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Abstract

The past decade has seen an increasing number of applications of deep learning (DL)
techniques to biomedical fields, especially in neuroimaging-based analysis. Such DL-based
methods are generally data-intensive and require large number of training instances, which
might be infeasible to acquire from a single acquisition site, especially for data such as fMRI
scans, due to the time and costs that they demand. We can attempt to address this issue by
combining fMRI data from various sites, thereby creating a bigger heterogeneous dataset.
Unfortunately, the inherent differences in the combined data, known as batch effects, often
hampers learning a model. To mitigate this issue, techniques such as multi-source domain
adaptation (MSDA) aim at learning an effective classification function that uses (learned)
domain-invariant latent features. This paper analyzes and compares the performance of
various popular MSDA methods (MDAN, DARN, MDMN, M3SDA) at predicting different
labels (illness, age and sex) of images from several public rs-fMRI datasets: ABIDE I and
ADHD-200. It also evaluates the impact of various conditions such as: class imbalance,
number of sites along with a comparison of the degree of adaptation of each of the methods,
thereby presenting the effectiveness of MSDA models in neuroimaging-based applications.

Keywords: Resting-state fMRI, multi-source domain adaptation, batch effects, deep learn-
ing, ADHD, ASD

1. Introduction

1.1. Motivation and Background

With recent developments in brain imaging technology, data in the form of functional Mag-
netic Resonance Imaging (fMRI), electroencephalography (EEG), and Magnetoencephalog-
raphy (MEG) have become widely available, which can be helpful in conducting various
diagnostic and predictive analyses. Owing to the spatio-temporal nature of fMRI data,
which allows for extensive information extraction, there has been a steady rise in the appli-
cations of various deep learning (DL) strategies applied to fMRI data to classify or predict
mental illnesses (e.g., Alzheimer’s, ADHD, Schizophrenia, etc.), brain states (e.g., sleep
stages, task-based activity, etc.) or patient demographics (e.g., age, gender, IQ, etc.).
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DL models are data-intensive in nature and tend to work better as we increase the size of
the data available for training. However, owing to the difficulties related to the acquisition
of fMRI data, building a large dataset is often infeasible, expensive and time-consuming.

A general workaround involves building a large dataset by combining data from various
acquisition sites for a particular research task. This, however, leads to another problem
that arises as the data was collected from multiple sites, which means this can involve
different acquisition methods, equipment, demographic of patients, methodology, etc. The
models can be trained on a dataset that simply contains all of these instances, without any
modifications. However, this method ignores these differences, that might hamper the model
generalizability. The basic reason for such variations is the differences in the probability
distributions of data and label across sites, which are generally termed as domain shift, and
also, batch effects (Dundar et al., 2007).

Recent works in various domains have focused on developing methods to mitigate such
issues, including domain adaptation (DA) techniques, which aim at building a general-
ized model that can learn from the multiple given source sites to produce a model that
can perform reasonably well on a new, yet related, target site. The existing DA tech-
niques have varied approaches based on factors like: number of source sites (single-source
DA, multi-source DA), labels availability in target domain (unsupervised, semi-supervised,
supervised DA), method of domain adaptation (discrepancy, adversarial, reconstruction
based), etc. Which technique performs best can depend on the objective at hand, and the
type of datasets that have been used. This motivates our work, here, to study the existing
DA methods and their performance when dealing with multi-site biomedical (in this case,
resting-state fMRI) data.

1.2. Related Works

In the past decade there have been various new techniques of that apply DL tools to fMRI
data, to develop predictive models based on numerous objectives.

Many systems view raw fMRI data as a sequence of 3-dimensional data, motivating
various techniques which use 3D convolutions to build models such as using 3D-CNN to
predict ADHD using fMRI and structural MRI (Zou et al., 2017), extracting features us-
ing 3D-Convolutional Autoencoders for mild Traumatic Brain Injury recognition (Zhao
et al., 2017), predicting Schizophrenia using 3D-CNN, development of 2-channel 3D DNN
for autism spectrum disorder (ASD) classification (Li et al., 2018b). Though such meth-
ods allow for maximal information extraction, the deep models are computationally very
expensive and generally infeasible. To mitigate this issue, functional connectivity matri-
ces (Lynall et al., 2010) are popularly used and are found to be a good replacement, making
the training computationally feasible and also providing a way to interpret the results.
Some noteworthy results using FCMs include classification of Schizophrenia patients using
various DL methods (Arbabshirani et al., 2013; Shen et al., 2010; Yan et al., 2017), predic-
tion of other illnesses such as attention deficit hyperactivity disorder (ADHD) (Riaz et al.,
2020), Alzheimer’s (Ju et al., 2017), ASD (Li et al., 2018a; Saeed et al., 2019) and Mild
Cognitive Impairment (Chen et al., 2016). There have also been classifications of other
brain states, such as suicidal behavior (Gosnell et al., 2019), chronic pain (Santana et al.,

ii



MSDA & Batch Effects

2019), migraine (Chong et al., 2017) and demographics such as age (Pruett Jr et al., 2015)
or gender (Fan et al., 2020), etc.

While the works mentioned above have shown impressive results, none addressed the
issue of batch effects. However, there have been few recent methods that have tried to
deal with batch effects in different ways. Olivetti et al. (2012) was one of the first to in-
vestigate batch effects in rs-fMRI datasets (ADHD-200) using extremely randomized trees
along with dissimilarity representation. Vega and Greiner (2018) studied the impact of clas-
sical techniques such as covariate, z-score normalization, and whitening on batch effects.
Wang et al. (2019) explored ways to use low-Rank domain adaptation to reduce existing
biases on multi-site fMRI dataset. Recent approaches include, transport-based joint distri-
bution alignment (Zhang et al., 2020), federated learning (Li et al., 2020) and conditional
autoencoder (Fader Networks) (Pominova et al., 2020).

It is therefore useful to have a comparative survey of the performances of various ex-
isting MSDA techniques applied to solve the batch effects in multi-site fMRI datasets, to
understand the benefits and limitations of DA approaches.

2. Domain Adaptation Methods

We define the common objective of MSDA techniques as follows: Given a collection of
labelled source-domain data Ds = {(xis, yis)}

Ns
i=1 ∀s ∈ {1, . . . , S} and a collection of

unlabelled target-domain data DT = {xiT }
NT
i=1 (where xis, x

i
T ∈ X and yis ∈ Y ) the goal

is to build a classifier that can use information from the source domains to help produce
models that can perform accurate classifications in the target domain (Zhao et al., 2020).
For our experiments, We take one of S domains as the target domain (by convention, this
is the domain indexed by S) and use the others as source domains (s ∈ {1, ..., S − 1}).
Generally, MSDA techniques employ different strategies of transforming the target domain
distribution into the source domain distributions to tackle the issue of batch effects. We
allow the marginal probability distributions PX to be different across domains, but require
the conditional probability distributions PY |X remain the same. Below is a short introduc-
tion to the various methods used in our experiments.

Domain Adversarial Neural Networks (DANN): Considered as one of the fundamen-
tal models in DA, DANN(Ajakan et al., 2014) is a single-source DA technique – the only
single-source DA method included in the comparison. DANN’s architecture is similar to
Figure 1(b), except that all the sources’ data are combined as used as a single big source.

Multi-source Domain Adversarial Networks (MDAN): MDAN can be seen as a
natural extension of DANN for MSDA problems. Its feature extractor and label classifier
are essentially the same as DANN’s, but MDAN uses one domain adapter Mdi for each of
the S − 1 source domains. Zhao et al. (2018) introduces two versions of MDAN: hard-max
and soft-max variants. We use just the soft-max variant as it is shown to provide better
generalization in (Zhao et al., 2018).

Domain AggRegation Networks (DARN): One of MSDA’s main challenges is that it
needs to include source sites based on the target site, in a way that minimizes the negative
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Figure 1: The training & evaluation pipelines used in this work. (a) represents the SRC
model, used as the baseline. All other MSDA models can be generalised to be
using (b). Finally, to compare the accuracy achieved with target-only data – the
TAR model – is shown in (c).

transfer while preserving as many training instances as possible. To tackle this issue, DARN
dynamically selects source sites and gives the sites varied importance based on their label
classification losses. This is possible by solving the Lagrangian dual of the objective that
needs to be optimized by utilizing binary search strategies.

Multi-Domain Matching Networks (MDMN): MDMN tackles MSDA by first project-
ing features into a shared feature space. By computing, then using a degree of similarity
between the target and source sites, MDMN merges similar sites together to construct the
shared feature space, while reducing the negative transfer by keeping dissimilar sites distant.
This model tackles this objective by using a loss function based on Wasserstein distance
and a special training paradigm as described in (Li et al., 2018c).

Moment Matching for MSDA(M3SDA): Unlike the previous discussed models, M3SDA
aligns target domain with source domains while simultaneously aligning source sites amongst
themselves. Furthermore, it tackles this issue by utilizing the feature distribution moments
instead of the raw input features for adaptation, which provides a certain robustness and
a statistical advantage in MSDA. Peng et al. (2019) introduces an extension of M3SDA,
called M3SDA-β, which they demonstrate performs better against overfitting and provides
better generalization. We therefore use M3SDA-β to understand the model’s performance
on neuroimaging data.
Appendix A provides more information about each of these architectures.

3. Methodology

3.1. Datasets and Tasks

This study uses two different publicly available datasets for training and evaluation, selected
on the basis of the number of total scans available, the number of sites of data acquisition,
and their frequent usage in the research community.
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The first dataset consists of rs-fMRI scans from the ABIDE I dataset (Craddock et al.,
2013a), including 530 control instances (tagged as typical controls, TC) and 505 instances
collected from subjects suffering with Autism Spectrum Disorder (ASD), which have been
acquired from 17 different sites. Appendix B shows the phenotypic information and pre-
processing steps used in the dataset.

The ADHD-200 dataset is our second multi-site fMRI dataset, which has been compiled
from 8 different sites, and contains 1516 rs-fMRI scans in total: 842 scans from control
subjects, and 674 from subjects who suffer from Attention Deficit Hyperactivity Disor-
der (ADHD). Again, see Appendix B for further information.

For each dataset, we run three different classification tasks, using three different labels:
(1) the respective mental illnesses, between illness and control samples; and binary classi-
fication of two phenotypic labels, (2) sex and (3) age (old versus young, w.r.t. the global
median calculated separately for each of the two datasets).

3.2. Functional Connectivity Matrix and Feature Extraction

Functional connectivity is defined as the temporal dependency of spatially-remote neuro-
physiological events (Van Den Heuvel and Pol, 2010). It computes the level of co-activation
between two spatially separate regions of interest (ROIs) in the brain, based on the mean
time-series extracted these ROIs. Each ROI is pre-defined using some atlas or template.
Here, we use the Automatic Anatomical Labelling (AAL) atlas (Tzourio-Mazoyer et al.,
2002), which partitions the brain into AR4:119116 different non-overlapping ROIs.

We then calculate the functional connectivity matrix (FCM) using Pearson’s correlation
coefficient between each pair of time-series which results in a AR4:119× 119116× 116 matrix.
Since the diagonal of this matrix is redundant and the matrix is symmetric, the diagonal
is dropped and the upper triangle of the matrix is flattened to finally produce a vector of
size AR4:

(
119
2

)(116
2

)
for each rs-fMRI scan, which is used as the input data to various models

in this study.

3.3. Training and Testing Settings

The MSDA models require labeled data flowing in from multiple source domains, as well
as a batch of unlabeled data from the target domain. To accommodate this, we first take
a single source is the target domain, and consider the remaining sites as different source
domains. The target domain is then split using a AR2:stratified 10-fold cross-validation
strategy, wherein a single fold is kept aside for testing while the remaining 9 folds are
used (without their labels) to provide the unlabeled target domain data required for the
unsupervised-MSDA methods. All datapoints from the source sites are fed into the model
along with their labels during training. We repeat the training and testing for each fold and
for each site, then report the average accuracies as the results. Figure 1 shows this pipeline.

To compare the performance of MSDA models (Figure 1(b)), the SRC model (see Fig-
ure 1(a)) is used as the baseline model. In this setting, data from all the source sites are
combined and are treated as one big dataset; that is, no target site data is used. Also, the
TAR model uses only the (labeled) target site data (and no source sites), in a AR2:stratified
10-fold CV setting to maintain the class distribution in all the folds. This model shows the
baseline performance when only the target site information is available.
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(a)

(b)

Figure 2: Site-wise performance of MSDA and baseline models in AR2, AR4:illness classifica-
tion for All: ADHD-200 (a) and ABIDE I (b) . The height of each bar is the
average of 10-Fold CV accuracies achieved when the particular site was chosen as
the target site. To show how much better an MSDA model performs w.r.t. using
only the target site data, and also w.r.t. using all source data without any domain
adaptation, we then subtract the TAR model accuracy from every model’s original
accuracy, and AR3:show the SRC model’s scores as a black target-line.

4. Results

Mental Illness: Figure 2 and Figure 3 show that MSDA models produce classifiers that are
more accurate than SRC and TAR. In case of ABIDE I, we find a significant increase in the
accuracy scores from baseline (SRC) to the MSDA models, with the highest increase being
in M3SDA ( 5%). In the case of ADHD-200 data, the data was balanced (see Appendix D)
and used for experimentation. In comparison to ABIDE, MSDA is only slightly more
accurate than SRC ( 1-4%). MDAN (76.21%) has the highest increase in comparison to
baseline (72.72%), while MDMN (71.54%) does not outperform baseline accuracy. We
noted the positive impact of balancing the data (Appendix D) using oversampling for this
dataset. This observation suggests that current MSDA models might be impacted by the
class balance present in data used.

Figure 2 provides a deeper look at the site-wise performance of the models. For ABIDE I,
Figure 2(b)subfigure shows that generally the models performed better than TAR and SRC,
with only a few exceptions. For site OHSU, no model was able to perform better than SRC,
while in some sites such as SDSU, CMU and Stanford, a few models performed worse than
TAR. For ADHD-200, Figure 2(a)subfigure shows that sites such as KKI and Pittsburg
have MSDA scores lower than TAR, however, in both of these sites, MDAN is able to per-
form better in comparison to TAR. M3SDA has a higher accuracy in most (around 10 out
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Figure 3: Average accuracies of all models across all sites. (a),(b),(c) depict the accuracies
for illness, age and sex for ABIDE I respectively, while (d) and (e) are for illness
and sex for ADHD-200 dataset. *(p<0.05) and **(p<0.01) depict the statistical
significance between the MSDA methods and SRC models, each calculated using
a paired-t test.

of 17) of the sites in ABIDE I, while in ADHD-200, MDAN seems to perform better with
some consistency. Furthermore, the increase in accuracy using MSDA models differ from
ABIDE I (16-20%) to ADHD-200 (8-10%).

Age: Figure 3(b) shows that applying DA models does not increase the classification
performance over the baseline results. The baseline and MSDA models both have an ac-
curacy of around AR3:90-9186-88%. To explore whether this was due to class imbalance, we
applied a strategy similar to the one in Section D, however that did not improve the results.
It could be that demographic information such as age might be domain invariant, which
would explain why MSDA models did not improve baseline performance.

Sex: Figure 3(c) presents the accuracy scores of the experiments on the ABIDE I
data. While only M3SDA showed significant increase for ABIDE I, in ADHD-200 all the
DA models except MDMN scored significantly better than baseline scores. While MDAN
performs the best in ADHD-200, it is not so accurate when it comes to ABIDE I; moreover,
we see that M3SDA is consistently accurate in both types of datasets.

The previous results show that the MSDA models perform better than simply combining
all the source data and utilizing it without any adaptation. To explore how well the models
harmonize the source sites, we ran experiments on MSDA models’ ability to make features
site-invariant. Figure 4 reports the results of a two-layered fully-connected network that
was trained and tested to classify the sites based on input latent features in a 10-fold CV
setting. We found that, in ABIDE I, the generalization of sites seems to be better than in
the case of ADHD-200. AR3:We observe that, though MSDA methods have lower accuracy in
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(a) (b)

Figure 4: Average accuracy values 10 fold CV of site classification using latent features
learnt in various models for ABIDE I(a) and ADHD-200(b).

site classification, it is still greater than chance ( 1
17 for ABIDE Iand 1

8 for ADHD-200). This
is owing to the trade-off between harmonizing sites and retaining discriminatory informa-
tion for the classification that each model must tackle. Since each model tries to achieve this
balance in different ways, we find that there is still some remnant site information present in
the processed features by each of the MSDA techniques. Nevertheless, all MSDA methods
produced latent features using which, it was difficult for the neural net to distinguish which
site an instance was from. This ability to make features site-invariant is hypothesized to be
the driving force behind improving the performance w.r.t. baseline performance.

5. Discussion and Conclusion

This paper analyses the performance of various existing MSDA models at classifying differ-
ent objectives using rs-fMRI data, using data from popular public datasets ABIDE I and
ADHD-200. We used FCMs of data as the representative feature vector upon which the
models were trained and evaluated. Section 4 shows that the MSDA methods are successful
in producing site-invariant latent features for the data, which in turn helps in improving
classification accuracies. However, note that such methods are sensitive to the class dis-
tribution present in the data. While fixed hyperparameters provided useful insights into
MSDA performances, AR2:an extensive hyperparameter tuning of the models was not in-
cluded in this study owing to computational constraints. Furthermore, we found that some
learning objectives were domain-invariant or unaffected by MSDA architectures (e.g., age),
AR1:however this was not exhaustively tested due to data limitations. Based on the experi-
ments conducted, we observe that M3SDA consistently performed well across datasets and
labels and was less prone to class imbalance. Models such as DARN, MDMN and MDAN
performed better in the larger dataset (ABIDE I) and were sensitive to class imbalance,
nevertheless, they performed significantly better when classes were balanced using simple
sampling techniques. In general, we see that MDAN and M3SDA have improved the per-
formance w.r.t. the baseline accuracies by a bigger margin than others for majority of the
classifications. Based on these results, it is suggestive that MSDA techniques can be bene-
ficial in improving the performance of DL techniques in neuroimaging-based applications.
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Appendix A. Domain Adaptation Methods

In the following sub-sections, a brief description of the underlying mechanisms in each of
the MSDA techniques used in this study is given.

A.0.1. Domain Adversarial Neural Networks (DANN)

Unlike rest of the methods used in this study, DANN (Ajakan et al., 2014) is a single-source
domain adaptation technique that has been included to compare its performance with the
other methods. DANN aims to learn features which help in accurately classifying data
points based on their labels while making sure that the features are domain-agnostic. The
architecture of the model used for adversarial training consists of three components, first,
feature extractor Mf which converts the input features to a latent representation (usually
lower in dimension). The model bifurcates into two branches each of which is fed with
these latent features. The first branch is the class predictor, Mc, which predicts the class to
which the sample belongs to, whereas, the second branch is used for predicting in domain
of the sample and is denoted by Md. A gradient reversal layer (GRL), Gλ(.), is attached
at the start of Md to train the model in an adversarial fashion. The loss function which is
minimized is given by:

E(θf , θd, θc) =
∑

s∈[1,S−1]

Ns∑
i=1

Lc(Mc(Mf (xis; θf ); θc), y
i
s)+

∑
k∈[1,S]

Nk∑
i=1

Ld(Md(Gλ(Mf (xk; θf )); θd), y
i
k)

(1)

Lc(ŷ
i, yi) = −yilog(ŷi) (2)

Ld(ŷ
i, yi) = −(yilog(ŷi)) + (1− yi)log(1− ŷi)) (3)

Gλ(X) = X,
dGλ
dX

= −λI (4)

A.0.2. Multisource Domain Adversarial Networks (MDAN)

MDAN can be seen as a logical extension to DANN wherein multiple source domains are
used instead of one single source(Zhao et al., 2018). Apart from Mf and Mc the architecture
contains one domain classifierMdi for each of the S−1 source domains. The soft-max version
of MDAN which utilizes the log-exp-max function to obtain a smoother approximation of
the max function used in adversarial training was used in this work as it was shown to
produce better and more computationally efficient results(Zhao et al., 2018). The model
trains to minimize the following loss function:
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E(θf , θD, θc) =
1

γ
log

∑
s∈[1,S−1]

exp(γ(Lsc + Ls,SD )) (5)

αs =
Lsc∑

s∈[1,S−1] L
s
c

(6)

Where Lsc is the cross-entropy loss on label classification for the data from source site s and
Ls,SD is the domain discrimination loss for data from source site s and target site S, similar
to the losses defined in Eq.(1). The values of αs are dynamically derived during the training
process using each sites’ losses helping the learning happen smoothly.

A.0.3. Domain AggRegation Networks (DARN)

One of the main efforts in domain adaptation is during combining data from different
sources, wherein, we need to select the domains which closely resemble the target domain
in hand while excluding domains that are dissimilar. While inclusion of more domains
provides the model with more data to train on, utilizing domains that are very different
from the target domain leads to negative transfer (Jiménez-Guarneros and Gómez-Gil,
2020). DARN (Wen et al., 2020) aims at dynamically selecting and combining sites during
the training phase to find the optimal selection in the trade-off between increasing sample
size and decreasing negative transfer. DARN comprises of a feature extractor Mf , label
classifier Mc, and a domain classifier Mdi for each domain. To define the objective function
of the model, first, the model losses are defined by:

ls(θf , θc, θd) =
∑

xi,yi∈Ds

Lc(Mc(Mf (xi; θf ); θc), y
i)+

∑
xi,di∈Ds,DS

Ld(Mds(Mf (xi; θd); θc), d
i)

(7)

Consequently the collection of these losses for all sources is L = [l1, l2, · · ·, lS−1]>. A
temperature parameter τ is incorporated with the final objective defined by:

min
α∈4

− < z,α > + ‖α‖2 (8)

(define alpha’s set) where z = L/τ . To solve for the optimal α values the Lagrangian
dual of the above equation given by, −z>α+ ‖α‖2−λ>α+ ν(1>α− 1) for ν ∈ R,λ ≥ 0,is
used. This gives us the optimal alpha values α∗ as:

α∗ =
[z− ν∗1]+
‖[z− ν∗1]+‖1

(9)

where ν∗ is found using binary search between [min(z)− 1,max(z)]. Thus, the impor-
tance of each source domain is dynamic and keeps changing throughout the training phase
to find the optimal sources and their contribution in developing the features for the target
domain.
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A.0.4. Multi-Domain Matching Networks (MDMN)

MDMN also works on the concept of developing a shared feature space however the addi-
tional step is included to improve classification performance is based on mapping the feature
space distributions of every source domain among themselves as well as mapping this com-
mon feature space to the target domain. The idea is to use a domain adapter which finds
the degree of similarity between all the source domains so that the strength on similarity
of the target domain is shared among all the similar source domains (Li et al., 2018c). The
method allows all similar domains to merge together while keeping dissimilar domains away
to reduce negative transfer. This is achieved by imposing a Wasserstein distance-based loss
function which encourages the features from different domains to be closer to each other.
MDMN has shown to help improve the classification performance while avoiding over-fitting
issues as described in (Li et al., 2018c). The loss function which is used for training the
model is given by:

E(θf , θd) =
1

SN0

N0∑
i=1

1

Nsi

rTsiMd(Mf (xi; θf ); θd) (10)

rs =

{
−βswss′ s′ 6= s
βs s′ = s

, ∀s′ ∈ [1, S] (11)

Where, Nsi denotes the proportion of data that comes from si, and the data samples are
taken in a mini-batch format given by {(xi, si)}∀i ∈ [1, N0]. In MDMN a single domain
adapter is used with weight sharing instead of using S different domain adapters for com-
putational efficiency and is denoted by, Md(; θd) = [Md1(; θd),Md2(; θd), · · ·MdS (; θd)]. The
definitions and strategies to calculate βs and ws can be found in (Li et al., 2018c).

A.0.5. Moment Matching for MSDA (M3SDA)

The main objective of M3SDA is to align the target domain with the source domains while
aligning the source domains among themselves simultaneously during the training process.
Unlike the other methods discussed, M3SDA tries to align the feature distribution mo-
ments of each source instead of using adversarial training for reducing the domain batch
effects (Peng et al., 2019). One of the basic assumptions that this method is based on is that
the posterior distribution of the class labels PY |X would automatically align is the model
is able to align the pior feature distributions PX of the domains. This assumption however
might not hold true with practical datasets containing multiple sources. To mitigate this
issue M3SDA-β was introduced in (Peng et al., 2019), which has been used in this study
as well. M3SDA-β minimizes the domain discrepancy based on the kth order cross-moment
divergence denoted by dkCM (·, ·), where k is a parameter taken as an input, furthermore the
training strategy utilized in (Peng et al., 2019) was applied for this model. The main loss
function can be written as:

E(θf , θc) =
∑
s∈[1,S]

Ns∑
i=1

Ld(Mc(Mf (xis; θf ); θc), y
i
s) + dkCM (Fs, FS) (12)

where Fs, FS denote the feature vectors received from Mf for the source and target data
xs and xS respectively. Apart from the feature extractor Mf , M3SDA-β also uses a pair
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of classifiers MC and MC′ for each domain denoted by MC′ = [(MC1 ,MC′
1
), (MC2 ,MC′

2
), · ·

·, (MCS
,MC′

S
)]. The training strategy involves using Mf and MC in a three-step process

wherein, first, both the models are trained together to classify multi-source samples. Next,
MC is trained while keeping Mf fixed to maximize the target domain discrepancy between
each of the classifiers in a classifier pair from MC . Finally, Mf is trained while fixing
MC to minimize the discrepancy of each classifier pair in MC . The process repeats until
convergence is achieved and during testing a weighted-average of the classifier outputs is
used to make predictions, wherein the weights are defined using source-only accuracies as
described in (Peng et al., 2019).

Appendix B. Data Demographics

The ABIDE I dataset (Craddock et al., 2013a) is a combination of fMRI scans from 17
different sites. The dataset provides users with rs-fMRI, T1 structural brain images and
phenotypic information for each patient. It consists of 505 ASD scans and 530 controls.
As a part of pre-processing the rs-fMRI data, the C-PAC processing pipeline offered by
Preprocessed Connectome Project (Craddock et al., 2013b) was used. The pipeline consists
of several steps such as slice-time correction, motion correction, intensity normalization,
and nuisance signal removal. Furthermore, data from all the sites were spatially registered
to the MNI152 template space, along with being passed through a band-pass filter (0.01 -
0.1Hz) to remove any high frequency noise in the data The site-wise distribution of age and
sex is described in AR2:Table B Table 1.

Similarly, the ADHD-200 dataset(Bellec et al., 2017), which was first introduced during
the ADHD-200 Competition, contains scans from 8 different sites which inclues a total of
973 individuals. This dataset also provides one or more rs-fMRI, T1 structural MRI and
the respective phenotype for each individual.The scans undergo similar preprocessing using
a pipeline made available by Neuroimaging Analysis Kit (NIAK) which includes steps such
as Slice timing correction, motion correction, linear and non-linear spatial normalization,
correction of physiological noise, Spatial smoothing and MNI T1 space registration. . The
distribution of the data according to the phenotype is provided in AR2:Table B Table 2. Since,
the phenotypic data had inconsistent and missing age information, the particular column
has been omitted from the table.

Appendix C. Model Specifications

The architecture of the various components in each of the pipelines was kept constant, i.e.
the feature extractor, label classifier and domain adapter had the same design across all
methods. Since the features were flattened FCM, fully connected layers (FCN) were used
along with dropouts and L-2 regularization. The sub-models’ designs are described in Table
3. AR4:In most cases, the complete model is trained end-to-end using using the Adam op-
timizer (Kingma and Ba, 2014) on the loss functions defined in Appendix A. Few of the
models (e.g., MDMN) utilize a training strategy unlike other methods (see Appendix A).
In such methods, the training process described by in the original papers are utilized.
The hyperparameters used are listed in Table 4 and Table 5. Common hyperparameters
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ASD TC

Sites Age Sex Age Sex

Pitt 19.0 (7.3) M 25, F 4 18.9 (6.6) M 23, F 4
Olin 16.5 (3.4) M 16, F 3 16.7 (3.6) M 13, F 2
OHSU 11.4 (2.2) M 12, F 0 10.1 (1.1) M 14, F 0
SDSU 14.7 (1.8) M 13, F 1 14.2 (1.9) M 16, F 6
Trinity 16.8 (3.2) M 22, F 0 17.1 (3.8) M 25, F 0
UM 13.2 (2.4) M 57, F 9 14.8 (3.6) M 56, F 18
USM 23.5 (8.3) M 46, F 0 21.3 (8.4) M 25, F 0
Yale 12.7 (3.0) M 20, F 8 12.7 (2.8) M 20, F 8
CMU 26.4 (5.8) M 11, F 3 26.8 (5.7) M 10, F 3
Leuven 17.8 (5.0) M 26, F 3 18.2 (5.1) M 29, F 5
KKI 10.0 (1.4) M 16, F 4 10.0 (1.2) M 20, F 8
NYU 14.7 (7.1) M 65, F 10 15.7 (6.2) M 74, F 26
Stanford 10.0 (1.6) M 15, F 4 10.0 (1.6) M 16, F 4
UCLA 13.0 (2.5) M 48, F 6 13.0 (1.9) M 38, F 6
Maxmun 26.1 (14.9) M 21, F 3 24.6 (8.8) M 27, F 1
Caltech 27.4 (10.3) M 15, F 4 28.0 (10.9) M 14, F 4
SBL 35.0 (10.4) M 15, F 0 33.7 (6.6) M 15, F 0

Table 1: ABIDE I demographics. The age is represented by the mean (standard deviation)
format and the sex distribution is denoted by M: males and F: females.

ADHD TC

Site Sex Sex

KKI M 15 F 10 M 41 F 28
AR2:NINeuroImage M 31 F 5 M 12 F 25

NYU M 117 F 34 M 56 F 55
OHSU M 30 F 13 M 30 F 40
Peking M 92 F 10 M 84 F 59

Pittsburg M 3 F 1 M 50 F 44
UWash M 0 F 0 M 33 F 28
Brown M 0 F 0 M 9 F 17

Table 2: ADHD-200 demographics

(shown in Table 4) are kept constant throughout all experiments and datasets, while specific
hyperparameters (see Table 5) are selected from a range of candidate values.

Appendix D. Class Balancing

As discussed in Section 4, to handle the data imbalance the minority class was over-sampled
to match in number with the majority class. In case a particular site consists of data of only
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Sub-Model Architecture Output

Feature Extractor (Mf ) input → 2000 → 1000 latent features
Label Classifier (Mc) 1000 → 100 → 2 label predictions
Domain Adapter (Md) 1000 → 100 → n* class predictions

Table 3: FCN architectures used in each of the sub-models. Each layer was followed by a
ReLU layer (except last layer where softmax is used) and a dropout layer with
p=0.5. The output of Md has different number of nodes for different models and
datasets and therefore, is represented by ”n”.

ABIDE I ADHD-200

α 0.0001 0.0003
batch size 100 200
dropout 0.5 0.5
epochs 100 50

Table 4: List of hyperparameters AR2:which were kept constant throughout all the experi-
ments and used in all MSDA methods. AR2:’*’ denotes that that hyperparameter may be

different for different models based on the hyperparameter tuning conducted, hence, the value

that was used mostly has been reported.

Dataset Hyperparameters Illness Sex Age

ABIDE I
DANN DARN MDAN MDMN M3SDA DANN DARN MDAN MDMN M3SDA DANN DARN MDAN MDMN M3SDA

µ 0.1 0.01 0.1 0.1 0.01 0.1 0.1 0.1 0.01 0.1 0.1 0.1 0.1 0.01 0.1
γ - 0.7 5 - - - 0.5 5 - - - 0.7 10 - -

ADHD-200
µ 1 0.001 0.01 1 1 0.1 1 1 0.1 1 - - - - -
γ - 0.5 2 - - - 0.5 3 - - - - - - -

Table 5: AR2:model-specific hyperparameters used in our experiments apart from the com-
mon hyperparameters in Table 4.

one class, the site is dropped in that experiment (e.g., ADHD illness classification displays 6
sites instead of 8). To understand the impact of class balancing on improving performance
of each model, the comparison of the accuracies before and after data balancing is provided
in Figure 5. The data in ABIDE I for illness already contained balanced classes and hence
was omitted.

It is seen in Figure 5 balancing data in the case of age classification for ABIDE Imade
no difference when it came to MSDA performances, while we see a significant improvement
while using this strategy for sex classification with an increase of as high as 8% for the
MDMN model. The accuracy changes in ADHD-200 are quite different than what is ob-
served for the ABIDE dataset. We see that in the case of illness classification, all models
(except DANN) benefited from the balancing. An interesting observation can be made in
sex classification for ADHD-200, wherein the accuracy scores of MDAN increased by almost

xvii



MSDA & Batch Effects

Figure 5: A comparison between the accuracies before and after balancing the classes using
oversampling. The age and sex classifications for ABIDE I are shown in (a) and
(b), while (c) and (d) represent the illness and sex classifications for ADHD-
200 dataset.

7%. Hence, in most case data balancing had a postive and significant impact at improving
model performance.
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