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Abstract

Distillation efforts have led to language mod-001
els that are more compact and efficient without002
serious drops in performance. The standard003
approach to distillation trains a student model004
against two objectives: a task-specific objec-005
tive (e.g., language modeling) and an imitation006
objective that encourages the hidden states of007
the student model to be similar to those of the008
larger teacher model. In this paper, we show009
that it is beneficial to augment distillation with010
a third objective that encourages the student011
to imitate the causal dynamics of the teacher012
through a distillation interchange intervention013
training objective (DIITO). DIITO pushes the014
student model to become a causal abstrac-015
tion of the teacher model – a faithful model016
with simpler causal structure. DIITO is fully017
differentiable, easily implemented, and com-018
bines flexibly with other objectives. Compared019
against standard distillation with the same set-020
ting, DIITO results in lower perplexity on the021
WikiText-103M corpus (masked language mod-022
eling) and marked improvements on the GLUE023
benchmark (natural language understanding),024
SQuAD (question answering), and CoNLL-025
2003 (named entity recognition).026

1 Introduction027

Large pretrained language models have improved028

performance across a wide range of NLP tasks, but029

can be costly due to their large size. Distillation030

seeks to reduce these costs while maintaining per-031

formance by training a simpler student model from032

a larger teacher model (Hinton et al., 2015; Sun033

et al., 2019; Sanh et al., 2019; Jiao et al., 2019).034

Hinton et al. (2015) propose model distillation035

with an objective that encourages the student to036

produce output logits similar to those of the teacher037

while also supervising with a task-specific objec-038

tive (e.g., sequence classification). Sanh et al.039

(2019), Sun et al. (2019), and Jiao et al. (2019)040

adapt this method, strengthening it with additional041

supervision to align internal representations be- 042

tween the two models. However, these approaches 043

may push the student model to match all aspects 044

of internal states of the teacher model irrespective 045

of their causal role in the network’s computation. 046

This motivates us to develop a method that focuses 047

on aligning the causal role of representations in the 048

student and teacher models. 049

We propose augmenting standard distillation 050

with a new objective that pushes the student to 051

become a causal abstraction (Beckers and Halpern, 052

2019; Beckers et al., 2020; Geiger et al., 2021a) 053

of the teacher model: the simpler student will 054

faithfully model the causal effect of teacher rep- 055

resentations on output. To achieve this, we employ 056

the interchange intervention training (IIT) method 057

of Geiger et al. (2021b). The distillation inter- 058

change intervention training objective (DIITO) 059

aligns a high-level student model with a low-level 060

teacher model and performs interchange interven- 061

tions (swapping of aligned internal states); during 062

training the high-level model is pushed to conform 063

to the causal dynamics of the low-level model. 064

Figure 1 shows a schematic example of this pro- 065

cess. Here, hidden layer 2 of the student model 066

(bottom) is aligned with layers 3 and 4 of the 067

teacher model. The figure depicts a single inter- 068

change intervention replacing aligned states in the 069

left-hand models with those from the right-hand 070

models. This results in a new network evolution 071

that is shaped both by the original input and the 072

interchanged hidden states. It can be interpreted as 073

a certain kind of counterfactual as shown in Fig- 074

ure 1: what would the output be for the sentence 075

“I ate some ⟨MASK⟩.” if the activation values for 076

the second token at the middle two layers were set 077

to the values they have for the input “The water 078

⟨MASK⟩ solid.”? DIITO then pushes the student 079

model to output the same logits as the teacher, i.e., 080

matching the teacher’s output distribution under 081

the counterfactual setup. 082
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Figure 1: An IIT update in the context of masked language modelling (MLM). The teacher network (top) has 6
layers and the student (bottom) has 3 layers, and we align layer 2 in the student with layers 3-4 in the teacher.
Solid lines are feed-forward connections, red lines show the flow of backpropagation, and dashed lines indicate
interchange interventions. In this case, the student originally predicted the token “salad” under the interchange
intervention, while the teacher predicted the token “pizza” under an aligned interchange intervention. DIITO trains
the student to minimize the divergence between the student logits and the teacher logits under the interchange
intervention. This updates the student to conform to causal dynamics of the teacher.

To assess the contribution of distillation with083

DIITO, we begin with BERTBASE (Devlin et al.,084

2019a) and distill it under various alignments be-085

tween student and teacher while pretraining on the086

WikiText-103M corpus (Merity et al., 2016) achiev-087

ing −2.24 perplexity on the MLM task compared to088

standard DistilBERT trained on the same data. We089

then fine-tune the best performing distilled mod-090

els and find consistent performance improvements091

compared to standard DistilBERT trained with the092

same setting on the GLUE benchmark (+1.77%),093

CoNLL-2003 name-entity recognition (+0.38% on094

F1 score), and SQuAD v1.1 (+2.46% on EM score).095

2 Related Work096

Distillation was first introduced in the context of097

computer vision (Hinton et al., 2015) and has since098

been widely explored for language models (Sun099

et al., 2019; Sanh et al., 2019; Jiao et al., 2019).100

For example, Sanh et al. (2019) propose to extract101

information not only from output probabilities of102

the last layer in the teacher model, but also from in-103

termediate layers in the fine-tuning stage. Recently,104

Rotman et al. (2021) adapt causal analysis methods105

to estimate the effects of inputs on predictions to106

compress models for better domain adaptation. In 107

contrast, we focus on imbuing the student with the 108

causal structure of the teacher. 109

Interventions on neural networks were originally 110

used as a structural analysis method aimed at il- 111

luminating neural representations and their role 112

in network behavior (Feder et al., 2021; Pryzant 113

et al., 2021; Vig et al., 2020; Elazar et al., 2020; 114

Giulianelli et al., 2020; Geiger et al., 2020, 2021a). 115

Geiger et al. (2021b) extend these methods to net- 116

work optimization. We contribute to this existing 117

research by adapting intervention-based optimiza- 118

tion to the task of language model distillation. 119

3 Causal Distillation 120

Here, we define our distillation training procedure. 121

See Algorithm 1 in the Appendix for a summary. 122

GETVALS. The GETVALS operator is an 123

activation-value retriever for a neural model. Given 124

a neural model M containing a set of neurons N 125

(an internal representations) and an appropriate in- 126

put x, GETVALS(M,x,N) is the set of values 127

that N takes on when processing x. In the case 128

that N represents the neurons corresponding to the 129

final output, GETVALS(M,x,N) is the output of 130
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Pretraining WikiText GLUE CoNLL-2003 SQuAD v1.1
Model Layers Tokens Perplexity Score acc F1 EM F1

BERTBASE (Devlin et al., 2019b) 12 3.3B 10.27 (–)† 82.75 (–) 96.40 (–) 92.40 (–) 80.80 (–) 88.50 (–)
(Wikipedia+BookCorpus)
DistilBERT (Sanh et al., 2019) 6 3.3B 17.48 (–)† 79.59 (–) 98.39 (–)† 93.10 (–)† 77.70 (–) 85.80 (–)
(Wikipedia+BookCorpus)

DistilBERT (WikiText) 3 0.1B 29.51 (0.32) 67.42 (1.10) 97.88 (0.04) 88.89 (0.29) 26.04 (0.93) 68.38 (0.77)
DIITOMIDDLE (WikiText) 3 0.1B 26.04 (0.93) 69.30 (1.08) 98.03 (0.04) 89.69 (0.18) 58.74 (0.69) 70.23 (0.57)
DIITOLATE (WikiText) 3 0.1B 25.97 (0.63) 69.01 (1.69) 98.03 (0.03) 89.82 (0.18) 58.75 (0.49) 70.21 (0.41)
DIITOFULL (WikiText) 3 0.1B 24.85 (0.58) 69.36 (0.87) 98.02 (0.03) 89.67 (0.16) 58.72 (0.67) 70.50 (0.56)

DistilBERT (WikiText) 6 0.1B 15.69 (1.51) 75.80 (0.42) 98.48 (0.03) 92.12 (0.23) 70.23 (0.75) 79.99 (0.55)
DIITOMIDDLE (WikiText) 6 0.1B 14.32 (0.12) 76.71 (0.47) 98.56 (0.04) 92.47 (0.19) 71.93 (0.31) 81.32 (0.23)
DIITOLATE (WikiText) 6 0.1B 14.93 (0.23) 76.80 (0.34) 98.51 (0.02) 92.36 (0.27) 71.47 (0.28) 81.01 (0.23)
DIITOFULL (WikiText) 6 0.1B 13.59 (0.25) 76.67 (0.21) 98.53 (0.04) 92.35 (0.24) 71.96 (0.29) 81.33 (0.25)

DIITOFULL+Random (WikiText) 6 0.1B 13.95 (0.18) 76.84 (0.29) 98.54 (0.03) 92.41 (0.24) 71.90 (0.54) 81.27 (0.39)
DIITOFULL+Masked (WikiText) 6 0.1B 13.99 (0.16) 76.80 (0.32) 98.55 (0.03) 92.45 (0.18) 71.77 (0.59) 81.09 (0.42)
DIITOFULL+LDIITO

Cos (WikiText) 6 0.1B 13.45 (0.19) 77.14 (0.37) 98.54 (0.04) 92.35 (0.24) 71.94 (0.31) 81.35 (0.23)

Table 1: Performance on the development sets of the WikiText, GLUE benchmark, CoNLL-2003 corpus for
the name-entity recognition task, and SQuAD v1.1 for the question answering task. The score is the averaged
performance scores with standard deviation (SD) for all tasks across 15 distinct runs. †Numbers are imputed from
released models on Hugging-face (Wolf et al., 2020).

model M when processing x (i.e., output from a131

standard forward call of a neural model).132

SETVALS. The SETVALS operator is a function133

generator that defines a new neural model with a134

computation graph that specifies an intervention135

on the original model M (Pearl, 2009; Spirtes136

et al., 2001). SETVALS(M,N,v) is the new neu-137

ral model where the neurons N are set to constant138

values v. Because we overwrite neurons with v139

in-place, gradients can back-propagate through v.140

Interchange Intervention. An interchange in-141

tervention combines GETVALS and SETVALS op-142

erations. First, we randomly sample a pair of exam-143

ples from a training dataset (x1,y1), (x2,y2) ∈ D.144

Next, where N is the set of neurons that we are145

targeting for intervention, we define Mx1
N to abbre-146

viate the new neural model as follows:147

SETVALS
(
M,N, GETVALS(M,x1,N)

)
(1)148

This is the version of M obtained from setting the149

values of N to be those we get from processing150

input x1. The interchange intervention targeting151

N with x1 as the source input and x2 as the base152

input is then defined as follows:153

154

INTINV(M,N,x1,x2)
def
=155

GETVALS(Mx1
N ,x2,N

y) (2)156

where Ny are the output neurons. In other words,157

INTINV(M,N,x1,x2) is the output state we get158

from M for input x2 but with the neurons N set to159

the values obtained when processing input x1.160

DIITO. DIITO employs T as the teacher 161

model, S as the student model, D as the training 162

inputs to both models, and Π as an alignment that 163

maps sets of student neurons to sets of teacher neu- 164

rons. For each set of student neurons NS in the 165

domain of Π, we define DIITO loss as: 166

167

LDIITO
CE

def
= 168∑

x1,x2∈D
CES

(
INTINV(S,NS ,x1,x2), 169

INTINV(T ,Π(NS),x1,x2)
)

(3) 170

where CES is the smoothed cross-entropy loss mea- 171

suring the divergences of predictions, under inter- 172

change, between the teacher and the student model. 173

Distillation Objectives. We adopt the standard 174

distillation objectives from DistilBERT (Sanh et al., 175

2019) (defined formally in Appendix A.1): LMLM 176

for the task-specific loss for the student model, LCE 177

for the loss measuring the divergence between the 178

student and teacher outputs on masked tokens, and 179

LCos for the loss measuring the divergence between 180

the student and teacher contextualized representa- 181

tions on masked tokens in the last layer. Our final 182

training objective for the student is a linear com- 183

bination of the four training objectives reviewed 184

above: LMLM, LCE, LCos, and LDIITO
CE . In a further 185

experiment, we introduce a fifth objective LDIITO
Cos 186

which is identical to LCos, except the teacher and 187

student are undergoing interchange interventions 188

(see Appendix A.2 for details). 189
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4 Experimental Set-up190

Student and Teacher Models. Our two students191

have the standard BERT architecture, with 12 heads192

with a hidden dimension of 768. The larger student193

has 6 layers, the smaller 3 layers. Our pretrained194

teacher has the same architecture, except with 12195

layers. Following practices introduced by Sanh196

et al. (2019), we initialize our student model with197

weights from skipped layers (one out of four layers)198

in the teacher model. We use WikiText for distilla-199

tion to simulate a practical situation with a limited200

computation budget. We leave the exploration of201

our method on larger datasets for future research.202

Alignment. Our teacher and student BERT mod-203

els create columns of neural representations above204

each token with each row created by the feed-205

forward layer of a Transformer block, as in Fig-206

ure 1. We define LT and LS to be the number of207

layers in the student and teacher, respectively. In208

addition, we define Sj
i and T j

i to be the representa-209

tions in the ith row and jth column in the student210

and teacher, respectively. An alignment Π is a par-211

tial function from student representations to sets of212

teacher representations. We test three alignments:213

FULL Π is defined on all student representations:214

Π(Sj
i ) = {T j

4i+k : 0 ≤ k < LT /LS}215

MIDDLE Π is defined for the row LS � 2:216

Π(Sj
LS�2) = {T j

LT �2}217

LATE Π is defined on the student representations218

in the first and second rows:219

Π(Sj
1) = {T j

LT −2} and Π(Sj
2) = {T j

LT −1}220

For each training iteration, we randomly221

select one aligned student layer to perform222

the interchange intervention, and we randomly223

select 30% of token embeddings for align-224

ment for each sequence. We experiment225

with three conditions with the FULL alignment:226

consecutive tokens (DIITOFULL), random to-227

kens (DIITOFULL+Random) and masked tokens228

(DIITOFULL+Masked). We also include LDIITO
Cos to229

the FULL alignment (DIITOFULL+LDIITO
Cos ).230

5 Results231

Language Modeling. We first evaluate our models232

using perplexity on the held-out evaluation data233

from WikiText. As shown in Table 1, DIITO234

brings performance gains for all alignments. Our235

best result is from the FULL alignment with the LCos236

(DIITOFULL+LDIITO
Cos ), which has -2.24 perplexity237

compared to standard DistilBERT trained with the 238

same amount of data. 239

GLUE. The GLUE benchmark (Wang et al., 240

2018) covers different natural language understand- 241

ing tasks. We report averaged GLUE scores on the 242

development sets by fine-tuning our distilled mod- 243

els in Table 1. Individual task performance score 244

of each GLUE task is included in Table 2 in the 245

Appendix. The results suggest that distilled mod- 246

els with DIITO lead to consistent improvements 247

over standard DistilBERT trained under the same 248

setting, with our best result (DIITOFULL+LDIITO
Cos ) 249

being +1.77% higher. 250

Named Entity Recognition. We also evalu- 251

ate our models on the CoNLL-2003 Named Entity 252

Recognition task (Tjong Kim Sang and De Meul- 253

der, 2003). We report accuracy and Macro-F1 254

scores on the development sets. We fine-tune our 255

models for three epochs. Our best performing 256

model (DIITOMIDDLE) numerically surpasses not 257

only standard DistilBERT (+0.38% on F1 score) 258

trained under the same setting, but also its teacher, 259

BERTBASE (+0.05% on F1 score). Though these 260

improvements are small, in this case distillation 261

produces a smaller model with better performance. 262

Question Answering. Finally, we evaluate on a 263

question answering task, SQuAD v1.1 (Rajpurkar 264

et al., 2016). We report Exact Match and Macro- 265

F1 on the development sets as our evaluation met- 266

rics. We fine-tune our models for two epochs. 267

DIITO again yields marked improvements (Ta- 268

ble 1). Our best result is from the vanilla FULL 269

alignment (DIITOFULL), with +2.46% on standard 270

DistilBERT trained under the same setting. 271

6 Conclusion 272

In this paper, we explored distilling a teacher by 273

training a student to capture the causal dynamics 274

of its computations. Across a wide range of NLP 275

tasks, we find that DIITO leads to improvements, 276

with the largest gains coming from the models 277

that use the richest alignment between student and 278

teacher. Our results also demonstrate that DIITO 279

performs on-par (maintaining 97% of performance 280

on GLUE tasks) with standard DistilBERT (Sanh 281

et al., 2019) while consuming 97% less training 282

data. These findings suggest that DIITO is a 283

promising tool for effective model distillation. 284
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A Appendix412

A.1 Standard Distillation Objectives413

In our setting, our teacher model T is a BERT414

model, and our student model S is a shallower415

BERT model with fewer layers.416

Assume that we randomly draw a training exam-417

ple (x1,y1) ∈ D, where x1 is the input to our mod-418

els and y1 is the corresponding ground truth (the419

token prediction at each masked position). We de-420

note the model predictions (output logits) as T (x1)421

and S(x1). Additionally, we denote the contextu-422

alized representation for tokens for x1 at the last423

layer as BERTT (x1) and BERTS(x1).424

We adopt the three standard distillation objec-425

tives of Sanh et al. (2019):426

LMLM The masked language modeling loss of the427

student model calculated over all examples428

using the cross-entropy loss as follows:429 ∑
{x1,y1}∈D

CE(S(x1),y1) (4)430

LCE Following Hinton et al. (2015), the smoothed431

cross-entropy loss measuring the divergence432

between the student and teacher outputs as433

follows:434 ∑
x1∈D

CES(S(x1), T (x1)) (5)435

LCos The cosine embedding loss defined in terms436

of the final hidden states of the teacher and437

the student as follows:438 ∑
x1∈D

COS(BERTS(x1),BERTT (x1)) (6)439

As a result, comparing to standard DistilBERT, 440

DIITO essentially adds a new type of objective 441

by pushing the student model to become a causal 442

abstraction of the teacher model. 443

A.2 Causal Distillation Objectives 444

In addition to our causal loss LDIITO
CE , we also pro- 445

pose a new loss LDIITO
Cos which is identical to LCos 446

with interchange interventions. In this section, we 447

provide a formal definition for LDIITO
Cos . 448

We denote our teacher and student models as 449

T and S respectively. Using the notational con- 450

ventions from Section 3, we use Ny
T and Ny

S to 451

represent the neurons corresponding to the final 452

output for each model. Likewise, we use NLT
T and 453

NLS
S to represent the neurons representing contex- 454

tualized representation for each token after the final 455

BERT layer. 456

Assuming we randomly sample a pair of exam- 457

ples from a training dataset (x1,y1), (x2,y2) ∈ D, 458

we can then rewrite our causal loss LDIITO
CE by rear- 459

ranging Eqn. 2 and Eqn. 3 as follows: 460

∑
x1,x2∈D

CES

(
GETVALS(Mx1

S ,x2,N
y
S),

GETVALS(Mx1
T ,x2,N

y
T )

) (7) 461

where Mxi
S and Mxi

T are derived as in Eqn. 1 462

for each model respectively. Crucially, Eqn. 7 can 463

be regarded as the causal form of the standard 464

smoothed cross-entropy loss with interchange in- 465

tervention. Likewise, we can further define the 466

LDIITO
Cos as: 467

∑
x1,x2∈D

COS
(

GETVALS(Mx1
S ,x2,N

LS
S ),

GETVALS(Mx1
T ,x2,N

LT
T )

) (8) 468

with adjusted interchange alignments for NLT
T 469

and NLS
S . 470

A.3 Distillation Set-up 471

We adapt the open-source Hugging-face implemen- 472

tation for model distillation (Wolf et al., 2020).1 473

We distill our models on the MLM pretraining 474

task (Devlin et al., 2019b). We use large gradi- 475

ent accumulations over batches as in Sanh et al. 476

(2019) for better performance. Specifically, we dis- 477

till all models for three epochs for an effective batch 478

size of 240. In contrast to the setting of 4K per 479

1https://github.com/huggingface/transformers
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Pretraining General Language Understanding Evaluation (GLUE)
Model Layers Tokens CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

BERTBASE (Devlin et al., 2019b) 12 3.3B 56.30 84.70 88.60 91.80 89.60 69.30 92.70 89.00
(Wikipedia+BookCorpus)
DistilBERT (Sanh et al., 2019) 6 3.3B 51.30 82.10 87.50 89.20 88.50 59.90 91.30 86.90
(Wikipedia+BookCorpus)

DistilBERT (WikiText) 3 0.1B 22.78 71.55 82.51 82.12 82.16 55.43 86.47 56.33
DIITOMIDDLE (WikiText) 3 0.1B 23.21 72.97 82.81 83.15 82.83 55.98 86.52 66.93
DIITOLATE (WikiText) 3 0.1B 24.12 72.80 82.16 82.88 82.85 57.29 87.31 62.65
DIITOFULL (WikiText) 3 0.1B 25.01 72.85 82.71 83.05 82.85 55.37 86.92 66.15

DistilBERT (WikiText) 6 0.1B 40.43 78.95 87.45 84.76 84.96 60.10 89.38 80.40
DIITOMIDDLE (WikiText) 6 0.1B 43.97 79.47 87.57 85.45 85.21 60.72 89.97 81.33
DIITOLATE (WikiText) 6 0.1B 43.93 79.49 87.70 85.79 85.22 60.14 90.31 81.79
DIITOFULL (WikiText) 6 0.1B 43.43 79.66 88.17 85.57 85.28 59.95 90.01 81.26

DIITOFULL+Random (WikiText) 6 0.1B 44.27 79.70 88.06 85.63 85.34 60.89 89.76 81.08
DIITOFULL+Masked (WikiText) 6 0.1B 43.39 79.63 87.88 85.61 85.30 61.06 89.97 81.58
DIITOFULL+LDIITO

Cos (WikiText) 6 0.1B 45.17 79.68 88.18 85.83 85.31 60.94 90.32 81.69

Table 2: Model performance results on the development sets of the GLUE benchmark. The GLUE score is the
averaged performance scores across 15 distinct runs with precision aligned for a fair comparison. Following the
evaluation for BERT (Devlin et al., 2019b), we exclude WNLI for evaluation.

Figure 2: GLUE score distribution across 15 distinct
runs of students in different sizes. Following the evalua-
tion for BERT (Devlin et al., 2019b). we exclude WNLI
for evaluation.

batch in the BERT (Devlin et al., 2019b) and Dis-480

tilBERT Sanh et al. (2019) models, we found that481

small effective batch size works better for smaller482

dataset. We weight all objectives equally for all ex-483

periments. With our new objectives, the distillation484

takes approximately 9 hours on 4 NVIDIA A100485

GPUs.486

A.4 Evaluation Set-up487

GLUE We fine-tune for 25 epochs for the smaller488

datasets (RTE and CoLA) and 3 epochs for the489

others. Following Devlin et al. (2019b) and Sanh490

et al. (2019), we use Matthew’s Correlation for491

CoLA, F1 for MRPC and QQP, Spearman correla-492

tion for STS-B, and accuracy for all the other tasks493

in GLUE.494

A.5 Reproducibility 495

To foster reproducible and provide a fair compar- 496

ison between methods, we distill BERT for each 497

condition with three distinct random seeds. We 498

then fine-tune each model with five distinct random 499

seeds. Consequently, we report results aggregated 500

from three distinct runs for the language modeling 501

task, and 15 distinct runs for others. 502

Named Entity Recognition We follow the exper- 503

iment set-up as in Hugging-face (Wolf et al., 2020) 504

repository for evaluation for the CoNLL-2003 505

Named Entity Recognition task (Tjong Kim Sang 506

and De Meulder, 2003). For fine-tuning, we set the 507

learning rate to 5e−5 with an effective batch size 508

of 32 for three epochs.2 509

Question Answering We follow the experiment 510

set-up as in Sanh et al. (2019) for evaluation for the 511

question answering task, SQuAD v1.1 (Rajpurkar 512

et al., 2016). For fine-tuning, we set the learning 513

rate to 3e−5 with an effective batch size of 48 for 514

two epochs. We set the stride to 128. 515

A.6 Low-Resource Model Distillation 516

We experiment with an extreme case in a low- 517

resource setting where we only distill with 15% 518

of WikiText by keeping other experiment set-up 519

constant. Our results suggest that DIITO training 520

2For DistilBERT performance in Table 1on CoNLL-
2003, we evaluate with a publicly avaliable model
downloaded from https://huggingface.co/delpart/
distilbert-base-uncased-finetuned-ner.
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Figure 3: Perplexity score distribution for the develop-
ment set of WikiText of models trained in a low-resource
setting. The best model is the one with the richest align-
ment structure.

is also beneficial in extremely low-resource settings521

as shown in Figure 3.522

A.7 Layer-wise Ablation523

We further study the effect of DIITO training with524

respect to the size of the student model through525

a layer-wise ablation experiment. As shown in526

Figure 2, we compare GLUE performance for mod-527

els trained with standard distillation pipeline and528

with DIITO training (DIITOFULL). Specifically,529

we compute the averaged GLUE scores following530

the same procedure described in Section A.5. Our531

results suggest that DIITO training brings consis-532

tent improvements over GLUE tasks with smaller533

models marking the greatest gains.534
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Algorithm 1 Causal Distillation via Interchange Intervention Training
Require: Student model S, teacher model T , student output neurons Ny

S , alignment Π, shuffled
training dataset D.
1: S.train()
2: T .eval()
3: D′ = random.shuffle(D)
4: Ny

T = Π(Ny
S)

5: while not converged do
6: for {x1,y1}, {x2,y2} in iter(D, D′) do
7: NS = sample_student_neurons()
8: NT = Π(NS)
9: with no_grad:
10: Ta = SETVALS(
11: T ,NT , GETVALS(T ,x1,NT ))
12: oT = GETVALS(Ta,x2,N

y
T )

13: Sa = SETVALS(
14: S,NS , GETVALS(S,x1,NS))
15: oS = GETVALS(Sa,x2,N

y
S)

16: LDIITO = get_loss(oT , oS)
17: Calculate LMLM, LCE, LCos
18: L = LMLM + LCE + LCos + LDIITO

19: L.backward()
20: Step optimizer
21: end while
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