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Abstract

The search for "biologically plausible" learning algorithms has converged on the
idea of representing gradients as activity differences. However, most approaches
require a high degree of synchronization (distinct phases during learning) and in-
troduce high computational overhead, which raises doubt regarding their biolog-
ical plausibility as well as their potential usefulness for neuromorphic comput-
ing. Furthermore, they commonly rely on applying infinitesimal perturbations
(nudges) to output units, which is impractical in noisy environments. Recently
it has been shown that by modelling artificial neurons as dyads with two oppo-
sitely nudged compartments, it is possible for a fully local learning algorithm to
bridge the performance gap to backpropagation, without requiring separate learn-
ing phases, while also being compatible with significant levels of nudging. How-
ever, the algorithm, called dual propagation, has the drawback that convergence of
its inference method relies on symmetric nudging, which may be infeasible in bio-
logical and analog implementations. Starting from a modified version of LeCun’s
Lagrangian approach to backpropagation, we derive a slightly altered variant of
dual propagation, which is robust to asymmetric nudging.

1 Introduction

Credit assignment using fully local alternatives to back-propagation is interesting both as potential
models of biological learning as well as for their applicability for energy efficient analog neuromor-
phic computing (Kendall and Kumar, 2020; Yi et al., 2022). A pervasive idea in this field is the
idea of representing error signals via activity differences, referred to as NGRAD (Neural Gradient
Representation by Activity Differences) approaches (Lillicrap et al., 2020). However, a commonly
overlooked issue in NGRAD approaches is the requirement of applying infinitesimal perturbations
(or nudging) to output neurons in order to propagate error information through the network. This is
problematic as analog and biological neural networks are inherently noisy, potentially causing the
error signal to vanish if insufficient nudging is applied. In many local learning methods the output
units are positively nudged to reduce a target loss, but utilizing additional negative nudging (output
units increase a target loss) can be beneficial to improve accuracy (e.g. (Laborieux et al., 2021)).

The vanishing error signal problem is addressed by coupled learning (Stern et al., 2021), which
proposes to replace the clamped output units of contrastive Hebbian learning with a convex combi-
nation of the label and the free phase outputs. Unfortunately, coupled learning has been shown to
perform worse than equilibrium propagation on CIFAR10 and CIFAR100 (Scellier et al., 2023), and
it does not necessarily approximate gradient descent on the output loss function (Stern et al., 2021).
Holomorphic equilibrium propagation (Laborieux and Zenke, 2022, 2023) mitigates the need for
infinitesimal nudging required in standard equilibrium propagation (Scellier and Bengio, 2017) at
the cost of introducing complex-valued parameters. Whether this is a suitable approach for either
biological or analog neural networks is an open question. Dual propagation (DP, Høier et al. (2023)),

∗Correspondence to <hier@chalmers.se>
This work was supported by the National Supercomputer Centre at Linköping University and the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

First Workshop on Machine Learning with New Compute Paradigms at NeurIPS 2023(MLNPCP 2023).



an algorithm similar in spirit to contrastive Hebbian learning, equilibrium propagation and coupled
learning, is compatible with non-infinitesimal nudging by default. This method infers two sets of
oppositely nudged and mutually tethered states simultaneously. However, utilization of symmetric
nudging is a necessary condition for the convergence of its inference step.

Contributions DP is compatible with strong feedback and only requires a single inference phase,
which are appealing features with regards to biological plausibility and potential applications to
analog neuromorphic computing. However, the lack of convergence guarantees in the case of asym-
metric nudging is clearly unsettling as exact symmetry is hard to realize outside of digital computers.
Further,—unlike digital computers—neuromorphic, analog or otherwise highly distributed comput-
ing hardware typically performs continuous computations and runs asynchronously. Consequently,
numerical stability of an energy-based inference and learning method is of essential importance. For
this reason we derive an improved variant of dual propagation, which overcomes this strict symmetry
requirement. In summary the contributions of this work are:

• Clarifying the connections between dual propagation and closely related methods (equilibrium
propagation, contrastive Hebbian learning and lifted proximal operator machines).

• A new Lagrangian based derivation of dual propagation, which recovers the original dual propa-
gation algorithm in the case of symmetric nudging, but leads to a slightly altered (and much more
robust) method in the case of asymmetric nudging.

• Although this work is mainly theoretical in nature, we also experimentally verify that the improved
DP method leads to stable learning in asymmetrically nudged settings, whereas the original DP
approach yields poor or even diverging training behavior.

2 Related Work

CHL, EP and lifted networks In contrastive Hebbian learning (CHL) (Movellan, 1991; Xie and
Seung, 2003) and equilibrium propagation (EP) (Scellier and Bengio, 2017) neuronal activations
are found via an energy minimization procedure. Inference is carried out twice, once with and
once without injecting label information at the output layer. CHL clamps the output units to the
true targets, and EP nudges the output towards a lower loss. The difference between the activity
in each of these two inference phases is used to represent neuronal error vectors. To ensure that
inferred states represent the same local energy basin, this is typically done sequentially, e.g. the
second inference phase is initialized with the solution found during the first phase.

Dual propagation (DP) is a closely related algorithm, in which each neuron has two intrinsic states
corresponding to positively and negatively nudged compartments. The neural states in layer k are
denoted z±k , where the superscripts indicates the direction of nudging. The neural activities and the
error signals are represented by their weighted means and differences, respectively. The mean state
is sent “upstream” to the next layer while the difference z+k −z

−
k is sent downstream to the preceding

layer, where it is used to nudge z±k−1. This essentially “braids” the two inference phases and makes
it possible to infer both states simultaneously. When the update sequence is chosen appropriately as
little as two updates per neuron are sufficient, making the algorithm comparable to back-propagation
in terms of runtime and more than 100X faster than CHL and EP.

Learning in CHL, EP and DP can be viewed as a bilevel optimization task over neural activities
(the inner problem) and over weights (the outer problem). Expressed in terms of layerwise network
potentials Ek(zk, zk−1;Wk−1), the training objectives of CHL, EP and DP can be expressed as:

LCHL(W ) = min
ẑ

max
ž

∑L

k=1
βk−L(Ek(ẑk, ẑk−1)− Ek(žk, žk−1)) (1)

LEP (W ) = min
ẑ

max
ž

ℓ(ẑL) +
1
β

∑L

k=1
(Ek(ẑk, ẑk−1)− Ek(žk, žk−1)) (2)

LDP
α (W ) = min

z+
max
z−

αℓ(z+L ) + ᾱℓ(z−L ) + 1
β

∑L

k=1

(
Ek(z

+
k , z̄k−1)− Ek(z

−
k , z̄k−1)

)
, (3)

where the dependence of Ek on the trainable parameters W is omitted for brevity. All activities
for the input layer, ẑ0, ž0 and z±0 , are clamped to the network input x. The feedback (or nudging)
parameter β determines the magnitude of perturbation introduced to the network potential by the
target loss ℓ. β can vary between layers (or even between units), but for clarity we focus on the
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usually sufficient setting of using a constant β for the entire network. α ∈ [0, 1] is a parameter
specific to DP and steers the weighted average z̄k := αz+k + (1− α)z−k . A key difference between
DP and the other two approaches is that the contrasted terms Ek(z

+
k , z̄k−1) and Ek(z

−
k , z̄k−1) both

depend on this weighted average z̄k−1, which in practice means that z+k and z−k are “tethered” to
remain close to each other. In contrast to EP and CHL, dual propagation can infer both sets of states
simultaneously, but the analysis of DP relies on choosing α = 1/2.

Casting deep learning as optimization task over explicit activations and weights is the focus of
a diverse set of back-propagation alternatives sometimes collectively referred to as lifted neural
networks (Carreira-Perpinan and Wang, 2014; Askari et al., 2018; Gu et al., 2020; Li et al., 2019;
Choromanska et al., 2019; Zach and Estellers, 2019; Høier and Zach, 2020). Although members
of this group have different origins, they are algorithmically closely related to CHL and EP (Zach,
2021). Like DP, many of the lifted network approaches require a single inference phase, although
activity inference still can be expensive, especially on digital hardware. The objective utilized in
lifted proximal operator machines (Li et al., 2019; Zach, 2021) actually coincides with the one
appearing in dual propagation when α = 1. In this case z−k receives no feedback and can be
expressed fully in terms of z+k−1 yielding a pure minimization objective:

LLPOM (W ) = min
z+

ℓ(z+L ) +
∑L

k=1

1
β

(
Ek(z

+
k , z

+
k−1)− Ek(fk(Wk−1z

+
k−1), z

+
k−1)

)
(4)

Unfortunately it is not possible to infer z+k in closed form when using LLPOM and an iterative
method (such as suitable fixed-point iterations) are required.

Difference target propagation Difference target propagation has emerged as a promising activity
difference based learning algorithm. By applying a correction term to the targets computed by
target propagation (LeCun, 1986; Bengio, 2014), DTP is able to better deal with non-invertible
layers (Lee et al., 2015), which has been the Achilles heel of traditional target propagation. Recent
work on difference target propagation has managed to close the performance gap compared to back-
propagation in small CNNs (up to 5 hidden layers), by modifying the feedback weight learning
scheme to establish stronger connections between back-propagation and the forward weight updates
of DTP. The approach taken by Meulemans et al. (2020) produces a hybrid between gradient descent
and Gauss-Newton updates, whereas the approach of Ernoult et al. (2022) aims to compute the
same weight updates as backpropagation. The latter approach (Ernoult et al., 2022) yields (to our
knowledge) the by far best results of any DTP implementation, but also introduces certain subtle
architectural and algorithmic limitations. In particular the theoretical guarantees linking this flavor
of DTP to BP, are only valid in the restricted setting of non-saturating and non-clamped backwards
activations, and even then they are only valid in the case of single batch updates (details in App B).

Weak and strong feedback While a number of CHL-inspired learning methods for neural net-
works are shown to be equivalent to back-propagation when the feedback parameter β approaches
zero (i.e. infinitesimal nudging takes place, as discussed in e.g. (Xie and Seung, 2003; Scellier and
Bengio, 2017; Zach and Estellers, 2019; Zach, 2021)), practical implementations use a finite but
small value for β, whose magnitude is further limited—either explicitly or implicitly. CHL im-
plicitly introducing weak feedback via its layer discounting in order to approximate a feed-forward
neural network, and both CHL and EP rely on weak feedback to stay in the same energy basin for the
free and the clamped solutions. The iterative solver suggested for the LPOM model (Askari et al.,
2018) also depends on sufficiently weak feedback to ensure convergence of the proposed fixed-point
scheme to determine the neural activities. In contrast to these restrictions, the feedback parameter
β in dual propagation is weakly constrained and its main effect is to influence the resulting finite
difference approximation for activation function derivatives.

Compartmental perspective The contrastive, lifted and difference target propagation based mod-
els can all be interpreted as compartmental models (either compartments within a neuron or within
a small neural circuitry). In EP and CHL, neurons need to store the activities of the two tempo-
rally distinct inference phases. In dual propagation and in LPOM, neurons are required to maintain
the nudged internal states. Neurons in difference target propagation neurons are expected to have
compartments for storing predictions, targets and possibly even noise perturbed states. Works such
as (Guerguiev et al., 2017; Sacramento et al., 2018) explicitly focus on building biologically inspired
compartmental neuron models, although these methods incur even higher computational costs by
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also modelling spiking behaviour. Unlike the segregated dendrite model (Guerguiev et al., 2017),
the dendritic cortical microcircuits (Sacramento et al., 2018) do not require distinct learning phases.

3 A Lagrangian Derivation of Dual Propagation

In this section we derive a variant of dual propagation, which turns out to be robust to asymmetric
nudging (i.e. choosing α ∈ [0, 1] not necessarily equal to 1/2). Our starting point is a modified
variant of LeCun’s classic Lagrangian-based derivation of backpropagation (Lecun, 1988). We as-
sume (i) that the activation functions fk are all invertible (which can be relaxed), and (ii) that fk
has a symmetric derivative (i.e. f ′

k(x) = f ′
k(x)

⊤). The second assumption clearly holds e.g. for
element-wise activation functions. Our initial Lagrangian relaxation can now be stated as follows,

L(W ) = min
z

max
δ

ℓ(zL) +
∑L

k=1
δ⊤k

(
f−1
k (zk)−Wk−1zk−1

)
. (5)

Note that the multiplier δk corresponds to the constraint f−1
k (zk) = Wk−1zk−1 (in contrast to the

constraint zk = fk(Wk−1zk−1) employed in (Lecun, 1988)). The main step is to reparamtrize zk
and δk in terms of z+k and z−k ,

zk = αz+k + ᾱz−k δk = z+k − z−k (6)

for a parameter α ∈ [0, 1] (and ᾱ := 1 − α). In the following we use the short-hand notations
z̄k := αz+k + ᾱz−k and ak := Wk−1z̄k−1.
Proposition 3.1. Assume that the activation functions fk, k = 1, . . . , L − 1, are invertible,
have symmetric derivatives and behave locally linear. Then the Lagrangian corresponding to the
reparametrization in Eq. 6 is given by

LDP+
α (W ) = min

z+
max
z−

ℓ(z̄L) +
∑L

k=1
(z+k − z−k )⊤

(
f−1
k (z̄k)−Wk−1z̄k−1

)
, (7)

and the optimal z±k in (7) satisfy

z+k ← fk
(
Wk−1z̄k−1 + ᾱW⊤

k (z+k+1 − z−k+1)
)

z−k ← fk
(
Wk−1z̄k−1 − αW⊤

k (z+k+1 − z−k+1)
) (8)

for internal layers k = 1, . . . , L− 1.

Proof. The first-order optimality conditions for zk and δk (k = 1, . . . , L− 1) in Eq. 5 are given by

(I) 0 = (f−1
k )′(zk)δk −W⊤

k δk+1 (II) 0 = f−1
k (zk)−Wk−1zk−1. (9)

Reparametrization in terms of z±k (Eq. 6) and expanding (II) + α(I) and (II)− ᾱ(I) yields

0 = f−1
k (αz+k + ᾱz−k )− ak + α(f−1

k )′(z̄k)
⊤(z+k − z−k )− αW⊤

k (z+k+1 − z−k+1)

0 = −f−1
k (αz+k + ᾱz−k ) + ak + ᾱ(f−1

k )′(z̄k)
⊤(z+k − z−k )− ᾱW⊤

k (z+k+1 − z−k+1),
(10)

which are also the KKT conditions for LDP+
α in Eq. 7. It remains to manipulate these to obtain the

desired update equations. Adding the equations above results in

0 = (f−1
k )′(z̄k)

⊤(z+k − z−k )−W⊤
k (z+k+1 − z−k+1). (11)

Dual propagation is (via its use of finite differences) intrinsically linked to a (locally) linear assump-
tion on fk. Hence, we assume fk(a) = z0k + Dka + O(∥a − ak∥2) with z0k = fk(ak) − Dkak
and Dk = f ′

k(ak). The local linear assumption allows us to neglect the higher order terms. Conse-
quently we also assume that f−1

k is locally linear and therefore (f−1
k )′(z̄k) ≈ D−1

k is independent
of z̄k. Hence, we arrive at

0 ≈ D−⊤
k (z+k − z−k )−W⊤

k (z+k+1 − z−k+1) ⇐⇒ z+k − z−k ≈ D⊤
k W

⊤
k (z+k+1 − z−k+1). (12)

We insert this into the second of the necessary optimality conditions (10) and obtain

0 = f−1
k (αz+k + ᾱz−k )− ak = f−1

k

(
z−k + α(z+k − z−k )

)
− ak

= f−1
k

(
z−k + αD⊤

k W
⊤
k (z+k+1 − z−k+1)

)
− ak = D−1

k

(
z−k − z0k + αD⊤

k W
⊤
k (z+k+1 − z−k+1)

)
− ak.
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The last line is equivalent to

z−k = Dkak + z0k − αD⊤
k W

⊤
k (z+k+1 − z−k+1) ≈ fk

(
Wk−1z̄k−1 − αW⊤

k (z+k+1 − z−k+1)
)
. (13)

Analogously, z+k ≈ fk(Wk−1z̄k−1 + ᾱW⊤
k (z+k+1 − z−k+1)). In summary we obtain the update rules

shown in (8).

For the output layer activities z±L we absorb fL into the target loss (if necessary) and therefore solve

min
z+
L

max
z−
L

ℓ(z̄L) + (z+L − z−L )⊤(z̄L − aL) (14)

with corresponding necessary optimality conditions
αℓ′(z̄L) + z̄L − aL + α(z+L − z−L ) = 0 ᾱℓ′(z̄L)− z̄L + aL + ᾱ(z+L − z−L ) = 0. (15)

Adding these equations reveals ℓ′(z̄L) + z+L − z−L = 0. Inserting this in any of the equations
in (15) also implies z̄L = aL = WL−1z̄L−1. Thus, by combining these relations and with g :=
ℓ′(WL−1z̄L−1), the updates for z±L are given by

z+L ←WL−1z̄L−1 − ᾱg z−L ←WL−1z̄L−1 + αg. (16)

For the β-weighted least-squares loss, ℓ(zL) = β
2 ∥zL − y∥2, the above updates reduce to z+L ←

aL − ᾱβ(aL − y) and z−L ← aL + αβ(aL − y).

Relation to the original dual propagation The update equations in (8) coincide with the original
dual propagation rules if α = 1/2 (Høier et al., 2023), although the underlying objectives LDP+

α (7)
and LDP

α are fundamentally different. If α ̸= 1/2, then α and ᾱ switch places w.r.t. the error signals
(but not in the definition of z̄) compared to the original dual propagation method.2 The updates in (8)
for α = 0 correspond to an algorithm called “Fenchel back-propagation” discussed in (Zach, 2021).

Both the objective of the original dual propagation (3) and the objective of the improved variant (7)
can be expressed in a general contrastive form, but the underlying potentials Ek are somewhat
different,

New DP: Ek(z
±
k , z̄k−1)−Ek(z

∓
k , z̄k−1) = (z+k −z

−
k )⊤∇Gk(z̄k)− (z+k −z

−
k )⊤Wk−1z̄k−1 (17)

Orig. DP: Ek(z
+
k , z̄k−1)−Ek(z

−
k , z̄k−1) = Gk(z

+
k )−Gk(z

−
k )− (z+k −z

−
k )⊤Wk−1z̄k−1. (18)

Here Gk is a convex mapping ensuring that argminzk Ek(zk, zk−1) provides the desired activation
function fk. The relation between fk and Gk is given by fk = ∇G∗

k and f−1
k = ∇Gk (where G∗

k
is the convex conjugate of Gk). Activations function induced by Gk have automatically symmetric
Jacobians as f ′

k = ∇2G∗
k under mild assumptions.

Non-invertible activation function If fk is not invertible at the linearization point (such as the
softmax function), then Dk is singular and the constraint f−1

k (zk) = Wk−1zk−1 is converted into a
constraint that D+

k zk is restricted to a linear subspace,

D+
k (zk − z0k) = Wk−1zk−1 +Nkvk, (19)

where Nk spans the null space of Dk and vk is an arbitrary vector. Going through the similar steps
as above leads to the same updates for z±k .

Starting from Lecun’s Lagrangian If we start from the more natural Lagrangian

L(W ) = min
z

max
δ

ℓ(zL) +
∑L

k=1
δ⊤k (zk − fk(Wk−1zk−1)) , (20)

instead from (5), then the step in (13) is not possible and the back-propagated signal z−k+1 − z+k+1

cannot be moved inside the activation function fk. The update equations for z±k are of the less-
convenient form

z+k ← fk(Wk−1z̄k−1) + ᾱW⊤
k f ′

k+1(z̄k)(z
−
k+1 − z+k+1)

z−k ← fk(Wk−1z̄k−1)− αW⊤
k f ′

k+1(z̄k)(z
−
k+1 − z+k+1),

(21)

which still require derivatives of the activation functions, which may be problematic for analog
implementations.

2This partial exchange of roles of α and ᾱ is somewhat analogous to the observation that e.g. forward
differences in the primal domain become backward differences in the adjoint.
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(a) α = 0 (b) α = 1

Figure 1: Alignment between the parameter updates obtained with back-propagation and with the
improved DP variant (using 30 inference iterations and asymmetric nudging with α ∈ {0, 1}). Re-
sults are averaged over five random seeds.

4 Numerical Validation

The original dual propagation and the improved variant differ in the case α ∈ [0, 1], α ̸= 1/2, with
the boundary cases α ∈ {0, 1} being of particular interest. The most efficient way to implement
dual propagation is by sequentially updating neurons in every layer from input to output and then
from output to input (akin to a forward and a backward traversal, which are nevertheless part of
the sole inference phase using the same dynamics) before performing a weight update. However, to
show the unstable behaviour of the original dual propagation formulation in the case of asymmetric
nudging we instead perform repeated inference passes through the layers (which also better matches
a continuous/asynchronous compute model). Each pass (or iteration) corresponds to updating all
neurons from input to output layer and back.

The results of the experiments are summarized in Tab 1, where we trained a 784-1000(×4)-10 MLP
with ReLU activation functions on MNIST using the least-squares loss. The nudging strength β is
1/2, which is also compatible with the original DP method. We observe that inference in the original
variant of DP diverges when applying asymmetric nudging and multiple inference iterations. This
is not surprising as inference for dual propagation is only guaranteed to converge in the symmetric
setting. The new variant of DP on the other hand yields stable inference results in all cases, and fur-
ther shows good alignment with back-propagation gradients in both of the fully asymmetric settings
(α ∈ {0, 1}) as shown in Fig 1.

Table 1: Mean test accuracy in percent for the original and the improved dual propagation methods
using α ∈ {0, 1}. X indicates that the particular experiment did not converge. Results are averaged
over five random seeds.

α = 0 α = 1
Iterations Improved DP Original DP Improved DP Original DP
1 98.33± 0.10 98.50± 0.08 98.43± 0.08 97.92± 0.11
30 98.36± 0.03 X 98.46± 0.09 X

5 Conclusion

Fully local activity difference based learning algorithms are essential for achieving on-device train-
ing of neuromorphic hardware. However, the majority of works rely on applying weak nudging to
output neurons in order to propagate error signals, which is problematic in noisy hardware. The orig-
inal dual propagation formulation overcomes this issue but also relies on symmetric nudging, which
may itself be too strict a requirement in noisy hardware. In this work we present a novel Lagrangian
based derivation of an improved instance of dual propagation, which recovers the exact dynamics of
the original dual propagation formulation in the case of symmetric nudging (α = 1/2). In the case
of asymmetric nudging (α ∈ [0, 1], α ̸= 1/2) the new formulation leads to slightly modified and
importantly stable inference dynamics. In experiments we verify that the new formulation leads to
stable dynamics in the case of fully asymmetric nudging (α = 1 and α = 0) and repeated inference
where the original formulation struggles.
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(a) α = 0.0 (b) α = 1.0

(c) α = 0.0 (d) α = 1.0

Figure 2: Top: L2 norm of difference between BP and DP gradients and Bottom: L2 norms of
BP and DP gradients when using 30 inference iterations and asymmetric nudging (α = 0.0 and
α = 1.0). Results are averaged over five random seeds.

A Additional Results

Fig. 2 illustrate additional statistics on the alignment of back-propagation induced gradients (w.r.t.
the network parameters) and the ones obtained by the proposed DP improvement.

B Implicit Constraints for Jacobian Matching in Difference Target
Propagation

The proof of difference target propagation’s ability to compute backpropagation gradients in (Ernoult
et al., 2022) relies on the Jacobian Matching Condition (JMC) being fullfilled, which we find is only
possible under specific conditions.

Assuming a fully connected architecture, omitting biases for simplicity and mirroring the nota-
tion (Ernoult et al., 2022) we have the vector of feed-forward activations in layer n as sn =
Fn−1(sn−1) = fn−1(θn−1sn−1), where fn−1 and θn−1 respectively are the activation function
and weights associated with the mapping from layer n − 1 to layer n. The backwards mapping
Gn(sn+1) is used when computing targets and performs the operations Gn(sn+1) = ωngn(sn+1).
Here gn and ωn respectively are the activation function and weights associated with the backwards
mapping from layer n+ 1 to layer n.

The Jacobian matching condition is:

(∂snF
n(sn))⊤ = ∂sn+1Gn(sn+1)

⇔ (22)

Dfnθn = Dgn(ωn)⊤,

where Dfn is shorthand notation denoting the diagonal matrix containing the derivatives of
fn(θnsn) on the diagonal and zero everywhere else. Analogously Dgn denotes the diagonal matrix
containing the derivatives of gn(sn+1).

In the paper it is stated that the JMC is guaranteed to be satisfied when the following objective is
minimized with respect to ω:

L̂n
ω = − 1

σ2 ϵ
T (rnϵ − sn) + 1

2σ2 ||rnη − sn||2 (23)
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It is proven that (in the limit as noise goes to zero) gradient descent on Eq 23 with respect to the
backwards parameters ω is equivalent to gradient descent on the following objective

Ln
ω = 1

2 ||∂snF
n⊤ − ∂sn+1Gn||2F = 1

2 ||Dfnθn −Dgn(ωn)⊤||2, (24)

Furthermore, it is clear that if the minimization procedure yields Ln
ω = 0, then the JMC is fullfilled

and gradient matching is achieved, but this is not possible for all choices of gn. In particular in
the case of saturating or clamping backwards activations. The Jacobian matching condition the
matrix ∂sn+1Gn = Dgn(ωn) can have entire rows of zeros, which can make it impossible for the
loss to reach zero value, by simply minimizing with respect to ωn. This issue can be avoided by
using linear backwards activations, as done in the paper (Ernoult et al., 2022). However, due to the
presence of the datapoint dependent Dfn in the JMC it will in general be necessary to solve for ωn

on a per datapoint basis. I.e. the proposed procedure will not be able to perfectly align DTP gradient
estimates to backprop gradients unless the batchsize is set equal to 1.
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