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ABSTRACT

We propose a new approach, Synthetic Optimized Layout with Instance Detection
(SOLID), to pretrain object detectors with synthetic images. Our “SOLID” ap-
proach consists of two main components: (1) generating synthetic images using a
collection of unlabelled 3D models with optimized scene arrangement; (2) pretrain-
ing an object detector on “instance detection” task—given a query image depicting
an object, detecting all instances of the exact same object in a target image. Our
approach does not need any semantic labels for pretraining and allows the use of
arbitrary, diverse 3D models. Experiments on COCO show that with optimized
data generation and a proper pretraining task, synthetic data can be highly effective
data for pretraining object detectors. In particular, pretraining on rendered images
achieves performance competitive with pretraining on real images while using
significantly less computing resources.

1 INTRODUCTION

Object detection is a key computer vision task. Currently, state-of-the-art systems are trained on
a large number of manually annotated images. However, manual annotations are costly to acquire;
as a result, such reliance can potentially become a bottleneck for further improvement. An important
question is whether additional performance gains can be achieved by using alternative sources of
data without manual labels.

To reduce the dependency on manual labels, recent work (He et al., 2020; Chen et al., 2020d;b; Hénaff
et al., 2021; Roh et al., 2021; Xiao et al., 2021; Bar et al., 2021; Caron et al., 2020; Ye et al., 2019; He
et al., 2021; Pathak et al., 2016; Vincent et al., 2008; 2010; Bao et al., 2021; Chen et al., 2020a; Misra
& van der Maaten, 2020; Kolesnikov et al., 2019; Doersch & Zisserman, 2017; Cao et al., 2020; Chen
& He, 2021; Asano et al., 2020; Caron et al., 2018; Huang et al., 2019) has explored self-supervised
pretraining, which leverages the massive amounts of unlabeled images online. Common approaches
of self-supervision include contrastive learning (He et al., 2020; Chen et al., 2020d;b; Hénaff et al.,
2021; Roh et al., 2021; Xiao et al., 2021; Bar et al., 2021; Caron et al., 2020; Ye et al., 2019), where a
network learns features invariant to known 2D image augmentations, and reconstructive learning (He
et al., 2021; Pathak et al., 2016; Vincent et al., 2008; 2010; Bao et al., 2021; Chen et al., 2020a),
where a network learns to predict missing/masked parts of data using the rest.

Despite many promising results, self-supervised pretraining still faces significant technical challenges.
Contrastive approaches heavily depend on effective image augmentations, which can be difficult to
design beyond a few simple 2D transforms. Reconstructive approaches can be highly sensitive to the
relevance of the reconstruction task to downstream applications. For example, reconstructing raw pixel
intensities may not be as useful for object detection where invariance to intensity changes is important.

On the other hand, synthetic data has been widely used to supplement real images for many computer
vision tasks, with notable successes in 3D vision (Mayer et al., 2016; Butler et al., 2012; Tremblay
et al., 2018b; Wang et al., 2020a; Lipson et al., 2021; Zhang et al., 2020; 2019; Teed & Deng,
2021; Labbé et al., 2020). However, using synthetic data has yet to become common practice for
object detection, except in specialized domains such as autonomous driving (Tremblay et al., 2018a;
Johnson-Roberson et al., 2017; Alhaija et al., 2017; Prakash et al., 2021). One possible reason for
this discrepancy is that for synthetic data to work well, they should closely approximate the real
data (i.e. small real-sim domain gap), but for object detection it is difficult to generate synthetic
data that matches real data in terms of the diversity of objects and scenes. For example, it would be
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Figure 1: Overview of our approach. We generate synthetic images using unlabeled 3D models with
optimized scene layout. We then pretrain an object detector to perform instance detection: given a
query object, detect all instances in a target image.

extremely challenging to create a synthetic dataset to cover all 80 object categories in the COCO
benchmark (Lin et al., 2014), including realistic compositions of scenes and varied instances of
each object category (e.g. varied dogs and cats). Thus it is perhaps expected that outside specialized
domain, synthetic data would have a limited role to play for object detection.

In this work, we present a new result that defies conventional wisdom: synthetic data can be surpris-
ingly effective for object detection, even with limited diversity and realism. In particular, we can gener-
ate effective synthetic data using only a collection of 3D models without any category labels; pretrain-
ing on such synthetic data achieves results competitive to self-supervised pretraining on real images.

We achieve this result through “Synthetic Optimized Layout with Instance Detection (SOLID)”, a
new approach we introduce for pretraining object detectors. Our approach, as illustrated in Fig. 1,
consists of two main ingredients: (1) generating synthetic images using a collection of unlabeled
3D models, with optimized scene arrangement; (2) pretraining an object detector on the “instance
detection” task (Mercier et al., 2021; Ammirato et al., 2018)—given a query image depicting an
object, detecting all instances of the exact same object in a target image.

It is worth noting that our approach only uses unlabeled 3D models. That is, no semantic labels are
necessary; in fact, the 3D models can be arbitrary shapes that do not fit into any known object category.
Doing away with semantic labels gets around the difficulty in generating 3D shapes that conform to
semantic categories (e.g. generating varied and realistic 3D shapes of cats is an unsolved problem),
allowing the use of arbitrary 3D shapes which can significantly expand the diversity of synthetic
data. Coupled with this label-free synthetic data is the instance detection pretraining task, which,
unsurprisingly, also requires no semantic labels. The task is posed purely geometrically—finding in a
target image all instances of the 3D shape depicted in a query image.

Our instance detection task differs from the standard object detection in that the input consists of two
images, a query image that specifies the object to detect, and a target image in which to detect the
instances of the object. The object specified by the query image may be completely novel and may
have never been seen during training. In other words, unlike standard object detection, there is no
fixed, predetermined list of objects or object classes to detect. During test time, the network needs to
detect all the instances given just a single example of a new object.

Our “SOLID” approach is motivated by the hypothesis that a significant source of difficulty of
object detection is geometrical invariances, particularly invariances to occlusion, illumination, and
viewpoint. Such invariances are likely learnable independent of category labels—an infant may not
know that the object she likes to play with is called a “toy car”, but she can almost certainly find it in
a photo effortlessly. This hypothesis naturally leads to the instance detection task, which focuses the
pretraining on learning geometric invariances.

Given a collection of unlabeled 3D models, there are infinitely many possible synthetic images
one can generate, but only a finite subset of them can be used during pretraining and not all subsets
are equally useful. We thus optimize the parameters and design choices of the rendering pipeline
to maximize the effectiveness of the synthetic data. This primarily involves the spatial layout of
the objects in front of the camera. A naive approach would be to try each possible layout, render
a dataset, pretrain a model, fine-tune on labeled data, and evaluate performance on a validation set of
real images. But this would be too expensive to be feasible. Instead, we optimize the layout against
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a set of proxy metrics of scene complexity including object count, amount of occlusion, and scale
distribution, which we find to be good indicators of the validation performance on real images.

The main novelty of work is a new pretraining method of object detection that integrates two existing
ideas: synthetic data and instance detection. Neither synthetic data nor instance detection is novel
on its own, but to our knowledge no prior work has combined the two for pretraining object detection.
Our approach has unique advantages over existing alternatives. Compared to existing methods
using synthetic data, our approach does not require semantic labels, which means that arbitrary 3D
shapes can be used. Compared to existing methods using real images, our approach allows 3D data
augmentations that are difficult to achieve with real images.

We evaluate our approach on the standard COCO (Lin et al., 2014) dataset. We generate synthetic
images using 3D models from ShapeNet (Chang et al., 2015) and SceneNet (Handa et al., 2015), and
pretrain standard object detectors including Faster-RCNN (Ren et al., 2017) and Mask-RCNN (He
et al., 2019). Experiments on COCO show that pretraining on rendered images achieves performance
competitive with pretraining on real images, including MoCov3 (Chen et al., 2021), DetCon (Hénaff
et al., 2021) and SCRL (Roh et al., 2021), while using significantly less computing resources. Our
results demonstrate that with our novel combination of optimized data generation and a proper
pretraining task, synthetic data can be highly effective data for pretraining object detectors.

2 RELATED WORK

Supervised and Unsupervised pretraining for Object Detection Pretraining visual models includ-
ing object detectors has a long history. Early work (Hinton et al., 2006; Ranzato et al., 2006; Bengio
et al., 2007) shows that pretraining each layer with an unsupervised learning algorithm before fine-
tuning the network improves the network’s performance significantly. A similar approach is also used
in a pedestrian detector (Sermanet et al., 2013). Later, R-CNN (Girshick et al., 2014) shows that su-
pervised pretraining on the ImageNet classification dataset (Deng et al., 2009) significantly improves
detection performance. Since then, pretraining on the image classification task has become a common
practice in state-of-the-art object detectors (Zhou et al., 2021; Sun et al., 2021; Tan et al., 2020).

Recent approaches (He et al., 2020; Chen et al., 2020d; 2021; 2020b;c; Caron et al., 2020) based on
contrastive learning (Hadsell et al., 2006) has achieved competitive performance against supervised
pretraining on various downstream tasks. In contrastive learning, a network learns to predict similar
embeddings for augmented views of the same image. But these approaches rely on image-level
features to predict the embeddings, which is not ideal for object detection. Newer approaches have
proposed new pretraining tasks that focus on the object-level features. SCRL (Roh et al., 2021),
ReSim-FPNT (Xiao et al., 2021) and DetCo (Xie et al., 2021) train a network to predict similar
embedding vectors between patches of the two augmented views. Instead of patches, DetCon (Hénaff
et al., 2021) uses regions that are segmented by a graph-based algorithm. InsLoc (Yang et al., 2021)
randomly crops two overlapping patches from an image, paste them onto different images and train a
network to predict similar embedding vectors between the patches.

UP-DETR (Dai et al., 2021) proposes a pretraining task where random patches are extracted from
an image and a network is trained to localize them in the same image. DETReg (Bar et al., 2021)
proposes to train an object detector to predict bounding boxes generated from the selective search
algorithm (Uijlings et al., 2013) and to mimic the output of a network trained with contrastive learning.

Our approach is similar to these existing approaches in that our pretraining task can be thought of as a
form of contrastive learning—predicting embeddings to distinguish image regions of the same object
from other regions. But our approach differs in that we use synthetic images instead of real images.
Using synthetic images allows us to easily generate augmented versions of the same object with occlu-
sion and viewpoint change. Such augmentations would be very difficult to generate for natural images.

Instance Detection The instance detection task has also been studied by prior work. Ammirato et
al. (Ammirato et al., 2018) and Mercier et al. (Mercier et al., 2021) suggest this task is useful for
robotics and augmented reality applications which often require recognizing a very specific instance,
and propose different approaches to the task. Compared to these works, the novelty of our work is in
integrating synthetic data and the instance detection task to pretrain object detectors.
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Figure 2: The first row shows query images and the second row shows target images.

Synthetic Training of Object Detectors Prior work has also studied how to use synthetic data to train
an object detector. Peng et al. (Peng et al., 2015), Alhaija et al. (Alhaija et al., 2017), Hinterstoisser et
al. (Hinterstoisser et al., 2018) and Tremblay et al. (Tremblay et al., 2018a) generate the synthetic
data by rendering 3D models over a real world background scene. The synthetic data are then used to
fine-tune networks pretrained on ImageNet.

Other work has obtained training data from computer games for object detection and semantic
segmentation. Bochinski et al. (Bochinski et al., 2016) use Garry’s Mod to train a detector for cars,
persons and animals. Richter et al. (Richter et al., 2016) obtain data for semantic segmentation in
Grand Theft Auto. Shafaei et al. (Shafaei et al., 2016) show that a network pretrained on synthetic
data collected from a game outperforms network pretrained on real world data after fine-tuning. Data
extracted from the games may not come with foreground or background labels. So extra steps such as
background subtraction (Bochinski et al., 2016) or manual labelling (Richter et al., 2016) are needed
to identify foreground objects or pixels.

Our method also uses synthetic data, but unlike these existing approaches, we introduce a new
pretraining task. All of these prior works perform pretraining in the form of standard object detection—
the input consists of a single image and the task is detect objects in a fixed, pre-defined; as a result,
the network needs to memorize through training what each object in the list looks like. In contrast,
our instance detection pretraining task has two input images (a query image and a target image),
and the network only needs to learn geometric invariances as opposed to the object-specific visual
features which are less transferrable to new domains.

3 APPROACH

Our “SOLID” approach involves two main ingredients: generating synthetic images and pretraining a
network on instance detection–given a query image of an unknown object, detecting all instances of
the same object in a target image. After pretraining, the pretrained object detector is fine-tuned on a
downstream dataset. Fig. 1 gives an overview of SOLID.

3.1 GENERATING SYNTHETIC IMAGES

We generate our synthetic images by placing 3D models from ShapeNet (Chang et al., 2015) into
backgrounds from SceneNet (Handa et al., 2015). There is a large space of possible layouts of the
objects relative to the camera, but some of them are likely to be more useful than others as synthetic
data. We can find out the usefulness of a subset of layouts by using them to pretrain a detector
and evaluate the validation performance on real images, but this would be prohibitively expensive.
Instead, we propose a set of proxy metrics of scene complexity to guide data generation. These proxy
metrics can be evaluated quickly without going through actual pretraining and capture the known
failure cases of object detection (crowded scenes, occlusion, small objects, viewpoint change, etc.).
Empirically we find these metrics to correlate well with the final validation performance.

Proxy Metrics We use the following proxy metrics of scene complexity:

• Average occlusion: For each object, in addition to the usual segmentation mask mp used in
the instance segmentation task, we render a segmentation mask mf by hiding other objects
in the scene. The occlusion of an object is defined as (nf − np)/nf where np is the number
of pixels in mp and nf is the number of pixels in mf .
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Figure 3: Our network architecture consists of two detectors. The first detector is applied to a query
image to extract an embedding vector for an object, which will be stored in a memory bank, and
the second detector is applied to a target image to predict boxes and an embedding vector for each
box. We calculate the dot products between an embedding vector of a region to all of the embedding
vectors in the memory bank and apply contrastive loss, in addition to the standard regression loss and
RPN loss. The first detector is updated by momentum while the second one is updated by SGD.

• Scale distributions: Following the definition in COCO, we divide the objects into small,
medium and large objects by the number of pixels in their segmentation masks. We then
calculate the percentage of each scale.

• Object count: This is the number of visible objects in the rendered image. Some objects
may not be visible in the rendered image because they may be completely occluded.

Rendering Pipeline The scenes from SceneNet come with 3D models. We remove all 3D models in
the scenes except the ceiling, floor and wall before they are used as backgrounds.

After initializing the background, we randomly place a camera away from the center of the background
and point it toward the central area of the background to allow enough space for placing the 3D
models. Because there may be walls in the background, we perform ray casting to find out the nearest
obstacle to the camera. If it is too close, we sample another location until there is enough space to
place the objects. Only the locations within the viewing frustum is considered in the subsequent
steps, which improves efficiency and ensures that at least part of the objects can be visible in the final
images. We randomly select, scale, and rotate a 3D model and place it at a location where its 3D
bounding box does not intersect with 3D bounding boxes from other models.

In our rendering pipeline, the spatial layout of objects is influenced by several parameters and design
choices, which we optimize against our proxy metrics. Instead of randomly placing a 3D model, we
place it in front of or behind other 3D models with respect to the camera to increase the amount of
occlusion. To increase the object count, we pack more objects into a scene by allowing them to be
floating in the air. We optimize the scales and the rotations of the 3D models to have different scale
distributions and include more viewpoints for each object.

After placing all the objects, we apply three point lighting to a random object in the scene to illuminate
the scene before we render the image. In all of our rendered datasets, we do not run any physics
simulation so that we have complete control over the layout. We also render multiple query images
for each object to be used in our instance detection task. To render a query image, we place an object
into an empty background, rotate it along the z-axis and render an image every 45 degrees. Fig. 2
shows some example target and query images.

3.2 PRETRAINING WITH INSTANCE DETECTION

Given a query image depicting an object, our instance detection task is to detect the exact same
instances of the object in the target image.

Given an existing object detector, we propose a “wrapper” architecture to pretrain an object detector
on our instance detection task as shown in Fig. 3. Our wrapper architecture consists of two identical
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object detectors, one for the query image and one for the target image. The first detector predicts an
embedding vector for the query image, while the second detector detects objects in the target image
and predicts an embedding vector for each predicted box. The embedding vectors should be similar if
they depict the same object. We use Faster R-CNN and Mask R-CNN as our choice of detectors but
other detectors such as one-stage detectors can be used in this wrapper architecture. Below, we use
Faster R-CNN as an example to describe the details.

The first Faster R-CNN extracts an embedding vector qj from a query image depicting an object j and
does not predict any box. The query image is padded so that it can be fed into our network. We then
use an RoIAlign layer to extract features for the object to not include features from the padded area.
We also replace the classification head in this Faster R-CNN with a fully-connected layer with 256
channels which predicts an embedding vector from the features. Neither the RPN nor the bounding
box regressor in this Faster R-CNN is used. Inspired by MoCo (He et al., 2020), we have a memory
bank that stores an embedding vector for every object.

There is a detail worth mentioning for updating the memory bank. We use multiple GPUs to train our
detectors and each GPU has its own data sampling process. Each process chooses n query images for
its batch of target images independently. If there are more than n unique objects in the target images,
it randomly chooses n of them and picks one random query image for each chosen object. Otherwise
it samples from objects that are not in the target images. As a result each GPU uses different query
images which creates inconsistency between memory banks of different GPUs. So before updating
its memory bank, each GPU gathers the embedding vectors from other GPUs.

The second Faster R-CNN detects objects in target image. Similar to a conventional Faster R-CNN, it
first predicts a set of region of interests (RoIs) and then uses RoIAlign layer to extract features for
each RoI. Conventionally, the features are then used for predicting bounding box offsets and classes.
Our wrapper architecture still predicts bounding box offsets but it predicts an embedding vector ki
instead of a class for region i. We replace the classification layer with a fully-connected layer with
256 channels and the class-specific bounding box regressor with a class-agnostic one.

We then measure the similarities between a region and all objects by calculating dot products between
an embedding vector of a region and all embedding vectors in the memory bank. We apply a
contrastive loss function:

Lcon = −
M∑
i=1

log
exp (ki · qci/τ)∑N
j=1 exp (ki · qj/τ)

(1)

where M is the number of regions, N is the number of objects, ci is the object for region i and τ is a
temperature hyper-parameter to train the detectors to predict similar embedding vectors for the same
object. We follow MoCov2 (Chen et al., 2020d) to set τ to be 0.2 for all of our experiments. This
loss is only applied to the foreground regions.

We use SGD to optimize the full training loss:
L = Lcon + Lreg + Lrpn (2)

where Lreg is the bounding box regression loss and Lrpn is the loss for RPN. And we use
momentum (He et al., 2020; Chen et al., 2020d) to update the parameters in Faster R-CNN for query
images with a momentum coefficient of 0.999 and the gradients to update the parameters in Faster
R-CNN for target images.

4 EXPERIMENTS

Implementation Details We use 3D models from ShapeNet (Chang et al., 2015), which can be
used for non-commercial research, and indoor scenes from SceneNet (Handa et al., 2015), which
is released under creative commons license, to construct our datasets. In our ablation studies, we
use a subset of ShapeNet models that are used by SceneNet RGB-D (McCormac et al., 2017) and
render images at 320× 240. In experiments where we compare with existing approaches, we use all
ShapeNet models and render images at 640× 480.

We use Blender 2.92 1, an open source 3D computer graphics software, and BlenderProc (Denninger
et al., 2019), a Blender library, to render images and generate bounding box and mask annotations.

1https://www.blender.org
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Table 1: We render multiple datasets of one million images each to demonstrate how pretraining
data affects the performance of a detector. We also include SceneNet RGB-D for comparison. Fig. 4
shows the viewpoint distributions of Random Placement, Occlusion and Rotation.

Dataset Obj
Count Occlu. Scale Dist.

(s / m / l)
Rotation

Axes Scene COCO
AP

SceneNet RGB-D (McCormac et al., 2017) 5.41 - 45% / 40% / 15% - SceneNet 36.6%
Random Placement 8.73 19% 18% / 52% / 30% Z axis White Cube 37.2%
Occlusion 7.73 32% 23% / 48% / 29% Z axis White Cube 37.2%
Scale Distribution 8.47 33% 32% / 37% / 31% Z axis White Cube 37.5%
Rotation 8.10 33% 35% / 36% / 29% All axes White Cube 37.7%
SceneNet Background 8.72 37% 38% / 34% / 28% All axes SceneNet 38.8%
More Objects 13.72 38% 33% / 39% / 28% All axes SceneNet 39.0%
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Figure 4: Viewpoint distribution changes with both the camera and object poses. In Random
Placement and Occlusion, we only rotate along the z-axis so the top and bottom viewpoints
are not well covered. In Occlusion, we restrict the camera poses so that it is easier to create occlu-
sions between objects in the final images, which reduces the variations in viewpoints. In Rotation,
we still restrict the camera poses but we rotate the objects along more axes to cover more viewpoints.

We use the Cycles engine from Blender to render all images on GPUs. And we render one million
images for each of the dataset in our experiments.

We implement our approach in Detectron2 (Wu et al., 2019) and use the default hyper-parameters,
except the training schedule and input resolution, to pretrain our detectors. After pretraining, we
initialize a downstream detector with weights in the detector for the target image excluding the
classifier and regressor. To provide a fair comparison with other works, we fine-tune the detectors
with the same schedule in each downstream setting, which will be described in detail in later sections.

In our ablation experiments, during pretraining, we reduce the input resolution to half of the default
input resolution. Our wrapper architecture is pretrained on 4 RTX3090 GPUs for 450k iterations
with a batch size of 128 query images and a learning rate of 0.02. Each GPU samples 128 query
images with a resolution of 112× 112. When we compare our results with other approaches, we use
the default input resolution in Detectron2 and increase the resolution of query images to 224× 224.
We optimize the learning rate schedule on COCO val2017 under the 1x fine-tuning schedule. The
wrapper architecture is pretrained on 8 A6000 GPUs for 750k iterations with an initial learning rate
of 0.1 and a cosine annealing schedule (Loshchilov & Hutter, 2017). The target network uses batch
normalization while the query network uses exponential moving average normalization (Cai et al.,
2021), a variant of batch normalization designed for self-supervised learning.

Synthetic Optimized Layout We optimize the parameters of our rendering pipeline against a set of
proxy metrics so that we maximize the effectiveness of the synthetic data. We render multiple sets of
synthetic images with different proxy metrics and parameters. For each dataset, we pretrain a Faster
R-CNN (Ren et al., 2017) with a FPN (Lin et al., 2017) and ResNet-50 (He et al., 2016), fine-tune
it on COCO train2017 under 1x schedule and evaluate it on COCO val2017. Tab. 1 shows the
proxy metrics of each dataset and the corresponding validation performance. We also pretrain with
SceneNet RGB-D (McCormac et al., 2017), which is a large scale synthetic dataset and consists of 5
million images, in Tab. 1 for comparison.

Random Placement: We start with randomly placing objects inside of a textureless cube. Each object
is randomly scaled between 0.4 and 2.0 and rotated along the z-axis. The object is randomly placed

7



Under review as a conference paper at ICLR 2023

Table 2: We compare our pretraining approach with existing pretraining approaches by fine-tuning a
Mask R-CNN (2fc) with FPN and R-50 on COCO train2017 under the standard 1x and 2x schedule,
and evaluating it on COCO testdev. For each existing approach, we fine-tune a Mask R-CNN using
the provided pretrained weight to get the test AP. We also include both the validation APs reported by
each approach and validation APs reproduced by ourselves.

1x Schedule 2x Schedule
APbb APmk APbb APmk

reported
val

reprod.
val

test
reported
val

reprod.
val

test
reported
val

reprod.
val

test
reported
val

reprod.
val

test

Image Cls. 38.9 - - 35.4 - - 40.6 - - 36.8 - -
MoCov2 (Chen et al., 2020d) 38.9 39.6 39.9 35.4 35.9 36.2 40.9 41.6 41.8 37.0 37.6 37.9
SwAV (Caron et al., 2020) - 40.0 40.5 - 36.6 37.2 - 42.1 42.5 - 38.2 38.7
DetCo (Xie et al., 2021) 40.1 40.0 40.3 36.4 36.2 36.6 - 41.5 42.0 - 37.6 38.1
ReSim-FPNT (Xiao et al., 2021) 40.3 40.4 40.6 36.4 36.6 36.8 41.9 41.8 42.4 37.9 37.9 38.4
MoCov3 (Chen et al., 2021) - 40.7 41.1 - 37.0 37.5 - 42.2 42.6 - 38.4 38.6
DetCon2 (Hénaff et al., 2021) 42.7 41.5 41.8 38.2 37.6 37.9 43.4 42.5 42.8 38.7 38.4 38.7
SCRL (Roh et al., 2021) 41.3 41.6 42.0 37.7 37.5 38.0 - 42.8 43.2 - 38.7 39.0
InsLoc (Yang et al., 2021) 42.0 - - 37.6 - - 43.3 - - 38.8 - -
Ours - 41.4 41.5 - 37.3 37.5 - 42.1 42.8 - 38.0 38.6

in a location such that it does not collide with other objects and is on the floor. We randomly place
a camera at a height between 0.1m and 5.0m, and point it toward a random point at a height between
0m and 2.0m in the central area of the background. This gives us mostly the eye-level and high-angle
shots. The Faster R-CNN pretrained with this dataset achieves an AP of 37.2% on COCO val2017.
Occlusion: Instead of random placement, the object is placed in front of or behind other objects
with respect to the camera. The camera pose is adjusted to mostly eye-level shots to create occlusions
between objects in the image. This increases the occlusion from 19% to 32% but reduces the
viewpoint variation due to more constrained camera placement, as shown in Fig. 4. The AP stays
at 37.2%. Later we show that increasing viewpoint variation improves the performance.
Scale Distribution: In the previous two configurations, an object is randomly scaled between
0.4 and 2.0 and the majority of the objects in the images are medium size. We divide the range into
three intervals, [0.1, 1.0], [1.0, 2.0] and [2.0, 3.0], and randomly select an interval with a probability
of 0.7, 0.1 and 0.2 respectively. This adds more small objects to the final dataset and improves the
AP from 37.2% to 37.5%.
Rotation: In this configuration, we not only rotate an object along the z axis but also the x and
y axes. This includes more viewpoints of the objects in our dataset even if we are mostly using
eye-level shots. Fig. 4 shows how the viewpoint distributions change between Scale Distribution
and Rotation. This dataset improves the AP from 37.5% to 37.7%, which also explains why there
is no improvement in Occlusion.
SceneNet Background: We use backgrounds from SceneNet and the AP improves to 38.8%.
More Objects: We put more objects into the scene by allowing the objects to be floating. This
increases the object count per image from 8.72 to 13.72 and the AP from 38.8% to 39.0%.

The above experiments show that our proxy metrics are good indicators of validation performance.
When comparing with existing pretraining approaches later, we build upon the More Objects config-
uration, using all 52k models from ShapeNet and rendering images at 640×480 instead of 320×240.

Instance Detection versus Alternative Pretraining Tasks We evaluate the effectiveness of our
label-free instance detection pretraining task by comparing it against alternative ways of pretraining
including one that uses semantic labels. Using the SceneNet Background dataset, we compare our
pretraining against two baseline methods to train the classifiers in the detector: (1) we treat each 3D
model as an independent class and we have 21k classes in total; (2) we use the semantic labels in
ShapeNet and group the 3D models into 148 categories. With the first approach, the training was
unstable and diverged. With the second approach achieves an AP of 38.1%. In comparison, the
network pretrained on our semantics-free instance detection task achieves an better AP of 38.8%.

Comparisons with Existing Pretraining Approaches To compare our approach with other pretrain-
ing approaches, we pretrain a Mask R-CNN (2fc) with an FPN and a ResNet-50 on our synthetic
data. Following (He et al., 2020), we then fine-tune it on COCO train2017 under the standard 1x
and 2x schedule and the same fine-tuning settings. In Tab. 2, in addition to the validation performance,
we also include the test performance for a fair comparison as our learning schedule is optimized on
the validation set under the 1x schedule. Since prior work only report validation performance, we
fine-tune the network with the provided pretrained weights by ourselves to get the test performance.

2DetCon originally uses the TPU implementation of Mask R-CNN instead of Detectron2 and different data
augmentation during fine-tuning.
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Table 3: We pretrain and fine-tune a Mask R-CNN (4conv1fc) with FPN and ResNet-50 by following
the 400 epochs training schedule from the train-from-scratch baselines in Detectron2. We pretrain
the Mask R-CNN on our pretraining task for the first half of the training schedule.

pretrain finetune APbb APbb
50 APbb

75 APmk APmk
50 APmk

75
supervised 3x schedule 41.9 61.7 45.8 37.8 59.2 40.5
no 9x schedule 43.6 63.6 47.6 39.3 60.9 42.3
no 100 epochs + LSJ (Ghiasi et al., 2021) 44.7 65.0 49.0 40.3 62.1 43.7
no 200 epochs + LSJ 46.3 66.7 50.7 41.7 64.1 45.0
no 400 epochs + LSJ 47.4 67.6 52.4 42.5 65.2 46.1
Ours 200 epochs + LSJ 47.8 68.2 52.7 43.0 65.7 46.6

Table 4: We fine-tune a Faster R-CNN with
only 10% of COCO train2017.

pretrain AP AP50 AP75

random 17.8 32.0 17.9
ImageNet 22.6 38.4 23.5
MoCov2 20.9 34.8 21.7
SimCLRv2 (Chen et al., 2020c) 22.1 37.3 23.0
SwAV 25.5 43.3 26.4
BYOL (Grill et al., 2020) 25.5 42.3 26.9
SCRL 26.4 43.2 28.0
SCRL (reprod.) 26.7 43.3 28.3
Ours 26.3 41.3 28.2

Table 5: We evaluate on the few-shot learning task.

10 Shot
Base Novel

AP AP50 AP75 AP AP50 AP75
ImageNet 32.9 52.2 36.3 8.8 17.4 7.9
DetCo 34.4 54.2 37.8 9.5 18.0 8.9
MoCov3 35.9 56.6 39.7 8.7 16.9 8.2
ReSim-FPNT 34.7 54.2 38.5 9.4 17.4 9.0
SCRL 36.0 55.9 39.5 9.9 18.8 9.4
SwAV 36.0 57.0 39.6 10.1 19.4 9.5
Ours 35.9 55.0 39.7 9.4 17.3 8.9

Our reproduced APs are similar to or better than the reported APs except for DetCon which originally
uses the TPU implementation of Mask R-CNN and different data augmentations during fine-tuning.
For the network pretrained on ImageNet, the TPU version achieves an AP of 39.6% while the Detec-
tron2 version achieves an AP of 38.9%. InsLoc modifies the architecture of Mask R-CNN by adding
four convolution layers to the bounding box head, while other approaches use the architecture of
Mask R-CNN in MoCo. We include the reported number (which is not directly comparable to other
approaches) in Tab. 2 for reference. Our approach achieves results competitive to the state-of-the-art
pretraining approaches such as MoCov3, SCRL and DetCon. It is worth noting that our approach
uses only 8 A6000 GPUs for pretraining while MoCov3 uses 16 V100 32G GPUs, SCRL uses 32
V100 GPUs and DetCon uses 128 TPU v3 workers.

Pretraining versus Train-from-scratch He et al. (He et al., 2019) show that a detector trained from
scratch can be a strong baseline if it is trained long enough. Detectron2 provides a train-from-scratch
baseline where it trains a Mask R-CNN (4conv1fc) with an FPN and a ResNet-50 and strong data
augmentation (Ghiasi et al., 2021) for 400 epochs on COCO from scratch. This baseline achieves
an AP of 47.4%, while the baseline pretrained on ImageNet only achieves an AP of 41.9%. To verify
that our pretraining still helps under a long fine-tuning schedule, we follow the 400-epochs training
schedule where we use the first half for pretraining and fine-tune our network for 200 epochs. We
use the same data augmentation and batch size. Tab. 3 shows that our approach outperforms the
strong train-from-scratch baselines.

Low Data Regime Following SCRL (Roh et al., 2021), we evaluate our approach in low data regime
by fine-tuning the detector with only 10% of COCO train2017 data, as shown in Tab. 4 which is
adapted from SCRL. We also use the two-stage fine-tuning approach (TFA) from FsDet (Wang et al.,
2020b) to evaluate our approach on the few-shot learning task, as shown in Tab. 5. The 20 classes
that are in both COCO and PASCAL VOC are used as novel classes while the 60 classes that are only
in COCO are used as base classes. Each novel class has 10 training examples. TFA first fine-tunes
the whole network on the base classes and then fine-tunes only the classifiers on the novel classes.
Experiments show that our approach achieves results competitive to the state-of-the-art approaches.

Limitations Our “SOLID” approach mainly focuses on the spatial layout of the objects when
generating synthetic images. But there are other aspects in the rendering pipeline that can potentially
generate more effective pre-training data. Tab. 1 shows that using backgrounds from SceneNet
outperforms a textureless cube so it is possible that even more diversified backgrounds would
be beneficial. Generating more photo realistic synthetic images may also reduce the domain gap
between real and synthetic images.

Conclusion We have introduced SOLID, a new approach to pretraining an object detector with
synthetic data. Experiments on COCO show that synthetic data can be highly effective data for
pretraining object detectors.
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Reproducibility The code for reproducing the results is included as supplementary materials. It
includes instructions to render the final dataset, pretrain and fine-tune a model, and links to necessary
data for rendering and a pretrained model which are stored in an anonymous Google account.
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