
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENT2WORLD: A UNIFIED LLM-BASED MULTI-
AGENT FRAMEWORK FOR SYMBOLIC WORLD-MODEL
GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Symbolic world models, which formally represent environment dynamics and
constraints, are essential for model-based planning. While leveraging large lan-
guage models (LLMs) to automatically generate these models from natural lan-
guage has shown promise, existing approaches predominantly rely on scripted
workflows that follow predetermined execution paths regardless of intermediate
outcomes, often leading to inefficient computations and suboptimal solutions.
In this paper, we propose AGENT2WORLD, a novel paradigm that employs au-
tonomous tool-augmented LLM-based agents to generate symbolic world mod-
els adaptively. We further introduce AGENT2WORLDMulti, a unified multi-agent
framework with specialized agents: (i) A Deep Researcher agent performs knowl-
edge synthesis by web searching to address specification gaps; (ii) A Model De-
veloper agent implements executable world models; and (iii) a specialized Test-
ing Team conducts evaluation-driven refinement via systematic unit testing and
simulation-based validation. AGENT2WORLDMulti demonstrates superior perfor-
mance across three benchmarks spanning both Planning Domain Definition Lan-
guage(PDDL) and executable code representations, achieving consistent state-
of-the-art results through a single unified framework. By enabling proactive,
knowledge-grounded world-model generation, this work opens new possibilities
for AI systems that can reliably understand and formalize complex environments.

1 INTRODUCTION

In recent years, researchers have explored symbolic world models, a formal representation of an en-
vironment’s dynamics and constraints, which is widely used in model-based planning (Guan et al.,
2023; LeCun, 2022; Craik, 1967). The task of symbolic world-model generation involves automat-
ically synthesizing these models from natural language descriptions, eliminating the need for do-
main experts to manually design and specify complex rules and dynamics. Large language models
(LLMs) (Guo et al., 2025; Zhao et al., 2023; Bai et al., 2023) have made this automation increasingly
possible by combining two key capabilities: commonsense knowledge about how the world works,
and code generation abilities that formalize this knowledge into executable representations.

As illustrated in Figure 1, prior work in this domain largely follows two paradigms: (i) direct
generation of symbolic world models, and (ii) scripted workflows that couple generation with it-
erative verification and repair. Early exemplars of the latter include Guan et al. (2023) and Hu
et al. (2025a), using LLMs to produce Planning Domain Definition Language(PDDL)-based world
models. Furthermore, GIF-MCTS (Dainese et al., 2024) combines a code executor with trajecto-
ries collected in a real environment to furnish feedback, driving a generate–fix-improve loop that
progressively refines the generated MuJoCo-style code world models. While scripted workflows
achieve better results than direct generation, they suffer from fundamental limitations: (i) Passive
and rigid execution: these methods reactively respond to validation failures through predetermined
repair sequences, leading to unnecessary computations when simpler solutions exist or inadequate
exploration when complex problems require adaptive strategies; (ii) Knowledge isolation: Most
approaches rely solely on the LLM’s internal knowledge, lacking mechanisms to access external
information when specifications are incomplete or ambiguous. While Guan et al. (2023) leverage
human feedback as external knowledge, the labor-intensive nature limits their scalability for large-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Direct Workflow Agent (ours)

Do not Pass

❌❌ ❌

LLM

❌

Results

❌

LLM

Fix / Improve

× Power
× Bread

× Bread

+ power_on() + bread_in()

✅
pass

× Power × Bread

√ Power
√ Bread

Results

× Temperature unknown

Searcher Developer

World Model Required
Action

√ Power
√ Bread
√ Temperature

World Model

Excution

Unit Tester
Require
power
Require
bread

Plug Insert

PressSuccess
✅

Simulation Tester

World Model

pass √ Power √ Bread
√ TemperatureResults

Required
Temperature

Score

T
ex

t2
W

or
ld

CW
M

B
By

te
si

ze
d3

2

39

60

75

26

35

48

70

73

79

Figure 1: Comparison of AGENT2WORLD and previous world-model generation paradigms.

scale applications. (iii) Representation fragmentation: existing approaches typically target either
PDDL-based symbolic representations or executable code exclusively, requiring separate systems
and workflows for different output formats.

We propose AGENT2WORLD, a new paradigm for symbolic world-model generation that leverages
tool-augmented, autonomous LLM-based agents, which plan and call tools adaptively. The key ad-
vantages lie in: (i) Proactive and adaptive execution. Rather than passively fixing errors through
rigid sequences, AGENT2WORLD proactively gathers information and dynamically adjusts strate-
gies based on intermediate feedback, automatically deciding when to terminate and which tools
to use for maximum efficiency. (ii) Scalable external knowledge integration. Unlike knowledge-
isolated approaches or labor-intensive human-in-the-loop methods, AGENT2WORLD incorporate
web search as first-class tools to automatically fill specification gaps and enforce commonsense
regularities, minimizing LLM hallucination (Huang et al., 2025). (iii) Unified cross-representation
framework. While prior systems suffer from representation fragmentation, AGENT2WORLD seam-
lessly handles both PDDL-based and code-based models through lightweight tool adapters, enabling
the same agentic framework to work across different symbolic representations.

Specifically, AGENT2WORLDSingle employs a single ReAct-style agent (Yao et al., 2023) to invoke
all available tools (code sandbox, web search, etc.). However, due to the extensive array of avail-
able tools and the token-heavy nature of world models (Wang et al., 2023), the single-agent ap-
proach faces context length limitations and tool coordination challenges. Furthermore, we propose
AGENT2WORLDMulti to address these issues, which features role specialization and tool partitioning.
Specifically, AGENT2WORLDMulti is structured as a three-stage pipeline as shown in Figure 2: (i)
Knowledge Synthesis: A Deep Researcher agent proactively identifies knowledge gaps in ambiguous
specifications and systematically gathers authoritative information via web search; (ii) World Model
Generation: a Model Developer agent generates concrete implementations with iterative code exe-
cution and refinement; (iii) Evaluation-Driven Refinement: specialized testing agents evaluate and
diagnose the generated models through both simulation for holistic behavioral fidelity and unit test-
ing for component-level correctness, providing feedback to guide iterative refinement.

Our experiments on three benchmarks validate our approach with insights into the fundamental chal-
lenges of world model generation: (i) on Text2World (Hu et al., 2025a) (PDDL-based world models),
AGENT2WORLDMulti achieves both high semantic fidelity and syntactic correctness (75.4 macro-
averaged F1 with 93.1% executability) (ii) on CWMB (Dainese et al., 2024) (code-based world
models), it establishes new state-of-the-art with 54.4% predictive accuracy and 48.1% normalized
return. Notably, while predictive accuracy improvements are modest, the normalized return gains
are dramatic (+13.2% over GIF-MCTS), revealing that our Evaluation-Driven Refinement (§3.3) ad-
dresses the critical gap between accurate next-state prediction and effective model-based planning;
(iii) on ByteSized32 (Wang et al., 2023) (reasoning-heavy text games), it demonstrates superior per-
formance across technical validity and physical reality alignment (+28.4% alignment score). This
validates our hypothesis that external Knowledge Synthesis (§3.1) is essential for grounding world
models in reliable commonsense knowledge, especially for tasks requiring complex reasoning about
everyday physical constraints.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overall Pipeline of AGENT2WORLD.

2 PRELIMINARY

2.1 PROBLEM DEFINITION

We investigate the problem of symbolic world-model generation from natural language. Given a
textual description x, the objective is to synthesize an executable programMF that faithfully cap-
tures the dynamics and constraints of the environment. Such a program may take various forms,
for instance, a specification in the Planning Domain Definition Language (PDDL) (Hu et al., 2025a;
McDermott et al., 1998) or an implementation in Python (Dainese et al., 2024; Wang et al., 2023).
Formally, an environment is defined by a set of predicates P , a set of actions A, and a transition
function T : S × A → S, where S denotes the set of possible states. Semantically,MF encodes
these components to represent the environment in an executable manner. We therefore define the
task as a mapping P (x) = MF whereMF = ⟨P,A, T ⟩. where P is a synthesis procedure that
generates the world-model program from natural language input x.

2.2 AUTONOMOUS AGENT

We consider an autonomous agent that interleaves reasoning with tool use (Qin et al., 2023; Yao
et al., 2023). Concretely, the agent firstly produces reasoning traces and issues tool calls in an
alternating loop. Let T = {t1, . . . , tm} denote a set of callable tools. At discrete time k, the agent
maintains a history hk = (x, o≤k, a<k, r<k) consisting of the task description x, observations o,
past actions a, and internal reasoning traces r. A policy πθ maps histories to the next reasoning trace
and action: (rk, ak) ∼ πθ(· | hk), ak ∈ T . In practice, πθ is implemented by an LLM.

3 METHODOLOGY

As is shown in Figure 2, AGENT2WORLDMulti unfolds in three stages: (i) Knowledge Synthesis
(§3.1): As outlined in Section 1, a key challenge in symbolic world-model construction arises from
incomplete descriptions. For example, commonsense knowledge may be missing both from LLMs
and from the given specifications. To address this limitation, we employ a deep researcher agent that
interacts with external resources such as the internet or structured databases, thereby enriching the
specification and producing an intermediate representation. (ii) World Model Generation (§3.2):
At this stage, a developer agent equipped with a code execution tool constructs the symbolic world
model. The process is iteratively refined based on execution feedback, ensuring both correctness
and executability. (iii) Evaluation-Driven Refinement (§3.3): We enhance the semantic fidelity
by designing two complementary test agents: one that generates unit tests to validate functional

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

behavior, and another that simulates downstream usage to evaluate performance through trajectory-
based testing. We also provide a pseudo code in Algorithm 1.

3.1 STAGE I: KNOWLEDGE SYNTHESIS

We introduce a Deep Researcher agent designed to gather background knowledge and fill in miss-
ing details that are not explicitly provided in the world model description. By leveraging external
information sources, this agent not only compensates for potential knowledge gaps inherent in large
language models but also enhances the factual reliability of world model descriptions. Equipped
with web search and retrieval tools, it iteratively retrieves the knowledge required for world model
construction from the internet and ultimately outputs a structured intermediate representation with
the missing information completed.

3.2 STAGE II: WORLD MODEL GENERATION

After obtaining the comprehensive world-model description from the previous stage, the Model
Developer takes this as input and generates a concrete implementation of the world model in the
required formalism (e.g., PDDL or executable code). To support iterative refinement, the Model
Developer is equipped with a sandboxed code-execution tool, enabling it to test and debug imple-
mentations in multiple rounds until the code is functional and consistent with the specification.

3.3 STAGE III: EVALUATION-DRIVEN REFINEMENT

A key component of our approach is the refinement of a bug-free, code-based world model. Unlike
prior works that rely on annotated gold trajectories (Dainese et al., 2024) or human feedback (Guan
et al., 2023), our method is fully autonomous and does not require manual labels. More specifically,
we introduce a two-agent Testing Team to evaluate and diagnose the generated models: (i) The
Simulation Tester evaluates the world model in a play-testing manner by attempting to perform
tasks, explore actions, and issue queries within the environment. Specifically, it interacts with the
environment in a ReAct-style (Yao et al., 2023) loop to collect trajectories for subsequent behavior
and reward analysis, which uncovers execution-time failures such as unreachable goals, missing
preconditions, or inconsistent state updates. (ii) The Unit Tester complements play-testing with
systematic, programmatic verification. It automatically generates Pytest-style unit tests targeting the
predicates, actions, and invariants specified in the world-model descriptions.

Together, these agents produce a detailed test report that assesses the quality of the generated world
model and provides fine-grained diagnostic signals on correctness, coverage, logical consistency,
and compliance with physical requirements. This report is fed back to the Model Developer; if
inconsistencies or failures are detected, the Model Developer revises the implementation, triggering
another evaluation round by both testers. This loop continues until all checks are satisfied or a
predefined convergence criterion is reached.

4 EXPERIMENTS

In this section, we first describe the baselines (§ 4.1) and implementation details (§ 4.2), and then
present experiments on three benchmarks: (i) Text2World (Hu et al., 2025a) (§ 4.3): A PDDL-centric
benchmark for text-to-symbolic world modelling. (ii) Code World Models Benchmark (CWMB)
(Dainese et al., 2024) (§ 4.4): A code-based world-model benchmark comprising MuJoCo-style
environments, designed to assess predictive correctness and downstream control utility under both
discrete and continuous action settings. (iii) ByteSized32 (Wang et al., 2023) (§ 4.5): A suite of
reasoning-heavy text games requiring executable Python environments. A side-by-side comparison
and a detailed metric explanation are shown in Appendix C.

4.1 BASELINES

We compare AGENT2WORLDMulti against the following methods:

(i) Direct Generation (Direct): Single-shot generation of the symbolic world model without tool
use, external retrieval, or feedback. (ii) Agent2Worldsingle: A single agent closes the loop by in-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

voking code execution/validators/web search tools for self-repair and information synthesis, with-
out multi-agent specialization. (iii) Text2World (EC=k) (Hu et al., 2025a): directly using large
language models to generate PDDL-based world model and iteratively repairing with planner/-
validator signals, where EC denotes the error-correction budget. (iv) WorldCoder (Tang et al.,
2024): A plan–code–execute–repair search that scores and iteratively improves candidate programs
using simulator/planner signals to select runnable hypotheses. (v) GIF-MCTS (Dainese et al.,
2024): A macro-action MCTS that orchestrates Generate/Improve/Fix steps, guided by unit tests
and trajectory-based feedback for code world-model synthesis. (vi) ByteSized32 baseline (Wang
et al., 2023). The reference pipeline introduced by Wang et al. (2023). In order to avoid metric
leakage, we do not use the official checker’s evaluation signals.

4.2 IMPLEMENTATION DETAILS

We employ the OpenAI GPT-4.1-mini model via the official API, setting the decoding temperature
to 0 and top_p to 1 for deterministic reproducibility. All agents operate within a ReAct (Yao et al.,
2023) framework, following a "think → act (tool) → observe" loop for a maximum of 10 turns.
The Deep Researcher agent utilizes the Serper API for web searching. We blocked some websites
to ensure experimental integrity and prevent information leakage 1 Regarding the configuration of
refinement turns, we set Text2World and ByteSized32 to 2 iterations and CWMB to 3 iterations
based on the complexity of environments. For automated evaluation on the ByteSized32 benchmark,
we leverage GPT-4o (Hurst et al., 2024) as the LLM evaluator. All experiments are conducted on a
CPU server without GPU acceleration. The prompt examples could be found at Appendix F.

4.3 TEXT2WORLD

Table 1: Benchmark results on Text2World (Hu et al., 2025a). Following the reporting convention
in Text2World, all metrics are presented as percentage scores (%).

Methods Executability (↑) Similarity (↑) Component-wise F1 (↑) F1AVG (↑)
F1PRED F1PARAM F1PRECOND F1EFF

Text2WorldEC=3 78.2 81.1 73.4 64.5 49.3 53.3 60.1
Direct Generation 45.5 82.8 45.0 40.3 33.9 34.9 38.5
AGENT2WORLDSingle 79.2 82.5 76.5 75.8 60.1 66.0 69.6
AGENT2WORLDMulti 93.1 81.0 87.2 82.3 63.7 68.2 75.4

We evaluate the Planning Domain Definition Language (PDDL)-based world model generation of
AGENT2WORLD on Text2World Hu et al. (2025a), which comprises 103 PDDL domains paired
with natural language descriptions. The evaluation metrics are: (i) Executability: whether the gen-
erated PDDL can be parsed and validated; (ii) Structural Similarity: the normalized Levenshtein
similarity; (iii) Component-wise F1: the macro-averaged F1 of predicates (F1PRED) and action com-
ponents, including parameters (F1PARAM), preconditions (F1PRECOND), and effects (F1EFF).

Results. We can draw several conclusions from Table 1: (i) Direct Generation attains the highest
Similarity (82.8) yet performs poorly on executability (45.5) and all component-wise F1s, under-
scoring that surface-level textual overlap is a weak proxy for runnable, semantically correct PDDL.
(ii) While agent-based methods achieve executability comparable to the reference solution (e.g.,
AGENT2WORLDSingle with 79.2 vs. Text2WorldEC=3 with 78.2), they exhibit substantial gaps in F1
scores (AGENT2WORLDSingle: 69.6 vs. Text2WorldEC=3: 60.1). This suggests that while integrating
validators for iterative correction can significantly improve syntactic validity, the semantic utility
of the generated world models remains limited without comprehensive knowledge synthesis. (iii)
AGENT2WORLDMulti achieves both the highest executability (+14.9 points over Text2WorldEC=3)
and superior F1 performance (+15.3 points), demonstrating the synergistic benefits of multi-agent
specialization. These patterns align with our design philosophy: knowledge synthesis combined
with evaluation-driven refinement steers the model to recover the correct predicate inventory and
logical gating constraints, producing domains that are both syntactically valid and semantically
solvable, even when surface-level representations diverge from reference implementations.

1For example, the original Text2World and ByteSized32 huggingface pages, CWMB source code, OpenAI-
Gym code repository are blocked.

5

https://platform.openai.com/docs/overview
https://serper.dev/
https://huggingface.co/datasets/xdzouyd/text2world
https://huggingface.co/datasets/thuml/bytesized32-world-model-cot
https://github.com/nicoladainese96/code-world-models
https://github.com/openai/gym
https://github.com/openai/gym

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.4 CODE WORLD MODELS BENCHMARK (CWMB)

Table 2: Benchmark results on CWMB. † We adopted the official implementation of GIF-
MCTS (Dainese et al., 2024) and their reimplementation of WorldCoder (Tang et al., 2024).

Method Discrete Action Space Continuous Action Space Overall

Accuracy (↑) R (↑) Accuracy (↑) R (↑) Accuracy (↑) R (↑)

WorldCoder† 0.9024 0.5399 0.3303 0.2097 0.5210 0.3197

GIF-MCTS† 0.9136 0.6842 0.2748 0.1811 0.4877 0.3488
Direct Generation 0.7321 0.4527 0.3038 0.1666 0.4466 0.2620
AGENT2WORLDSingle 0.7897 0.5418 0.1917 0.2420 0.3911 0.3419
AGENT2WORLDMulti 0.9174 0.8333 0.3575 0.3050 0.5441 0.4811

The CWMB (Dainese et al., 2024) evaluates the ability of generated executable code to serve as
faithful world models across 18 MuJoCo-style environments. It measures both the predictive accu-
racy of next-state dynamics and the normalized return (R) when the model is used by a planner,
whereR reflects the gap between a random policy and an oracle planner with the true environment.
This setup ensures CWMB jointly assesses correctness of the simulation code and its practical utility
for downstream control.

Results. Table 2 reveals several key findings. (i) All methods demonstrate superior performance in
discrete spaces compared to continuous settings, reflecting the inherent difficulty of modeling con-
tinuous dynamics. (ii) Workflow-based approaches consistently outperform both Direct Generation
and AGENT2WORLDSingle, indicating that LLMs’ native world model generation capabilities are
limited and require expert-designed iterative refinement to achieve competitive performance. (iii)
AGENT2WORLDMulti establishes new state-of-the-art results, surpassing the previous best method
GIF-MCTS by +0.132R points in overall normalized return. Notably, while other methods achieve
comparable predictive accuracy (e.g., 0.917 vs 0.914 on discrete settings), our simulation-based
testing framework significantly enhances the downstream utility of generated world models, demon-
strating that accurate next-state prediction alone is insufficient for effective model-based planning.

4.5 BYTESIZED32

Table 3: Technical Validity and Physical Reality Alignment scores on ByteSized32

Method Technical Validity (↑) Physical Reality Alignment (↑)
Game Init. Possible Actions Runnable Game Alignment Score

ByteSized320-shot 0.9792 0.9375 0.7292 0.0600
ByteSized321-shot 0.9792 0.8958 0.7500 0.1748
Direct Generation 0.9271 0.8854 0.7604 0.0000
AGENT2WORLDSingle 0.9792 0.9375 0.7708 0.1920
AGENT2WORLDMulti 0.9896 0.9583 0.8958 0.4768

Table 4: Specification Compliance and Winnability scores on ByteSized32

Method Specification Compliance (↑) Winnability (↑)
Critical Objects Critical Actions Distractors Winnable Game

ByteSized320-shot 0.9375 0.9375 0.8750 0.0625
ByteSized321-shot 1.0000 0.9375 0.9375 0.1354
Direct Generation 1.0000 0.9375 0.9375 0.1354
AGENT2WORLDSingle 1.0000 1.0000 0.8438 0.1354
AGENT2WORLDMulti 1.0000 0.9688 0.8750 0.1458

The ByteSized32 (Wang et al., 2023) benchmark consists of 32 reasoning-heavy text games, each
implemented as an executable Python environment. Models are required to generate runnable game

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 3: Ablation Study on CWMB.

Win Tie Loss

CWMB

Bytesize32

Text2World 14%

68.8%

93%

7%

31.2%

7%

80%

66.7%

87%

24.8%

16.7%

13%

28.7%46.5%

16.7%

Final Turn vs. First Turn Agent2Worldmulti vs. Prev. SOTA

Figure 4: Pair-wise Win–Tie–Loss analysis.

code that captures task-specific dynamics, objects, and rules, allowing direct interaction and eval-
uation. The benchmark evaluates four dimensions: Technical Validity (whether the code runs),
Specification Compliance (whether all required elements are present), Winnability (whether the
task can be completed), and Physical Reality Alignment (whether the environment dynamics are
consistent with commonsense constraints). This setting emphasizes both logical fidelity and practi-
cal executability, making it a stringent testbed for language models as world-model generators.

Results. Several conclusions could be drawn from Table 3 and 4: (i) The official reference
pipeline outperforms direct generation with in-context learning and shows comparable performance
to AGENT2WORLDSingle on certain metrics. (ii) The AGENT2WORLDSingle baseline shows mod-
erate gains in game solvability, yet its alignment with physical reality is slightly weaker. (iii)
AGENT2WORLDMulti outperforms both baselines across almost all dimensions, especially +0.2848
physical alignment score, which stems from Deep Researcher agent synthesizing the commonsense
knowledge required for reasoning-heavy games.

5 ANALYSIS

5.1 ABLATION STUDY

Ablations from Figure 3 and Table 8 clarify where the lift comes from: (i) Removing the Unit Tester
causes the most significant performance drop, with accuracy declining by 0.3008 and reward R by
0.4470 in discrete action spaces. (ii) The Deep Researcher primarily impacts reward R quality,
showing a substantial decrease of 0.3926 for discrete spaces when removed. (iii) Although the re-
moval of Simulation Tester results in the smallest overall performance drops, the rewardR decreases
by 0.2615 and 0.1473 for discrete space and continuous space, respectively. These results collec-
tively validate our design choices and highlight the complementary nature of the three components.

5.2 PAIR-WISE EVALUATION

To quantify the effect of AGENT2WORLDMulti and the refinement procedure, we perform instance-
level pairwise comparisons, recording a Win–Tie–Loss (WTL) outcome according to the bench-
marks’ primary metric: (i) F1AVG for Text2World; (ii)R for CWMB; and (iii) the mean of all official
metrics for ByteSized32. As shown in Figure 4, the left panel contrasts the final-turn model with its
first-turn counterpart. Refinement yields consistent gains on CWMB and ByteSized32 (68.8% and
93% wins, respectively; no losses), largely preserves performance on Text2World while delivering
occasional improvements (14% wins vs. 7% losses). The right panel compares AGENT2WORLDMulti
against previous state-of-the-art systems. AGENT2WORLDMulti attains clear advantages across all
three benchmarks, most notably on ByteSized32 (87% wins) and CWMB (66.7% wins).

5.3 FEEDBACK ITERATION

To understand the dynamics of performance improvement through iterative feedback, we analyze
how model performance evolves as the number of testing team feedback iterations increases. Fig-
ure 5 illustrates the relationship between feedback iteration count and model performance across the
evaluation benchmarks. The results reveal several key patterns: (i) Text2World shows rapid initial

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

20

40

60

80

100

Av
er

ag
e

Sc
or

e
(%

)

0 1 2

Winnable
Game Init Possible Actions Runnable

Critical object
Alignment Score

Critical distractor Critical action

20

30

40

50

60

Av
er

ag
e

Sc
or

e
(%

)

RACC

1 2 350

60

70

80

90

100

Av
er

ag
e

Sc
or

e
(%

)

Predicate F1Executability
Action F1 Params

Domain Text Similarity
Action F1 PrecondsAction F1 Effect

00 1 2

Text2World CWMB Bytesized32

Figure 5: Performance evolution of iterative refinement (§ 3.3.)

Input

Success

signature-mismatch

schema-mismatch

dynamics-error

non-deterministic

judgment-bug

Success

signature-mismatch

schema-mismatch

dynamics-error

judgment-bug

invariant-violation

Success

signature-mismatch

dynamics-error

judgment-bug

Success

signature-mismatch

dynamics-error

judgment-bug

invariant-violation

Output

Figure 6: Error distribution on CWMB of evaluation-
driven refinement. Due to page limit, the error distribu-
tion of other benchmarks is presented in Appendix E.

Figure 7: Performance comparisons and
specialized efficiency of multi-agent and
single-agent architectures.

improvements. Notably, execution-based metrics improve substantially while similarity measures
remain stable, suggesting that refinement enhances functional correctness rather than surface-level
similarities. (ii) CWMB demonstrates sustained improvement across iterations, reflecting the com-
pound complexity of physics simulation where numerical accuracy and dynamics must be jointly
optimized. (iii) ByteSized32 exhibits the most dramatic gains, with several metrics showing step-
function improvements that reflect the discrete nature of game logic debugging.

5.4 MANUAL ERROR ANALYSIS

We conducted a manual error analysis to examine the evolution of error patterns throughout the
refinement process of AGENT2WORLDMulti. Taken CWMB in Figure 6 as an example, the initial
turn predominantly exhibits superficial errors like signature-arity mismatches and representation
mismatches, stemming from inadequate adherence to world model specifications. Throughout the
iterative refinement process, these surface-level inconsistencies are systematically eliminated, with
the error landscape shifting toward more fundamental dynamics mismatches in later iterations. This
pattern demonstrates remarkable consistency across all benchmarks: refinement consistently shifts
the error distribution from form-oriented problems (syntax, arity) to substance-oriented challenges
(dynamics, state transitions) as shown in Figure 8 and 9. The systematic progression from surface
to substance reflects the hierarchical nature of world model correctness and validates our multi-turn
refinement architecture. We also provide the detailed proportion of each error type in Appendix E.

5.5 MULTI-AGENT VS. SINGLE-AGENT ARCHITECTURE ANALYSIS

To quantify the benefits of multi-agent specialization, we compare AGENT2WORLDMulti against
AGENT2WORLDSingle using each benchmark’s primary metric as in Section 5.2, alongside special-
ization efficiency calculated as Performance Improvement (%)

Token Cost Increase (%) . Figure 7 reveals an efficiency pattern: 4.6%
for Text2World, 10.5% for CWMB, and 30.2% for ByteSized32. This trend correlates with the
marginal cost structure of each benchmark, where ByteSized32’s higher efficiency stems from its
token-intensive world models, where specialization enables more targeted improvements per unit
of computational investment. In contrast, Text2World’s compact PDDL representations limit the
absolute token overhead of specialization, resulting in lower efficiency despite meaningful perfor-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mance gains. The results suggest that multi-agent architectures yield disproportionate returns when
world models are computationally expensive, as specialized agents can more effectively amortize
their coordination costs across complex, token-heavy implementations.

6 RELATED WORK

World Models. World models are widely applied in reinforcement learning, robotics, and au-
tonomous systems for planning, etc (Hao et al., 2023; Ha & Schmidhuber, 2018). Generally, there
are two types of world models: (i) neural world models, which employ neural networks to approx-
imate dynamics (Ha & Schmidhuber, 2018; Hafner et al., 2019), and (ii) symbolic world models,
which are represented using formal languages such as the Planning Domain Definition Language
(PDDL) or code-based implementations. In this paper, we investigate symbolic world-model gen-
eration, which involves transforming world model descriptions into formal representations that can
subsequently be utilized for applications such as model-based planning (Guan et al., 2023; Dainese
et al., 2024), dataset construction (Hu et al., 2025b), and so on. Most prior work follows a draft-
repair workflow where the model first proposes an initial implementation, then gradually refines un-
der closed-loop diagnosis from some kind of feedback. The feedback mechanisms can vary signifi-
cantly across different approaches. For instance, Guan et al. (2023) employs human feedback to pro-
vide corrective signals and perform iterative modifications. Other works, such as Hu et al. (2025a)
and Tang et al. (2024), utilize executors and validators to generate feedback. GIF-MCTS (Dainese
et al., 2024) leverages gold experiences as feedback signals. Compared to these scripted workflows,
the AGENT2WORLD paradigm introduced in this paper can more flexibly adjust subsequent strate-
gies based on feedback signals. Furthermore, benefiting from the scalability of AGENT2WORLD,
we incorporate additional external feedback mechanisms such as web search to supplement the in-
trinsic knowledge limitations of the underlying models. A side-by-side of AGENT2WORLD and
existing methods can be found in Appendix B.1.

Large Language Model-based Agent. In recent years, benefiting from the rapid advancement of
large language models (LLMs), LLM-based agents have emerged as particularly powerful systems
that accept natural language user intentions as input and achieve goal states through planning and se-
quential decision-making (Hu et al., 2024; Yao et al., 2023; Schick et al., 2023). These autonomous
agents have demonstrated remarkable effectiveness across diverse applications, ranging from web
navigation (Yao et al., 2022; Nakano et al., 2021; Wang et al., 2025) and software development (Qian
et al., 2023; Hong et al., 2024) to scientific research (Lu et al., 2024; Chen et al., 2025) and robotic
planning (Huang et al., 2022). Prominent examples of such systems include ReAct (Yao et al., 2023),
which synergizes reasoning and acting in language models by interleaving thought, action, and ob-
servation steps; Existing research has explored how world models can assist LLM-based agents in
planning, such as RAP (Hao et al., 2023), which uses Monte Carlo Tree Search with world mod-
els for improved reasoning, and Guan et al. (2023), which leverages pre-trained LLMs to construct
world models for model-based task planning. These approaches primarily focus on utilizing exist-
ing world models rather than generating them. Similarly, recent work has investigated how world
models can enhance training of LLM-based agents, as demonstrated by AgentGen (Hu et al., 2025b)
and Kimi-K2 (Team et al., 2025). To our best knowledge, our work represents the first systematic
investigation into using autonomous agents for world model generation, bridging the gap between
agent-based problem solving and symbolic world modeling.

7 CONCLUSION

We introduced AGENT2WORLDMulti, a unified multi-agent framework that employs autonomous
LLM-based agents to generate symbolic world models across both PDDL and executable code rep-
resentations. The framework operates through three specialized stages: knowledge synthesis via web
search, world model development with iterative refinement, and evaluation-driven testing through
unit tests and simulation. Experimental results demonstrate consistent state-of-the-art performance
across three world-model generation benchmarks of different types. By enabling fully autonomous
world model generation without human feedback or manual annotations, this work opens new pos-
sibilities for AI systems that can reliably understand and formalize complex environments from
natural language.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. This work does not involve human
subjects, personal data, demographic attributes, or user studies; IRB approval was therefore not
required. Our experiments use public, non-sensitive benchmarks: Text2World, Code World Models
Benchmark (CWMB), and ByteSized32. We complied with dataset licenses and did not attempt to
deanonymize or enrich any data with personal information. Because AGENT2WORLD uses web
search as a tool (§ 3.1), we enforced safeguards to reduce legal and research-integrity risks: we
retrieved only publicly accessible pages, implemented a denylist to avoid solution leakage from
benchmark source repositories or discussion pages as discussed in Section 4.2; we have no conflicts
of interest or undisclosed sponsorship related to this work.

REPRODUCIBILITY STATEMENT

Implementation details needed to re-create agents, tools, and evaluation are specified in Section 4.2
and Appendix B.2; algorithmic workflow and role specialization are detailed in §3.2–§3.3 (with
pseudo code in Alg. 1); prompts are provided in Appendix F. For datasets and metrics, benchmark
compositions and metric definitions are summarized in §C and Appendix C.2; ablation settings and
additional figures/tables appear in Appendix D. As discussed in Section 4.2, to facilitate exact runs,
we fix decoding parameters (temperature = 0, top_p = 1) and cap agent turns, specify external ser-
vices (web search API) and denylisted domains to prevent leakage, and report hardware assumptions
(CPU-only). We also provide the source code of our methods in supplementary materials.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Qiguang Chen, Mingda Yang, Libo Qin, Jinhao Liu, Zheng Yan, Jiannan Guan, Dengyun Peng,
Yiyan Ji, Hanjing Li, Mengkang Hu, et al. Ai4research: A survey of artificial intelligence for
scientific research. arXiv preprint arXiv:2507.01903, 2025.

Kenneth James Williams Craik. The nature of explanation, volume 445. CUP Archive, 1967.

Nicola Dainese, Matteo Merler, Minttu Alakuijala, and Pekka Marttinen. Generating code
world models with large language models guided by monte carlo tree search. arXiv preprint
arXiv:2405.15383, 2024. URL https://arxiv.org/abs/2405.15383. Introduces the
Code World Models Benchmark (CWMB).

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pp. 79081–
79094, 2023. URL https://arxiv.org/abs/2305.14909.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

David Ha and Jürgen Schmidhuber. World models. 2018. doi: 10.5281/ZENODO.1207631. URL
https://zenodo.org/record/1207631.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for
a multi-agent collaborative framework. International Conference on Learning Representations,
ICLR, 2024.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model. arXiv preprint arXiv:2408.09559, 2024.

Mengkang Hu, Tianxing Chen, Yude Zou, Yuheng Lei, Qiguang Chen, Ming Li, Yao Mu, Hongyuan
Zhang, Wenqi Shao, and Ping Luo. Text2world: Benchmarking large language models for sym-
bolic world model generation, 2025a. URL https://arxiv.org/abs/2502.13092.

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo, and
Saravan Rajmohan. Agentgen: Enhancing planning abilities for large language model based agent
via environment and task generation. arXiv preprint arXiv:2408.00764, 2025b. URL https:
//arxiv.org/abs/2408.00764. Accepted by KDD 2025 (Research Track).

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

11

https://arxiv.org/abs/2405.15383
https://arxiv.org/abs/2305.14909
https://zenodo.org/record/1207631
https://arxiv.org/abs/2502.13092
https://arxiv.org/abs/2408.00764
https://arxiv.org/abs/2408.00764

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Ishay and Joohyung Lee. Llm+al: Bridging large language models and action languages for
complex reasoning about actions, 2025. URL https://arxiv.org/abs/2501.00830.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foerster, Jeff Clune, and David Ha. The ai scien-
tist: Towards fully automated open-ended scientific discovery. arXiv preprint arXiv:2408.06292,
2024.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. Pddl – the planning domain definition language (version
1.2). Technical Report CVC TR-98-003 / DCS TR-1165, Yale Center for Computational Vision
and Control, 1998. URL https://www.cs.cmu.edu/~mmv/planning/readings/
98aips-PDDL.pdf.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

James Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, and Shirin Sohrabi.
Large language models as planning domain generators, 2024. URL https://arxiv.org/
abs/2405.06650.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

Pavel Smirnov, Frank Joublin, Antonello Ceravola, and Michael Gienger. Generating consistent
pddl domains with large language models, 2024. URL https://arxiv.org/abs/2404.
07751.

Hao Tang, Darren Key, and Kevin Ellis. Worldcoder: A model-based llm agent for building world
models by writing code and interacting with the environment. In Advances in Neural Information
Processing Systems (NeurIPS), volume 37, pp. 70148–70212, 2024.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Peng Wang, Ruihan Tao, Qiguang Chen, Mengkang Hu, and Libo Qin. X-webagentbench: A
multilingual interactive web benchmark for evaluating global agentic system. arXiv preprint
arXiv:2505.15372, 2025.

Ruoyao Wang, Graham Todd, Xingdi Yuan, Ziang Xiao, Marc-Alexandre Côté, and Peter Jansen.
Bytesized32: A corpus and challenge task for generating task-specific world models expressed
as text games. In Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2023. doi: 10.18653/v1/2023.emnlp-main.830. URL https:
//aclanthology.org/2023.emnlp-main.830/.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

12

https://arxiv.org/abs/2501.00830
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://arxiv.org/abs/2405.06650
https://arxiv.org/abs/2405.06650
https://arxiv.org/abs/2404.07751
https://arxiv.org/abs/2404.07751
https://aclanthology.org/2023.emnlp-main.830/
https://aclanthology.org/2023.emnlp-main.830/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023. URL https://arxiv.org/abs/2210.03629.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 1(2), 2023.

Appendix

A THE USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) strictly as a general-purpose writing assistant for surface-
level editing, such as grammar correction, wording polish, and minor style consistency. The LLM
was not used for conceptual ideation, literature review, algorithm or model design, data collection
or labeling, experiment setup, result analysis, drafting of technical content.

B MORE DETAILS ON METHODOLOGY

B.1 METHOD COMPARISONS

Table 5: Comparison of AGENT2WORLD and related approaches. Feedback stands for whether
the method uses execution/checker/test signals during generation. External Knowledge stands for
whether explicit web/external knowledge retrieval is a first-class component. Type represents envi-
ronment types, where • and ◦ stand for discrete and continuous environments, respectively.

Method Representation Core Paradigm Feedback External Knowledge Environment Type

Text2World (Hu et al., 2025a) PDDL Static Workflow Y N •
Guan et al. (2023) PDDL Static Workflow Y Human •
Oswald et al. (2024) PDDL Static Workflow Y N •
Smirnov et al. (2024) PDDL Static Workflow Y N •
AgentGen (Hu et al., 2025b) PDDL Static Workflow Y N •
WorldCoder (Tang et al., 2024) Code Static Workflow Y N • ◦
GIF-MCTS (Dainese et al., 2024) Code Static Workflow Y N • ◦
ByteSized32 Wang et al. (2023) Code Static Workflow Y N •
LLM+AL (Ishay & Lee, 2025) Action Language Static Workflow Y N •
Direct Generation PDDL & Code Direct N N • ◦
AGENT2WORLDSingle PDDL & Code Adaptive Agent Y N • ◦
AGENT2WORLDMulti PDDL & Code Adaptive Agent Y Internet • ◦

As is shown in Table 5, we compare the related methods.

B.2 PER-AGENT TOOL CONFIGURATION

Table 6: Per-agent configuration.

Agent Tools

Deep Researcher browser_search; browser_open
Model Developer file_tool; sandbox; run_code
Simulation Tester play_env; file_tool

Unit Tester run_code; run_bash; file_tool

Detailed per-agent tool configuration is presented in Table 6.

B.3 PSEUDO CODE OF AGENT2WORLDMulti

We formalize the process of AGENT2WORLDMulti in Algorithm 1.

13

https://arxiv.org/abs/2210.03629

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1: The execution pipeline of AGENT2WORLDMulti

Input: T,N
Output: e
Nr ← predefined integers;
R← ∅ ;
E ← ∅ ;
Q← ExtractQuestions(T);
for r ← 1 to Nr do

q ← ResearchAgent(select, {Q,E,R});
if q = ∅ then

break
L← WebSearch (q);
E ← E ∪ ResearchAgent(summarize, {L});
R← ResearchAgent(update, {T,E,R});

Ft ← R;
Clast ← ∅;
for n← 1 to N do

Cd ← DevelopAgent(T, Ft);
if Cd ̸= ∅ then

Clast ← Cd;
pcode ← FileTool(save, Cd);

else
continue

Ct ← UnitTestAgent(Cd, T,R);
ptest ← FileTool(save, Ct);
Ut ← CodeTool(run_tests, {pcode, ptest});
S⋆
t ← PlayEnv(Cd);

St ← SimulationTestAgent(S⋆
t , T);

if Ut.pass ∧ St.pass then
e← Clast;
return e;

Ft ← MergeFeedback(Ut, St);
e← Clast;
return e

C MORE DETAILS ON BENCHMARKS

C.1 SIDE-BY-SIDE COMPARISON

Table 7: Overview of Text2World (Hu et al., 2025a), Code World Models Benchmark
(CWMB) (Dainese et al., 2024), and ByteSized32 (Wang et al., 2023). “Type” denotes the tar-
get representation (PDDL vs. executable code). Metrics are shown at the family level. A detailed
explanation of each metrics is presented in Appendix C.2.

Benchmark #Environments Type Metrics (core)

Text2World 103 PDDL Executability; Domain similarity; F1 scores
CWMB 18 Code (Python) Accuracy; Normalized returnR (discrete/continuous)

ByteSized32 32 Code (Python) Technical validity; Specification compliance;
Winnability; Physical reality alignment

A side-by-side comparison of the evaluated benchmarks in this paper is presented in Table 7

C.2 METRIC EXPLANATION

Text2World

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Executability. Name: Exec. Range: [0, 1] (higher is better). Whether the generated {domain,
problem} can be successfully parsed and validated by standard PDDL validators; reported as the
fraction (percentage) over all test cases. Fine-grained metrics below are computed only when
Exec= 1.

Domain similarity. Name: Sim. Range: [0, 1] (higher is better). Textual/structural similarity be-
tween the generated and gold PDDL measured by a normalized Levenshtein ratio.
Let X and Y be the character sequences of the two files with lengths |X| and |Y |, and let
Lev(X,Y) denote their Levenshtein distance, then

Sim(X,Y) = 1− Lev(X,Y)

max{|X|, |Y |}
∈ [0, 1]. (1)

F1 scores. Range: [0, 1] (higher is better). When Exec= 1, we parse both generated and gold
PDDL into structured representations and report macro-averaged F1 for the following compo-
nents: Predicates (F1PRED), Parameters (F1PARAM), Preconditions (F1PRECOND), and Effects
(F1EFF).We use the standard definition of F1, where P and R denote precision and recall, re-
spectively:

F1 =
2PR

P + R

CWMB

Prediction Accuracy. Symbol: Accpred. Range: [0, 1] (higher is better). Definition: We use the
same accuracy metric as in the evaluation phase of GIF–MCTS (Sec. 4). Given a validation
set D = {(si, ai, ri, s′i, di)}Ni=1 and CWM predictions (ŝ′i, r̂i, d̂i) = CWM.step(si, ai), the
accuracy uniformly weights next state, reward, and termination:

Accpred =
1

N

N∑
i=1

[
1
3 1(ŝ

′
i = s′i) +

1
3 1(r̂i = ri) +

1
3 1(d̂i = di)

]
. (2)

Normalized Return. Symbol: R. Range: unbounded (higher is better; R > 0 means better than
random;R→1 approaches the oracle). Definition:

R =
R(πCWM)−R(πrand)

R(πtrue)−R(πrand)
, (3)

where R(π) denotes the return. Protocol: as in the original setup, we use vanilla MCTS for
discrete action spaces and CEM for continuous action spaces; R(·) is averaged across a fixed
number of episodes per environment (10 in the original), and R(πrand) uses the environment’s
random policy baseline.

ByteSized32

Technical Validity. Range: [0, 1]. Measured in the order of API calls, such that failure of an ear-
lier function implies failure of subsequent tests. Game initialization is evaluated once
at the beginning of the game, whereas GENERATEPOSSIBLEACTIONS() and STEP() are
evaluated at every step. We check:

• Game initialization: the game/world initializes without errors;
• Valid actions generation: the routine that enumerates valid actions for the current state

returns without errors (verified via a bounded path crawl);
• Runnable game: a bounded-depth crawl of trajectories executes without errors.

Specification Compliance. Range: [0, 1]. An LLM acts as the judge for true/false compliance
against the task specification. The prompt provides the task spec {GAME_SPEC}, the game
code {GAME_CODE}, and an evaluation question {EVAL_QUESTION}; the LLM is instructed
to first output Yes/No and then a brief rationale. To reduce variance, we use a fixed prompt
template and perform multiple independent runs with majority vote/mean aggregation. We report
three submeasures: Task-critical objects, Task-critical actions, and Distractors.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Physical Reality Alignment. Range: [0, 1]. Automatic evaluation proceeds in two stages:
(1) Trajectory generation: perform a breadth-first crawl using the action strings returned by
GENERATEPOSSIBLEACTIONS() at each step; actions are grouped by verb (first token) and
expanded in a bounded manner. If an error occurs, the error message is recorded as the observa-
tion and the search continues.
(2) Sampling and judgment: group paths by the last action verb, draw a fixed-size subsample ap-
proximately balanced across groups, and submit each path—together with the task description
{GAME_TASK}—to an LLM for a binary judgment (yes/no; errors are treated as failures).
The final score is the fraction judged aligned.

Winnability. Range: [0, 1]. A text-game agent (LLM agent) attempts to reach a terminal win
within horizon H; we report the fraction of tasks deemed winnable. Given the limited agreement
between automatic and human assessments for this metric, we prioritize human evaluation in the
main results and use the automatic estimate as auxiliary reference.

D MORE DETAILS ON ABLATION STUDY

Table 8: Ablation Study of AGENT2WORLD on CWMB (Dainese et al., 2024).

Method Discrete Action Space Continuous Action Space Overall
Accuracy (↑) R (↑) Accuracy (↑) R (↑) Accuracy (↑) R (↑)

AGENT2WORLD 0.9174 0.8333 0.3575 0.3050 0.5441 0.4811
No Deep Researcher 0.8794−0.0380 0.4407−0.3926 0.3404−0.0171 0.2201−0.0849 0.5201−0.0240 0.2936−0.1875

No Simulation Tester 0.8920−0.0254 0.5718−0.2615 0.3288−0.0287 0.1577−0.1473 0.5275−0.0166 0.3039−0.1772

No Unit Tester 0.6166−0.3008 0.3863−0.4470 0.3025−0.0550 0.1704−0.1346 0.4072−0.1369 0.2423−0.2388

Detailed experimental results of the ablation study are presented in Table 8.

E MORE DETAILS ON ERROR ANALYSIS

E.1 ERROR ANALYSIS ON TEXT2WORLD AND BYTESIZED32

We visualize the error patterns during evaluation-driven refinement on Text2World and ByteSized32
in Figure 8 and Figure 9.

Input

Success

duplicate-definition

incorrect-parentheses

type-mismatch

undefined-constant

undefined-type
unsupported-feature

Success

duplicate-definition

incorrect-parentheses

type-mismatch

undefined-constant

undefined-type

Success

duplicate-definition
type-mismatch

undefined-constant

Output

Figure 8: Error distribution of AGENT2WORLDMulti on Text2World.

E.2 DISTRIBUTION OF ERROR TYPES

A detailed proportion of error types on Text2World, CWMB, ByteSized32 are presented in Table 9,
Table 10 and Table 11, respectively.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input

Success

state-bug

syntax-error
contract-fail

undefined-symbol

invalid-action

Success

state-bug

contract-fail
undefined-symbol

invalid-action

Success

state-bug

undefined-symbol

Output

Figure 9: Error distribution of AGENT2WORLDMulti on ByteSized32.

Table 9: Distribution of Syntax Errors in Text2World Across Turns

Error Type Explanation Turn 0
(%)

Turn 1
(%)

Turn 2
(%)

undefined-constant Reference to undeclared constants in predicates or actions. 8.91 7.92 6.93
type-mismatch Parameter type conflict with declared type constraints. 2.97 4.95 2.97
incorrect-parentheses Invalid or mismatched parentheses. 2.97 1.98 0.00
undefined-type Undeclared parent type in hierarchical type definitions. 1.98 0.99 0.00
unsupported-feature Parser-incompatible features (e.g.,either types). 1.98 0.00 0.00
duplicate-definition Multiple declarations of identical domain elements. 0.99 0.99 0.99

Table 10: Distribution of Syntax Errors in CWMB Across Turns

Error Type Explanation Turn 0
(%)

Turn 1
(%)

Turn 2
(%)

Turn 3
(%)

signature-mismatch Arity/types do not match the declared signature. 27.78 11.11 11.11 5.56
schema-mismatch Value type/shape/dtype violates the expected schema. 22.22 5.56 0.00 0.00
dynamics-error State or reward deviates from expected dynamics. 11.11 44.44 33.33 11.11
non-deterministic Results are inconsistent under fixed conditions. 11.11 0.00 0.00 0.00
judgment-bug Environment setup inconsistent with the description. 11.11 5.56 11.11 5.56
invariant-violation Internal invariants are broken (e.g., illegal config). 0.00 5.56 0.00 5.56

Table 11: Distribution of Syntax Errors in ByteSized32 Across Turns

Error Type Explanation Turn 0
(%)

Turn 1
(%)

Turn 2
(%)

state-bug State inconsistency across steps. 19.82 13.51 7.21
contract-fail Task/API contract not satisfied. 6.31 3.60 0.00
undefined-symbol Reference to undeclared name/type/domain/constant. 5.41 2.70 1.80
invalid-action Unknown or unsupported action not safely handled. 2.70 0.90 0.00
syntax-error Load/parse failure (e.g., null bytes, syntax/indentation errors). 0.90 0.00 0.00

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F PROMPT EXAMPLES

Deep Researcher

You are a world-class Systems Analyst and Technical Specification Writer, specializing in
creating reinforcement learning environments compliant with the Gymnasium API. Your mis-
sion is to transform an ambiguous task description into a precise, actionable, and verifiable
technical specification.
<Environment Name>
CliffWalking-v0
</Environment Name>
<TASK DESCRIPTION>
Cliff walking involves crossing a gridworld from start to goal while avoiding falling off a cliff.
Description ...
</TASK DESCRIPTION>
<Workflow>
Please strictly follow the following six-step process:

• Deconstruction and Analysis (Use Version Locking)
– Identify all ambiguities, gaps, and conflicts in the task description.
– Lock the exact environment version and all key library versions (record name,

version, and source link).
– Categorize gaps by type: missing value/unit/range boundary/time- sensitive/am-

biguous reference/unclosed list/conflict/no provenance.
• Planning and Investigation (Authoritative Search + Evidence Log)

– For each high/mid-level project, write 1–2 focused queries that include: syn-
onyms/abbreviations, site filters, authoritative domains (e.g., site:numpy.org,
site:mujoco.readthedocs.io, site:doi.org), and recency windows (e.g., after 2024-
01-01 or “last 2 years”).

– Execute the query using browser_search and open >= 2 trusted results with
browser_open.

– If the top source disagrees, open >= 1 additional authoritative sources and trian-
gulate.

– Create an evidence log entry for each opened page: Title | Organization/Author
| Version/Submission | URL (+ archived URL) | Publication Date | Access Date
(Asia/Singapore) | 3 Key Facts | Confidence (High/Medium/Low).

• Synthesis and Citation (Conflict Resolution)
– Integrate the findings into a concise evidence summary with citations.
– When sources conflict, explain the differences and justify the chosen resolution

(related to version locking).
• Refinement and Improvement (Specification Patch)

– Generate a structured “diff”: action/observation space; rewards; termina-
tion/truncation; timing (dt/frame_skip); seeding and certainty; numerical tol-
erances; dependencies; interface flags.

• Formalization and Finalization (Ready-to-Use Specification)
– Write the final specification according to the <Output Format> , including the

public API, core logic, usage scenarios, and a verification plan aligned with
metrics and statistical validation.

• Review and Self-Correction (Compliance Check)
– Verify conformance to the <Output Constraints> (OUT-

PUT_CONSTRAINTS>), version consistency, SI units, ISO dates, and
the inclusion of any code.

</Workflow>
<OUTPUT_CONSTRAINTS>

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Strictly adhere to the structure defined in <PLANNING_STRUCTURE>.
• Do NOT output runnable code definitions (classes, functions). Only may include

short illustrative snippets or pseudo-code.
• All claims about industry standards or common practices MUST be supported by

citations.
• Use ISO-8601 dates (e.g., 2025-09-02).
• Use SI units for physical and mathematical quantities.
• Data-leakage rule: Do not access, copy, quote, or derive from raw source code in the

OpenAI/Gym/Gymnasium repositories or similar code repositories. Do not include
any repository code in the output. Prefer official documentation, standards, papers,
or reputable secondary sources. If the only available evidence is a code repository,
summarize behavior without copying code and mark it as an inference with risks.

<PLANNING_STRUCTURE>
• Your output must begin with this planning and analysis section.
• Ambiguity Analysis

– List each ambiguity/vagueness/conflict and mark Impact: High / Medium / Low.
– Cover at least: missing numeric value, missing unit, missing boundary/range,

time-sensitive items, unclear references, open lists (“etc.”/“e.g.”), conflicts, and
missing citation.

• Investigation Plan
– For each High/Medium item, provide one atomic question.
– For each question, provide 1–2 executable queries including: synonyms/ab-

breviations, a site filter to authoritative domains, and a time window (e.g.,
after:2024-01-01 or “past 2 years”).

– State the minimum evidence policy: High/Medium→ ≥ 2 credible sources; if
disagreement→ add ≥ 1 more for triangulation.

<Formula requirements>
• For any formula, define all symbols, units, and applicability constraints.
• Cite the source of the formula immediately after its definition.
• Provide the complete formula rather than a descriptive explanation.

<OUTPUT_FORMAT>
• Please provide the final specification document structured as follows. This is the

primary deliverable. Do NOT include code.
• <Version & Provenance>
• <Evidence Summary>
• <Spec Patch>
• <Theoretical Foundations>
• <Final Specification>
• <Assumptions & Risks>
• <Third-Party Library Usage>

Model Developer

<TASK DESCRIPTION>
Cliff walking involves crossing a gridworld from start to goal while avoiding falling off a cliff.
Description ...
</TASK DESCRIPTION>

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

<Research Report>
CliffWalking-v0 Environment Specification
Version & Provenance

• Environment: CliffWalking-v0
• Gymnasium version: v0.26.3 (2022-09-15) and latest documentation snapshot (2025-

01-01)
• Scope: This specification normalizes the CliffWalking environment as implemented

in Gymnasium v0.26.3, aligning with the classic gridworld cliff walking task.
• Accessed date: 2024-06-01 (Asia/Singapore)

Evidence Summary
• The environment is a 4x12 grid with 48 discrete states indexed by row-major flatten-

ing: state = row * 12 + col.
• Valid states exclude cliff cells ([3,1..10]) and the goal ([3,11]). The player can occupy

all cells in the first 3 rows plus the bottom-left cell [3,0].
• The start state is 36 (row=3, col=0), and the goal state is 47 (row=3, col=11).
• The action space is Discrete(4) with actions: 0 (up), 1 (right), 2 (down), 3 (left).
• Each step yields a reward of -1. Stepping into the cliff yields a reward of -100 and

resets the player to the start state; the episode continues.
• The episode terminates only when the player reaches the goal state.
• The set_state method is not explicitly documented but is inferred to accept any valid

non-terminal, non-cliff state and sets the environment to not done.
• No explicit error handling for invalid actions is documented; valid inputs are as-

sumed.
• The environment is deterministic.

Spec Patch
• action.space = Discrete(4), values {0,1,2,3}, shape (1,)
• observation.space = Discrete(48), integer in [0,47], representing flattened grid index:

row * 12 + col
• valid states = all grid cells except cliff cells ([3,1..10]) and goal ([3,11])
• start_state = 36 (row=3, col=0)
• goal_state = 47 (row=3, col=11)
• reward.step = -1 per step
• reward.cliff = -100 on stepping into cliff
• episode termination = True if state == goal_state; else False
• stepping into cliff resets player to start_state, episode continues
• set_state(state: int) sets environment state to given valid state, done = False
• no maximum episode length or truncation condition
• no explicit error handling for invalid actions; assume valid input
• environment deterministic transitions

Theoretical Foundations
• MDP Definition:

– State space S = {0, . . . , 47} \ {cliff states, goal state}.
– Action space A = {0, 1, 2, 3}.
– Transition function T (s, a, s′) (deterministic):

* If s′ is a cliff cell, next state = start_state.
* Else next state = s+ δ(a) (with grid boundary checks).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

– Reward function R(s, a, s′):

* R = −100 if s′ is a cliff cell.
* R = −1 otherwise.

– Episode ends when s′ = goal_state.
• Symbol Table:

– s: state (int), flattened grid index, 0 ≤ s ≤ 47, s not in cliff or goal.
– a: action (int), in {0 : up, 1 : right, 2 : down, 3 : left}.
– r: reward (float), −100 or −1.
– done: boolean, True if s = goal_state.
– start_state: 36 (int).
– goal_state: 47 (int).
– cliff_cells: set of ints corresponding to grid positions [3, 1..10].
– nrows: 4 (int).
– ncols: 12 (int).

• Assumptions:
– No shaping rewards.
– Deterministic environment.
– No truncation or max step limit.

Final Specification
• Environment Name

– CliffWalking-v0
• Public API

– __init__()
– set_state(state: int)
– step(action: int)→ (observation: int, reward: float, done: bool)

• Core Logic Description
– __init__:

* Initialize grid size (4 rows × 12 columns).
* Define start_state = 36 (row=3, col=0).
* Define goal_state = 47 (row=3, col=11).
* Define cliff cells as positions [3, 1..10].
* Initialize current state to start_state.
* Initialize done flag to False.

– set_state(state: int):

* Validate that state is a valid observation (not cliff or goal).
* Set current state to state.
* Set done flag to False.

– step(action: int)→ (obs, reward, done):

* Validate action is in {0, 1, 2, 3}.
* Compute next position based on action with boundary checks:

· 0: move up (row −1)
· 1: move right (col +1)
· 2: move down (row +1)
· 3: move left (col −1)

* If next position is outside grid, remain in current position.
* If next position is a cliff cell:

· reward = −100
· next state = start_state
· done = False

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

* Else if next position is goal_state:
· reward = −1
· done = True
· next state = goal_state

* Else:
· reward = −1
· done = False
· next state = computed position

* Update current state to next state and return (next state, reward, done).
• Usage Scenarios

– Scenario 1: Normal move into cliff
* Initial state: 36 ([3,0])
* Action: 1 (right)
* Next state: 37 ([3,1]) is cliff→ reset to 36
* Reward: −100
* done: False

– Scenario 2: Move to goal
* Current state: 46 ([3,10])
* Action: 1 (right)
* Next state: 47 ([3,11]) goal
* Reward: −1
* done: True

– Scenario 3: Move up from start
* Current state: 36 ([3,0])
* Action: 0 (up)
* Next state: 24 ([2,0])
* Reward: −1
* done: False

Assumptions & Risks
• No truncation or maximum episode length specified; risk of infinite episodes if goal

not reached.
• set_state accepts only valid non-terminal, non-cliff states; no explicit error handling

for invalid states.
• No explicit error handling for invalid actions; assumed caller responsibility.
• Reward and reset behavior on cliff stepping inferred from documentation; no episode

termination on cliff.
• Observation space includes all grid cells but player never occupies cliff or goal states.
• Potential future Gymnasium version changes may alter behavior.

Third-Party Library Usage
• Gymnasium API conventions inform environment interface: discrete action and ob-

servation spaces, step and reset semantics.
• No new runtime dependencies introduced.
• RNG seeding not specified; environment deterministic.
• No source code copied; specification based on official Gymnasium documentation

and Sutton & Barto RL book.
• Numpy indexing conventions used for grid flattening.

</Research Report>

<Workflow>
1. Deconstruct Specification: Carefully review the <Task Describe>,<Research Report>

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

to fully understand the environment’s specification, including state/action spaces, dynamics,
reward function, and termination conditions.
2. Physics Engine Selection: Evaluate if the task requires physics simulation. If so, choose
an appropriate physics engine for the specific task requirements.
3. Model Design: If using a physics engine, design the model structure and embed it as
needed in the Python file.
4. Plan Class Structure: Outline the ‘Environment‘ class, including its internal state
variables, helper methods, and the public interface (‘__init__‘, ‘reset‘, ‘set_state‘, ‘step‘).
5. Implement Complete Code: Write the full implementation of the ‘Environment‘ class. 6.
Self-Correction Review: Meticulously check that the generated code fully complies with the
<TASK DESCRIPTION>, the <Research Report>, and all <ImplementationRequirements>.
7. Finalize Output: Present the complete, reviewed, and runnable single-file code in the
specified final format.
</Workflow>

<ImplementationRequirements>
1. Interface (single file):

• Implement a complete, self-contained Python class Environment with:
– __init__(self, seed: int | None = None)
– reset(self, seed: int | None = None)→ ndarray (reinitialize the episode and

return the initial observation in canonical shape)
– set_state(self, state) (must accept ndarray or list/tuple in canonical shape)
– step(self, action)→ tuple[ndarray, float, bool] (returns: observation, reward,

done)
• Requirements:

– Single-file constraint: all code, including any model definitions, must be
contained in one Python file.

– For physics-based environments, embed model definitions as string con-
stants within the class.

– Explicitly define state, action, and observation spaces (types, shapes, ranges,
formats).

– Provide reproducibility (seeding) via the constructor and/or a seed(int)
method.

– Be robust to common representations:
* set_state: accept list/tuple/ndarray of the same logical content.
* step: accept int / NumPy integer scalar / 0-D or 1-D len-1 ndarray (convert

to canonical form; raise clear TypeError/ValueError on invalid inputs).
– No dependence on external RL frameworks; no Gym inheritance.
– No external file dependencies (model definitions must be embedded).
– Maintain internal state consistency; allow reconstruction from observations

where applicable.
– Clean, readable code suitable for RL experimentation.

2. Determinism & validation:
• Provide reproducibility via seed (constructor and/or seed(int) method).
• Normalize inputs: accept equivalent representations (e.g., NumPy scalar/int/len-

1 array) and convert to a canonical form.
• Validate inputs; raise clear one-line errors (ValueError/TypeError) on invalid

shapes or ranges.
3. Dynamics (MCTS/control oriented):

• For physics-based tasks, prefer suitable physics simulation methods with em-
bedded model definitions over custom physics implementations.

• Choose and document an integration scheme (e.g., implicit integrator, explicit
Euler) consistent with the research report.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

• Use a stable time step dt; clamp to safety bounds; keep all values finite (no
NaN/Inf).

• Keep per-step computation efficient and allocation-light.
4. Dependencies & style:

• No Gym inheritance or external RL frameworks unless explicitly allowed.
• Allowed: third-party libraries as needed (e.g., NumPy, physics engines, SciPy,

Numba, JAX, PyTorch, etc.).
• For robotics/physics tasks, physics engines with embedded model definitions are

recommended over custom implementations.
• Clean, readable code suitable for RL experimentation.
• All dependencies must be importable standard libraries or commonly available

packages.

</ImplementationRequirements>
<Output Format>
<final> <code_file_path> The entrypoint file path of the generated code. </code_file_path>
<entrypoint_code> “‘python # Your complete, runnable single-file implementation here. “‘
</entrypoint_code> </final>
</Output Format>

Unit Tester

<TASK DESCRIPTION> Cliff walking involves crossing a gridworld from start to goal
while avoiding falling off a cliff.
Description ...
</TASK DESCRIPTION>
<CodeArtifact path="environment.py"> {code} </CodeArtifact>
<ExecutionPolicy>

• Do not modify the student’s source file.
• Create exactly one pytest file at “tests/test_env.py” using file_tool(“save”).
• Import the module from “environment.py” via importlib (spec_from_file_location +

module_from_spec).
• Run tests with code_tool(“run”, “pytest -q”); capture exit_code, duration, and std-

out/stderr tail.
</ExecutionPolicy>
<TestPlan>

• Sanity: class Environment can be imported and instantiated, e.g.,
Environment(seed=0).

• Contract:
1. set_state accepts list/tuple/ndarray of the same logical content (convert to

canonical).
2. step(action) returns a 3-tuple: (observation, reward, done) with expected

types/shapes.
3. Determinism: with the same seed and same initial state, the first step with the

same action yields identical outputs.
4. Action space validation: actions within bounds are accepted, out-of-bounds ac-

tions are handled gracefully.
5. Observation space validation: observations match declared space bounds and

shapes.
6. State space consistency: internal state dimensions match expected environment

specifications.
• Acceptance: success iff pytest exit_code == 0 (all tests pass).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

</TestPlan>
<ReportingGuidelines>

• Summarize pytest results in 2–4 sentences; mention the first failing nodeid/assert if
any.

• Provide a brief contract coverage assessment and the most probable root cause for
failures.

• If failing, add 1–3 concise actionable fixes (no long logs).
</ReportingGuidelines>
<OutputFormat> Return exactly one <final> block containing a single JSON object that
matches PytestReport: {
"success": true|false,
"analysis": "<2–4 sentence summary/diagnosis>",
"suggest_fix": " 1–3 bullets with minimal actionable changes>"
} No extra text outside <final>. No additional code fences.
<final> { "success": false, "code_result": "", "analysis": "", "suggest_fix": "" } </final>
</OutputFormat>

Simulation Tester

Your task is to interact with the environment code and then analyze the feedback from the
interaction and propose modifications
<TASK DESCRIPTION>
Cliff walking involves crossing a gridworld from start to goal while avoiding falling off a cliff.
Description ...
</TASK DESCRIPTION>
<CodeArtifact path="environment.py">
{code}
</CodeArtifact>

<ExecutionPolicy>
- Use the play_env tool exactly once on "environment.py" - If the tool throws or cannot run,
perform diagnosis from static review only; still produce output in the required format.
</ExecutionPolicy>
<Rubric>
Success (boolean) must be decided from the available signals with graceful degradation:

• Primary (step-level signals present):
– success = true iff the run finished without exceptions AND there is NO misclas-

sified_transition with (valid == false OR state_matches == false).
– If only observation deltas are available, use obs_matches instead of

state_matches.
– When numeric deltas are provided, treat matches = true if max_abs_error ≤
10−3 or rel_error ≤ 10−3.

• Secondary (no per-step signals):
– If success_rate exists: success = true iff no exceptions AND success_rate ≥
0.95.

– Else: success = true iff no exceptions AND no invariant/contract violations you
can substantiate from code and logs.

• Reward/termination:
– If reward_matches == true AND done_matches == true, explicitly state they

match and DO NOT propose changes to reward or termination logic.
• Action space consistency (discrete & continuous):

– If GT exposes Box(low, high, shape): align predicted bounds and ex-
pose them (e.g., env.action_space or a getter). Never place clipping inside
the integrator; clamp only at action ingestion or at observation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

– If GT exposes Discrete(n): actions must be integer indices in [0, n−1];
expose n (e.g., gym.spaces.Discrete(n)); if indices map to continuous
commands/torques, list the mapping table and align it with GT; never float-clip
discrete actions.

– If action-space info is missing, skip these checks (do not speculate).
• Internal vs observation:

– If clipping or angle normalization is found inside the integrator step (e.g., in
_rk4_step), this likely causes trajectory drift; propose moving them to the
observation path (e.g., _get_observation) unless GT specifies otherwise.

– If latent state is unavailable but observations exist, compare observations instead
and state this explicitly.

• Integrator & timestep:
– Mismatches in integrator method (e.g., RK4 vs Euler) or dt can cause state di-

vergence even when reward/done match; acknowledge and, if state mismatches
persist, propose aligning method/dt to GT.

• Batched/multiple transitions:
– If multiple transitions are reported, aggregate sensibly (e.g., mean success_rate

or fraction matched ≥ 0.95) before deciding success.

</Rubric>
<Procedure>
1) Static review: scan for action bounds, clipping/normalization inside integrator, integrator/dt
choice, and how observation is formed.
2) Execute: call play_env once.
3) Diagnose: reconcile play_env signals with code; if reward/done matched, explicitly say so.
If state mismatched, point to ONE OR TWO most likely roots.
4) Suggest: 1–3 smallest patches that directly address the identified root causes.
</Procedure>
<OutputFormat>
Return exactly one <final> block containing a single JSON object that matches PlayReport:
{ "success": true|false, "analysis": "<2–4 sentences summarizing what happened and why;
mention matches/mismatches explicitly>", "suggest_fix": "- bullet 1\n- bullet 2\n- bullet 3
(optional)" } No extra text outside <final>. No additional code fences.
</OutputFormat>

G EXAMPLES OF DEEP RESEARCHER REPORT

Deep Researcher’s Report

<Version & Provenance>
• Environment: Pusher-v4
• MuJoCo version: ≥ 2.1.3 and < 3.0.0
• Source release date: 2024-01-01 (approximate for v4)
• Accessed date: 2025-06-01 (Asia/Singapore)

<Spec Patch>
• action.space = Box(low=-2.0, high=2.0, shape=(7,),
dtype=np.float32)

• observation.space: Box with low = −∞, high = ∞, shape (23,), dtype
np.float64

• reward.weights = {dist: 1.0, ctrl: 0.1, near: 0.5}
• reward.formula: reward = reward_dist + 0.1reward_ctrl +
0.5reward_near

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

• reward_ctrl = −∥a∥22 (negative squared Euclidean norm)
• reward_dist = −∥o− g∥2 (negative Euclidean distance)
• reward_near = −∥f − o∥2 (negative Euclidean distance)
• episode.max_steps = 100

• episode.termination: never (terminated always False)
• episode.truncation: True if step count ≥ max_steps or any observation value is

non-finite
• dt = 0.05 s (frame_skip= 5, frame_duration= 0.01)
• initial_state.joint_positions = 07

• initial_state.joint_velocities: each joint ∼ U(−0.005, 0.005)
• initial_state.object_position: x ∼ U(−0.3, 0), y ∼ U(−0.2, 0.2); resample until
∥(x, y)∥2 > 0.17

• initial_state.object_velocity = 03

• initial_state.goal_position = [0.45,−0.05,−0.323]
• initial_state.goal_velocity = 03

• step_function:
– clips action to action-space bounds
– applies action torques to joints
– advances MuJoCo simulation by dt

– updates observation vector from simulation state
– computes reward components and total reward
– checks for finite observation values
– increments step count
– returns (observation, reward, terminated=False,
truncated=done_flag, info) with reward components in info

• seeding: via reset(seed=...) method only
• info dict keys: “reward_dist”, “reward_ctrl”, “reward_near”
• fingertip position: MuJoCo site “tips_arm”
• object & goal positions: MuJoCo bodies “object” and “goal”
• internal state: corresponds to MuJoCo simulation state

<Theoretical Foundations>
• MDP tuple: (S,A, P,R)

– S: continuous state space R23 (23-dimensional real vector)
– A: continuous action space R7 with elementwise bounds [−2, 2] (torques)
– P : transition probability induced by MuJoCo physics with dt = 0.05 s
– R: reward function as defined below

• Reward function
– Definition:

r(s, a) = −
∥∥Pobject − Pgoal

∥∥
2
− 0.1 ∥a∥22 − 0.5

∥∥Pfingertip − Pobject
∥∥
2

– Where:

* Pobject, Pgoal, Pfingertip ∈ R3 are positions in meters
* ∥·∥2 is the Euclidean norm
* a ∈ R7 is the action torque vector in N ·m

• Episode ending

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

– Truncation after 100 steps or if any observation value is non-finite
– No termination condition (i.e., terminated=False always)

• Fingertip position
– Computed via forward kinematics internally by MuJoCo

• Symbol Table
– a: Action torque vector; Unit N ·m; Range: each element in [−2, 2]
– Pfingertip: Fingertip 3D position; Unit m; Range: real values, unbounded
– Pobject: Object 3D position; Unit m; Range: real values, unbounded
– Pgoal: Goal 3D position; Unit m; Value: fixed at [0.45, −0.05, −0.323]
– r: Reward; Unit: unitless; Range: real values (sum of negative components)
– dt: Simulation timestep; Unit s; Value: 0.05
– step_count: Current timestep count; Unit: integer; Range: 0 to 100

• Final Specification
– Environment Name: Pusher-v4
– Class Name: Environment
– Public API

* __init__(self)
· Initializes the MuJoCo simulation environment with Pusher-v4 model
· Sets initial internal variables including step count
· Defines action and observation spaces as specified
· Sets fixed goal position

* set_state(self, state: np.ndarray) -> None
· Input: state vector of shape (23,) matching observation space
· Sets the internal MuJoCo simulation state to correspond to the given ob-

servation
· Resets step count to zero; assumes state is valid and episode not done

* step(self, action: np.ndarray) ->
Tuple[np.ndarray, float, bool, dict]
· Input: action vector of shape (7,) clipped to [−2, 2]
· Applies action torques to the simulation joints and advances by dt =
0.05 s

· Updates observation vector; computes reward components and total re-
ward

· Truncates if any observation value is non-finite or if step count ≥ 100
· Returns: observation (23,) float64, reward float, termi-

nated False, truncated bool, info with keys “reward_dist”,
“reward_ctrl”, “reward_near”

– Core Logic
* Simulates a 7-DOF robotic arm pushing an object to a goal
* State includes joint angles/velocities, fingertip, object, and goal positions
* Actions are joint torques clipped to [−2, 2]
* Physics advances by 0.05 s per step
* Reward encourages moving object to goal, penalizes large actions, and en-

courages fingertip proximity to object
* Episode truncates after 100 steps or on non-finite state
* Fingertip and object positions come from MuJoCo sites/bodies
* Seeding via reset(seed=...) (not shown here)

– Usage Scenarios & Examples
* Scenario 1: Initial step with zero action

· Observation: initial state vector with zero joint positions, small velocity
noise, specified object and goal

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

· Action: np.zeros(7, dtype=np.float32)
· Reward: negative sum of distances (control penalty = 0)
· Terminated: False; Truncated: False
· Info: {"reward_dist": value, "reward_ctrl": 0.0,
"reward_near": value}

* Scenario 2: Non-zero action moves fingertip closer
· Observation: updated state after physics step
· Action: np.array([1.0, -0.5, 0.0, 0.2, 0.0, -1.0,
0.5], dtype=np.float32)

· Reward: computed per formula
· Terminated: False; Truncated: False (unless step count reached 100)
· Info: {"reward_dist": value, "reward_ctrl": negative

squared norm of action, "reward_near": value}
<Assumptions & Risks>

• Assumes MuJoCo physics engine is used as backend with version constraints.
• Assumes internal MuJoCo state can be set and queried to implement set_state

and step.
• Fingertip position is assumed to be accessible via MuJoCo site “tips_arm”.
• Reward weights are fixed as per v4; no user-configurable weights.
• Episode termination is only by truncation; no natural termination.
• Seeding is only via reset(seed=...); no separate seed method.
• Risks include dependency on MuJoCo simulation correctness and numerical stability.
• No explicit handling of invalid actions beyond clipping.
• No rendering or visualization included.

<Library Usage>
• Uses Python standard library and NumPy only.
• NumPy used for array operations, clipping (np.clip), norm calculations

(np.linalg.norm), and finite checks (np.isfinite).
• No external dependencies beyond MuJoCo simulation backend (assumed).
• All units are SI: torque in N·m, angles in radians, positions in meters, time in seconds.
• No source code copied; specification based on official documentation and API stan-

dards.
</final>

H CASE STUDY

H.1 TEXT2WORLD

Task Describe.Prepare and deliver sandwiches to a set of children: assemble sandwiches in the
kitchen (optionally gluten-free), place them on a tray, move the tray to the child’s location, and
serve subject to allergy constraints. Gluten-allergic children must receive a gluten-free sandwich;
non-allergic children may receive any sandwich. Serving requires the sandwich on the tray and the
tray at the child’s location; making a sandwich switches it from “notexist” to “prepared.” The goal
is that all children become served.

Prev. SOTA.

(define (domain child-snack)
(:requirements :typing :negative-preconditions)
(:types
child

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

bread-portion
content-portion
sandwich
tray
place

)

(:constants
kitchen - place

)

(:predicates
(at_kitchen_bread ?b - bread-portion)
(at_kitchen_content ?c - content-portion)
(at_kitchen_sandwich ?s - sandwich)
(no_gluten_bread ?b - bread-portion)
(no_gluten_content ?c - content-portion)
(ontray ?s - sandwich ?t - tray)
(no_gluten_sandwich ?s - sandwich)
(allergic_gluten ?c - child)
(not_allergic_gluten ?c - child)
(served ?c - child)
(waiting ?c - child ?p - place)
(at ?t - tray ?p - place)
(notexist ?s - sandwich)

)

;; Action: make_sandwich_no_gluten
(:action make_sandwich_no_gluten
:parameters (?s - sandwich ?b - bread-portion ?c - content-portion)
:precondition (and
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(no_gluten_bread ?b)
(no_gluten_content ?c)
(notexist ?s)

)
:effect (and
(not (at_kitchen_bread ?b))
(not (at_kitchen_content ?c))
(notexist ?s)
(not (notexist ?s))
(at_kitchen_sandwich ?s)
(no_gluten_sandwich ?s)

)
)

;; Action: make_sandwich
(:action make_sandwich
:parameters (?s - sandwich ?b - bread-portion ?c - content-portion)
:precondition (and
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(notexist ?s)

)
:effect (and
(not (at_kitchen_bread ?b))
(not (at_kitchen_content ?c))
(notexist ?s)
(not (notexist ?s))
(at_kitchen_sandwich ?s)
;; no effect on gluten status, sandwich may or may not be

gluten-free↪→
)

)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

;; Action: put_on_tray
(:action put_on_tray
:parameters (?s - sandwich ?t - tray)
:precondition (and
(at_kitchen_sandwich ?s)
(at ?t kitchen)

)
:effect (and
(not (at_kitchen_sandwich ?s))
(ontray ?s ?t)

)
)

;; Action: serve_sandwich_no_gluten
(:action serve_sandwich_no_gluten
:parameters (?s - sandwich ?c - child ?t - tray ?p - place)
:precondition (and
(ontray ?s ?t)
(no_gluten_sandwich ?s)
(allergic_gluten ?c)
(waiting ?c ?p)
(at ?t ?p)

)
:effect (and
(not (ontray ?s ?t))
(served ?c)
(not (waiting ?c ?p))

)
)

;; Action: serve_sandwich
(:action serve_sandwich
:parameters (?s - sandwich ?c - child ?t - tray ?p - place)
:precondition (and
(ontray ?s ?t)
(not (no_gluten_sandwich ?s))
(not_allergic_gluten ?c)
(waiting ?c ?p)
(at ?t ?p)

)
:effect (and
(not (ontray ?s ?t))
(served ?c)
(not (waiting ?c ?p))

)
)

;; Action: move_tray
(:action move_tray
:parameters (?t - tray ?p1 - place ?p2 - place)
:precondition (at ?t ?p1)
:effect (and
(not (at ?t ?p1))
(at ?t ?p2)

)
)

)

Agent2World.

(define (domain child-snack)
(:requirements :typing :negative-preconditions :strips)
(:types
child
bread-portion
content-portion

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

sandwich
tray
place

)
(:constants
kitchen - place

)
(:predicates
(at_kitchen_bread ?b - bread-portion)
(at_kitchen_content ?c - content-portion)
(at_kitchen_sandwich ?s - sandwich)
(no_gluten_bread ?b - bread-portion)
(no_gluten_content ?c - content-portion)
(ontray ?s - sandwich ?t - tray)
(no_gluten_sandwich ?s - sandwich)
(allergic_gluten ?c - child)
(not_allergic_gluten ?c - child)
(served ?c - child)
(waiting ?c - child ?p - place)
(at ?t - tray ?p - place)
(notexist ?s - sandwich)

)

(:action make_sandwich_no_gluten
:parameters (?s - sandwich ?b - bread-portion ?c - content-portion)
:precondition (and
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(no_gluten_bread ?b)
(no_gluten_content ?c)
(notexist ?s)

)
:effect (and
(not (notexist ?s))
(at_kitchen_sandwich ?s)
(no_gluten_sandwich ?s)
(not (at_kitchen_bread ?b))
(not (at_kitchen_content ?c))

)
)

(:action make_sandwich
:parameters (?s - sandwich ?b - bread-portion ?c - content-portion)
:precondition (and
(at_kitchen_bread ?b)
(at_kitchen_content ?c)
(notexist ?s)

)
:effect (and
(not (notexist ?s))
(at_kitchen_sandwich ?s)
(not (at_kitchen_bread ?b))
(not (at_kitchen_content ?c))

)
)

(:action put_on_tray
:parameters (?s - sandwich ?t - tray)
:precondition (and
(at_kitchen_sandwich ?s)
(at ?t kitchen)

)
:effect (and
(ontray ?s ?t)
(not (at_kitchen_sandwich ?s))

)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

)

(:action serve_sandwich_no_gluten
:parameters (?s - sandwich ?c - child ?t - tray ?p - place)
:precondition (and
(ontray ?s ?t)
(no_gluten_sandwich ?s)
(allergic_gluten ?c)
(waiting ?c ?p)
(at ?t ?p)

)
:effect (and
(served ?c)
(not (ontray ?s ?t))

)
)

(:action serve_sandwich
:parameters (?s - sandwich ?c - child ?t - tray ?p - place)
:precondition (and
(ontray ?s ?t)
(waiting ?c ?p)
(not_allergic_gluten ?c)
(at ?t ?p)

)
:effect (and
(served ?c)
(not (ontray ?s ?t))

)
)

(:action move_tray
:parameters (?t - tray ?p1 - place ?p2 - place)
:precondition (at ?t ?p1)
:effect (and
(at ?t ?p2)
(not (at ?t ?p1))

)
)

)

Analysis. Compared to the baseline domain, our Child-Snack formulation introduces three task-
aligned modifications that improve state consistency, compositionality, and plan feasibility. (i)
Creation-valid effects. During sandwich construction we flip the existence status from “non-
existent” to “prepared,” and record gluten-free status when applicable, thereby avoiding contradic-
tory postconditions at creation time; this yields deterministic successor states and reduces backtrack-
ing caused by ill-defined truth values. (ii) Serve-focused effects. During serving we only transfer the
item off the tray and mark the child as served, leaving the waiting label untouched; this separation of
concerns prevents nonessential side-effects, preserves modular composability with downstream rou-
tines (e.g., queueing or follow-up allocation), and promotes goal-monotonic progress on the served
objective. (iii) Permissive-serving preconditions. For non-allergic children we do not exclude
gluten-free items, weakening preconditions to accept any admissible sandwich; this enlarges the
feasible search space and prevents avoidable dead-ends when only gluten-free inventory remains,
while safety for allergic children is still enforced via a dedicated gluten-free serving action. Collec-
tively, these choices align with the ground-truth specification, produce cleaner state transitions, and
yield empirically favorable search dynamics—smaller inconsistent-state frontiers and fewer spuri-
ous deletions—resulting in a more robust make→put-on-tray→move-tray→serve pipeline for the
objective of “serving each child an acceptable sandwich.”

H.2 CWMB

Task Describe. Control a 3D Ant (one free-body torso with four 2-DoF legs; nine bodies, eight
hinge joints) to move forward along the +x axis by applying torques to the eight joints at each

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

step. The action space is Box([−1, 1]8) (joint torques). Observations list positions then velocities
(27-D by default; 29-D if current x, y are included), and optionally +84 contact-force terms when
use_contact_forces=True or version < v4. The reward is r = rhealthy + rforward − ctrl_cost
(and −contact_cost if contact forces are used), where rforward ≈ ∆x/∆t is positive for motion in
+x and ∆t = frame_skip × 0.01 = 0.05 by default. Episodes start from an upright, slightly
noisy state, truncate at 1000 steps, and (by default) terminate early if the agent becomes unhealthy
(non-finite state or torso z /∈ [0.2, 1.0]).

Prev SOTA vs Agent2World.

import numpy as np
from typing import Optional, Tuple
[D-0] Toggle: False = Ours (physics-like integration), True = Baseline

(simple kinematics + noise)↪→
BASELINE = False

class Environment:
def __init__(

self,
---- Common params ----
frame_skip: int = 5,
max_episode_steps: int = 1000,
healthy_reward: float = 1.0,
terminate_when_unhealthy: bool = True,
healthy_z_range: Tuple[float, float] = (0.2, 1.0),
ctrl_cost_weight: float = 0.5,
---- Ours-only params ----
contact_cost_weight: float = 5e-4,
contact_force_range: Tuple[float, float] = (-1.0, 1.0),
exclude_current_positions_from_observation: bool = True,
use_contact_forces: bool = False,
reset_noise_scale_ours: float = 0.1,
forward_reward_weight: float = 1.0,
---- Baseline-only params ----
reset_noise_scale_baseline: float = 0.01,
seed: Optional[int] = None,

):
Core configuration
self.frame_skip = frame_skip
self.dt = 0.01 * frame_skip
self.max_episode_steps = max_episode_steps
self.healthy_reward = healthy_reward
self.terminate_when_unhealthy = terminate_when_unhealthy
self.healthy_z_range = healthy_z_range
self.ctrl_cost_weight = ctrl_cost_weight
self.forward_reward_weight = forward_reward_weight # [D-5] Only

used by Ours.↪→
self.np_random = np.random.RandomState(seed)

[D-1] Observation schema differs:
Baseline: fixed 27 = 13 positions (z, quat4, joint8) + 14

velocities (flat vector).↪→
Ours: positions(15) + velocities(14) (+ optional

torso_xy, contact forces),↪→
with option to exclude torso x,y from observation.
self.exclude_current_positions_from_observation = (

False if BASELINE else
bool(exclude_current_positions_from_observation)↪→

)

[D-2] Contacts: Baseline has no contact forces/cost; Ours can
include 84-dim contact forces + cost.↪→

self.use_contact_forces = False if BASELINE else
bool(use_contact_forces)↪→

self.contact_cost_weight = 0.0 if BASELINE else
float(contact_cost_weight)↪→

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

self.contact_force_range = contact_force_range

self.step_count = 0

if BASELINE:
Baseline state: flat (27,) observation vector
self.obs_shape = (27,)
self.state = np.zeros(self.obs_shape, dtype=np.float64)
self.x_position = 0.0 # [D-4] Progress tracked separately

(not in observation)↪→
self.y_position = 0.0
self.reset_noise_scale = float(reset_noise_scale_baseline) #

[D-4]↪→
self.contact_forces = None
self.observation_dim = 27 # [D-1]

else:
Ours state: split positions(15) / velocities(14)
self.pos_dim = 15 # torso_pos(3), torso_quat(4),

joint_angles(8)↪→
self.vel_dim = 14 # torso_lin_vel(3), torso_ang_vel(3),

joint_vel(8)↪→
self.positions = np.zeros(self.pos_dim, dtype=np.float64)
self.velocities = np.zeros(self.vel_dim, dtype=np.float64)
self.reset_noise_scale = float(reset_noise_scale_ours) #

[D-4]↪→
self.last_x_position = 0.0 # [D-4] (used when restoring

state)↪→
self.contact_forces = (

np.zeros(84, dtype=np.float64) if self.use_contact_forces
else None↪→

)
Compute observation length for Ours
base_pos_len = self.pos_dim
if self.exclude_current_positions_from_observation:

base_pos_len -= 2 # drop torso x,y
self.obs_pos_len = base_pos_len
self.obs_vel_len = self.vel_dim
self.obs_contact_len = 84 if self.use_contact_forces else 0
self.obs_torso_xy_len = 0 if

self.exclude_current_positions_from_observation else 2↪→
self.observation_dim = (

self.obs_pos_len + self.obs_vel_len +
self.obs_torso_xy_len + self.obs_contact_len↪→

)

self.reset(seed)

---------------- Helpers (shared) ----------------
def _is_healthy(self, z_value: Optional[float] = None) -> bool:

[D-3] Health z-source differs:
Baseline: use state[0] (z) from flat observation.
Ours: use positions[2] (torso z) from split state.
if BASELINE:

st = self.state
if not np.all(np.isfinite(st)):

return False
z = st[0] if z_value is None else z_value
return self.healthy_z_range[0] <= z <=

self.healthy_z_range[1]↪→
else:

if not np.all(np.isfinite(self.positions)) or not
np.all(np.isfinite(self.velocities)):↪→
return False

z = self.positions[2]
return self.healthy_z_range[0] <= z <=

self.healthy_z_range[1]↪→

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

def _get_observation(self) -> np.ndarray:
[D-1] Observation layout differs (see __init__ comment).
if BASELINE:

return self.state.copy()
if self.exclude_current_positions_from_observation:

pos_obs = self.positions[2:].copy() # exclude torso x,y
torso_xy = np.array([], dtype=np.float64)

else:
pos_obs = self.positions.copy()
torso_xy = self.positions[0:2].copy()

vel_obs = self.velocities.copy()
obs = np.concatenate((pos_obs, vel_obs))
if not self.exclude_current_positions_from_observation:

obs = np.concatenate((obs, torso_xy))
if self.use_contact_forces:

obs = np.concatenate((obs, self.contact_forces))
return obs

@staticmethod
def _quat_multiply(q1: np.ndarray, q2: np.ndarray) -> np.ndarray:

w1, x1, y1, z1 = q1
w2, x2, y2, z2 = q2
return np.array(

[
w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2,
w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2,
w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2,
w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2,

],
dtype=np.float64,

)

---------------- Public API ----------------
def set_state(self, state: np.ndarray) -> None:

state = np.asarray(state, dtype=np.float64)
if BASELINE:

[D-8] Baseline expects a flat 27-dim observation
(pos13+vel14).↪→

if state.shape != (27,):
raise ValueError(f"set_state input must have shape (27,),

got {state.shape}")↪→
if not np.all(np.isfinite(state)):

raise ValueError("set_state input contains non-finite
values")↪→

self.state = state.copy()
self.step_count = 0
self.x_position = 0.0 # [D-4] progress variable is external

to obs↪→
self.y_position = 0.0

else:
[D-8] Ours expects the current obs layout length and

reconstructs split state.↪→
expected_len = self.observation_dim
if state.ndim != 1 or state.shape[0] != expected_len:

raise ValueError(f"State must be 1D array of length
{expected_len}, got shape {state.shape}")↪→

pos_len = self.obs_pos_len
vel_len = self.obs_vel_len
pos_part = state[:pos_len]
vel_part = state[pos_len : pos_len + vel_len]
if self.exclude_current_positions_from_observation:

full_positions = np.zeros(self.pos_dim, dtype=np.float64)
full_positions[2:] = pos_part
full_positions[0] = 0.0
full_positions[1] = 0.0

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

else:
full_positions = pos_part.copy()

self.positions = full_positions
self.velocities = vel_part.copy()
self.step_count = 0
self.last_x_position = self.positions[0] # [D-4]

def reset(self, seed: Optional[int] = None) -> np.ndarray:
if seed is not None:

self.np_random.seed(seed)
self.step_count = 0

if BASELINE:
[D-2][D-4] Baseline init: 13 pos (z, quat, joints) + 14

vel; small noise.↪→
pos = np.zeros(13, dtype=np.float64)
pos[0] = 0.75 # z
pos[1:5] = np.array([1.0, 0.0, 0.0, 0.0]) # quaternion

(w,x,y,z)↪→
noise_pos = self.np_random.uniform(-self.reset_noise_scale,

self.reset_noise_scale, size=13)↪→
pos = pos + noise_pos
vel = self.np_random.normal(0, self.reset_noise_scale,

size=14)↪→
self.state = np.concatenate([pos, vel])
self.x_position = 0.0 # [D-4] progress variable
self.y_position = 0.0

else:
Ours init: positions(15) / velocities(14) with larger noise

and full torso pose.↪→
base_positions = np.zeros(15, dtype=np.float64)
base_positions[2] = 0.75 # torso z
base_positions[3] = 1.0 # quat.w
noise_pos = self.np_random.uniform(-self.reset_noise_scale,

self.reset_noise_scale, size=15)↪→
self.positions = base_positions + noise_pos
self.velocities = self.np_random.normal(loc=0.0,

scale=self.reset_noise_scale, size=14)↪→
self.last_x_position = self.positions[0] # [D-4]
if self.use_contact_forces and self.contact_forces is not

None:↪→
self.contact_forces[:] = 0.0

return self._get_observation()

def step(self, action: np.ndarray):
action = np.asarray(action, dtype=np.float64)
if action.shape != (8,):

raise ValueError(f"Action must be of shape (8,), got
{action.shape}")↪→

[D-6] Action bound handling differs:
Baseline: out-of-bounds raises; Ours: clip to [-1, 1].
if BASELINE:

if np.any(action < -1.0) or np.any(action > 1.0):
raise ValueError("Action values must be in [-1, 1] for

Baseline")↪→
else:

action = np.clip(action, -1.0, 1.0)

---- Inline divergence (single function, two branches) ----
if BASELINE:

Forward progress proxy from hip joints
prev_x_pos = self.x_position # [D-4] external tracker (not

in obs)↪→
forward_force = float(np.sum(action[[0, 2, 4, 6]]))

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

self.x_position += forward_force * self.dt * 0.1 # arbitrary
scale↪→

Stochastic updates (no true physics)
z = float(np.clip(self.state[0] +

self.np_random.uniform(-0.01, 0.01), 0.0, 2.0))↪→
[D-7] Orientation update: Baseline = add noise to

quaternion then renormalize.↪→
orientation = self.state[1:5] + self.np_random.uniform(-0.01,

0.01, size=4)↪→
norm = float(np.linalg.norm(orientation))
orientation = orientation / norm if norm > 0 else

np.array([1.0, 0.0, 0.0, 0.0], dtype=np.float64)↪→
Joint angles: integrate action + small noise; wrap to [-pi,

pi]↪→
joint_angles = self.state[5:13] + action * self.dt +

self.np_random.uniform(-0.005, 0.005, size=8)↪→
joint_angles = (joint_angles + np.pi) % (2 * np.pi) - np.pi
Velocities: torso (noise) + joints (action + noise)
torso_vel = self.np_random.normal(0, 0.01, size=6)
joint_vel = action + self.np_random.normal(0, 0.01, size=8)
velocities = np.concatenate([torso_vel, joint_vel])
Compose new flat state
pos = np.empty(13, dtype=np.float64)
pos[0] = z
pos[1:5] = orientation
pos[5:13] = joint_angles
self.state = np.concatenate([pos, velocities])

healthy = self._is_healthy(z_value=z) # [D-3]
forward_delta = self.x_position - prev_x_pos
contact_cost = 0.0 # [D-2] no contacts in Baseline
weight = 1.0 # [D-5] forward reward weight fixed to

1.0↪→
else:

Physics-like integration
old_x = float(self.positions[0]) # [D-4] directly from torso

x in positions↪→
Joint dynamics: dv = (u - damp*v)*dt; dq = v*dt
joint_damping = 0.1
joint_vel_prev = self.velocities[6:]
joint_acc = action - joint_damping * joint_vel_prev # [D-1]

acts on split state↪→
joint_vel_new = joint_vel_prev + self.dt * joint_acc
joint_ang_new = self.positions[7:] + self.dt * joint_vel_new
Torso linear & angular velocity damping
lin_damping = 0.1
ang_damping = 0.1
torso_lin_vel_new = self.velocities[0:3] * (1 - lin_damping *

self.dt)↪→
torso_ang_vel_new = self.velocities[3:6] * (1 - ang_damping *

self.dt)↪→
Integrate torso position
torso_pos_new = self.positions[0:3] + self.dt *

torso_lin_vel_new↪→
[D-7] Orientation update: Ours = quaternion integration

from angular velocity.↪→
q = self.positions[3:7]
omega = torso_ang_vel_new
omega_quat = np.array([0.0, omega[0], omega[1], omega[2]],

dtype=np.float64)↪→
q_dot = 0.5 * self._quat_multiply(omega_quat, q)
q_new = q + self.dt * q_dot
norm = float(np.linalg.norm(q_new))
q_new = q_new / norm if norm > 0 else np.array([1.0, 0.0,

0.0, 0.0], dtype=np.float64)↪→

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Write back split state
self.positions[0:3] = torso_pos_new
self.positions[3:7] = q_new
self.positions[7:] = joint_ang_new
self.velocities[0:3] = torso_lin_vel_new
self.velocities[3:6] = torso_ang_vel_new
self.velocities[6:] = joint_vel_new
Contacts (optional)
if self.use_contact_forces and self.contact_forces is not

None:↪→
self.contact_forces.fill(0.0) # [D-2]

new_x = float(self.positions[0])
healthy = self._is_healthy() # [D-3]
forward_delta = new_x - old_x
Contact cost (if enabled)
if self.use_contact_forces and self.contact_forces is not

None:↪→
clipped = np.clip(self.contact_forces,

self.contact_force_range[0],
self.contact_force_range[1])

↪→
↪→
contact_cost = self.contact_cost_weight *

float(np.sum(np.square(clipped))) # [D-2]↪→
else:

contact_cost = 0.0
weight = self.forward_reward_weight # [D-5]

---- Shared reward & termination (single exit) ----
forward_reward = weight * (forward_delta / self.dt) # [D-5]
ctrl_cost = self.ctrl_cost_weight *

float(np.sum(np.square(action)))↪→
reward = (self.healthy_reward if healthy else 0.0) +

forward_reward - ctrl_cost - contact_cost↪→

self.step_count += 1
done = (self.terminate_when_unhealthy and not healthy) or

(self.step_count >= self.max_episode_steps)↪→
return self._get_observation(), reward, done

Analysis. On the Ant-v4 forward-locomotion task, AGENT2WORLD surpasses the Baseline with
higher success, smoother gait, and lower energy per meter under identical horizons and z-health
checks. (i) State & sensing. The Baseline exposes a flat 27-D observation, while we adopt a task-
aligned layout that separates positions/velocities and can hide global (x, y) by default ([D-1]). We
additionally support contact forces for foot–ground cues ([D-2]). Health uses torso z from split state
rather than the flat vector slot ([D-3]). State restoration matches each layout: the Baseline ingests a
27-D vector, whereas ours reconstructs split buffers from the current observation setting ([D-8]). (ii)
Dynamics & orientation. The Baseline updates orientation by quaternion noise plus renormaliza-
tion, and treats actions as noisy joint velocities; we integrate damped joint accelerations and update
attitude via q̇ = 1

2 ωq⊗q with renormalization ([D-7]). This physically consistent pipeline—enabled
by the split state design ([D-1])—low-passes high-frequency actuation, reduces roll/pitch jitter, and
yields more phase-coordinated gaits. (iii) Control semantics & reward. The Baseline hard-errors
on out-of-range actions and uses a fixed forward-reward weight; forward progress is tracked by an
external x variable and reset noise is smaller. Ours clips actions to [−1, 1] ([D-6]), uses a tunable
forward-reward weight ([D-5]), measures progress directly from torso x in the state and employs a
different reset scale ([D-4]); an optional contact-cost term can be included when contact signals are
enabled ([D-2]). Together these choices stabilize training signals and improve sample efficiency.

Summary of diffs. [D-1] Observation schema: Baseline uses a flat 27-D vector; Ours uses split
positions+velocities with optional hidden (x, y) and optional contact forces; [D-2] Contacts: Base-
line has no contact forces/cost; Ours optionally exposes 84-D contact forces and a contact-cost term;
[D-3] Health source: Baseline takes z from the flat vector slot; Ours uses torso z from split posi-
tions; [D-4] Progress & reset: Baseline tracks forward x as an external variable and uses smaller
reset noise; Ours reads torso x from state and uses a different reset scale; [D-5] Forward-reward

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

weight: Baseline fixed to 1.0; Ours is tunable; [D-6] Action bounds: Baseline errors on out-of-range
actions; Ours clips to [−1, 1]; [D-7] Orientation update: Baseline adds noise then renormalizes
quaternion; Ours integrates q̇ = 1

2 ωq⊗q then renormalizes; [D-8] State setting: Baseline ingests a
flat 27-D state; Ours reconstructs split buffers from the current observation layout.

H.3 BYTESIZED32

Task Description. We build a lightweight, text-interactive micro-simulation of pea growth in a small
garden. The world contains a Pea, a FlowerPot, a Jug, and a Sink; water is represented as scalar
levels in the Jug and FlowerPot and as an internal level in the Pea. The agent can look/examine,
take/put objects, switch the sink on/off, fill the jug from the sink (effective only when the sink is on),
and pour water from the jug into the flower pot. After each action, a tick advances processes: the
sink supplies water if on; the pot passively transfers its water to the pea; and the pea consumes water
and progresses from seed → sprout → young plant → mature → reproducing when sufficiently
hydrated for several consecutive ticks. Episodes start with an unplanted pea and an empty pot; the
goal is to plant the pea and water it repeatedly until it reaches the reproducing stage.

Prev SOTA vs Agent2World.

import random

[D0] Toggle: False = Ours, True = Baseline
BASELINE = False

---------------- Core object model (minimal API) ----------------
class GameObject:

def __init__(self, name):
self.name, self.parent, self.contains = name, None, []
self.props = {"isContainer": False, "isMoveable": True}

def get(self, k, d=None):
return self.props.get(k, d)

def add(self, obj):
obj.removeSelf(); self.contains.append(obj);
obj.parent = self

def remove(self, obj):
self.contains.remove(obj); obj.parent = None

def removeSelf(self):
if self.parent: self.parent.remove(self)

def allContained(self):
out = []
for o in self.contains: out += [o] + o.allContained()
return out

def tick(self): pass

class Container(GameObject):
def __init__(self, name): super().__init__(name);

self.props["isContainer"] = True
def place(self, obj):

if not obj.get("isMoveable"):
return ("Can't move that object.", False)
self.add(obj); return ("OK.", True)

def take(self, obj):
if obj not in self.contains:

return ("Object not here.", None, False)
if not obj.get("isMoveable"):

return ("Can't move that object.", None, False)
obj.removeSelf(); return ("OK.", obj, True)

class Device(Container):
def __init__(self, name): super().__init__(name);

self.props.update({"isDevice": True, "isOn": False})
def turnOn(self):

if self.props["isOn"]:
return (f"{self.name} is already on.", False)

self.props["isOn"] = True

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

return (f"{self.name} turned on.", True)
def turnOff(self):

if not self.props["isOn"]:
return (f"{self.name} is already off.", False)

self.props["isOn"] = False
return (f"{self.name} turned off.", True)

class World(Container):
def __init__(self): super().__init__("world")

class Agent(Container):
def __init__(self): super().__init__("entity")

---------------- Task objects ----------------
class Pea(GameObject):

STAGES = ["seed","sprout","young plant","mature plant","reproducing"]
MAX_WATER, CONSUME, NEED, TICKS = 100, 5, 30, 3
def __init__(self):

super().__init__("pea"); self.props["isMoveable"]=True
self.stage, self.water, self.hydrated = 0, 0, 0

@property
def stage_name(self):

return self.STAGES[self.stage]
def addWater(self, n):

self.water = min(self.water + n, self.MAX_WATER)
def tick(self):

[D3] Growth rule: Baseline = simple (>=2 -> +stage, else -1 if
>0); Ours = threshold + accumulation.↪→

if BASELINE:
if self.stage < len(self.STAGES)-1:

if self.water >= 2: self.water -= 2; self.stage += 1
elif self.water > 0: self.water -= 1

return
self.water = max(self.water - self.CONSUME, 0)
if self.water >= self.NEED:

self.hydrated += 1
if self.hydrated >= self.TICKS and self.stage <

len(self.STAGES)-1:↪→
self.stage += 1; self.hydrated = 0

class FlowerPot(Container):
MAX_WATER = 100
def __init__(self):

super().__init__("flower pot")
self.water = 0

def addWater(self, n):
add = min(self.MAX_WATER - self.water, n);
self.water += add; return add

def consume(self, n):
use = min(self.water, n); self.water -= use; return use

def tick(self):
[D2] Passive transfer: Baseline = none; Ours = transfer

pot.water to pea on each tick.↪→
if BASELINE: return
pea = next((o for o in self.contains if isinstance(o, Pea)),

None)↪→
if pea and self.water > 0:

x = self.consume(min(self.water, Pea.MAX_WATER))
pea.addWater(x)

class Jug(Container):
MAX_WATER = 100
def __init__(self):

super().__init__("jug")
self.water = 0

def fill(self, n):

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

add = min(self.MAX_WATER - self.water, n)
self.water += add
return add

def pour(self, n):
out = min(self.water, n
self.water -= out
return out

class Sink(Device):
MAX_WATER = 1000
def __init__(self): super().__init__("sink");

self.water = self.MAX_WATER
def tick(self):

self.water = self.MAX_WATER if self.props["isOn"] else 0

------- Minimal game scaffold (only actions we need) -----
class TextGame:

MAX_STEPS = 50
def __init__(self, seed=0):

random.seed(seed)
self.world, self.agent = World(), Agent();

self.world.add(self.agent)↪→
self.pea, self.pot, self.jug, self.sink = Pea(), FlowerPot(),

Jug(), Sink()↪→
[D7] Movability: Baseline pins the sink as immovable (ours

keeps defaults).↪→
if BASELINE: self.sink.props["isMoveable"] = False
for o in (self.pot, self.jug, self.sink, self.pea):

self.world.add(o)
self.score = self.steps = 0
self.over = self.won = False

API of interest (matching both variants); unchanged helpers omitted
for brevity.↪→

def _obj(self, name):
for o in [self.world] + self.world.allContained():

if o.name == name: return o
for o in self.agent.contains:

if o.name == name: return o
return None

def calculateScore(self):
[D5] Reward: Baseline = stage*10; Ours = stage*20 + water bonus

(<=20).↪→
if BASELINE:

self.score = self.pea.stage*10
else:

self.score = self.pea.stage*20 +
int(self.pea.water/Pea.MAX_WATER*20)↪→

if self.pea.stage_name == "reproducing":
self.won = self.over = True

if self.steps >= self.MAX_STEPS and not self.won:
self.over = True

---------- actions ----------
def take(self, name):

o = self._obj(name);
if not o: return f"No {name}."
if not o.get("isMoveable"): return f"Can't take {name}."
if o.parent != self.world: return f"{name} not here."
_, got, ok = self.world.take(o);
if ok: self.agent.add(got);
return "OK." if ok else "Fail."

def put(self, obj, cont):
o, c = self._obj(obj), self._obj(cont)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

if not o or o.parent != self.agent:
return f"No {obj} in inventory."

if not c or not c.get("isContainer"):
return f"{cont} not a container."

[D6] Placement constraint: Ours restricts pea -> pot only;
Baseline has no special rule.↪→

if (not BASELINE) and isinstance(o, Pea) and not isinstance(c,
FlowerPot):↪→
return "Pea must go into flower pot."

_, ok = c.place(o); return "OK." if ok else "Fail."

def turn_on(self, dev):
d = self._obj(dev);
if not d or not d.get("isDevice"): return f"No device {dev}."
msg,_ = d.turnOn(); return msg

def turn_off(self, dev):
d = self._obj(dev);
if not d or not d.get("isDevice"): return f"No device {dev}."
msg,_ = d.turnOff(); return msg

def fill_from_sink(self):
[D1] Fill gating: Baseline ignores sink.on; Ours requires

sink.on == True.↪→
if (not BASELINE) and (not self.sink.props["isOn"]): return "Sink

is off."↪→
need = self.jug.MAX_WATER - self.jug.water
if need <= 0: return "Jug already full."
self.jug.fill(need) # treat sink as infinite when allowed
return "Jug filled."

def pour_to_pot(self):
if self.jug.water <= 0: return "Jug empty."
[D8] Pour semantics: Baseline feeds pea directly; Ours fills

pot; pea drinks via [D2].↪→
poured = self.jug.pour(10)
if BASELINE and (self.pea in self.pot.contains):

self.pea.addWater(3); return "Poured; pea absorbs water."
added = self.pot.addWater(poured)
if added < poured: self.jug.fill(poured - added)
return "Poured into pot."

---------- driver ----------
def step(self, cmd):

self.steps += 1
[D4] Update order: Baseline ticks BEFORE action; Ours ticks

AFTER.↪→
if BASELINE:

for o in [self.world] + self.world.allContained(): o.tick()

parts = cmd.lower().strip().split()
out = "Unknown."
try:

if parts[:1]==["take"]: out = self.take(" ".join(parts[1:]))
elif parts[:1]==["put"] and "in" in parts:

i = parts.index("in");
out = self.put(" ".join(parts[1:i]), "

".join(parts[i+1:]))↪→
elif parts[:2]==["turn","on"]:

out = self.turn_on(" ".join(parts[2:]))
elif parts[:2]==["turn","off"]:

out = self.turn_off(" ".join(parts[2:]))
elif parts[:3]==["fill","jug","from"]:

out = self.fill_from_sink()
elif parts[:4]==["pour","water","from","jug"] and "in" in

parts:↪→
out = self.pour_to_pot()

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

distractor (spec only)
elif parts[:1]==["use"]: out = "Nothing happens."

except Exception as e:
out = f"Error: {e}"

if not BASELINE:
for o in [self.world] + self.world.allContained(): o.tick()

old = self.score; self.calculateScore();
reward = self.score - old
return out, self.score, reward, self.over, self.won

Analysis. Under identical initialization and evaluation (capacity limits and preconditions enforced),
AGENT2WORLD outperforms a Baseline on the pea–growing (water-transfer) task, yielding higher
success, shorter trajectories, and fewer invalid actions.(i) Action space and dynamics. We expose
a precondition-aware interface and decouple water flow from uptake: fill is effective only when
the sink is on ([D1]); pour increases the pot’s water and the pea hydrates asynchronously via tick
([D2], [D8]). We advance environment dynamics after the action to preserve causal credit assign-
ment ([D4]). By contrast, the Baseline exposes fill irrespective of sink state, credits hydration at
pour time, and updates before acting.(ii) Physical consistency and constraints. We enforce finite
capacities with overflow returned to the jug and constrain placement so the pea can only be planted
in the flower pot ([D6]). These constraints prune degenerate branches without removing valid so-
lutions. The Baseline omits the planting constraint and hydrates synchronously, which increases
misleading transitions. (Regarding movability, the Baseline pins the sink as immovable while Ours
keeps defaults; this ablation affects search but not preconditions, [D7].)(iii) Growth model and
reward. Plant physiology follows thresholded, accumulated growth with per–tick water consump-
tion ([D3]). Reward shaping combines stage progress with a bounded water bonus, and immediate
rewards are score deltas ([D5]). The Baseline uses a stage-only score without water shaping, weak-
ening the learning signal.

Summary of diffs: [D1] preconditioned fill; [D2] passive pot→pea transfer; [D3]
threshold+consumption growth; [D4] post-action ticking; [D5] shaped reward (stage+water); [D6]
pea→pot placement constraint; [D7] sink movability ablation; [D8] pour affects pot first (not the
pea).

44

	Introduction
	Preliminary
	Problem Definition
	Autonomous Agent

	Methodology
	Stage I: Knowledge Synthesis
	Stage II: World Model Generation
	Stage III: Evaluation-Driven Refinement

	Experiments
	Baselines
	Implementation Details
	Text2World
	Code World Models Benchmark (CWMB)
	ByteSized32

	Analysis
	Ablation Study
	Pair-wise Evaluation
	Feedback Iteration
	Manual Error Analysis
	Multi-Agent vs. Single-Agent Architecture Analysis

	Related Work
	Conclusion
	The Use of Large Language Models
	More Details on Methodology
	Method Comparisons
	Per-agent Tool Configuration
	Pseudo Code of Agent2WorldMulti

	More Details on Benchmarks
	Side-by-side Comparison
	Metric Explanation

	More Details on Ablation Study
	More Details on Error Analysis
	Error Analysis on Text2World and ByteSized32
	Distribution of Error Types

	Prompt Examples
	Examples of Deep Researcher Report
	Case study
	Text2World
	CWMB
	ByteSized32

