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Abstract

This work presents a unified knowledge protocol, called UKnow, which facilitates
knowledge-based studies from the perspective of data. Particularly focusing on
visual and linguistic modalities, we categorize data knowledge into five unit types,
namely, in-image, in-text, cross-image, cross-text, and image-text, and set up an
efficient pipeline to help construct the multimodal knowledge graph from any data
collection. Thanks to the logical information naturally contained in knowledge
graph, organizing datasets under UKnow format opens up more possibilities of
data usage compared to the commonly used image-text pairs. Following UKnow
protocol, we collect, from public international news, a large-scale multimodal
knowledge graph dataset that consists of 1,388,568 nodes (with 571,791 vision-
related ones) and 3,673,817 triplets. The dataset is also annotated with rich event
tags, including 11 coarse labels and 9,185 fine labels. Experiments on 4 benchmarks
demonstrate the potential of UKnow in supporting common-sense reasoning and
boosting vision-language pre-training with a single dataset, benefiting from its
unified form of knowledge organization. See Appendix A to download the dataset.

1 Introduction

Recent efforts have been attracted to leverage the multimodal knowledge graph [95] for data-driven
intelligence. Inspired by the human mastery knowledge network [49], we consider that the multi-
modal knowledge graph, which naturally accommodates heterogeneous data based on its format of
complex network [93, 77], is well suited for constructing a unified knowledge criterion from the
perspective of data. Driven by the multimodal knowledge graph, models can easily introduce external
knowledge [57], discover long-range relations [82] and understand more logical semantics [52].
However, existing datasets of the multimodal knowledge graph commonly focus on only one task like
common-sense reasoning [81, 46] due to their limited scale and irregular data organization. Therefore,
it is imperative to construct a well-organized multimodal knowledge graph dataset with large-scale
and rich-logic, which enables delving into deeper foundational problems in lower layers, such as the
knowledge based vision-language pre-training.

To this end, we propose UKnow, a Unified Knowledge protocol, which facilitates knowledge-based
studies from data perspective. Particularly focusing on visual and linguistic modalities, we categorize
data knowledge into five unit types, namely, in-image Iin, in-text Tin, cross-image Icross, cross-
text Tcross, and image-text ITcross. As shown in Fig. 1, these knowledge types are together named
as Knowledge-View which can be easily used to construct a multimodal knowledge graph (Gm).

† Corresponding Author.
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Fishermen reported seeing the Granville-based Alizé 3 on marine-tracker websites 

working in a bream-spawning ground off the north coast. Some attempted to stop the 

boat while the Norman Le Brocq fisheries protection vessel was also deployed.
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Figure 1: Overview of UKnow protocol, con-
sisting of five unit knowledge types, namely, in-
image Iin (e.g., object), in-text Tin (e.g., en-
tity), cross-image Icross (e.g., image similarity),
cross-text Tcross (e.g., text continuity), and image-
text ITcross (e.g., description).

To verify that UKnow can serve as a standard
protocol, we further set up an efficient data pro-
cessing pipeline, consisting of Phase-1/2/3, to
reorganize existing datasets into UKnow’s for-
mat. Please note that, this pipeline is also able
to automatically extend an existing image-text
dataset like LAION-5B [59] with more useful
information to build a new dataset. A brief de-
scription of each Phase is as follows:

Phase-1: Content Extraction. We use pre-
trained models to preprocess data and extract
useful content. Note that pre-trained models can
be replaced / added / disabled freely as needed.
Phase-2: Information Symbolization. Since the
results obtained in Phase-1 (e.g., images and
texts) cannot be used directly for graph con-
struction, we adopt information symbolization
strategy to arrange all of them into the index in
this phase. This information symbolization strat-
egy numbers all original or generated data by a
certain rule, which links the nodes from Phase-1 to make a multimodal graph. Phase-3: Knowledge
Construction. Two kinds of internal knowledge (Iin, Tin) and three kinds of associative knowledge
(Icross, Tcross, ITcross) are aggregated into one graph (Gm) in this phase as shown in Fig. 1.

Following UKnow protocol and above pipeline, we build a novel large-scale multimodal knowledge
graph. Considering that a large-scale event dataset is of practical significance for real-world ap-
plications, such as information retrieval and public sentiment analysis, our data are collected from
public international news. Overall, our dataset contains 1,388,568 nodes of which 571,791 are vision
relevant (i.e., news images or visual objects). The number of triples in the entire graph is 3,673,817.
To the best of our knowledge, this dataset has become the largest multimodal knowledge graph dataset
of international news events. Moreover, to organize data in a more structured way and enhance
dataset with more category labels, our dataset introduces a hierarchical event annotation for each
news, including Event-11 and Event-9185. Specifically, the former contains general event categories
such as “Sports, Ceremony, ...”, while the latter consists of real human activity in the history such as

“2019 NBA All-Star Game, 2019 Daytona 500, ...”. More details about the annotation are shown in
Sec. 3.2, Fig 3, and Tab. 3.

In summary, our contributions are as follows:
• We propose UKnow to introduce the multimodal knowledge graph into the vision field as a new

standard of data organization, which features the relation inside data in addition to the original
data format. Such a protocol opens up the possibilities of data usage such that more logic-rich
downstream tasks can be expected in the future.

• We design an efficient data processing pipeline for constructing dataset following our UKnow
protocol, together with a large-scale multimodal knowledge graph dataset collected from public
international news. We also equip the dataset with hierarchical event annotations, which can help
models understand human activities and history. See Appendix A to download the dataset.

• We provide some examples of the usage of UKnow in practical applications. Experiments on
four benchmarks showcase the advantages of UKnow in supporting common-sense reasoning and
boosting vision-language pre-training with a unified form of data organization, making it possible
to evaluate various tasks on a single dataset.

2 Related Work

2.1 Existing Knowledge Representation Formats

In recent years, a growing abundance multi-modal data are disseminated, linking diverse information
across various modalities such as text and image in a global data space. This interconnected web
of heterogeneous data constitutes a vast repository of information termed as knowledge. With
the development of large-scale models, the utilization of knowledge has seen a notable surge in
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Table 1: Statistics of various multimodal knowledge graph datasets. TRIPLE is the basic component
of knowledge graph (Sec. 2.1), WEB and GIT indicate homepage and Github repository respectively.
EVENT indicates the news event.

DATASET YEAR MULTIMODAL INFO. SOURCE NODE IMAGE TRIPLE WEB GIT EVENT
WN9-IMG-TXT [81] 2016 ENT. WN18, ImageNet 6,555 63,225 14,397 ✓ %

ImageGraph [47] 2017 ENT./CONCEPT FB15k 14,870 829,931 564,010 ✓ %

VisualGenome [26] 2017 ENT. MSCOCO 75,729 108,077 1,531,448 ✓ %

GAIA [92] 2018 ENT./CONCEPT Freebase, Geonames 457,000 - 38,000 ✓ %

MMKG-FB15k [38] 2019 ENT./CONCEPT FB15k, Search Engine 14,951 13,444 592,213 ✓ ✓ %

MMKG-DB15k [38] 2019 ENT./CONCEPT DB15k, Search Engine 14,777 12,842 99,028 ✓ ✓ %

MMKG-YAGO15k [38] 2019 ENT./CONCEPT YAGO15k, Search Engine 15,283 11,194 122,886 ✓ ✓ %

Richpedia [72] 2020 ENT./REL./CONCEPT Wikipedia 29,985 2,914,770 2,708,511 ✓ ✓ %

VisualSem [1] 2020 ENT./CONCEPT BabelNet 89,896 930,000 1,500,000 ✓ %

RESIN [79] 2021 ENT./REL./CONCEPT News 51,422 6,399 150,220 ✓ ✓ ✓
MKG-W [83] 2022 ENT./REL./CONCEPT Open EA [67], Search Engine 15,000 14,463 - %

MKG-Y [83] 2022 ENT./REL./CONCEPT Open EA, Search Engine 15,000 14,244 - %

MMKB-DB15K [83] 2022 ENT./REL./CONCEPT Open EA, Search Engine 12,842 12,818 - %

MarKG [91] 2023 ENT./CONCEPT Wikidata, Search Engine 11,292 76,424 34,420 ✓ %

Multi-OpenEA [36] 2023 ENT./CONCEPT Open EA, Search Engine 920,000 2,705,688 - ✓ %

UMVM [6] 2023 ENT./CONCEPT DBpedia, Multi-OpenEA 238,208 1,073,671 982,626 %

AspectMMKG [90] 2023 ENT./CONCEPT Wikipedia, Search Engine 2,380 645,456 - ✓ %

TIVA-KG [74] 2023 ENT./REL./CONCEPT Wikipedia, Search Engine 443,580 1,695,688 1,382,358 ✓ %

VTKG-C [29] 2023 ENT./CONCEPT ConceptNet, WordNet 43,267 461,007 111,491 ✓ %

UKnow 2024 ENT./REL./CONCEPT News, Wikipedia 1,388,568 1,073,671 3,673,817 ✓ ✓ ✓

exploration. Existing knowledge-based deep learning models are broadly divided into two aspects:
(1) external knowledge introduction [12], (2) internal knowledge mining [22]. The former leverages
expert knowledge by introducing external data [44, 28, 4] or pre-trained models [76, 58, 11, 86].
The latter means constructing correlations of training data by similarity [48, 13, 17] or discovering
favorable substructures of internal models [32, 7, 33, 78].

However, from the perspective of data organization, existing studies often claim to be knowledge-
based only using one piece of them, which is actually incomplete and cannot be analogous to the
complex knowledge network held by humans. In this work, we build a unified knowledge protocol
based on the multimodal knowledge graph to define the unified knowledge on multimodal data.

2.2 Multimodel Knowledge Graph Datasets

The Multimodal Knowledge Graph (MMKG) serves as a potent means to store and leverage mul-
timodal knowledge explicitly, which bolsters and enhances model performances across diverse
domains. In Tab. 1, we list mainstream multimodal knowledge graph datasets [72, 47, 26, 1, 92,
81, 38, 79, 83, 36, 6, 90, 74, 88, 29], constructed by texts and images with detailed information. In
terms of data scale, VisualGenome [26] is a multimodal knowledge graph which contains 40,480
relations, 108,077 image nodes with objects. The ImageGraph [47] further pushed up the number
of image nodes to 829,931 but missing the extraction of visual objects. Recently, VisualSem [1]
implements a multimodal knowledge graph with 938K image nodes and 89,896 entity nodes, but
it only uses 15 types of relation to build the graph. On the route of increasing the number of entity
nodes, while Multi-OpenEA [36] boasts 920,000 entity nodes, surpassing prior methods, our endeavor
has achieved 1,388,568 nodes, establishing the largest graph thus far. Besides, most of existing
multimodal knowledge graphs are more like a vision-similarity-based image library [40, 65] with
image descriptions and meta information, it lacks the most valuable feature of the knowledge graph:
“The Logical Connection”. This logic refers to the additional association between two nodes that
were originally unrelated, triggered by a news event involving these two nodes. For example, prior to
the news event "Celebrity 1 visits Area 1," there was no relation between Celebrity 1 and the Area 1.
The newly added "visit" relation in <(“Celebrity1”), visit, (“Area1”)> tuple exemplifies this logic,
which is highly beneficial for downstream tasks.

Generally speaking, the above news refer to international news, which carries the most complex
event logic as well as plentiful multimodal information [75]. To completely exploit the advantages
of multimodal knowledge graphs, building a dataset using event logic from international news is a
natural approach. However, there is not yet a large multimodal knowledge graph of news events.
RESIN [79] is a recently published multimodal knowledge graph containing 24 types of entities,
46 types of relations and 67 types of events. The larger and fresher CLIP-Event [33] is a event
rich dataset with 106,875 images and 187 types of events extracted by a text information extraction
system [92, 37]. Actually, CLIP-Event is not a knowledge graph and its definition of “event” is not
a news event but an action. In summary, one of goals of our work is to build a large, and realistic
news-event rich, multimodal knowledge graph dataset from international news.
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2.3 Knowledge-based Downstream Tasks

Thanks to the innovative unified knowledge proposed by our UKnow protocol, our dataset can readily
accommodate a variety of downstream tasks. In this study, we opt for common-sense reasoning
and vision-language pre-training as experimental domains to validate our dataset. Common-sense
reasoning is an extremely popular task in the field of knowledge graph. Since our dataset is based
on the knowledge graph, the performance validation on common-sense reasoning is indispensable.
Moreover, the representations from Vision-Language Pre-training models are capable of diminishing
the necessity for intricate task-specific architectures [9], which allows the knowledge to further
flow into various downstream tasks. By incorporating these two tasks, we are able to maximize the
assessment of the dataset’s knowledge validity.

Common-sense Reasoning. Common-sense reasoning means answering queries by logic permu-
tations. The specific task in this work is the link prediction. Various works [3, 70, 68, 60, 94, 53]
achieve reasoning by embedding entities and relations in knowledge graph into low-dimensional
vector space. Path-based methods [27, 82, 63, 51] start from anchor entities and determine the
answer set by traversing the intermediate entities via relational path. There are also GCN [25] based
methods [61, 16] pass message to iterate graph representation for reasoning.

Vision-Language Pre-training Vision-language pre-training (VLP) can be divided into three cat-
egories based on how they encode images [10]: OD-based region features [5, 31, 34, 41, 66, 69],
CNN-based grid feature [62, 19, 20] and ViT-based patch features [84, 30, 24]. Pre-training objec-
tives are usually: masked language/image modeling (MLM/MIM) [2, 9, 39], image-text matching
(ITM) [34, 19, 10], and image-text contrastive learning (ITC) [30, 50, 35].

3 UKnow

We commence by introducing the overall architecture of UKnow in Sec. 3.1. Then the detailed
exposition of the data collection process for the new dataset and statistics are presented in Sec. 3.2 and
Sec. 3.3. In Sec. 4, we lastly provide the guidance to researchers on how to integrate the multimodal
knowledge graph and effectively design a UKnow-based model.

Compared to previous libraries-like methods [40, 65] with simple descriptions and meta-information,
which lack the logical connection, the most valuable feature of our data processing pipeline is to
endow with more logical connections to achieve superior performance in various tasks. As shown
in Fig. 2, particularly focusing on visual and linguistic modalities, we categorize data knowledge
into five unit types. Then we devise an efficient data processing pipeline to help reorganize existing
datasets or create a new one under UKnow format. The construction process of UKnow can be
invoked separately for any multimodal data to standardize the knowledge. As shown in Fig. 3, the
whole pipeline is mainly empowered by three parts: content extraction, information symbolization,
and knowledge construction.

3.1 Construction Pipeline for UKnow Protocol

Phase-1: Content Extraction. Content Extraction is used to extract useful information from
different fields by pre-trained deep learning models. The pre-processing functions are designed
as P = {P1, P2, . . . , Pk}. Note that P can be replaced / added / disabled freely as needed.
We choose pre-trained models with both global descriptions and semantic level granularity:

P =



{P1, P2}, Image Encoder [50, 18]
{P3, P4, P5}, Image Caption [42, 45, 8]

{P6}, Image Det./Seg. [80]
{P7}, T ext Encoder [50]
{P8}, T ext NER/POS [73]
{P9}, Annotation

(1)

where Det. / Seg. and NER / POS refer to De-
tection / Segmentation and Named Entity Recog-
nition / Part-of-Speech tagging. Then we con-
struct the Nori

p = P(I, T ) (I is a RGB-image
and T is a text) which contains a wealth of exter-
nal knowledge. At this stage, all inputs concur-
rently go through the entire P. It also supports
the combined use of pre-trained models such as
P6 → P2 (e.g., extracting the features of each
object detected from the image). The final out-
put of Content Extraction can be formulated as
Np = Merge(Nori

p ). Merge transforms the
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in-img

1 x 512

N x 512
Image 

Encoder
Image 

Encoder

A large boat and a smaller boat in the water.
A large boat is in the water near a smaller boat.
A boat is sailing in the water near the shore.
A boat is docked in the water near a dock.

BBOX:    [[151,4,405,217], [ … ] …]
SCORE: [[0.99], [0.89], … , [0.54]]

SEG.:     [[0,1,1,1,0,…], […]]
OBJ. PATCH: [[tensor], [tensor]…]

Generated Captions
Det. / Seg.

Features

in-txt French trawler caught in protected Jersey waters

1 x 512

M x 512

Text 
Encoder

French trawler caught in 
protected Jersey waters.

French
TrawlerJersey Caught

Waters

Fishermen reported 
seeing Granville-based ...

...

Features
French  trawler caught in protected Jersey  watersPOS

NER French  trawler caught in protected Jersey  waters
['ADJ','NOUN','VERB','ADP','ADJ','PROPN','NOUN'][‘NORP’, ‘VEHICLE’, ‘GPE’]

(a) Iin and Tin.

(b) Icross, Tcross and ITcross. (c) Illustration of the complete UKnow.

Figure 2: Detailed data organization under UKnow protocol, which builds the multimodal (image
& text) graph Gm based on the Knowledge-View (Iin, Tin, Icross, Tcross, and ITcross). Each node
owns up to 22 attributes shown as Np in Fig. 3.

original output Nori
p into a K:V dictionary Np. The KEY of Np are shown in top right corner of

Fig. 3 (Np [Phase-1]). Np is also used as the attribute of each node in the final output multimodal
knowledge graph Gm.

Phase-2: Information Symbolization. Since Images and texts cannot be used directly for graph
construction, we design the Phase-2 to number all original or generated data by a certain rule,
then Phase-3 links these nodes to make a multimodal graph. Information Symbolization is used to
subscript Np to edge index Ne or node index Nn: (1) The symbolization for edges Ne is based
on the category or visual / semantic similarity. For example, “[111] title_title_clip” is a kind of
parallelism edge which is constructed by the cosine similarity of clip features of news titles. (2)
The symbolization for nodes Nn is divided into three levels: [fact, image / text, object / entity]. As
shown in Fig. 3, [L1.∗] means fact-level which is an abstraction of a piece of news. The real index
used in our multimodal knowledge graph would be {L1.0, L1.1, L1.2, ...}. Similarly, [L2.∗] means
image / text-level which is the symbolization of images or texts from news, [L3.∗] is the object in
image or entity in text. The index for all nodes is eventually shuffled, that is, the real index would be
{L1.0, L2.1, L1.2, L3.3, L3.4, ...}.

We provide the clearer explanations about the motivation of Phase-2. As stated in Sec. 3.2, our data are
collected from international news, which encompasses a wide variety of text and images. Although
Phase-1 preprocesses the data like detection and segmentation, the resulting features are still a huge
volume as it contains detailed information extracted from the news. While this detailed information is
valuable for constructing a knowledge graph, the computational demands and complexity far exceed
available resources. Thus, a common approach in knowledge graph construction is to store data and
their relationships as indices, as done in the Phase-2 Information Symbolization stage. This means it
has the following benefits: efficiency in storage and retrieval, fast lookup and traversal, uniqueness
and consistency, scalability, and simplification of graph operations.

Table 2: Edge (Ne) construction and statistics.
Phrase Construction Method View Num.

Phrase-2

Detection Category Iin 648,871
NER Category Tin 1,606,936

Similarity&Manual Annotation ITcross 684,207
Similarity&Manual Annotation Tcross,Icross 140,133

Phrase-3 Manual Event Annotation - 593,670

Phase-3: Knowledge Construction. We cat-
egorize data knowledge into five unit types,
namely, in-text (Tin), in-image (Iin), inter-text
(Tcross), inter-image (Icross), and image-text
(ITcross) which are together called Knowledge-
View detailed in Fig. 2(a) and Fig. 2(b).

In this phase, we aggregate two kinds of internal
knowledge (Iin, Tin) and three kinds of associative knowledge (Icross, Tcross, ITcross) in one graph
Gm, which are usually introduced independently in previous studies. Knowledge Construction takes
as input the edge index Ne and node index Nn numbered by Phase-2 and output the multimodal
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Ne
[Phase-2]

Nn
[Phase-2]

Np
[Phase-1]

Gm
[Phase-3]

Figure 3: Pipeline of dataset construction following UKnow protocol. Phase-1: Content Extraction
(Np), Phase-2: Information Symbolization (Nn, Ne), and Phase-3: Knowledge Construction (Gm).
Nn hides the real node index for easy understanding, the actual number is much more than Ne.

knowledge graph Gm (Fig. 2(c)). Since Ne and Nn are both isolated, we use four kinds of correla-
tion methods including semantic similarity, visual similarity, annotations, and categories to make
connections between Nn by Ne shown in Tab. 2.

3.2 Dataset Collection

Following the proposed protocol and three phases, we collect a new dataset, a large-scale multimodal
knowledge graph from public international news. Specifically, based on the Wikipedia API [43]
and our crawler system, we grab all the data of “Worldwide Current Events” from Wikipedia. As
demonstrated in top of Fig. 4, we propose two category sets of news event called: Event-11 and
Event-9185, which is coarse-grained and fine-grained respectively. For example, “Sports” is a
kind of coarse-grained event label in Event-11 and “2019 Daytona 500” is a fine-grained label in
Event-9185, detailed in Tab. 3. Since Wikipedia only records the news URL (downward black arrow
in Fig. 4) and the HTML of original news from different news platforms is inconsistent, it is difficult
to design a uniform crawler to get the well-structured raw data of news. Thus, we manually read
each news and collect the original data (rightward black arrow). By this way, each news in our
dataset is marked with extremely clean title, content, time, [image], image description, event
description, [hierarchical] event name (e.g., “Armed conflicts and attacks→War in Donbass”), and
event attribute (location, date, etc). Subsequently, as shown in bottom right of Fig. 4, we apply the
designed pipeline to sequentially undergo phases 1/2/3 to restructure the above extracted raw data,
resulting in the knowledge graph under the UKnow format.
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The 2019 Daytona 500, the 61st running of 
the event, was a Monster Energy NASCAR Cup 
Series race held on February 17, 2019, 
Contested over 207 ……

Events-11

Events-9185

Title

Time

Content

Image Description

Event Attributes
Event Name

URL https://www.foxnews.com/auto/daytona-500-massive-crash-started-paul-menard

Published February 17, 2019 9:00pm EST

Sports -> 2019 Daytona 500
Attributes

Event Description

Jamie McMurray (40), Erik Jones (20), William Byron (24), Brad Keselowski (2), Brendan Gaughan (62), Clint Bowyer 
(14) and Chase Elliott (9) collide in Turn 3 during the NASCAR Daytona 500 auto race at Daytona International 
Speedway Sunday in Daytona Beach.

Denny Hamlin wins the 2019 Daytona 500. It is his second win in the event, the first coming in 2016. (Fox News) 
……

Image

UKnow

wikipedia.org

News / Factwikipedia.org
text

object

News / Fact
entity

Event

image

News / Fact

Phase-1, Phase-2, Phase-3LAION-5B etc.
Original Data

Events-11 / 9185

Data Flow Diagram

Figure 4: Event category labeled on web data and the data flow diagram.

Table 3: Details of the event category.
Event Name (Event-11) Visual Texual All Event Name (10 examples of Event-9185) Visual Texual All

Armed conflicts and attacks 87,346 90,157 177,503 Saudi Arabian-led intervention in Yemen 555 258 813
Arts and culture 11,059 14,896 25,955 A boat carrying Indonesian migrants capsizes off the southern coast of Malaysia 46 19 65

Business and economy 12,598 25,565 38,163 Travel restrictions related to the COVID-19 pandemic 753 796 1,549
Disasters and accidents 28,062 47,459 75,521 GameStop short squeeze 45 175 220
Health and environment 230,926 258,349 489,275 Opposition to Brexit in the United Kingdom 383 93 476
International relations 37,349 56,444 93,793 Gretchen Whitmer kidnapping plot 167 308 475

Sports 15,647 31,194 46,841 Legality of euthanasia 185 455 640
Law and crime 69,573 86,514 156,087 Ukraine International Airlines Flight 752 (Air Crash) 314 179 493

Politics and elections 74,477 72,714 147,191 Manhattan blackout 269 90 359
Science and technology 4,062 15,556 19,618 2019 Lagos school collapse 524 119 643

Others 236 184 420 ... ... ... ...

Table 4: Partition of our dataset.

PARTITION Tin Iin Tcross Icross ITcross

NODE EDGE NODE EDGE NODE EDGE NODE EDGE NODE EDGE
Training Set 448,691 8,030,531 501,564 979,287 250,858 396,200 69,911 421,628 765,654 382,827
Validation Set 37,488 100,280 12,126 12,212 69,533 57,162 15,532 97,272 9,764 4,882
Testing Set 37,668 100,375 12,182 12,261 69,286 55,464 15,336 99,303 9,622 4,811
Pre-training Set 228,339 435,659 343,458 325,755 101,880 314,918 47,017 271,593 278,058 139,029
Fine-tuning Set 75,924 82,350 65,809 61,850 19,185 59,832 8,880 52,772 52,522 26,261
Testing Set 34,422 28,219 22,809 22,278 6,633 21,360 3,074 17,754 18,186 9,093

Furthermore, in addition to utilizing intricate annotation files (e.g., Fig. 4) as inputs mentioned above,
another major advantage of the proposed conversion pipeline is its ability to accommodate common
image-text pair annotations expressed in the format of “[image description] \t ./xxx.jpg \n”), as the
fundamental input. This design allows UKnow to automatically construct a new dataset with more
useful information from an existing image-text pair dataset. Taking LAION-5B [59] as an example,
which solely comprises pairs of images and text, our pipeline can extract more features from them
like objects, and thus expand LAION-5B into a larger and more practical dataset. However, given
the absence of high-level event logic, this type of input does not lend itself to the creation of [L1.∗]
nodes and event-related edges.
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Table 5: Histogram of the number of indexes in our dataset. The x-axis in the upper left corner
(Node Index) corresponds to the order of the In in Fig. 3.
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3.3 Dataset Statistics and Visualizations

Through data collection and processing in Sec. 3.2, our dataset comprises 1,388,568 nodes, of which
571,791 are relevant to vision (i.e., pertaining to a news image or a visual object), and 3,673,817 triples.
The partitioning of our dataset is presented in Tab. 4, with all partitions being randomly sampled.
Moreover, as depicted in Fig. 5, we present the histogram of all indices in UKnow. Considering our
dataset is a multimodal knowledge graph, i.e., each node corresponds to a multimodal data, and each
edge serves the purpose of connecting either single or cross-modal nodes.

The top-2 number of nodes are “[L3.∗] objects” (501,880) and “[L3.∗] entity_content” (386,561)
which belong to Iin and Tin respectively. The former represents visual objects extracted from images,
and the latter means text entities extracted from news contents. The maximum number of edges is
“[105] imgsim” (3,447,990) which is a kind of associative knowledge from Icross.

Table 6: Histogram of the number of other edge indexes.
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Table 7: The variation in different similarity thresholds.
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Table 8: The graph density and mainstream node types.
τ Density (ρ) 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 ⩾18

NodeNum. 615k 463k 132k 71k 55k 32k 14k 4k 703 780.8 MainType Entity Object Title Image Content

Fig. 3.3 shows the variation in differ-
ent thresholds. τ indicates the thresh-
old of cosine similarity which controls
whether edges are built between nodes.
It can be adjusted according to needs
(e.g., storage, computational complex-
ity, fineness). The default setting of τ
is 0.8. ρm indicates the average edge
number of connections per node in
the entire graph, which demonstrates
the density of a graph. As shown
in Tab. 8, the whole graph is sparse
with ENTITY as the main nodes of the
background, and the subject element
of the dense region is CONTENT. ρ
means the number of edges, i.e., there
are 615k nodes with 0-edge or 1-edge,
463k nodes with 2-edges or 3-edges,
and so on. The Mean Density (ρm)
in Fig. 3.3 is calculated as a weighted
average of ρ and the number of nodes.

Tab. 3 shows all the categories in Event-11, and 10 examples in Event-9185. “Visual” means the
number of nodes belonging to images or objects. “All” means the number of all nodes marked with
this event category. Generally speaking, Event-9185 is specific to an exact human activity and can be
used to learn the semantic relevance of news contents, while Event-11 is more like a categorization of
news events, which is benefit for archiving news materials through a trained classification model.

3.4 Why UKnow protocol

In most of existing Knowledge Graph (KG), data organization is typically driven by the requirements
of specific tasks, such as image classification, object detection, or semantic search. For example,
VisualGenome organizes data by creating dense image annotations linked to textual descriptions,
while MMKG-YAGO15k focuses on aligning textual concepts with visual data. This task-specific
data organization methods often lack a cohesive framework for organizing data across multiple
modalities in a unified manner. As a result, most existing KGs are often designed with specific
applications in mind, such as common-sense reasoning, multimodal event classification, or visual
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task adaptation. While these applications benefit from the structured nature of KGs, the underlying
datasets may not be flexible enough to support a wide range of tasks, particularly those that require
cross-modal reasoning or dynamic context adaptation.

In contrast, UKnow is inherently designed to handle multimodal data (e.g., images, text) in a unified
structure. This allows for seamless integration and interaction between different types of data, making
it particularly well-suited for tasks that require cross-modal reasoning, such as vision-language
pre-training and complex event understanding. Besides, UKnow introduces a hierarchical structure
that organizes nodes into levels and incorporates logical connections between them. The unified
structure and logical richness of UKnow make it highly versatile for a wide range of downstream
tasks. The ability to evaluate various tasks on a unified Knowledge Graph also reduces the complexity
of model development and evaluation, leading to more efficient and effective AI solutions.

4 Usage of UKnow

4.1 UKnow for Common-sense Reasoning

Since UKnow is reasoning compatible, i.e., it naturally supports all KG-reasoning models, we directly
implemented the commonly used KG-reasoning models (e.g., TransE [3], Q2B [54]) on UKnow.
We propose a plug-in module which aggregates node features within a small sub-graph region to
achieve a better central node features. We briefly introduce how to implement this module. Suppose
N(e) ≡ {eneib|r(eneib, e)∨ r(e, eneib), r ∈ R} is the collection of neighbors of each central node e.
The calculation expression of the new representation e′ of e is as follow:

e′ = MLP(Flatten(ReLU(ωn ⋆ (τ ′(e, Ne
′)) + bn)), (2)

where e ∈ R
d is the node feature before enhancement, e′ is the new feature, ⋆ denotes a 2D

convolution operation, ωn is the filter, bn is the bias and the specification of MLP isRm1×m2 ×Rd.
The concat function τ ′(e, Ne) ∈ Rm1×m2 as [e; eneib1

′
; eneib

2′ ; . . . ; eneib
m] where eneib

i ∈ N ′
e.

4.2 UKnow for Vision-Language Pre-training

Following the recent works [33], our work applies CLIP [50] as the pre-trained backbone benefit
from its strong downstream performance. Specifically, the text encoder first tokenize the input
text description into the word sequence, and then projects them into word embeddings W0 =

{w1
0,w

2
0, · · · ,wN

0 } ∈ RN×dt

. W0 is fed into a L-layer Transformer [71] with the architecture
modifications described in BERT [9]. And the final text embedding zT is obtained by projecting the
last token, which corresponds to the [EOS] (the end of sequence) token, from the last layer of the text
encoder, i.e., zT = TextProj(wN

L ), zT ∈ Rd. As for the vision encoder, the input image I is first
split into M non-overlapping patches, and projected into a sequence of patch tokens E0 ∈ RM×dv

.
Then, E0 is fed into a L-layer Transformer-based architecture along with a learnable [CLS] token
c0. The final image embedding zI is obtained by projecting the [CLS] token from the last layer of
the vision encoder, i.e., zI = VisProj(cvL,E

v
L)), z

I ∈ Rd. Since we have Knowledge-View, a new
dimension zk which is used to represent knowledge is introduced:

zk = Concat(Iin(zI), Tin(z
T ), Icross(z

I), Tcross(z
T )), (3)

where Iin(·) and Tin(·) mean to get the embedding of the [L3.∗] nodes (Nn) from Gm via Ne,
Icross(·) and Tcross(·) mean to get the embedding of [L2.∗] from Gm. Therefore, the similarity
score between the image, text and knowledge can be calculated with the cosine similarity as follow:

s(T, I, k) =
zT

⊤
zI

∥zT ∥∥zI∥ +
zk

⊤
zI

∥zk∥∥zI∥ +
zk

⊤
zT

∥zk∥∥zT ∥ . (4)

4.3 UKnow Baseline

Upgrading AI from understanding objects (e.g., an apple) as in most current vision tasks to under-
standing complex human activities (e.g., an event), to understanding the logic between entities or
objects, and to achieving higher-order intelligence, is always the thing we would like to pioneer. Thus,
in this section, we naturally present a series of novel logic-rich downstream tasks as the baselines
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for our dataset. Specifically, Common-sense Reasoning is a conventional and fundamental task
in our domain, aligning closely with our dataset. Then we perform multiple downstream tasks to
verify the performance of the pretrained model trained with our dataset. For more details about task
description/training setting/evaluation metric/analysis, please refer to Sec. C.

Common-sense Reasoning. We implement the Q2B∗ with our UKnow based plug-in module based
on Q2B [54] and BETAE∗ based on BETAE [55]. As shown in Tab. 9, BETAE∗ achieves on average
21.64% and 21.23% MRR on the validation and testing set of our dataset. It indicates that our
UKnow based module can significantly improve the performance of existing methods.

Multimodal Event Classification. As shown in Tab. 10, TCL [85] achieves on 66.80% and 55.87%
on ACC@1 when using the image-input on the Event-11 and Event-9185. respectively. We add a
late-fusion module after the image/text encoder for all methods to support multimodal classification.
Results show that TCL obtains gains of 1.89% and 5.02% compared with the singlemodal input,
which demonstrates that multimodal pre-training is more helpful for downstream multimodal tasks.

Single- & Cross-Modal Retrieval. As shown in Tab. 11, TCL [85] achieves on 33.24%, 43.37%
and 45.22% R@1, R@5, R@10 on the zero-shot setting of image retrieval. The results are 58.89%,
68.47% and 73.91% when fine-tuning the pre-trained parameters, which means the pre-training→fine-
tuning strategy is extremely beneficial for downstream retrieval.

Visual Task Adaptation. As shown in Tab. 12, our approach obtains gains of avg. 1.14% compared
with the origin CLIP when fairly using the same UKnow’s data for the upstream pre-training. It is
essential to highlight that the image-text PAIR constitutes only one type of data in our protocol. By
leveraging the capabilities of UKnow, our pre-trained CLIP model can effectively comprehend the
inherent knowledge, resulting in superior performance than original CLIP model (Tab. 12, Row2).

4.4 Practical Applications in Other Domains

UKnow is a general multimodal knowledge graph construction protocol that can be easily adapted
to different domains by adjusting P in Phase-1 to the relevant processing modules required. Due to
issues such as time and effort and difficulty of data acquisition, in this paper, we only use international
news as an example, given its significance in the multimodal field and its ability to highlight UKnow’s
strengths in handling multimodal data. In the future, as we mentioned in Sec. D.3, we aim to diversify
modalities by augmenting our dataset with a broader range of modalities (e.g., audio, video, 3D, etc.)
to facilitate exploration across various downstream tasks. Here’s an example of how to extend UKnow
to the video domain and modality: (1) Phase-1: Replace P with operations like Video Captioning,
Action Recognition, Video Summarization, or Object Detection and Tracking to process the video
content. (2) Phase-2: Organize the processed video features into the node index and construct
relationship edges with other modalities such as text, images, and audio. (3) Phase-3: Utilize Phase 3
to build the knowledge graph, which can then be applied to various knowledge-based downstream
tasks.

5 Conclusion

This paper presents a unified knowledge protocol called UKnow to establish the standard of knowledge
from the perspective of data. Following this protocol, we collect a novel and the largest multimodal
knowledge graph dataset from public international news with rich news event annotations, which can
help intelligent machines understand human activities and history. The specific tasks addressed in
this paper are the common-sense reasoning and vision-language pre-training. The former is a typical
task in the knowledge graph field, and the latter brings knowledge to various downstream tasks. We
also present a series of novel logic-rich downstream tasks to showcase the advantages of UKnow. In
future work, we will continuously expand the data of different scales based on the UKnow protocol.
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A Addition Statement for Our New Dataset

A.1 Dataset Documentation and Intended Use

We offer a detailed overview of our dataset statistics in Sec. 3.3. To facilitate better understanding and ease of
access, we have made our dataset project available on ModelScope at: https://www.modelscope.cn/datasets/
yutong/UKnow/summary, which includes dataset summary, data preview, quickstart and data files.

The detailed data organization and corresponding download links are listed below:
• Original data: We gather our data from publicly available international news sources, accumulating a

substantial volume of images and text. Subsequently, we compress the collected data into several zip archives
and store them in original_data: UKnow/raw_data/*.

• Processed data:
• Pre-node Np: Building upon Phase-1, we leverage pre-trained deep learning models to extract valuable

information from various domains. The resultant output from Phase-1 is structured as a dictionary and is
then stored and saved to pre_node: UKnow/processed_data/pre_node*.

• Node index Nn and Edge index Ne: As the outcomes acquired in Phase-1 (e.g., Np) are not directly
applicable for graph construction, we employ an information symbolization strategy to organize them into
indices, namely Nn and Ne, which are subsequently saved to index:
UKnow/processed_data/*_index*.pickle.

• Knowledge graph Gm: Finally, we consolidate two types of internal knowledge (Iin, Tin) and three types
of associative knowledge (Icross, Tcross, ITcross) into into one knowledge graph (Gm), which is stored as
a dictionary in graph: UKnow/processed_data/graph*.pickle.

Our dataset is intended for academic use and the corresponding license is based on: https://www.contributor-
covenant.org/zh-cn/version/1/4/code-of-conduct.html, which was created by Coraline Ada Ehmke in 2014 and is
released under the CC BY-NC-ND 4.0.

A.2 Author statement

We confirm the data licenses and that we bear all responsibility in case of violation of rights.

A.3 Hosting, licensing, and maintenance plan

Hosting and Licensing. Our dataset is hosted on ModelScope. Moreover, we furnish the relevant licenses in
accordance with ModelScope at: https://www.contributor-covenant.org/zh-cn/version/1/4/code-of-conduct.html,
which was created by Coraline Ada Ehmke in 2014 and is released under the CC BY 4.0 License.

Introduction to ModelScope. ModelScope is a platform designed for managing and optimizing machine
learning models. It provides various tools and features to streamline the model development process, including
version control, performance monitoring, and collaboration capabilities. As for managing datasets, ModelScope
offers robust functionality for organizing, storing, and accessing data. Users can upload datasets to the platform,
where they are securely stored and can be easily accessed by authorized team members. ModelScope also
supports versioning of datasets, allowing users to track changes over time and ensure reproducibility in their
experiments. Additionally, the platform provides tools for data preprocessing, visualization, and analysis,
helping users to efficiently prepare their data for model training and evaluation. Overall, ModelScope offers
comprehensive support for managing datasets throughout the machine learning lifecycle. Therefore, we choose
ModelScope as our hosting platform.

Usage of ModelScope. To enable users to directly utilize all models on the ModelScope platform without
configuring the environment, ModelScope integrates an online Notebook programming environment on its
website and offers official mirrors for developers. These official mirrors allow users to bypass all installation and
configuration steps, providing immediate access to the models. Currently the latest version of the CPU mirror
and GPU mirror can be obtained from the office ModelScope repository.

Users also can setup local python environment using following commands:

1 conda create -n modelscope python =3.8
2 conda activate modelscope
3 pip install modelscope

Then, users can access and enjoy our dataset by:

1 from modelscope.msdatasets import MsDataset
2 ds = MsDataset.load(‘yutong/UKnow ’,␣subset_name=‘default ’, split=‘train ’)
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Besides, we strongly recommend that users read the official documents for optimal use.

Maintenance Plan. In future work, we will persistently augment the dataset across various scales following
the UKnow protocol. This endeavor aims to furnish a comprehensive, diverse, and resilient multimodal
knowledge graph, thereby facilitating subsequent research endeavors.

B Preliminaries

Multimodal Knowledge Graph. An intuitive interpretation of multimodal knowledge graph is that the ordinary
knowledge graph only consists of <head, relation, tail> triples like <(“Jony”), Citizen, (“New York”)> , but
the multimodal knowledge graph consists of the following:
<(“Jony”), Citizen, (“NewYork”)>,
<(“Jony”), Appearance, (“[Face]”)>,
<(“NewYork”), Landmark, (“[Statueofliberty]”)>,
<(“[AirForceOne]”), Similarity, (“[AirForceTwo]”)>,
where (·) means a text node and [·] means a image node. The machine cannot understand what “An old man with
white hair” is without establishing the connection between each word and its physical world meaning. However,
with the help of multimodal knowledge graph, as a simple example, it is possible to generate a more informative
entity-level sentence (e.g., “Biden is making a speech”) instead of a vague concept-level description (e.g., “An
old man with white hair is making a speech”). To evaluate the effectiveness of multimodal knowledge graph
(MMKG), several downstream tasks are often performed on the MMKGs, including common-sense reasoning,
vision-language pre-training.

Common-sense Reasoning. Common-sense reasoning means answering queries by logic permutations. The
specific task in this work is the link prediction. In the inference phase, feeding <("America"), Capital> to
a reasoning model, the output should be <("Washington")>. Various works [3, 70, 68, 60, 94, 53] achieve
reasoning by embedding entities and relations in knowledge graph into low-dimensional vector space. For
instance, GQE [15] encodes queries through a computation graph with relational projection and conjunction (∧)
as operators. Path-based methods [27, 82, 63, 51] start from anchor entities and determine the answer set by
traversing the intermediate entities via relational path. There are also GCN [25] based methods [61, 16] pass
message to iterate graph representation for reasoning. Common-sense reasoning is an extremely popular task in
the field of knowledge graph. Since our dataset is based on the knowledge graph, the performance validation on
common-sense reasoning is indispensable.

Vision-Language Pre-training Vision-language pre-training (VLP) can be divided into three categories based
on how they encode images [10]: OD-based region features [5, 31, 34, 41, 66, 69], CNN-based grid feature [62,
19, 20] and ViT-based patch features [84, 30, 24]. Pre-training objectives are usually: masked language/image
modeling (MLM/MIM) [2, 9, 39], image-text matching (ITM) [34, 19, 10], and image-text contrastive learning
(ITC) [30, 50, 35]. In this work, we concentrate on the study of the how to introduce our UKnow into ITC
method based on ViT-based patch features.

Image-Text Contrastive Learning. The recent CLIP [50] and ALIGN [21] perform pre-training using a
crossmodal contrastive loss on millions of image-text pairs, which achieves remarkable performance on various
downstream tasks [42, 62, 64]. MDETR [23] trains on multi-modal datasets which have explicit alignment
between phrases and objects. GLIP [32] generates grounding boxes in a self-training fashion, and makes the
learned representations semantic-rich. We implement these mainstream methods on our dataset, and also design
a basic knowledge-based ITC method with UKnow.

C Experimental Details

In this section, we give more details about the computation complexity, training, fine-tuning hyperparameters
and evaluation for reference.

C.1 Common-sense Reasoning

Datasets. Since our dataset is a knowledge graph, we benchmark the performance of KG-reasoning models on
our dataset by completing KG-triples. The partitioning of the dataset is illustrated in the upper segment of Tab. 4.

Evaluation. The specific task of common-sense reasoning in this work is the link prediction. Given a test query q
(e.g.„ <(“Jony”), Citizen, (?)>), we are interested in discovering non-trivial answers (e.g.„ “New York”). That is,
answer entities where at least one edge needs to be imputed in order to create an answer path to that entity. Each
entity in our multimodal knowledge graph is not limited to a text entity but a multimodal node. Following [56],
for each non-trivial answer t of test query q, we rank it against non-answer entities E\[[q]]test [3]. Then the rank
of each answer is labeled as r. We use Mean Reciprocal Rank(MRR): 1

r
and Hits-at-N (H@N) : 1[r ≤ N ] as

quantitative metrics.
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Table 9: A new benchmark of the common-sense reasoning task. We report four metrics of each
model on the validation and test sets. All experiments were repeated five times and the variance is
shown in the table.

Model Val-H@1 Val-H@3 Val-H@10 Val-MRR Test-H@1 Test-H@3 Test-H@10 Test-MRR
TransE [3] 11.75 ± 0.113 29.04 ± 0.112 31.76 ± 0.143 14.77 ± 0.153 11.26 ± 0.114 21.68 ± 0.115 31.57 ± 0.127 14.66 ± 0.123
Q2B [54] 14.99 ± 0.118 25.78 ± 0.135 36.76 ± 0.169 18.80 ± 0.166 14.48 ± 0.119 25.17 ± 0.135 36.32 ± 0.163 18.46 ± 0.134

Q2B∗ 16.84 ± 0.115 29.00 ± 0.166 38.85 ± 0.169 19.66 ± 0.158 16.35 ± 0.122 28.67 ± 0.174 38.45 ± 0.184 19.27 ± 0.146
BETAE [55] 18.04 ± 0.129 33.02 ± 0.161 41.97 ± 0.179 21.16 ± 0.167 17.65 ± 0.129 32.75 ± 0.160 41.67 ± 0.177 20.75 ± 0.140

BETAE∗ 19.02 ± 0.125 33.97 ± 0.173 43.17 ± 0.199 21.64 ± 0.173 18.22 ± 0.135 33.52 ± 0.187 42.68 ± 0.198 21.23 ± 0.154
QA-GNN [87] 21.69 ± 0.124 38.11 ± 0.167 45.97 ± 0.180 22.83 ± 0.179 21.05 ± 0.128 37.26 ± 0.164 44.32 ± 0.175 22.06 ± 0.165

Table 10: A new benchmark of the novel event classification task. All models are fine-tuned in the
training set. Model IMG TXT Event-11 Event-9185

ACC@1 ACC@5 ACC@1 ACC@5
CLIP [50] ✓ 65.77 76.82 54.62 63.19
DeCLIP [35] ✓ 66.43 78.32 54.86 63.82
ALBEF [30] ✓ 66.29 77.84 55.03 63.47
TCL [85] ✓ 66.80 78.91 55.87 64.33
CLIP ✓ 64.32 75.92 57.48 65.78
DeCLIP ✓ 65.89 77.51 59.76 67.81
ALBEF ✓ 65.31 76.97 58.43 66.32
TCL ✓ 66.03 78.14 59.94 68.23
CLIP ✓ ✓ 66.08 72.88 57.42 65.65
DeCLIP ✓ ✓ 67.16 72.96 58.64 66.49
ALBEF ✓ ✓ 68.03 74.26 60.04 68.13
TCL ✓ ✓ 68.69 75.02 60.89 69.17

Baselines. We consider four baselines: TransE [3], Q2B [54] and BETAE [56]. Since the UKnow based plug-in
module can be attached to any reasoning models, we implement the Q2B∗ with our module based on Q2B and
BETAE∗ based on BETAE. As shown in Tab. 9, BETAE∗ achieves on average 21.64% and 21.23% MRR on
the validation and testing set of our dataset, respectively. For a fair comparison (e.g., TransE), our dataset does
not construct complex logic such as FOL [14] to evaluate the performance of multi-hop logical reasoning.

C.2 Multimodal Event Classification

We propose a novel task called multimodal event classification, leveraging event annotations (Tab. 3) from both
Wiki’s event categories and our own manual tagging. The event annotation helps intelligent machines understand
human activities and history, offering the possibility to identify which type of event or which real historical event
a picture or a text is relevant to. As shown in Tab. 10, TCL [85] achieves on 66.80% and 55.87% on ACC@1
when using the image-input on the Event-11 and Event-9185, respectively. We simply modify all the baseline
methods and add a late-fusion module after the image/text encoder to support multimodal classification. Results
show that TCL with multimodal inputs obtains gains of 1.89% and 5.02% compared with the singlemodal,
which demonstrates that multimodal pre-training is more helpful for downstream multimodal tasks.

C.3 Single- & Cross-Modal Retrieval

We design four kinds of single- & cross-modal retrieval tasks: image-to-image, text-to-text, image-to-text, and
text-to-image. The construction of GT is based on the event annotations in Gm (Fig. 4). We treat images or texts
belonging to the same news event as a similar semantic cluster, and the goal of retrieval is to recall the nearest
neighbors within this cluster. The features used for retrieval are derived from the output of the previous layer of
the classifier.

As shown in Tab. 11, TCL [85] achieves on 33.24%, 43.37% and 45.22% R@1, R@5, R@10 on the zero-shot
setting of image retrieval. The results are 58.89%, 68.47% and 73.91% when fine-tuning the pre-trained
parameters, which means the pre-training→fine-tuning strategy is extremely beneficial for downstream retrieval.
We provide more details about hyperparameters in Sec. C.5.

C.4 Visual Task Adaptation

Visual Task Adaptation Benchmark (VTAB) [89] is a diverse, realistic, and challenging vision representation
benchmark, containing 19 tasks and covering a broad spectrum of domains and semantics. These tasks
are grouped into three sets: NATURAL, SPECIALIZED, and STRUCTURED which utilize natural world,
professional technology and artificial environment images respectively. We benchmark models on VTAB with
ACC@1. We fine-tune models for 10 epoch in each task and compute the inner product between outputs of
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Table 11: A new benchmark of the retrieval task. Zero-shot means freezing the pre-trained
parameters then transfer to the test set for inference. Fine-tune means tuning the pre-trained parameters
in the training set before inference.

Model Retrieval Zero-Shot Fine-Tune
R@1 R@5 R@10 R@1 R@5 R@10

CLIP [50] IMAGE 32.41 41.96 43.92 55.97 67.44 71.28
DeCLIP [35] IMAGE 32.75 42.36 44.38 56.96 66.59 70.95
ALBEF [30] IMAGE 32.88 42.76 44.79 58.56 67.83 72.24
TCL [85] IMAGE 33.24 43.37 45.22 58.89 68.47 73.91
CLIP TEXT 33.02 42.56 46.03 56.50 65.12 70.20
DeCLIP TEXT 34.00 43.97 47.11 55.87 65.20 70.35
ALBEF TEXT 33.87 43.86 46.82 56.77 65.91 71.15
TCL TEXT 34.67 44.25 47.67 56.60 65.50 70.54
CLIP IMG-to-TXT 32.73 42.64 44.72 56.32 66.93 70.61
DeCLIP IMG-to-TXT 32.96 42.84 45.17 57.21 66.80 71.26
ALBEF IMG-to-TXT 33.20 42.97 45.32 58.43 67.59 71.95
TCL IMG-to-TXT 33.37 43.25 46.04 58.70 67.88 72.33
CLIP TXT-to-IMG 31.78 41.04 42.51 55.74 64.38 69.56
DeCLIP TXT-to-IMG 32.13 41.55 42.99 55.84 65.12 70.32
ALBEF TXT-to-IMG 31.95 41.32 42.85 57.21 66.04 71.50
TCL TXT-to-IMG 32.56 42.04 43.74 57.17 65.92 71.47

Table 12: The comparison of w/ and w/o UKnow pre-training. Zero means the model is initialized
with all-zero parameters w/o pre-training. CLIP∗ means pre-training with origin CLIP contrast loss
on our dataset. Ours means UKnow pre-training.
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images and label texts with prompts [50] through pre-trained image encoders and text encoders as the similarity
score. As shown in Tab. 12, our approach obtains gains of avg. 1.14% compared with the origin CLIP when
fairly using the same UKnow’s data for the upstream pre-training. For the suboptimal performance on the
Retinopathy and NORBElev datasets, we carefully examine the composition of both dataset. The Diabetic
Retinopathy dataset consists of image-label pairs with high-resolution retinal images labeled to indicate the
presence of diabetic retinopathy (DR) on a scale from 0 to 4. Similarly, the NORBElev dataset contains jittered
texture images. It is evident that these data significantly differ from the natural images collected in UKnow. In
constract, commonly used general image datasets in practical applications, such as CIFAR-10, tend to show
greater improvements when utilizing UKnow. This observation suggests that researchers, when designing
advanced knowledge-based pre-training methods with UKnow, should carefully consider balancing data domains
according to specific downstream tasks. Additionally, accurate node construction is essential for building a
robust multimodal knowledge graph to fully leverage the advantages of UKnow. This underscores the importance
of designing effective pre-processing functions P , particularly in specialized subfields such as the Retinopathy
dataset. In these domains, more dedicated data pre-processing models, such as medical image segmentation and
detection models, can be employed to enhance feature extraction.

The backbone of CLIP is ViT-B/32. The cost of pre-train is 26h / 30epoch. The key hyperparameters are bs: 512,
lr: 0.001, warmup: 1e4, eps: 1e-8, beta1: 0.9, beta2: 0.999, dim: 512, AdamW. The detailed setting can be
found in Sec. C.5. It is essential to highlight that the image-text PAIR constitutes only one type of data in our
protocol. By leveraging the capabilities of UKnow , our pre-trained CLIP model can effectively comprehend the
inherent knowledge ingrained within the data, resulting in superior performance than the original CLIP model
(as observed in Tab. 12, Row2, utilizing image-text PAIR only).

C.5 Hyperparameters

Tab. 13 and Tab. 14 list the hyperparameters that differ on each models and are determined with the validation
performance on our dataset. In particular, Tab. 13 lists 7 common hyperparameters, such as learning rate, batch
size, warmup, epoch number, etc., employed during pre-training. The pre-trained model is evaluated using a
standard pipeline consisting of pre-training on Dataset1, fine-tuning on Dataset2-Train, and testing on either
Dataset2-Test/Val. Therefore, we list the hyperparameters used during fine-tuning in Tab. 14, which are slightly
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different from Tab. 13. We omit some of the model results, since ALBEF and TCL share the same set of
hyperparameters, and the original CLIP and CLIP-UKnow share the same set of parameters.

Table 13: Hyperparameters for models of pre-training.

Hyperparameter ALBEF DeCLIP CLIP-UKnow
Learning Rate 0.0001 0.001 0.001
Batch Size 128 128 512
Number of Epochs 30 30 30
Weight Decay 0.02 0.1 0.1
Optimizer AdamW AdamW AdamW
Feature Dim 256 512 512
Warmup 20epc 5000 10000

Table 14: Hyperparameters for models of fine-tuning.

Hyperparameter ALBEF DeCLIP CLIP-UKnow
Learning Rate 0.0001 5e-5 5e-5
Batch Size 128 256 256
Number of Epochs 128 20 20
Weight Decay 0.02 0.02 0.02
Optimizer AdamW AdamW AdamW
Feature Dim 256 512 512
Warmup 4epc 6epc 6epc

C.6 Computation Complexity

Here we detail the time cost of pre-training and fine-tuning. The GPU is NVIDIA(R) A100, the memory of GPU
is 81,251MiB, driver version is 470.154, CUDA version is 11.4. The CPU is Intel(R) Xeon(R) Platinum 8369B
@ 2.90GHz with 15 physical computation cores. The environment is Python 3.6.12 with Torch 1.10.1. Results
are as shown in Tab. 15 and Tab. 16.

Table 15: The time cost of pre-training.

Model Backbone Epoch Batch Time/h
DeCLIP ViT-B/32 30 128 91
ALBEF ViT-B/16 30 128 69
TCL ViT-B/16 30 128 67
CLIP∗ ViT-B/32 30 512 25
CLIP-UKnow ViT-B/32 30 512 26

Table 16: The time cost of downstream fine-tuning.

Model Backbone UKnow Tasks VTAB
Epoch Batch Time/h Epoch Batch Time/h

DeCLIP ViT-B/32 20 128 12 - - -
ALBEF ViT-B/16 20 128 10 - - -
TCL ViT-B/16 20 128 10 - - -
Zero∗ ViT-B/32 - - - 15 128 3
CLIP∗ ViT-B/32 20 256 8 15 128 3
CLIP-UKnow ViT-B/32 20 256 8 15 128 3

D Discussion

D.1 Complexity

We notice that the detailed pipeline and protocol may appear complex and require effort to implement and
understand fully. However, this complexity is necessary to ensure that the pipeline is robust, flexible, and capable
of handling diverse and multimodal datasets.

To mitigate the implementation challenges, we have designed the pipeline to be modular, like Phase-1/2/3,
allowing each phase to be independently replaced, added, or disabled based on specific needs. Moreover,
we present an extra dataset documentation and construct a website in Sec. A.1. It provides a detailed data
organization, corresponding download links, and an example code to guide users through the process, making
the protocol more accessible and easier to adopt. Our goal is to balance complexity with practicality, ensuring
that the benefits of a thorough and versatile approach outweigh the initial learning curve.
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D.2 Correlation between the Knowledge View and Phase 1

In Phase 1, Content Extraction is designed to preprocess raw data (such as images and texts) using pre-trained
deep learning models, which extract essential information that serves as the foundation for our knowledge view.
The extracted content Np provides a rich, structured collection of attributes and features that capture both global
and semantic-level details from the input. It transforms raw data into a set of key-value pairs that represent
various aspects of the input content. These key-value pairs encapsulate knowledge at different levels, which are
critical for constructing meaningful nodes in the subsequent phases. This structured output essentially forms the
knowledge view of our system, where each extracted piece of information is treated as a node attribute. These
attributes are later symbolized and linked in Phase 2, leading to the construction of the multimodal knowledge
graph in Phase 3. Thus, the content extracted in Phase 1 is directly correlated with the knowledge view, serving
as the core data that the entire graph construction process relies upon.

D.3 Limitation and Future Work

Despite the strides made, our research bears certain limitations. First of all, our current dataset primarily centers
on text and image modalities which serve as fundamental pillars for information storage and representation, but
lack other useful modalities. In future work, we aim to diversify modalities by augmenting our dataset with a
broader range of modalities (e.g., audio, video, 3D, etc.) to facilitate exploration across various downstream
tasks. Second, for each downstream task, we selected several basic yet most suitable methods for our work as our
baseline, resulting in slight deviations with current state-of-the-art (SOTA) performance. Our primary objective
lies in validating the efficacy of our proposed dataset and protocols, and demonstrating the most straightforward
and intuitive approach for utilizing our dataset. Hence, we made certain trade-offs, sacrificing some performance
by opting for a more rudimentary approach instead of pursuing the SOTA method to enhance understanding and
usage. We anticipate that our simplified demonstration will stimulate the community to delve deeper into the
potential enhancements that UKnow can offer in improving performance.

D.4 Societal Impact

As stated in Sec. 3.2, our dataset originates from publicly accessible international news sources via the Wikipedia
API. These sources only contain events that are publicly available and do not include any sensitive information.
Consequently, we confidently affirm that our research carries no potential negative societal impacts.
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