑇 |𝑌 > 𝑋) = (1∕3)⋅(1∕4)

1∕3 = 1
4 .

Sum of conditional probabilities: 0 + 3∕4 + 0 + 1∕4 = 1.
Now consider the conditional expectations of 𝑋:
𝐸[𝑋|𝑌 > 𝑋,𝐻𝐻]: Not relevant since 𝑃 (𝐻𝐻|𝑌 > 𝑋) = 0.
𝐸[𝑋|𝑌 > 𝑋,𝐻𝑇 ]: Given HT and 𝑌 > 𝑋, Alice flipped 1 time. 𝐸 = 1.
𝐸[𝑋|𝑌 > 𝑋, 𝑇𝐻]: Not relevant.
𝐸[𝑋|𝑌 > 𝑋, 𝑇 𝑇 ]: Given TT and 𝑌 > 𝑋, Alice has already flipped once, and the expected number
of additional flips is 𝐸. So, the total number of flips is 1 + 𝐸.
𝐸 = 0 ⋅ 0 + 1 ⋅ (3∕4) + undefined ⋅ 0 + (1 + 𝐸) ⋅ (1∕4)
𝐸 = 0 + 3∕4 + 0 + 1∕4 + 𝐸∕4
𝐸 = 1 + 𝐸∕4
𝐸 − 𝐸∕4 = 1
3𝐸∕4 = 1
𝐸 = 4∕3.
This confirms the previous result.
Let’s think about the intuition. If we have the condition 𝑌 > 𝑋, it means Alice was "lucky" and got a
head early, or Bob was "unlucky".
Consider the random variable 𝑍 = 𝑌 −𝑋. We are given 𝑍 > 0.
We want 𝐸[𝑋|𝑍 > 0].
Let 𝑝 = 𝑃 (head) = 0.5.
The number of tails before the first head follows a geometric distribution with parameter 𝑝.
𝑋 − 1 ∼ 𝐺𝑒𝑜𝑚(𝑝), 𝑌 − 1 ∼ 𝐺𝑒𝑜𝑚(𝑝).
𝑃 (𝑋 − 1 = 𝑘) = (1 − 𝑝)𝑘𝑝.
𝑃 (𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝.
Consider the joint distribution of 𝑋 and 𝑌 .
𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑝2(1 − 𝑝)𝑥−1(1 − 𝑝)𝑦−1
Consider the event 𝑌 = 𝑋 + 𝑘, where 𝑘 ≥ 1.
𝑃 (𝑌 = 𝑋 + 𝑘) =

∑∞
𝑥=1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑥 + 𝑘) =

∑∞
𝑥=1 𝑝

2(1 − 𝑝)𝑥−1(1 − 𝑝)𝑥+𝑘−1

= 𝑝2(1 − 𝑝)𝑘−1
∑∞
𝑥=1((1 − 𝑝)

2)𝑥−1 = 𝑝2(1 − 𝑝)𝑘−1 1
1−(1−𝑝)2

= 𝑝2(1 − 𝑝)𝑘−1 1
1−(1−2𝑝+𝑝2) = 𝑝2(1 − 𝑝)𝑘−1 1

2𝑝−𝑝2 = 𝑝2(1 − 𝑝)𝑘−1 1
𝑝(2−𝑝)

= 𝑝(1−𝑝)𝑘−1
2−𝑝 .

If 𝑝 = 0.5, then 1 − 𝑝 = 0.5, 2 − 𝑝 = 1.5.
𝑃 (𝑌 = 𝑋 + 𝑘) = 0.5(0.5)𝑘−1

1.5 = (0.5)𝑘
1.5 = (1∕2)𝑘

3∕2 = 1
2𝑘 ⋅

2
3 = 1

3⋅2𝑘−1 .

Check if
∑∞
𝑘=1 𝑃 (𝑌 = 𝑋 + 𝑘) = 𝑃 (𝑌 > 𝑋) = 1∕3.

∑∞
𝑘=1

1
3⋅2𝑘−1 = 1

3
∑∞
𝑘=1(

1
2 )
𝑘−1 = 1

3 (1 + 1∕2 + 1∕4 +…) = 1
3

1
1−1∕2 = 1

3 ⋅ 2 = 2
3 .

Something is wrong here.
Let’s recalculate 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑥−1𝑝(1 − 𝑝)𝑦−1𝑝
= 𝑝2

∑∞
𝑥=1(1 − 𝑝)

𝑥−1∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑦−1

Inner sum: (1 − 𝑝)𝑥 + (1 − 𝑝)𝑥+1 +⋯ = (1−𝑝)𝑥
1−(1−𝑝) =

(1−𝑝)𝑥
𝑝 .

𝑃 (𝑌 > 𝑋) = 𝑝2
∑∞
𝑥=1(1 − 𝑝)

𝑥−1 (1−𝑝)𝑥
𝑝 = 𝑝(1 − 𝑝)

∑∞
𝑥=1(1 − 𝑝)

2(𝑥−1)

= 𝑝(1 − 𝑝)
∑∞
𝑥=1((1 − 𝑝)

2)𝑥−1 = 𝑝(1 − 𝑝) 1
1−(1−𝑝)2

= 𝑝(1 − 𝑝) 1
1−(1−2𝑝+𝑝2) = 𝑝(1 − 𝑝) 1

2𝑝−𝑝2 = 𝑝(1 − 𝑝) 1
𝑝(2−𝑝) =

1−𝑝
2−𝑝 .

If 𝑝 = 0.5, 𝑃 (𝑌 > 𝑋) = 0.5
1.5 = 1

3 . Correct.
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Now, let’s find 𝐸[𝑋|𝑌 > 𝑋].
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥

𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) .

𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥) (independence)
𝑃 (𝑋 = 𝑥) = (1 − 𝑝)𝑥−1𝑝.
𝑃 (𝑌 > 𝑥) =

∑∞
𝑦=𝑥+1(1 − 𝑝)

𝑦−1𝑝 = 𝑝[(1 − 𝑝)𝑥 + (1 − 𝑝)𝑥+1 +…] = 𝑝 (1−𝑝)𝑥
1−(1−𝑝) = (1 − 𝑝)𝑥.

𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = (1 − 𝑝)𝑥−1𝑝(1 − 𝑝)𝑥 = 𝑝(1 − 𝑝)2𝑥−1.
𝐸[𝑋|𝑌 > 𝑋] = 1

𝑃 (𝑌 >𝑋)
∑∞
𝑥=1 𝑥𝑝(1 − 𝑝)

2𝑥−1

= 2−𝑝
1−𝑝𝑝(1 − 𝑝)

−1∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥 (error in power)

𝑃 (𝑌 > 𝑥) = (1−𝑝)𝑥
1−(1−𝑝)𝑝 = (1 − 𝑝)𝑥.

𝐸[𝑋|𝑌 > 𝑋] = 1
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥)

= 1
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥(1 − 𝑝)

𝑥−1𝑝(1 − 𝑝)𝑥

= 𝑝
𝑃 (𝑌 >𝑋)

∑∞
𝑥=1 𝑥(1 − 𝑝)

2𝑥−1

= 𝑝
(1−𝑝)∕(2−𝑝) (1 − 𝑝)

−1∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥

= 𝑝 2−𝑝
(1−𝑝)2

∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥.

Let 𝑟 = (1 − 𝑝)2.
∑∞
𝑥=1 𝑥𝑟

𝑥 = 𝑟
(1−𝑟)2 .

1 − 𝑟 = 1 − (1 − 𝑝)2 = 1 − (1 − 2𝑝 + 𝑝2) = 2𝑝 − 𝑝2 = 𝑝(2 − 𝑝).
(1 − 𝑟)2 = 𝑝2(2 − 𝑝)2.
∑∞
𝑥=1 𝑥((1 − 𝑝)

2)𝑥 = (1−𝑝)2
𝑝2(2−𝑝)2 .

𝐸[𝑋|𝑌 > 𝑋] = 𝑝 2−𝑝
(1−𝑝)2

(1−𝑝)2
𝑝2(2−𝑝)2 = 1

𝑝(2−𝑝) .

If 𝑝 = 0.5, 𝐸[𝑋|𝑌 > 𝑋] = 1
0.5×1.5 = 1

0.75 = 1
3∕4 = 4∕3.

Solution:
Let 𝑋 be the number of flips Alice makes until she gets a head, and 𝑌 be the number of flips Bob
makes until he gets a head. 𝑋 and 𝑌 are independent geometric random variables with parameter
𝑝 = 0.5. The probability mass function is 𝑃 (𝐾 = 𝑘) = (1 − 𝑝)𝑘−1𝑝.
We are interested in the expected number of times Alice flipped her coin, given that Bob flipped his
coin more times than Alice, i.e., 𝐸[𝑋|𝑌 > 𝑋].
Using the definition of conditional expectation, 𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋).

𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) .

First, calculate 𝑃 (𝑌 > 𝑋).
𝑃 (𝑌 > 𝑋) =

∑∞
𝑥=1

∑∞
𝑦=𝑥+1 𝑃 (𝑋 = 𝑥, 𝑌 = 𝑦) =

∑∞
𝑥=1 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥).

𝑃 (𝑋 = 𝑥) = (0.5)𝑥−1(0.5) = (0.5)𝑥 = 1
2𝑥 .

𝑃 (𝑌 > 𝑥) =
∑∞
𝑦=𝑥+1(0.5)

𝑦−1(0.5) = (0.5)𝑥.

𝑃 (𝑌 > 𝑋) =
∑∞
𝑥=1

1
2𝑥 (

1
2 )
𝑥 =

∑∞
𝑥=1(

1
4 )
𝑥 = 1∕4

1−1∕4 = 1∕4
3∕4 = 1

3 .

Next, calculate 𝑃 (𝑋 = 𝑥, 𝑌 > 𝑥) = 𝑃 (𝑋 = 𝑥)𝑃 (𝑌 > 𝑥) = 1
2𝑥 (

1
2 )
𝑥 = ( 14 )

𝑥.

Now, find 𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) = 𝑃 (𝑋=𝑥,𝑌 >𝑥)
𝑃 (𝑌 >𝑋) = (1∕4)𝑥

1∕3 = 3( 14 )
𝑥.

Finally, calculate the conditional expectation:
𝐸[𝑋|𝑌 > 𝑋] =

∑∞
𝑥=1 𝑥𝑃 (𝑋 = 𝑥|𝑌 > 𝑋) =

∑∞
𝑥=1 𝑥 ⋅ 3(

1
4 )
𝑥 = 3

∑∞
𝑥=1 𝑥(

1
4 )
𝑥.

Using the formula
∑∞
𝑥=1 𝑥𝑟

𝑥 = 𝑟
(1−𝑟)2 with 𝑟 = 1∕4:

∑∞
𝑥=1 𝑥(

1
4 )
𝑥 = 1∕4

(1−1∕4)2 = 1∕4
(3∕4)2 = 1∕4

9∕16 = 1
4 ×

16
9 = 4

9 .

𝐸[𝑋|𝑌 > 𝑋] = 3 × 4
9 = 12

9 = 4
3 .

Final Answer: The final answer is 4∕3
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Table 10: s1K sample stemming from the astronomy subset of OlympicArena. The black text is
the question and the blue text is the solution. Based solely on the question we generate the light blue
reasoning trace and blue response with Gemini, which we use for training.

An often-repeated fun fact is that humans produce more power per unit volume than stars. If the sun
were the same size, but it produced the same amount of power per unit volume as a human, what
would its surface temperature be? Assume the "average human" produces 100 watts of power and has
a volume of 66400 cubic centimeters.
A: 3500 K
B: 10000 K
C: 25000 K
D: 40000 K
E: 50000 K

Using the numbers from the problem, the average human produces

𝑢 = 100
66400 × 10−6

= 1506 W∕m3

The volume of the sun is 4
3𝜋𝑅

3
⊙, so its new power output would be 𝑃 = 4

3𝜋𝑅
3
⊙𝑢. To find the

equilibrium temperature, we use

𝑃 = 𝜎𝐴𝑇 4 = 4𝜋𝜎𝑅2
⊙𝑇

4

Solving for 𝑇 , we get

𝑇 = 4

√

𝑅⊙𝑢
3𝜎

= 4

√

√

√

√

(

6.96 × 108
)

(1506)

3
(

5.67 × 10−8
) = 49823 ≈ 50000 K.

The problem asks for the surface temperature of the sun if it had the same size but produced power
per unit volume as a human.
First, let’s find the power density of a human.
Power produced by a human, 𝑃ℎ𝑢𝑚𝑎𝑛 = 100 W
Volume of a human, 𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3

Convert the volume to cubic meters:
1 m = 100 cm
1 m3 = (100 cm)3 = 106 cm3

𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3 = 66400 × 10−6 m3 = 0.0664 m3

Power density of a human, 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

= 100 W
0.0664 m3

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.024 W∕m3

Now, consider the sun with the same size as it currently is, but with a power density equal to that of a
human.
We need the radius of the sun to calculate its volume. The average radius of the sun is 𝑅𝑠𝑢𝑛 =
6.95 × 108 m.
Volume of the sun, 𝑉𝑠𝑢𝑛 =

4
3𝜋𝑅

3
𝑠𝑢𝑛 =

4
3𝜋(6.95 × 108 m)3

𝑉𝑠𝑢𝑛 =
4
3𝜋(337.159375 × 1024) m3

𝑉𝑠𝑢𝑛 = 1410.24 × 1024 × 𝜋 m3

𝑉𝑠𝑢𝑛 = 4.4307 × 1027 m3

If the sun had the same power density as a human, the total power produced by this modified sun
would be:
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 × 𝑉𝑠𝑢𝑛
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 1506.024 W∕m3 × 4.4307 × 1027 m3

𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 6.6726 × 1030 W
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The surface temperature of a star is related to its luminosity (total power output) through the Stefan-
Boltzmann law:
𝐿 = 4𝜋𝑅2𝜎𝑇 4

where 𝐿 is the luminosity (total power output), 𝑅 is the radius of the star, 𝜎 is the Stefan-Boltzmann
constant, and 𝑇 is the surface temperature.
In this case, the luminosity of the modified sun is 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛. The radius of the modified sun is the
same as the actual sun, 𝑅𝑠𝑢𝑛.
The Stefan-Boltzmann constant, 𝜎 = 5.67 × 10−8 Wm−2K−4.
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4

6.6726 × 1030 W = 4𝜋(6.95 × 108 m)2 × 5.67 × 10−8 Wm−2K−4 × 𝑇 4

Calculate the term 4𝜋𝑅2
𝑠𝑢𝑛𝜎:

𝑅2
𝑠𝑢𝑛 = (6.95 × 108)2 = 48.3025 × 1016 m2

4𝜋𝑅2
𝑠𝑢𝑛 = 4𝜋 × 48.3025 × 1016 = 607.08 × 1016 m2

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 607.08 × 1016 m2 × 5.67 × 10−8 Wm−2K−4

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 3441.93 × 108 WK−4 = 3.44193 × 1011 WK−4

Now, substitute this back into the equation:
6.6726 × 1030 = 3.44193 × 1011 × 𝑇 4

Solve for 𝑇 4:
𝑇 4 = 6.6726×1030

3.44193×1011 = 1.9386 × 1019
Solve for 𝑇 :
𝑇 = (1.9386 × 1019)1∕4 = (193.86 × 1017)1∕4
𝑇 = (1.9386)1∕4 × (1019)1∕4 = (1.9386)0.25 × 104.75
Calculate (1.9386)0.25:
Let 𝑦 = 1.93860.25, then ln 𝑦 = 0.25 ln(1.9386)
ln(1.9386) ≈ 0.6619
ln 𝑦 = 0.25 × 0.6619 = 0.165475
𝑦 = 𝑒0.165475 ≈ 1.1799
So, 𝑇 = 1.1799 × 104.75 = 1.1799 × 104 × 100.75
100.75 = 103∕4 = (103)1∕4 = (1000)1∕4
We know 54 = 625 and 64 = 1296, so (1000)1∕4 is between 5 and 6.
Alternatively, 100.75 = 100.5 × 100.25 =

√

10 × 100.25 ≈ 3.16 × 1.778 = 5.62
𝑇 = 1.1799 × 104 × 5.62 = 6.63 × 104 K = 66300 K
Let’s double-check the calculations.
Power density of human: 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.02 W∕m3

Volume of sun: 𝑉𝑠𝑢𝑛 = 4.43 × 1027 m3

Power of modified sun: 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 1506.02 × 4.43 × 1027 = 6671.67 × 1027 = 6.67 × 1030 W
Stefan-Boltzmann law: 𝑃 = 4𝜋𝑅2𝜎𝑇 4

𝑇 4 = 𝑃
4𝜋𝑅2𝜎

4𝜋𝑅2
𝑠𝑢𝑛𝜎 = 3.44 × 1011

𝑇 4 = 6.67×1030
3.44×1011 = 1.939 × 1019

𝑇 = (1.939 × 1019)1∕4 = (193.9 × 1017)1∕4
𝑇 = (193.9)0.25 × (1017)0.25 = (193.9)0.25 × 104.25
Calculate (193.9)0.25:
Let 𝑦 = 193.90.25, then ln 𝑦 = 0.25 ln(193.9)
ln(193.9) ≈ 5.267
ln 𝑦 = 0.25 × 5.267 = 1.31675
𝑦 = 𝑒1.31675 ≈ 3.73
𝑇 = 3.73 × 104.25 = 3.73 × 104 × 100.25 = 37300 × 1.778 = 66329 K
The result is around 66000 K. This is not among the options. Let’s review the assumptions and
calculations.
Assumption: The sun radiates as a black body, which is reasonable for estimating surface temperature.
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Consider potential errors in calculations.
Let’s try a simpler approach by setting up ratios.
The power per unit volume of the modified sun is equal to that of a human.
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑉𝑠𝑢𝑛
= 𝑃ℎ𝑢𝑚𝑎𝑛

𝑉ℎ𝑢𝑚𝑎𝑛
We also know 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛.

4𝜋𝑅2
𝑠𝑢𝑛𝜎𝑇

4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

4
3𝜋𝑅

3
𝑠𝑢𝑛

= 𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

3𝜎𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛
𝑅𝑠𝑢𝑛

= 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎

Substitute the values:
𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 = 1506.02 W∕m3

𝑅𝑠𝑢𝑛 = 6.95 × 108 m
𝜎 = 5.67 × 10−8 Wm−2K−4

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

1506.02×6.95×108
3×5.67×10−8

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

10466.839×108
17.01×10−8 = 1.0466×1012

1.701×10−7 = 0.6153 × 1019 = 6.153 × 1018

𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = (6.153 × 1018)1∕4 = (6153 × 1015)1∕4

𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = (6153)0.25 × (1015)0.25 = (6153)0.25 × 103.75

Calculate (6153)0.25:
Let 𝑦 = 61530.25, then ln 𝑦 = 0.25 ln(6153)
ln(6153) ≈ 8.724
ln 𝑦 = 0.25 × 8.724 = 2.181
𝑦 = 𝑒2.181 ≈ 8.85
𝑇𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 8.85 × 103.75 = 8.85 × 103 × 100.75 = 8850 × 5.62 = 49737 K
This is close to option E: 50000 K.
Let’s re-check the units and calculations carefully.
Power density of human: 100 W

0.0664 m3 = 1506.02 W∕m3

The formula derived was 𝑇 4 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎 .

Units check:
[𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛] = W∕m3

[𝑅𝑠𝑢𝑛] = m
[𝜎] = Wm−2K−4

(W∕m3)×m
Wm−2K−4 = W∕m2

Wm−2K−4 = W
m2 ×

m2K4

W = K4

The units match for 𝑇 4.
Numerical calculation check:
Numerator: 1506.02 × 6.95 × 108 = 10466.839 × 108 = 1.0466 × 1012
Denominator: 3 × 5.67 × 10−8 = 17.01 × 10−8
Ratio: 1.0466×1012

17.01×10−8 = 0.061528 × 1020 = 6.1528 × 1018

𝑇 4 = 6.1528 × 1018
𝑇 = (6.1528 × 1018)1∕4 = (6152.8 × 1015)1∕4
𝑇 = (6152.8)0.25 × 103.75
Let’s use logarithms for precision.
log10(6152.8) ≈ 3.789
0.25 × 3.789 = 0.94725
100.94725 ≈ 8.856
𝑇 = 8.856 × 103.75 = 8.856 × 103 × 100.75 = 8856 × 5.623 = 49806 K
This is very close to 50000 K.
Possible sources of minor discrepancies: rounding errors, precision of constants.
Let’s verify the formula derivation.
Power per unit volume = Total Power

Volume
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𝜌𝑝𝑜𝑤𝑒𝑟 =
𝐿
𝑉

𝐿 = 4𝜋𝑅2𝜎𝑇 4

𝑉 = 4
3𝜋𝑅

3

𝜌𝑝𝑜𝑤𝑒𝑟 =
4𝜋𝑅2𝜎𝑇 4

4
3𝜋𝑅

3
= 3𝜎𝑇 4

𝑅

If the modified sun has the power density of a human:

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
3𝜎𝑇 4

𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛
𝑅𝑠𝑢𝑛

𝑇 4
𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 =

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛
3𝜎

The formula derivation seems correct.
Let’s use approximate values to check the order of magnitude.
𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 ≈ 103 W∕m3

𝑅𝑠𝑢𝑛 ≈ 7 × 108 m
𝜎 ≈ 6 × 10−8 Wm−2K−4

𝑇 4 ≈ 103×7×108
3×6×10−8 = 7×1011

18×10−8 = 0.38 × 1019 = 3.8 × 1018

𝑇 ≈ (3.8 × 1018)1∕4 = (3800 × 1015)1∕4
𝑇 ≈ (3800)0.25 × 103.75
(3800)0.25: 74 = 2401, 84 = 4096. So, between 7 and 8.
≈ 7.8
𝑇 ≈ 7.8 × 103.75 = 7800 × 5.6 = 43680 K
The order of magnitude seems consistent with the detailed calculation.
The problem statement is straightforward and doesn’t seem to have any hidden complexities. The
assumptions made are standard for such problems.
Consider the precision of the given values.
Power of human: 100 W (exact)
Volume of human: 66400 cm3 (exact)
The result obtained is very close to option E. Given the nature of multiple-choice questions, the
closest option is likely the intended answer.
If there were any misinterpretations of the question, it would likely be in the setup. However, the
phrase "If the sun were the same size, but it produced the same amount of power per unit volume as a
human" seems clear.
The surface temperature is calculated using the Stefan-Boltzmann law, assuming black-body radiation.
Double-check the provided options:
A: 3500 K
B: 10000 K
C: 25000 K
D: 40000 K
E: 50000 K
Our calculated value is approximately 49800 K, which is closest to 50000 K.
If we used more precise values for the constants, the result might be slightly different, but likely not
enough to shift to another option.
The fun fact mentioned in the question implies that the power density of a human is higher than that
of the sun. Let’s verify this.
Power output of the sun: 3.846 × 1026 W
Volume of the sun: 4.43 × 1027 m3

Power density of the sun: 3.846×1026
4.43×1027 = 0.868 W∕m3

Power density of human: 1506 W∕m3

Indeed, the power density of a human is significantly higher than that of the sun.
Final check of the calculation steps and logic. The approach of equating the power density of the
modified sun to that of a human and then using the Stefan-Boltzmann law seems correct.

36



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Solution:
The power produced by an average human is 𝑃ℎ𝑢𝑚𝑎𝑛 = 100 W, and the volume of an average human
is 𝑉ℎ𝑢𝑚𝑎𝑛 = 66400 cm3 = 0.0664 m3.
The power density of a human is 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =

𝑃ℎ𝑢𝑚𝑎𝑛
𝑉ℎ𝑢𝑚𝑎𝑛

= 100 W
0.0664 m3 ≈ 1506.02 W∕m3.

If the sun were the same size but produced the same amount of power per unit volume as a human, its
power density would be 𝜌𝑝𝑜𝑤𝑒𝑟,𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑_𝑠𝑢𝑛 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛.
The radius of the sun is 𝑅𝑠𝑢𝑛 = 6.95 × 108 m.
The volume of the sun is 𝑉𝑠𝑢𝑛 =

4
3𝜋𝑅

3
𝑠𝑢𝑛.

The power density of the modified sun is given by 𝜌𝑝𝑜𝑤𝑒𝑟,𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑_𝑠𝑢𝑛 =
𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛

𝑉𝑠𝑢𝑛
.

We also know that 𝑃𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑_𝑠𝑢𝑛 = 4𝜋𝑅2
𝑠𝑢𝑛𝜎𝑇

4, where 𝑇 is the surface temperature of the modified
sun.
Equating the power density:

𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛 =
4𝜋𝑅2

𝑠𝑢𝑛𝜎𝑇
4

4
3𝜋𝑅

3
𝑠𝑢𝑛

= 3𝜎𝑇 4

𝑅𝑠𝑢𝑛

Solving for 𝑇 4:
𝑇 4 = 𝜌𝑝𝑜𝑤𝑒𝑟,ℎ𝑢𝑚𝑎𝑛𝑅𝑠𝑢𝑛

3𝜎
Substitute the values:
𝑇 4 = 1506.02 W∕m3×6.95×108 m

3×5.67×10−8 Wm−2K−4

𝑇 4 = 1.0466×1012
1.701×10−7 = 6.1528 × 1018 K4

Solving for 𝑇 :
𝑇 = (6.1528 × 1018)1∕4 = (6152.8)0.25 × 1018∕4 = (6152.8)0.25 × 104.5
Using logarithms:
log10(6152.8) ≈ 3.789
0.25 × 3.789 = 0.94725
(6152.8)0.25 = 100.94725 ≈ 8.856
𝑇 = 8.856 × 104.5 = 8.856 × 104 × 100.5 = 88560 ×

√

10 ≈ 88560 × 3.16 = 280000 K
Let’s redo the exponent calculation: 18∕4 = 4.5.
𝑇 = 8.856 × 104.5 = 8.856 × 104 × 100.5 - error in previous step.
𝑇 = (6.1528 × 1018)0.25 = 49806 K
The surface temperature would be approximately 49806 K, which is closest to 50000 K.
Final Answer: The final answer is 𝐸

37



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

E TEST-TIME SCALING DETAILS

E.1 SEQUENTIAL SCALING ABLATIONS

Table 11: Budget forcing extrapolation ablations. We compare ignoring the end-of-thinking
delimiter twice and appending none or various strings.

Model AIME
2024

MATH
500

GPQA
Diamond

No extrapolation 50.0 93.0 57.6

2x without string 50.0 90.2 55.1
2x “Alternatively” 50.0 92.2 59.6
2x “Hmm” 50.0 93.0 59.6
2x “Wait” 53.3 93.0 59.6

<|im_start|>user
What is the answer to Life, the Universe and
Everything?
Think for up to 2048 tokens.
<|im_start|>assistant

<|im_start|>user
What is the answer to Life, the Universe and Every-
thing?
Think for up to 64 steps.
<|im_start|>assistant

<|im_start|>think
Let me break down this question into the three
parts it is asking for: 1) Life 2) Universe 3)
Everything
Let me start with life...

<|im_start|>64 steps left
Let me break down this question into the three parts it
is asking for: 1) Life 2) Universe 3) Everything
<|im_start|>63 steps left
Let me start with life...

<|im_start|>answer
The answer is...

<|im_start|>answer
The answer is...

Figure 11: Token and step instruction data formats for controlling test-time compute. We only
train our model on the reasoning trace and the answer.

Table 12: Scaling thinking time via tokens-conditional control. All metrics are averaged over the
30 questions in AIME24.

Tokens instructed (→) 1024 2048 4096 8192 16384

No intervention at test-time

Thinking tokens 7939 7158 8263 7108 7500
Answer tokens 689 669 659 722 724
AIME24 26.7 30.0 33.3 33.3 40.0

Forcing end of thinking when token budget is reached

Thinking tokens 1024 2048 4031 5664 6330
Answer tokens 15 15 142 722 691
AIME24 3.3 30.0 33.3 33.3 40.0

Token-conditional control One general approach is to simply tell a model in the prompt precisely
how many tokens it should generate. Ideally, the model can keep track of its token count and adjust
its generation to finish within the desired limits. We experiment with this approach by training a
model with token instructions using the format in Figure 11 (left). We bucket the lengths of the
reasoning traces from our 1,000 training examples into powers of two (rounded upwards) and add a
corresponding instruction to the user prompt. For example, if the instruction says “Think for up to
2048 tokens”, then the reasoning trace has anywhere between 1024 and 2048 tokens. In Table 12, we
show that after training the model hardly follows the token instruction. It does sometimes generate

38



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Table 13: Scaling thinking time via step-conditional control. All metrics are averaged over the 30
samples in AIME24. Token counts ignore the thinking and step delimiters.

Steps instructed (→) 16 32 64 128 256

No intervention at test-time

Steps used 123 90 80 82 136
Tokens per step 60 70 69 66 56
Thinking tokens 7252 6277 5396 5552 7551
Answer tokens 665 653 735 777 754
AIME24 33.3 23.3 33.3 36.7 33.3

Forcing end of thinking when 0 steps are reached

Steps used 16 32 59 78 136
Tokens per step 96 94 80 70 56
Thinking tokens 1517 2963 4636 5409 7551
Answer tokens 1111 788 799 794 754
AIME24 23.3 23.3 33.3 36.7 33.3

Table 14: Scaling thinking time via class-conditional control. We report “accuracy / average
thinking tokens per sample”; the higher the accuracy and the fewer the thinking tokens (inference
cost) the better.

Prompt appended to the question after two newlines AIME24 MATH500 GPQA

Answer after a short amount of thinking. Do not spend
excessive time double-checking your work.

30.0% /
8033

90.4% /
2537

56.6% /
4177

Answer after a long amount of thinking. If you feel like you
are finished early, spend the extra time trying to double-
check your work until you are absolutely sure that you
have the correct answer.

36.7% /
9651

91.4% /
3875

51.0% /
4827

Without generic prompt appending 50.0% /
6109

93.0% /
3298

57.6% /
3510
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more tokens when given a higher limit but often overshoots the limit. This may not be unique to our
model as prior work suggests that OpenAI o1-mini can also not follow token instructions (Zhang &
Chen, 2024). To prevent exceeding the limit, we test budget forcing the thinking to end once the limit
is reached. This leads to perfect control (Table 12 (lower)). With budget forcing, the scaling trend
is also clearer as the model can no longer overshoot the limit when given a small thinking budget.
This leads to better test-time scaling values for Token Prompting + budget forcing in Table 3. To
compute Control reported in Table 3 for token-conditional control variants we divide the number of
times the thinking tokens in Table 12 are less than the upper limit by the total evaluations (2/5 for
without intervention; 5/5 for with intervention).

Step-conditional control Token instructions fail as current models cannot count tokens. To
accommodate this lack of capability, we experiment with making the counting more coarse-grained.
We partition the reasoning traces into steps and ask the model to think for a specific number of steps
rather than tokens. We split our reasoning traces on double newlines into steps, which we find act
as intuitive separators based on manual inspection of samples. We bucket our training samples into
powers of 2 depending on their number of steps and add a corresponding step instruction following
the format in Figure 11 (right). This format is based on early experiments, where we found the model
to be more likely to adhere to the step limit when counting down (“3 steps left...2 steps left”) rather
than counting up (“Step2...Step3...”). This is likely because if counting down, the final step is always
1, which will act as a strong prior to the model to finish its generation. If counting up, the final step
before the answer varies, thus if the model does not remember the original step instruction, it may
fail to stop. We conclude the following from our results in Table 13: (1) The model still struggles to
adhere to the step limit. The model sometimes simply continues counting into negative steps, e.g. “-1
steps left”. To solve this issue, we automatically stop the thinking process once 0 steps are reached
and then force the model to transition to answering mode by appending the answer token delimiter
(§3). This leads to perfect step adherence (lower half of Table 13), yet problems remain. (2) The
model compensates for fewer steps by making each step longer. For example, when forced to use
up to 16 steps vs 256 steps, the model generates an average of 96 tokens per step vs 56. Despite
this issue, more steps still clearly correlate with more total thinking tokens in Table 13 and better
performance leading to a positive slope (3) Step instructions are more costly than other methods. The
step delimiters require around 6 tokens each which for e.g. 64 steps adds up to a total of around 380
tokens. When ignoring the step delimiters in token counts as in Table 13, the model still requires
7551 thinking tokens on average to achieve only 33.3% on AIME24. To compute Control reported in
Table 3 for step-conditional control variants, we first decide that 100 tokens are an upper limit per
step and then multiply this number by the steps instructed to arrive at a proxy total token limit, e.g.
1600 for 16 steps instructed. We then check whether the thinking tokens in Table 13 fit within the
respective limit for each evaluation run (3/5 for without intervention; 5/5 for with intervention). For
the model in Figure 7, we use a model with step-conditional control trained on an earlier version of
our data and using an earlier version of our evaluation codebase.

Class-conditional control OpenAI exposes test-time compute control to users via a “reason-
ing_effort” API parameter with three possible settings: low, medium, and high.4 The OpenAI
documentation also states that “Reducing reasoning effort can result in faster responses and fewer
tokens used on reasoning in a response." suggesting that they are unable to control test-time compute
with guarantees. Thus, maybe OpenAI simply adjusts the prompt or system instruction depending on
the reasoning effort desired. In Table 14, we show that separate prompts for short and long thinking
allow us to control thinking time to some extent: Prompting the model to think for longer leads to
longer thinking. However, it does not reliably improve performance and control is not precise. The
current adherence to control may suffice when we only have three classes, but it might not scale
to finer-grained classes. To compute Control reported in Table 3 for this method, we assume that
prompting the model to think for a short time in Table 14 should produce fewer tokens than the
default for AIME24, while the long prompt should produce more. As 8033 > 6109 and 9651 > 6109,
one out of two follows our expected control thus Control is 50%.

E.2 EXAMPLES FOR REJECTION SAMPLING ABLATION

4https://github.com/openai/openai-python/blob/44d6210f101abedeb2dd68507fcffcb329df70ea/
src/openai/types/chat/completion_create_params.py#L172
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Table 15: Answers generated by an earlier version of s1-32B when rejection sampling on
AIME24. The black text is the question and the yellow text is the solution. Based solely on the
question we generate the light blue reasoning trace and blue response with s1-32B using a temperature
of 1. We generate until the reasoning trace has less than 4000 tokens for the first and less than 8000
tokens for the second example. It required on average 199 (1) tries per example until thinking was
≤ 4000 (≤ 8000 tokens).

Let 𝑂(0, 0), 𝐴( 12 , 0), and 𝐵(0,
√

3
2 ) be points in the coordinate plane. Let  be the family of segments

𝑃𝑄 of unit length lying in the first quadrant with 𝑃 on the 𝑥-axis and 𝑄 on the 𝑦-axis. There is a
unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment from  other than
𝐴𝐵. Then 𝑂𝐶2 = 𝑝

𝑞 , where 𝑝 and 𝑞 are relatively prime positive integers. Find 𝑝 + 𝑞.

23

[Correct generation with 3981 thinking tokens and 1055 answer tokens]
The problem asks for a point 𝐶 on the segment 𝐴𝐵 that is not contained in any other segment from
the family  , except for 𝐴𝐵 itself.
The points 𝑂,𝐴,𝐵 form a triangle in the first quadrant.
𝑂 = (0, 0)
𝐴 = ( 12 , 0)

𝐵 = (0,
√

3
2 )

The segment 𝐴𝐵 connects 𝐴( 12 , 0) and 𝐵(0,
√

3
2 ).

The equation of the line containing 𝐴𝐵 can be found using the two points:

Slope 𝑚 =

√

3
2 −0

0− 1
2

= −
√

3

Using the point-slope form 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) with point 𝐴( 12 , 0):

𝑦 − 0 = −
√

3(𝑥 − 1
2 )

𝑦 = −
√

3𝑥 +
√

3
2

The segment 𝐴𝐵 lies in the first quadrant and connects ( 12 , 0) to (0,
√

3
2 ).

The family  consists of segments 𝑃𝑄 of unit length, where 𝑃 is on the 𝑥-axis and 𝑄 is on the 𝑦-axis.
Let 𝑃 = (𝑎, 0) and 𝑄 = (0, 𝑏).
The length of 𝑃𝑄 is

√

(𝑎 − 0)2 + (0 − 𝑏)2 =
√

𝑎2 + 𝑏2 = 1.
So 𝑎2 + 𝑏2 = 1.
Since 𝑃 is on the positive 𝑥-axis and 𝑄 is on the positive 𝑦-axis, we have 𝑎 > 0 and 𝑏 > 0.
The segment 𝑃𝑄 connects (𝑎, 0) and (0, 𝑏). The equation of the line containing 𝑃𝑄 is 𝑥

𝑎 +
𝑦
𝑏 = 1.

The region covered by the family  is the area bounded by the lines containing these segments. The
endpoints (𝑎, 0) and (0, 𝑏) vary such that 𝑎2 + 𝑏2 = 1.
Consider the parametrization 𝑎 = cos 𝜃, 𝑏 = sin 𝜃, where 0 < 𝜃 < 𝜋

2 .

The segment 𝑃𝑄 connects (cos 𝜃, 0) and (0, sin 𝜃). The equation of the line is 𝑥
cos 𝜃 +

𝑦
sin 𝜃 = 1.

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any
segment from  other than 𝐴𝐵.
Let 𝐶 be a point on 𝐴𝐵. We can parametrize the points on 𝐴𝐵 as (1 − 𝑡)𝐴 + 𝑡𝐵 for 0 ≤ 𝑡 ≤ 1.

𝐶 = (1 − 𝑡)( 12 , 0) + 𝑡(0,
√

3
2 ) = ( 12 −

1
2 𝑡,

√

3
2 𝑡).

Since 𝐶 is distinct from 𝐴 and 𝐵, we have 0 < 𝑡 < 1.
Suppose the point 𝐶 lies on some segment 𝑃𝑄 ∈  , where 𝑃 = (cos 𝜃, 0) and 𝑄 = (0, sin 𝜃).
The point 𝐶 satisfies the equation 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.
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Plugging in the coordinates of 𝐶:
1
2−

1
2 𝑡

cos 𝜃 +

√

3
2 𝑡

sin 𝜃 = 1
1−𝑡

2 cos 𝜃 +
√

3𝑡
2 sin 𝜃 = 1

Multiply by 2:
1−𝑡
cos 𝜃 +

√

3𝑡
sin 𝜃 = 2

(1 − 𝑡) sin 𝜃 +
√

3𝑡 cos 𝜃 = 2 sin 𝜃 cos 𝜃
sin 𝜃 − 𝑡 sin 𝜃 +

√

3𝑡 cos 𝜃 = sin(2𝜃)∕2
We are looking for a point 𝐶 on 𝐴𝐵 such that the only segment from  containing 𝐶 is 𝐴𝐵 itself.
The segment 𝐴𝐵 is part of the family  .

For 𝐴𝐵, 𝑃 = 𝐴 = ( 12 , 0) and 𝑄 = 𝐵 = (0,
√

3
2 ).

Here 𝑎 = 1
2 , 𝑏 =

√

3
2 .

𝑎2 + 𝑏2 = ( 12 )
2 + (

√

3
2 )2 = 1

4 +
3
4 = 1.

The line segment 𝐴𝐵 connects ( 12 , 0) and (0,
√

3
2 ).

The equation of the line is 𝑥
1∕2 +

𝑦
√

3∕2
= 1, which simplifies to 2𝑥 + 2

√

3
𝑦 = 1, or

√

3𝑥 + 𝑦 =
√

3
2 .

This matches the equation 𝑦 = −
√

3𝑥 +
√

3
2 .

Consider the envelope of the family of lines 𝑥
cos 𝜃 +

𝑦
sin 𝜃 = 1.

Differentiating with respect to 𝜃:
−𝑥 sin 𝜃

cos2 𝜃 + 𝑦 cos 𝜃
sin2 𝜃

= 0
𝑦 cos 𝜃
sin2 𝜃

= 𝑥 sin 𝜃
cos2 𝜃

𝑦 cos3 𝜃 = 𝑥 sin3 𝜃
𝑦
𝑥 = tan3 𝜃
tan 𝜃 = ( 𝑦𝑥 )

1∕3

From the line equation: 𝑦 sin 𝜃 = sin 𝜃 cos 𝜃 − 𝑥 sin 𝜃
𝑦 = cos 𝜃 − 𝑥
Substitute cos 𝜃 = 1

√

1+tan2 𝜃
= 1

√

1+(𝑦∕𝑥)2∕3

cos 𝜃 = 𝑥1∕3

(𝑥2∕3+𝑦2∕3)1∕2

sin 𝜃 = tan 𝜃 cos 𝜃 = ( 𝑦𝑥 )
1∕3 𝑥1∕3

(𝑥2∕3+𝑦2∕3)1∕2 = 𝑦1∕3

(𝑥2∕3+𝑦2∕3)1∕2
Substitute back into the line equation:
𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1
𝑥(𝑥2∕3 + 𝑦2∕3)1∕2∕𝑥1∕3 + 𝑦(𝑥2∕3 + 𝑦2∕3)1∕2∕𝑦1∕3 = 1
𝑥2∕3(𝑥2∕3 + 𝑦2∕3)1∕2 + 𝑦2∕3(𝑥2∕3 + 𝑦2∕3)1∕2 = 1
(𝑥2∕3 + 𝑦2∕3)3∕2 = 1
𝑥2∕3 + 𝑦2∕3 = 1
The envelope of the family  is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to this astroid.
The point 𝐶 on 𝐴𝐵 that we are looking for is the point where 𝐴𝐵 is tangent to the astroid.

The equation of 𝐴𝐵 is 𝑦 = −
√

3𝑥 +
√

3
2 .

Substitute into the astroid equation:

𝑥2∕3 + (−
√

3𝑥 +
√

3
2 )2∕3 = 1

Let 𝑢 = 𝑥1∕3 and 𝑣 = 𝑦1∕3. The astroid is 𝑢2 + 𝑣2 = 1.
The point 𝐶 lies on both the line 𝐴𝐵 and the astroid.
Differentiating the astroid equation implicitly:
2
3𝑥

−1∕3 + 2
3𝑦

−1∕3𝑦′ = 0

𝑦′ = − 𝑦1∕3

𝑥1∕3 = −( 𝑦𝑥 )
1∕3
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The slope of the tangent to the astroid at a point (𝑥, 𝑦) is − 3
√

𝑦
𝑥 .

The slope of the line 𝐴𝐵 is −
√

3.

So, at the point of tangency, − 3
√

𝑦
𝑥 = −

√

3.

3
√

𝑦
𝑥 =

√

3
𝑦
𝑥 = (

√

3)3 = 3
√

3

The point 𝐶 lies on the line 𝑦 = −
√

3𝑥 +
√

3
2 and satisfies 𝑦

𝑥 = 3
√

3.

So 𝑦 = 3
√

3𝑥.
Substitute into the line equation:

3
√

3𝑥 = −
√

3𝑥 +
√

3
2

3𝑥 = −𝑥 + 1
2

4𝑥 = 1
2

𝑥 = 1
8

Then 𝑦 = 3
√

3( 18 ) =
3
√

3
8 .

The point 𝐶 is ( 18 ,
3
√

3
8 ).

We need to check if this point lies on the segment 𝐴𝐵.

The point 𝐶 is of the form ( 12 −
1
2 𝑡,

√

3
2 𝑡).

1
2 −

1
2 𝑡 =

1
8 ⇐⇒ 4 − 4𝑡 = 1 ⇐⇒ 3 = 4𝑡 ⇐⇒ 𝑡 = 3

4 .
√

3
2 𝑡 =

√

3
2 ⋅ 3

4 = 3
√

3
8 .

So 𝐶 lies on 𝐴𝐵.
We need to make sure 0 < 𝑡 < 1, which is true for 𝑡 = 3

4 .
Now, we need to check if this point 𝐶 does not belong to any other segment from  .
The point 𝐶 lies on the astroid. The segment 𝐴𝐵 is tangent to the astroid at 𝐶 .
Any other segment from  that contains 𝐶 would have 𝐶 as an interior point, not a tangent point.
Consider the parametrization of the family  .
A point (𝑥, 𝑦) belongs to some segment in  iff there exists 𝜃 such that 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.

For the point 𝐶 = ( 18 ,
3
√

3
8 ), we have:

1∕8
cos 𝜃 +

3
√

3∕8
sin 𝜃 = 1

1
cos 𝜃 +

3
√

3
sin 𝜃 = 8

sin 𝜃 + 3
√

3 cos 𝜃 = 8 sin 𝜃 cos 𝜃
sin 𝜃 + 3

√

3 cos 𝜃 = 4 sin(2𝜃)
We know that 𝐶 lies on 𝐴𝐵, which corresponds to some specific segment in  .
The problem statement assumes the existence and uniqueness of such a point 𝐶 .
The unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any segment from  other
than 𝐴𝐵.
This means that if 𝐶 lies on another segment 𝑃 ′𝑄′ ∈  , then 𝑃 ′𝑄′ = 𝐴𝐵.
The point 𝐶 is the point of tangency of 𝐴𝐵 with the astroid.
Now we need to find 𝑂𝐶2.
𝑂𝐶2 = ( 18 )

2 + ( 3
√

3
8 )2 = 1

64 +
27
64 = 28

64 = 7
16 .

Here 𝑝 = 7 and 𝑞 = 16.
𝑝 and 𝑞 are relatively prime.
𝑝 + 𝑞 = 7 + 16 = 23.
Final check of the reasoning:
The family  consists of unit-length segments with endpoints on the axes.
The envelope of this family is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to the astroid.
The segment 𝐴𝐵 is also a member of the family  .
We are looking for a point 𝐶 on 𝐴𝐵 that lies on the astroid.
This point 𝐶 is the point of tangency of 𝐴𝐵 with the astroid.
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If a point on 𝐴𝐵 lies on the astroid, it belongs to the tangent segment at that point. Since 𝐴𝐵 is the
tangent segment, this point does not belong to any other segment from  .
Consider the case when the segment 𝐴𝐵 intersects the astroid at two points.
If the segment 𝐴𝐵 is not tangent to the astroid, then there are two points of intersection.
Let the points of intersection be 𝐶1 and 𝐶2.
If 𝐶1 lies on 𝐴𝐵, then the tangent to the astroid at 𝐶1 is the segment 𝐴𝐵.
If 𝐶2 lies on 𝐴𝐵, then the tangent to the astroid at 𝐶2 is the segment 𝐴𝐵.
The slope of 𝐴𝐵 is −

√

3.
We found the point on the astroid with tangent slope −

√

3.
The problem statement guarantees the uniqueness of such a point 𝐶 .
The point 𝐶 must be interior to 𝐴𝐵, so 0 < 𝑡 < 1.
The parameter 𝑡 = 3

4 is in this range.
The point 𝐶 is distinct from 𝐴 and 𝐵.
If 𝐶 = 𝐴, then 𝑡 = 0, 𝐶 = ( 12 , 0).

If 𝐶 = 𝐵, then 𝑡 = 1, 𝐶 = (0,
√

3
2 ).

The point of tangency 𝐶 is the unique point on 𝐴𝐵 (excluding endpoints) that lies on the astroid.
Solution:
Let the family of segments  be defined by segments 𝑃𝑄 of unit length with 𝑃 on the positive 𝑥-axis
and 𝑄 on the positive 𝑦-axis. Let 𝑃 = (𝑎, 0) and 𝑄 = (0, 𝑏). The length condition gives 𝑎2 + 𝑏2 = 1.
The segment 𝑃𝑄 lies on the line 𝑥

𝑎 + 𝑦
𝑏 = 1. Using the parametrization 𝑎 = cos 𝜃, 𝑏 = sin 𝜃 with

0 < 𝜃 < 𝜋
2 , the equation of the line is 𝑥

cos 𝜃 +
𝑦

sin 𝜃 = 1.
The envelope of this family of lines is the astroid 𝑥2∕3 + 𝑦2∕3 = 1.
The segments from  are tangent to this astroid.

The segment 𝐴𝐵 connects 𝐴( 12 , 0) and 𝐵(0,
√

3
2 ). The equation of the line containing 𝐴𝐵 is 𝑦 =

−
√

3𝑥 +
√

3
2 . This segment is part of the family  .

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any
segment from  other than 𝐴𝐵. This means 𝐶 is the point where 𝐴𝐵 is tangent to the astroid.

The slope of the tangent to the astroid at a point (𝑥, 𝑦) is − 3
√

𝑦
𝑥 . The slope of 𝐴𝐵 is −

√

3.

Setting the slopes equal: − 3
√

𝑦
𝑥 = −

√

3 ⇐⇒ 𝑦
𝑥 = 3

√

3.

The point 𝐶 lies on the line 𝑦 = −
√

3𝑥 +
√

3
2 and satisfies 𝑦 = 3

√

3𝑥.

Substituting, 3
√

3𝑥 = −
√

3𝑥 +
√

3
2 ⇐⇒ 4

√

3𝑥 =
√

3
2 ⇐⇒ 𝑥 = 1

8 .

Then 𝑦 = 3
√

3( 18 ) =
3
√

3
8 .

The point 𝐶 is ( 18 ,
3
√

3
8 ).

We need to check if 𝐶 lies on 𝐴𝐵. The points on 𝐴𝐵 are ( 12 −
1
2 𝑡,

√

3
2 𝑡) for 0 ≤ 𝑡 ≤ 1.

For 𝑥 = 1
8 , 1

2 −
1
2 𝑡 =

1
8 ⇐⇒ 𝑡 = 3

4 .

For 𝑦 = 3
√

3
8 ,

√

3
2 𝑡 =

3
√

3
8 ⇐⇒ 𝑡 = 3

4 .

Since 0 < 3
4 < 1, 𝐶 is an interior point of 𝐴𝐵.

The point 𝐶 is the unique point on 𝐴𝐵 (excluding endpoints) that lies on the astroid. The tangent to
the astroid at 𝐶 is the segment 𝐴𝐵. Thus, 𝐶 does not belong to any other segment from  .

Finally, we calculate 𝑂𝐶2 = ( 18 )
2 + ( 3

√

3
8 )2 = 1

64 +
27
64 = 28

64 = 7
16 .

We have 𝑝 = 7 and 𝑞 = 16. These are relatively prime.
𝑝 + 𝑞 = 7 + 16 = 23.
Final Answer: The final answer is 23
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[Incorrect generation with 5923 thinking tokens and 754 answer tokens]
The problem asks for a point 𝐶 on the segment 𝐴𝐵 such that 𝐶 is not on any other segment from
the family  , except 𝐴𝐵 itself. The family  consists of segments 𝑃𝑄 of unit length, with 𝑃 on the
𝑥-axis and 𝑄 on the 𝑦-axis in the first quadrant.
Let 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where 𝑥 > 0 and 𝑦 > 0. The length of the segment 𝑃𝑄 is 1, so the
distance between 𝑃 and 𝑄 is 1.
√

(𝑥 − 0)2 + (0 − 𝑦)2 = 1
√

𝑥2 + 𝑦2 = 1
𝑥2 + 𝑦2 = 1
The segment 𝑃𝑄 lies in the first quadrant, so 𝑥 > 0 and 𝑦 > 0.
The equation 𝑥2 + 𝑦2 = 1 represents the quarter circle in the first quadrant, with endpoints at (1, 0)
and (0, 1).
The points on the segment 𝑃𝑄 can be parameterized as (1 − 𝑡)𝑥+ 𝑡(0), (1 − 𝑡)0 + 𝑡𝑦) = (𝑥(1 − 𝑡), 𝑦𝑡),
where 0 ≤ 𝑡 ≤ 1.

The segment 𝐴𝐵 connects 𝐴( 12 , 0) and 𝐵(0,
√

3
2 ).

The equation of the line containing 𝐴𝐵 can be found using the two points:

Slope 𝑚 =

√

3
2 −0

0− 1
2

=

√

3
2

− 1
2
= −

√

3.

Using point-slope form with point 𝐴( 12 , 0):

𝑦 − 0 = −
√

3(𝑥 − 1
2 )

𝑦 = −
√

3𝑥 +
√

3
2

The segment 𝐴𝐵 lies in the first quadrant, between 𝑥 = 0 and 𝑥 = 1
2 .

Alternatively, we can parameterize the points on 𝐴𝐵.
Let 𝐶 be a point on 𝐴𝐵. Then 𝐶 = (1 − 𝜆)𝐴 + 𝜆𝐵 for some 0 ≤ 𝜆 ≤ 1.

𝐶 = (1 − 𝜆)( 12 , 0) + 𝜆(0,
√

3
2 ) = ( 12 −

1
2𝜆,

√

3
2 𝜆).

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any
segment from  other than 𝐴𝐵.
Consider a segment from  , with endpoints 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where 𝑥2 + 𝑦2 = 1.
A point on this segment is of the form (𝑥(1 − 𝑡), 𝑦𝑡), where 0 ≤ 𝑡 ≤ 1.
We want to find a point 𝐶 on 𝐴𝐵, 𝐶 ≠ 𝐴,𝐵, such that if 𝐶 lies on a segment 𝑃𝑄 ∈  , then
𝑃𝑄 = 𝐴𝐵.

Let 𝐶 = ( 12 −
1
2𝜆,

√

3
2 𝜆), where 0 < 𝜆 < 1.

If 𝐶 lies on a segment 𝑃𝑄 from  , then there exist 𝑥, 𝑦 > 0 with 𝑥2 + 𝑦2 = 1, and 𝑡 ∈ [0, 1] such
that:
1
2 −

1
2𝜆 = 𝑥(1 − 𝑡)

√

3
2 𝜆 = 𝑦𝑡

From the first equation, 1 − 𝑡 =
1
2−

1
2𝜆
𝑥 = 1−𝜆

2𝑥 .

From the second equation, 𝑡 =

√

3
2 𝜆
𝑦 =

√

3𝜆
2𝑦 .

Since 𝑡 ∈ [0, 1], we have 1 − 𝑡 ∈ [0, 1].
Also, 𝑥 > 0, so 1−𝜆

2𝑥 > 0, which implies 1 − 𝜆 > 0, or 𝜆 < 1. This is consistent with the condition for

point on 𝐴𝐵.

We have 1 − 𝑡 = 1−𝜆
2𝑥 and 𝑡 =

√

3𝜆
2𝑦 .

Adding these equations: 1 = 1−𝜆
2𝑥 +

√

3𝜆
2𝑦

2𝑥𝑦 = (1 − 𝜆)𝑦 +
√

3𝜆𝑥
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We know 𝑥2 + 𝑦2 = 1.
If the point 𝐶 belongs to the segment 𝐴𝐵 itself, then the endpoints of the segment are 𝐴 and 𝐵.

So, the segment is from ( 12 , 0) to (0,
√

3
2 ).

Here, 𝑥 = 1
2 and 𝑦 =

√

3
2 .

Check if 𝑥2 + 𝑦2 = 1: ( 12 )
2 + (

√

3
2 )2 = 1

4 +
3
4 = 1. So 𝐴𝐵 ∈  .

If 𝐶 belongs to another segment 𝑃𝑄 from  , with endpoints 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦), where

(𝑥, 𝑦) ≠ ( 12 ,
√

3
2 ).

Consider the geometric interpretation. The family  consists of segments of unit length with endpoints
on the axes. The midpoints of these segments lie on the circle (𝑥 − 1

2 )
2 + (𝑦 − 1

2 )
2 = 1

2 .
Let the point 𝐶 correspond to some 𝜆.
If 𝐶 lies on 𝑃𝑄, then 𝐶 = (𝑥(1 − 𝑡), 𝑦𝑡).
So, 1

2 −
1
2𝜆 = 𝑥(1 − 𝑡) and

√

3
2 𝜆 = 𝑦𝑡.

We need to find a 𝜆 ∈ (0, 1) such that the only solution to these equations, with 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0,

is 𝑥 = 1
2 and 𝑦 =

√

3
2 .

From the equations, 1 − 𝑡 = 1−𝜆
2𝑥 and 𝑡 =

√

3𝜆
2𝑦 .

Substitute these into 𝑥2 + 𝑦2 = 1.
Try a different approach. Consider the tangents to the family of segments.
The segments are formed by points (𝑥, 0) and (0, 𝑦) with 𝑥2 + 𝑦2 = 1.
The equation of the line containing the segment 𝑃𝑄 is 𝑥

𝑥 + 𝑦
𝑦 = 1, or 𝑥

𝑥 + 𝑦
𝑦 = 1.

The equation of the line is 𝑥
𝑥 + 𝑦

𝑦 = 1.
Consider the equation of the segment in parametric form: (𝑥(1 − 𝑡), 𝑦𝑡).
If a point 𝐶 lies on this segment, then 𝐶 = (𝑥𝑐 , 𝑦𝑐), where 𝑥𝑐 = 𝑥(1 − 𝑡) and 𝑦𝑐 = 𝑦𝑡.
So, 𝑥𝑐𝑥 = 1 − 𝑡 and 𝑦𝑐

𝑦 = 𝑡.
𝑥𝑐
𝑥 + 𝑦𝑐

𝑦 = 1 − 𝑡 + 𝑡 = 1.

The segments from  are parts of the lines 𝑥
𝑥0

+ 𝑦
𝑦0

= 1, where 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0.

Consider the point 𝐶 = ( 12 −
1
2𝜆,

√

3
2 𝜆).

If 𝐶 lies on a segment from  with endpoints (𝑥, 0) and (0, 𝑦), then:
1
2−

1
2𝜆
𝑥 +

√

3
2 𝜆
𝑦 = 1

1−𝜆
2𝑥 +

√

3𝜆
2𝑦 = 1

We need to find a unique 𝜆 ∈ (0, 1) such that the only solution (𝑥, 𝑦) to this equation, with 𝑥2+𝑦2 = 1,

𝑥, 𝑦 > 0, is ( 12 ,
√

3
2 ).

Substitute 𝑥 = 1
2 and 𝑦 =

√

3
2 into the equation:

1−𝜆
2( 12 )

+
√

3𝜆

2(
√

3
2 )

= 1

1 − 𝜆 + 𝜆 = 1
1 = 1
This shows that any point on 𝐴𝐵 lies on the segment 𝐴𝐵 itself.

Consider the line containing 𝐴𝐵: 𝑦 = −
√

3𝑥 +
√

3
2 .

If a point 𝐶 on 𝐴𝐵 also lies on another segment from  with endpoints (𝑥, 0) and (0, 𝑦), then:
𝑥𝐶
𝑥 + 𝑦𝐶

𝑦 = 1.

Let the point 𝐶 divide 𝐴𝐵 in the ratio 𝜇 ∶ (1 − 𝜇), where 0 < 𝜇 < 1.

𝐶 = (1 − 𝜇)𝐴 + 𝜇𝐵 = (1 − 𝜇)( 12 , 0) + 𝜇(0,
√

3
2 ) = ( 12 −

1
2𝜇,

√

3
2 𝜇).

If 𝐶 lies on a segment with endpoints (𝑥, 0) and (0, 𝑦), then:
1
2−

1
2𝜇
𝑥 +

√

3
2 𝜇
𝑦 = 1.

We are looking for a point 𝐶 such that the line passing through 𝐶 with the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1, where

𝑥20 + 𝑦
2
0 = 1, is unique.
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Consider the tangents to the unit circle centered at the origin. The lines of the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1 are

tangents to the circle 𝑥2 + 𝑦2 = 𝑟2.
Consider the dual problem. The family of segments corresponds to points on the quarter circle
𝑥2 + 𝑦2 = 1 in the first quadrant.
The lines containing the segments are 𝑥

𝑥0
+ 𝑦

𝑦0
= 1.

The envelope of these lines is the curve whose tangents are these lines.
The equation 𝑥

𝑥0
+ 𝑦

𝑦0
= 1, with the constraint 𝑥20 + 𝑦

2
0 = 1.

Let 𝑥0 = cos 𝜃, 𝑦0 = sin 𝜃, where 0 < 𝜃 < 𝜋
2 .

The equations of the lines are 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 1.
The envelope of the family of lines 𝑥 cos 𝜃 + 𝑦 sin 𝜃 = 1 is the circle 𝑥2 + 𝑦2 = 1.
The segments from  are parts of the tangents to the unit circle in the first quadrant.
The point 𝐶 on 𝐴𝐵 that does not belong to any other segment from  means that the tangent to the
unit circle passing through 𝐶 is unique.

Consider the point 𝐶 = ( 12 −
1
2𝜆,

√

3
2 𝜆).

The tangents to the unit circle passing through 𝐶 have the form 𝑥𝑥𝐶 + 𝑦𝑦𝐶 = 1.
If the tangent is unique, then 𝐶 lies on the unit circle.

( 12 −
1
2𝜆)

2 + (
√

3
2 𝜆)

2 = 1
( 14 −

1
2𝜆 +

1
4𝜆

2) + 3
4𝜆

2 = 1
1
4 −

1
2𝜆 + 𝜆

2 = 1
4𝜆2 − 2𝜆 + 1 = 4
4𝜆2 − 2𝜆 − 3 = 0
Solve for 𝜆:
𝜆 = −(−2)±

√

(−2)2−4(4)(−3)
2(4) = 2±

√

4+48
8 = 2±

√

52
8 = 2±2

√

13
8 = 1±

√

13
4 .

We need 0 < 𝜆 < 1.
√

13 ≈ 3.6.
1+3.6
4 = 4.6

4 > 1.
1−3.6
4 = −2.6

4 < 0.
Something is wrong. The point 𝐶 is inside the unit circle.
Let’s rephrase the condition. There is a unique point 𝐶 on 𝐴𝐵 such that if 𝐶 lies on a segment
𝑃𝑄 ∈  , then 𝑃𝑄 = 𝐴𝐵.

Let the point 𝐶 on 𝐴𝐵 be ( 12 −
1
2𝜆,

√

3
2 𝜆).

Consider a segment from  with endpoints (𝑥, 0) and (0, 𝑦), 𝑥2 + 𝑦2 = 1.
The parametric form of the segment is (𝑥(1 − 𝑡), 𝑦𝑡).
If 𝐶 is on this segment, then for some 𝑡 ∈ [0, 1]:
1
2 −

1
2𝜆 = 𝑥(1 − 𝑡)

√

3
2 𝜆 = 𝑦𝑡

If the segment is unique, then the values of 𝑥 and 𝑦 are unique.

The only solution to 1−𝜆
2𝑥 +

√

3𝜆
2𝑦 = 1, with 𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0, should be 𝑥 = 1

2 , 𝑦 =
√

3
2 .

Consider the intersection of the line containing 𝐴𝐵 with the boundary of the region formed by the
segments in  .
The boundaries are the 𝑥-axis, 𝑦-axis, and the quarter circle 𝑥2 + 𝑦2 = 1.
Consider the dual problem again. The family of lines 𝑥

𝑥0
+ 𝑦

𝑦0
= 1, where 𝑥20 + 𝑦

2
0 = 1, 𝑥0, 𝑦0 > 0.

The envelope of these lines is the circle 𝑥2 + 𝑦2 = 1.
A point belongs to a unique segment from  if it lies on the circle 𝑥2 + 𝑦2 = 1.
The point 𝐶 on 𝐴𝐵 satisfies 𝐶 = 𝑡𝐴 + (1 − 𝑡)𝐵.

Let’s consider the case where the segment is 𝐴𝐵. Here 𝑥 = 1
2 , 𝑦 =

√

3
2 .

The point 𝐶 can be represented as ( 12 (1 − 𝑠),
√

3
2 𝑠) for 0 ≤ 𝑠 ≤ 1.

We are looking for a point 𝐶 on 𝐴𝐵 that does not lie on any other segment from  .
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Consider the geometry. The family  forms a region bounded by the axes and the quarter circle.
The segments are chords of circles centered on the line 𝑦 = 𝑥, tangent to the axes.
Let the endpoints of a segment be (cos 𝜃, 0) and (0, sin 𝜃).
A point on the segment is (cos 𝜃(1 − 𝑡), sin 𝜃𝑡).
The point 𝐶 = ( 12 −

1
2𝜆,

√

3
2 𝜆).

If 𝐶 lies on such a segment, then
1
2−

1
2𝜆

cos 𝜃 = 1 − 𝑡 and

√

3
2 𝜆
sin 𝜃 = 𝑡.

1−𝜆
2 cos 𝜃 +

√

3𝜆
2 sin 𝜃 = 1.

We need a unique 𝜆 ∈ (0, 1) such that the only solution (cos 𝜃, sin 𝜃) is ( 12 ,
√

3
2 ), which corresponds

to 𝜃 = 𝜋
3 .

Consider the function 𝑓 (𝜃) = 1
2 cos 𝜃 −

𝜆
2 cos 𝜃 +

√

3𝜆
2 sin 𝜃 .

We need 𝑓 (𝜃) = 1.

If 𝜆 = 1
2 , then 𝐶 = ( 14 ,

√

3
4 ).

1−1∕2
2 cos 𝜃 +

√

3(1∕2)
2 sin 𝜃 = 1

1
4 cos 𝜃 +

√

3
4 sin 𝜃 = 1

1
cos 𝜃 +

√

3
sin 𝜃 = 4

sin 𝜃 +
√

3 cos 𝜃 = 4 sin 𝜃 cos 𝜃
sin 𝜃 +

√

3 cos 𝜃 = 2 sin(2𝜃)
Divide by 2: 1

2 sin 𝜃 +
√

3
2 cos 𝜃 = sin(2𝜃)

sin(𝜃 + 𝜋
3 ) = sin(2𝜃).

𝜃 + 𝜋
3 = 2𝜃 + 2𝜋𝑘, or 𝜃 + 𝜋

3 = 𝜋 − 2𝜃 + 2𝜋𝑘.
𝜃 = 𝜋

3 − 2𝜋𝑘, so 𝜃 = 𝜋
3 .

3𝜃 = 𝜋 − 𝜋
3 + 2𝜋𝑘 = 2𝜋

3 + 2𝜋𝑘.

𝜃 = 2𝜋
9 + 2𝜋𝑘

3 .

If 𝑘 = 0, 𝜃 = 2𝜋
9 .

If 𝑘 = 1, 𝜃 = 2𝜋
9 + 2𝜋

3 = 2𝜋+6𝜋
9 = 8𝜋

9 .

If 𝜆 = 1
2 , the point is ( 14 ,

√

3
4 ).

This point lies on segments corresponding to 𝜃 = 𝜋
3 and 𝜃 = 2𝜋

9 .
The unique point 𝐶 means that for other values of 𝜆, there is more than one solution for (𝑥, 𝑦).
Consider the tangent to the unit circle passing through 𝐶 .
If the tangent is unique, 𝐶 is on the unit circle.

This leads to 𝜆 = 1±
√

13
4 , neither of which is in (0, 1).

Consider the geometric interpretation of the family  . The segments connect points on the axes such
that the distance is 1.
The locus of the centers of these segments is the circle (𝑥 − 1

2 )
2 + (𝑦 − 1

2 )
2 = 1

2 , in the first quadrant.
If a point 𝐶 lies on a segment from  , then 𝐶 is on a line segment connecting (𝑥, 0) and (0, 𝑦) with
𝑥2 + 𝑦2 = 1.
The line containing the segment is 𝑥

𝑥0
+ 𝑦

𝑦0
= 1.

If 𝐶 belongs to a unique segment, then there is a unique line of this form passing through 𝐶 .

The point 𝐶 on 𝐴𝐵 is ( 12 −
1
2𝜆,

√

3
2 𝜆).

We need a unique (𝑥0, 𝑦0) with 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0, such that

1
2−

1
2𝜆

𝑥0
+

√

3
2 𝜆
𝑦0

= 1.

Let the point 𝐶 be such that the line passing through 𝐶 with the form 𝑥
𝑥0

+ 𝑦
𝑦0

= 1 is unique, subject

to 𝑥20 + 𝑦
2
0 = 1.

This line is tangent to the unit circle.
The point 𝐶 lies on the intersection of the line containing 𝐴𝐵 and the unit circle.

( 12 −
1
2𝜆)

2 + (
√

3
2 𝜆)

2 = 1.
We found no solution for 𝜆 ∈ (0, 1).
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The unique point 𝐶 means that if any other segment passes through 𝐶 , it must be 𝐴𝐵.
Consider the slope of the line containing the segment connecting (𝑥, 0) and (0, 𝑦). Slope is − 𝑦

𝑥 .
The equation is 𝑦 = − 𝑦

𝑥𝑥 + 𝑦.

If 𝐶 lies on the segment, then 1−𝜆
2𝑥 +

√

3𝜆
2𝑦 = 1.

Consider the geometric mean.
Let the point 𝐶 have coordinates (𝑎, 𝑏). The segment connecting (𝑥, 0) and (0, 𝑦) passes through
(𝑎, 𝑏).
𝑎
𝑥 + 𝑏

𝑦 = 1.

If 𝐶 is on 𝐴𝐵, then 𝑏 = −
√

3𝑎 +
√

3
2 .

𝑎 = 1
2 −

1
2𝜆, 𝑏 =

√

3
2 𝜆.

The point 𝐶 is tangent to the envelope of the family of segments.

Solution:
Let the family of segments be  . The segments have endpoints 𝑃 = (𝑥, 0) and 𝑄 = (0, 𝑦) with
𝑥2 + 𝑦2 = 1 and 𝑥, 𝑦 > 0. The points on the segment 𝑃𝑄 satisfy 𝑥

𝑥 + 𝑦
𝑦 = 1. The segments lie on the

lines 𝑥
𝑥0

+ 𝑦
𝑦0

= 1, where 𝑥20 + 𝑦
2
0 = 1, 𝑥0, 𝑦0 > 0.

The segment 𝐴𝐵 has endpoints 𝐴( 12 , 0) and 𝐵(0,
√

3
2 ). The equation of the line containing 𝐴𝐵 is

𝑦 = −
√

3𝑥 +
√

3
2 .

A point 𝐶 on 𝐴𝐵 can be parameterized as 𝐶 = ( 12 −
1
2𝜆,

√

3
2 𝜆), where 0 ≤ 𝜆 ≤ 1.

If 𝐶 belongs to a segment from  with endpoints (𝑥, 0) and (0, 𝑦), then
1
2−

1
2𝜆
𝑥 +

√

3
2 𝜆
𝑦 = 1.

We are looking for a unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that does not belong to any
segment from  other than 𝐴𝐵. This means that the only solution (𝑥, 𝑦) to the equation with

𝑥2 + 𝑦2 = 1, 𝑥, 𝑦 > 0, is ( 12 ,
√

3
2 ).

The segments from  are parts of the tangents to the unit circle. The point 𝐶 must be tangent to the
envelope of the family of segments. The envelope is the unit circle itself.
The unique point 𝐶 on 𝐴𝐵, distinct from 𝐴 and 𝐵, that lies on the unit circle. We need to solve:

( 12 −
1
2𝜆)

2 + (
√

3
2 𝜆)

2 = 1

𝜆 = 1
2 . The point 𝐶 = ( 14 ,

√

3
4 ).

𝑂𝐶2 = ( 14 )
2 + (

√

3
4 )2 = 1

16 +
3
16 = 4

16 = 1
4 .

𝑂𝐶2 = 1
4 = 𝑝

𝑞 , so 𝑝 = 1, 𝑞 = 4.
𝑝 and 𝑞 are relatively prime.
𝑝 + 𝑞 = 1 + 4 = 5.
Final Answer: The final answer is 5
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