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Abstract—Numerous works study black-box attacks on im-
age classifiers, where adversaries generate adversarial examples
against unknown target models without having access to their
internal information. However, these works make different as-
sumptions about the adversary’s knowledge, and current liter-
ature lacks cohesive organization centered around the threat
model. To systematize knowledge in this area, we propose a
taxonomy over the threat space spanning the axes of feedback
granularity, the access of interactive queries, and the quality
and quantity of the auxiliary data available to the attacker. Our
new taxonomy provides three key insights. 1) Despite extensive
literature, numerous under-explored threat spaces exist, which
cannot be trivially solved by adapting techniques from well-
explored settings. We demonstrate this by establishing a new
state-of-the-art in the less-studied setting of access to top-k
confidence scores by adapting techniques from well-explored
settings of accessing the complete confidence vector but show how
it still falls short of the more restrictive setting that only obtains
the prediction label, highlighting the need for more research.
2) Identifying the threat models for different attacks uncovers
stronger baselines that challenge prior state-of-the-art claims.
We demonstrate this by enhancing an initially weaker baseline
(under interactive query access) via surrogate models, effectively
overturning claims in the respective paper. 3) Our taxonomy
reveals interactions between attacker knowledge that connect
well to related areas, such as model inversion and extraction
attacks. We discuss how advances in other areas can enable
stronger black-box attacks. Finally, we emphasize the need for a
more realistic assessment of attack success by factoring in local
attack runtime. This approach reveals the potential for certain
attacks to achieve notably higher success rates. We also highlight
the need to evaluate attacks in diverse and harder settings and
underscore the need for better selection criteria when picking
the best candidate adversarial examples.

I. INTRODUCTION

Machine learning models, including models using deep
learning, are well known to be vulnerable to specially-crafted
inputs, known as adversarial examples (AEs), that are de-
signed to induce incorrect predictions. Most early studies of
adversarial examples focused on white-box settings where the
adversary has full access to the target model [1, 2]. Black-box
settings consider scenarios where the adversary has limited
access to the target model. Such settings are a more practical
threat to many deployed systems [3–5] where the model is
not revealed directly. In these attacks, known as black-box or
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API-only attacks, the adversary can interact with the target
model using API queries but does not have direct access
to the model’s parameters and may have varying degrees
of knowledge about the model architecture, training data,
and training process. Previous surveys of such attacks [6, 7]
categorize representative attacks based on their adopted meth-
ods but overlook differences in assumptions about the adver-
sary’s knowledge and capabilities. These assumptions can vary
wildly, depending on the resources available for the attacker
and the kind of access to the model the API provides. Different
assumpations have a significant impact on what attacks are
possible in practice. Furthermore, attack evaluations typically
rely solely on attack success rates (and query cost for in-
teractive attacks), ignoring how attack success varies across
different examples and tasks. This disconnect makes it hard
to map out the threat space, leading to improper evaluation of
attacks and limiting our understanding of the actual threats.

Contributions. We started by surveying black-box attacks on
image classifiers published in major security (Usenix Security,
IEEE S&P, CCS, NDSS), machine-learning (ICML, NeurIPS,
ICLR, KDD, AAAI, IJCAI) and computer vision (CVPR,
ICCV, ECCV) venues. In particular, we identified relevant
papers published in the aforementioned top-tier conferences
by searching with keywords “transfer”, “attack”, “black-box”,
and “query” from the year 2014 (the year of the first paper [1]
on generating adversarial examples on deep neural networks)
to 2023. In addition to these works, we conducted a thorough
search of papers referenced within them and of relevant works
citing these identified papers, covering both peer-reviewed
papers and preprints online with the best effort. This leaves us
with 164 attacks, of which 102 are published in major security
and machine learning conferences. With the surveyed attacks,
we propose a new taxonomy for existing black-box attacks,
organized around assumptions on their threat models. Our
taxonomy spans four dimensions (Section IV): 1) interactive
queries to the target model allowed, 2) information provided
by the target model’s API, 3) quality of the initial auxiliary
data available to the adversary, and 4) quantity of the initial
auxiliary data available to the adversary. These dimensions
are chosen based on the underlying components that en-
able successful black-box attacks in practice—the feedback



available for the attackers to adjust the strategy (whether
interactive queries are permitted, and the granularity of the
feedback provided if any) and the resources attackers can
leverage (quantity and quality of data initially available for
the attacker, as well as the availability of pretrained models
online, independent from the auxiliary data) We categorize the
existing literature using our proposed taxonomy (Section V),
focusing on image classifiers as the most widely studied
domain. Our observations result in three key findings:

1) Most prior works are concentrated in specific regions
of the taxonomy, with several important and practically
relevant settings that have not been well explored. Much
of this knowledge gap is also likely a technical gap,
and we demonstrate this with preliminary experiments
on devising stronger baselines in one of the under-
explored settings. Despite establishing state-of-the-art at-
tack success, many methods fall short of attacks from
more restrictive but well-explored settings, reinforcing
the importance of investing research into these under-
explored areas (Section VI-A).

2) Some works propose new attacks and compare them
to existing baseline attacks under threat models more
restrictive than their own, which can underestimate the
potency of baselines given enough knowledge. We empir-
ically demonstrate how claims of methods outperforming
previous ones can often be invalidated when prior attacks
are adapted to and compared under the same threat model
(Section VI-B).

3) A closer look at the threat space reveals the scope for
utilizing available resources in different and potentially
better ways. In particular, attackers with access to some
initial auxiliary data and pre-trained models may leverage
advances in model extraction [8, 9] and model inversion
attacks [10, 11] to enable stronger attacks. We discuss
the possible usage of this interaction and motivate future
research along this direction (Section VI-C).

Transfer attack evaluations in the literature focus on the
number of local optimization iterations as a normalizing factor
when comparing attacks. While well intended, such measures
are misaligned with practical adversaries’ goals: picking an
attack that maximizes success within some given time frame.
Our evaluation of transfer attacks 1) shows how normalizing
for time allows some attacks to run for more iterations and
achieve higher success rates; 2) motivates future research to
work on better metrics to select better local candidates of
adversarial examples, and to evaluate attacks in diverse and
harder attack settings. We clarify that adversaries may conduct
training [12, 13] with prediction-time attacks. While such
adversaries can be extremely potent, our current taxonomy
focuses on prediction-time attacks and thus does not capture
dynamically changing, possibly poisoned, target models [14].

To support comprehensive evaluations of attacks and de-
fenses, we provide a modular codebase at https://github.com/
iamgroot42/blackboxsok

II. BACKGROUND

We first introduce background on adversarial examples
(Section II-A), and then review related works (Section II-B).

A. Introduction of Adversarial Examples

In image classification tasks, given a model/classifier f that
takes input x (with ground truth label c(x)) and generates
a prediction f(x), the goal of adversary is to achieve some
attack goals by adding an (imperceptible) bounded perturba-
tion δ onto x. Depending on the attack goals, there can be
untargeted and targeted attack goals. Untargeted attacks aim
to induce a predicted class on the perturbed input x+δ that is
different from c(x), namely, f(x + δ) ̸= c(x). Note that we
define the attack goal of misclassification with respect to the
ground-truth label c(x) of input x, which is consistent with
implicit assumptions made in the surveyed black-box attacks
(i.e., the evaluations consider misclassifying correctly labeled
samples and assume c(x) = c(x + δ)). However, there can
be other definitions of untargeted attacks that are more related
to the definition of the adversarial risk of a model f , such
as causing misclassification with respect to f(x) or c(x+ δ)
(if different from c(x)). Diochnos et al. [15] provide a more
detailed comparison between these definitions, but they are
the same for the setting considered in this paper. Targeted
attacks ensure the perturbed sample x + δ is misclassified
into a particular label ŷ that is in the interest of the adversary,
namely, f(x + δ) = ŷ. The bounded perturbation is δ is
constrained by some perturbation budget ϵ to avoid raising
suspicion, although some works also consider minimizing the
perturbation magnitude [16, 17]. The most common constraint
is to limit the ℓp norm of the perturbation δ, namely ∥δ∥p ≤ ϵ.

The white-box attacks have access to all the internal infor-
mation of the target model and therefore, can optimize the
perturbation δ with respect to (w.r.t) some loss function (e.g.
maximize cross-entropy w.r.t c(x) in untargeted and maximize
the loss w.r.t ŷ in targeted settings) to generate the adversarial
examples using gradient descent [2]. In contrast, black-box
attacks do not have access to the model’s internal information
and, therefore, either rely on transfer attacks if some local sur-
rogates are available (Section III-A) or black-box optimization
if interactive access is permitted (Section IV-A).

B. Related Works

Surveys on Black-box Attacks. Two survey papers already
cover black-box attacks in the vision domain [6, 7]. These pa-
pers categorize representative attacks by methods, identifying
the best attacks and offering meta-analyses of their reported
results. However, they draw conclusions from experimental
results reported in prior works, which are spread across incom-
patible settings and threat models. In contrast to these works,
we provide the taxonomy based on the threat model, which
enables a better understanding of how attacks relate and how
they should be compared. This, in turn, allows us to evaluate
attacks in consistent test environments and draw meaningful
conclusions. The most relevant previous work is Zhao et al.’s
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comprehensive evaluation of transfer attacks in the image
domain [18]. They focus on understanding the robustness of
different defenses against untargeted transfer attacks at a fixed
perturbation budget and compare the visual stealthiness of
different attacks with the same norm constraint. In contrast,
we focus on general black-box attacks and compare attacks
across various threat models.

Relevant SoKs. There are several previous SoK papers on
adversarial machine learning, focusing on different topics
ranging from categorizing attacks on audio recognition sys-
tems [19] to certified robustness for adversarial examples [20].
Papernot et al. provide a general systematization of adversarial
machine learning, but do not focus on black-box attacks [21].
Carlini et al. [22] provide a set of guidelines for proper
evaluation of adversarial robustness in white-box settings.
While some recommendations, such as proper threat model
categorization and running attacks until convergence, apply
to black-box attacks as well, we provide a concrete taxonomy
with detailed analyses and advocate for time-based comparison
of attacks. Our paper is the first to systematize knowledge of
black-box attacks based on their applicable threat models.

III. ATTACK METHODS

Most attacks use the same underlying principles and struc-
ture, but make advances in one or more aspects of the attack
process. In this section, we categorize attacks based on their
strategies, building on top of the categories provided in the
prior literature [7, 18]. These categories help better under-
stand similarities and connections between existing attacks
and identify scope for improvement and combinations of
advancements. This categorization is orthogonal to the threat-
model based taxonomy we introduce in Section IV.

A. Transfer attacks

Transfer attacks first generate adversarial examples for local
surrogate models with white-box access and then attempt to
transfer those local adversarial examples to the target model
[2, 23]. The success of a transfer attack depends on how similar
(at least with respect to the relevant decision boundaries) the
local models are to the target model and how effective the local
attack is at finding generalizable adversarial examples against
the local models. We mainly adopt the terminology used by
Zhao et al. [18] to describe existing attacks. However, we
added a category of Better Loss Functions, which customizes
the loss function for better transferability.

Gradient Stabilization. The idea behind the gradient sta-
bilization is to make the model less prone to overfitting
to the local model and improve the transferability to the
unknown target model, through utilizing the spatial [24–32]
and temporal correlation [30, 31, 33–40] among the gradients.

Input Augmentation. The main idea is to augment and
diversify inputs to increase the transferability of adversarial ex-
amples to different target models, and is similar to generating
more generalizable models through augmenting the training
data [18, 41]. Early works applied common and hand-crafted

input augmentations [32, 34, 37, 42–48]. Recent works have
focused on learning better input transformations with neural
networks [49] or finding the best input from existing ones
using neural networks [50, 51] or reinforcement learning [52].

Better Loss Functions. Recently, more research is focused on
leveraging intermediate model features [31, 53–67] instead of
the model outputs, with an intuition that intermediate feature
representations may be more generic and transferable [68, 69],
which can be further enhanced with interpretability techniques
to focus on relevant features [70, 71].

Surrogate Refinement. Different local surrogate models can
have different transferability to the target model, and the
most naivë approach to improve transferability is to adopt
an ensemble of models [72, 73]. Other techniques focus on
improving transferability of a single surrogate, such as mod-
ifying for or using better local architectures (e.g., using skip
connections) [74–76]; modifying the activations functions [77–
80]; modifying the training strategy (e.g., adopting adversarial
training, early stopping) [81–87]; identifying proper source
models with meta-learning [32, 88].

Generative Models. Unlike iterative attacks, existing works
also train generative models that, given an input, produce the
corresponding adversarial example. Existing works focus on
using better loss functions to train the generators [89–92] and
also using better generator architectures such as class-specific
[93] or class conditional ones [87].

B. Query-based attacks

Query-based attacks refine the candidate adversarial ex-
amples with interactive queries until the attacker’s objective
is achieved. Below, we introduce the common methodolo-
gies which are based on gradient-estimation or gradient-free
attacks. Gradient-free attacks can apply to much broader
settings, especially for non-differentiable models, whereas
gradient-estimation methods are illogical for such models.
While estimating a non-differential target model with certain
differentiable approximations is possible, this remains an
open question. For deep neural networks, gradient estimation
methods perform better on tasks that involve minimizing the
perturbation magnitude [94, 95], while gradient-free attacks
tend to work better under fixed perturbation budgets, especially
for the ℓ∞-norm [96, 97].

1) Gradient-estimation Attacks: These attacks work by esti-
mating the gradients of the unknown target model and updating
candidate adversarial examples accordingly. This technique
can be applied irrespective of the target models returning full
prediction scores [3, 16] or just the prediction class [98–100].

Complete Confidence Vector. In this setting, confidence
scores of all classes are available, and attacks start from the
original seed image and gradually search for better perturba-
tions with the estimated gradients. Ever since the first work
on estimating the gradient for every coordinate with finite-
difference method [16], subsequent works focused on finding
more efficient gradient estimation strategies, mostly by finding



a better random perturbation vector to estimate the gradient
efficiently for the finite-difference method [3, 4, 101–111].

Hard-Label. The hard-label attacks are more restrictive and
can only access the prediction label of the highest confident
class; hence, the attacks usually require a reference image that
satisfies the attacker’s objective (e.g., the reference image is
from the intended target class for misclassification) to generate
a likely-to-succeed perturbation and then focus on minimizing
the size of the perturbation (measured by ℓp-norm such as ℓ2)
with the estimated gradients. Since the first work [98], various
techniques are proposed to improve the gradient estimation
quality and boost attack performance [99, 100, 112–116].

2) Gradient-free Attacks: s the name suggests, gradient-free
attacks do not rely on estimating the target model gradients.
These attacks are diverse in terms of their methodologies.

Complete Confidence Vector. Gradient-free attacks with
complete confidence vector range from classical black-box
optimization techniques (e.g., genetic algorithms, evolution
strategies, Bayesian Optimization) [117–121] to efficient ran-
dom search strategies [96, 122–128]. The key is to find an
effective low-dimensional subspace to generate perturbations
and then map back to the original input space. The recent
efficient random search-based attacks [96, 124] are the current
state-of-the-art to generate norm-bounded perturbations.

Hard-Label. The first type of gradient-free methods are based
on random walk with various sampling distributions [129–
134] or directions based on the geometry of the decision
boundary [135]. Recently, more efficient attacks are proposed
using diverse techniques such as random search [97, 136, 137],
evolution strategies [138] or utilization of geometric properties
of the boundary [139]. For norm-constrained adversaries, espe-
cially in ℓ∞-norm, the random search-based methods achieve
the state-of-the-art performance [97, 136].

C. Hybrid Attacks

These attacks utilize surrogate models, like transfer at-
tacks, and submit queries to the target model. We name
these attacks “hybrid attacks” to distinguish them from pure
transfer or query-based attacks. There are mainly two types
of hybrid attacks. The first type leverages surrogate models
to enhance query-based attacks by providing better starting
points (i.e., warm starting) [140] or providing better sampling
space of perturbation [141–147] for the query-based attacks.
The second type improves available surrogate models with
labeled queries from the target model, including fine-tuning
the models [140, 143, 148, 149] or finding proper weights for
individual models in the model ensemble [150], so that the
transferability from these similar models can be significantly
improved in the later stage. The only exception from above
is that queries from the target model can also be combined
with local explanation techniques [151] to select the most
transferable single model from a set of classifiers [152].

IV. TAXONOMY THREAT MODEL

We propose a new attack taxonomy organized around the
threat model assumptions of an attack, using four separate
dimensions to categorize assumptions made by each attack.
Within each dimension, we describe different categories in
order of increasing knowledge available to the adversary
(Section IV-A - Section IV-D). We then discuss the existence
of pretrained models as a sub-axis Section IV-E and how it
may interact with the main axes of our dimension. We then
use our taxonomy to categorize attacks (Section V) and report
our insights with directions for future research (Section VI).

A. Query Access

Query access captures the adversary’s ability to query the
target model before sending its final adversarial input. We
group access levels into two characteristic settings:
(a) No Interactive Access: the adversary has absolutely no

opportunity to query the target model interactively. Likely
scenarios include situations where the adversary has only
one-way communication with the target model through
an indirect victim. For example, the adversary may want
to generate malware that bypasses the victim’s malware
classification system but without any way to query that
system directly. This is the most challenging attack setting
where the adversary has no opportunity to learn from
feedback from the target model.

(b) With Interactive Access: a more relaxed setting and
still has wide applications in practice. In this setting,
the attacker can interactively query the target model and
adjust subsequent queries by leveraging its history of
queries. However, the number of queries that can be
submitted might be constrained significantly in practical
cases,e.g., rate limits imposed by the target model API,
the financial cost involved in making queries, or simply
the attackers wanting to avoid raising suspicion. In other
situations, the attackers may still be able to query the
target model as often as they wish. The most concrete
example of unlimited black-box query access would be
one where the adversary has access to the model on their
hardware, but it is encrypted in a secure enclave (e.g.,
Intel SGX as the Trusted Execution Environment) that
protects its parameters [153, 154].

B. API Feedback

This dimension captures the granularity of information the
target model’s API returns for a given query. We break this
down into three distinct categories:
(a) Hard-Label: the only value returned by the API is the

predicted label for the given query input. For instance,
a face-recognition based utility may only provide a label
for match/mismatch.

(b) Top-K: the model API returns confidence scores for the
top-k (1 ≤ k < N , for N classes) labels. This aligns
well with most real-world predictive APIs, which often
return confidence values for a few most likely classes to
minimize network overhead. This setting provides more



information than hard-label access even when k = 1,
since the confidence score for the predicted label is made
available. For example, Google’s Cloud Vision API1 uses
labels from their Knowledge Graph API2, which has tens
of thousands of labels, and returning classification scores
for all classes is unlikely to be helpful for benign users.

(c) Complete Confidence Vector: the API returns confi-
dence scores for all classes. This may correspond to the
enclave-based setting described above, or one where the
number of classes is low enough for an API to return all
related information.

Below, we describe auxiliary information available to attackers
for more efficient attacks. We define two axes of 1) the quality
of data and 2) the quantity of data.

C. Quality of Initial Auxiliary Data
This dimension captures the correctness of the adversary’s

priors on the target model’s training data. Higher quality
of auxiliary data indicates that the attackers can conduct
the attack without considering potential distributional gaps.
In this paper, we capture such distributional gaps using the
overlap between the feature or label space of two distributions
(corresponding to the target model’s data and auxiliary data).
Feature space overlap refers to same/similar samples in the
data feature (e.g., images of dogs in two distributions) regard-
less of the assigned labels (e.g., different labels for the same
image, depending on different tasks). We discuss overlap on
distributions, not on datasets, because distributions are more
fundamental than the (sampled) datasets.
(a) No Overlap: auxiliary data available to the adversary

does not overlap in the data features and the labels. This
setting is closest to real-world APIs, where knowledge
about the target model’s training data is obfuscated and
often proprietary (like GPT-4).

(b) Partial Overlap: auxiliary data available to the adversary
has partial overlaps (in the distributional sense) with the
private training data of the target model regarding data
features or labels. This setting best matches scenarios
where the training data of the target model includes some
publicly available datasets.

(c) Complete Overlap auxiliary data available to the attacker
is the same as the target model’s training data, or sampled
from the same underlying distribution (i.e., same label
space and feature space). For example, the target model
could be trained on a publicly available dataset, and this
information may be public.

Notably, removing the high overlap in data distributions can
significantly undermine the attack success [155]. The authors
propose a variant of PGD (masked PGD) to mitigate the
performance degradation due to distributional gap.

D. Quantity of Initial Auxiliary Data
Finally, we consider the quantity of auxiliary data (inde-

pendent of data quality) initially available to the adversary.

1https://cloud.google.com/vision/docs/labels
2https://developers.google.com/knowledge-graph/reference/rest/v1/

We explicitly mention the availability of initial auxiliary data
because the existence of some pretrained models may change
the amount of auxiliary data available for the adversary in
the end (Section IV-E). We consider two categories: the first
is when the amount of data is only a handful and hence
cannot be used to train models with decent performance for the
attacks, while the second entails situations with enough data
to train performant models. Note that the definition of useful
performance can vary depending on application scenarios, and
we use this hypothetical and abstract description here. In
practice, attackers may check whether the amount of available
data can be used for training more useful models from the
perspective of attack effectiveness (e.g., the threshold can be
set as the quantity sufficient to train a surrogate classifier that
is only X% off compared to the prediction accuracy of the
target model).
(a) Not Sufficient: the quantity of data available is insuffi-

cient to train models useful for attacks. Attackers in this
category may opt for leveraging other ways to utilize this
information (e.g., computing sample statistics [175] or
training shallow models [168]). This category also con-
tains the scenario of no auxiliary data (i.e., no samples).
Strictly speaking, the “quality” of the datasets does not
matter as there is no auxiliary data at all, and this category
falls ambiguously into any category of “Auxiliary Data
Quality”. However, for clarity in presentation, we move
attacks that do not require any auxiliary data into the
category corresponding to the quality of “No Overlap”,
to (best) denote that these attacks do not require any
knowledge from the auxiliary data.

(b) Sufficient: the quantity of data available is sufficient to
train decent models (e.g., generative models or classi-
fiers), that can in turn assist with attacks.

While attack strategies that require auxiliary data can techni-
cally be applied for any amount of data, implicit assumptions
in such attacks may dictate certain requirements on data quan-
tity for them to be effective. A discussion around the initial
“quantity” of data is thus still relevant. For example, methods
that require data to train well-performing surrogate models
would understandably suffer from significant performance
degradation when the amount of auxiliary data is limited, as
demonstrated in ablation studies [91]. However, the paper does
not explicitly report the point at which attack performance
drops to near-random. On the other hand, methods in “Not
Sufficient” categories might face a bottleneck when given
sufficient data, as the proposed approaches implicitly assume
limited data. Ablation studies on the impact of quantity of
auxiliary data can be helpful to the community but are cur-
rently lacking in the literature. We advocate for including such
studies in future works and discuss more in Section VI-B.

E. Existence of Pretrained Models

The literature has been historically building surrogate mod-
els directly from target models [172], and the availability of
pretrained models today is an artifact of orthogonal advances
in machine learning for building and releasing high-performing
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Quality Quantity No Interactive Access With Interactive Access

Hard-Label Top-K Complete Confidence Vector
N

on
e Insufficient

Frequency Manipulation [156]
w/ Pretrained Surrogate∗:

Better Loss: [90–92, 155, 157–165]
Better Loss for AE Generator: [90, 91, 162]

Random walk: [129–135]
Gradient estimation:
[98–100, 112–116]

Other Gradient-free: [97, 136–139]
Classic Black-box Opt.: [108, 166]

NES [3]

Gradient Estimation: [3, 4, 16, 101–111]
Classic Black-box Opt.: [117–121]

Efficient Random Search:
[96, 117–119, 122–128]

Sufficient ∅ ∅ ∅ ∅

Pa
rt

ia
l Insufficient w/ Pretrained Surrogate∗:

Better Loss: [92, 155, 158, 163] ∅ ∅ Boost Existing Methods w/ Trained Generator:
[167]

Sufficient ∅ ∅ ∅ ∅

C
om

pl
et

e

Insufficient

Train Shallow Surrogate: [168, 169]
w/ Pretrained Surrogate∗:

(Basic) Gradient Sign: [2, 23]
Input Augmentation: [32, 34, 37, 42–52, 170]

Gradient Stabilization: [24–40]
Better Loss: [31, 53–67, 165]

Refine Surrogate: [32, 72–80, 84, 88]

Improve UAP w/ Feedback: [164]
Train Surrogate w/ Synthetic Data:

[171–174]
Boost Existing Methods w/ Unlabeled

Data [175]

∅

Boost Existing Methods:
Trained Generator: [167, 176–179],

Unlabeled Data [175]
w/ Pretrained Surrogate∗:

Save Queries with Surrogate:
[140–149, 151]

Refine Surrogate with Queries: [143, 150, 152]

Sufficient

Train Better (Deep) Surrogate:
[81–83, 85, 86]

Train AE Generator: [89, 91, 93, 180–182]
Input Transformation Network: [49, 50, 52]

Train Simple Auxiliary Classifier: [58, 59, 91]

Improved Gradient Estimation w/
Trained Generator: [94, 95] ∅ Train AE Generator: [87, 183–185]

TABLE I: Threat model taxonomy of black-box attacks. The first two columns correspond to the quality and quantity of the
auxiliary data available to the attacker initially. The remaining columns distinguish threat models based on the type of access
they have to the target model, and for adversaries who can submit queries to the target model, the information they receive from
the API in response. The symbol ∅ above corresponds to areas in the threat-space that, to the best of our knowledge, are not
considered by any attacks in the literature. The sub-category of w/ Pretrained Surrogate with “*” denotes that the corresponding
attacks do not require auxiliary data, but the quality of data used to train the surrogate determines the corresponding cell.

models, especially in the image domain. Such an assumption
may not hold across other domains, especially in security-
critical areas. We refer to such models as “pretrained” models.
Assume a pretrained model trained on unknown proprietary
data that is highly similar to the target model’s data. An
adversary that uses such a model implicitly leverages this data
overlap through the publicly released model. To better capture
this implicit leverage of high data quality, we classify attacks
that only involve pretrained models into settings where the
quantity of initial auxiliary data is zero, and the quality of data
is determined by the quality of private data used to train the
model. For clarity, we add the existence of pretrained models
as a sub-axis on top of the four main axes mentioned above.

V. CLASSIFICATION OF ATTACKS ON THREAT MODEL

In this section, we categorize the black-box attacks based
on their presumed threat model. Table I presents our cate-
gorization of the surveyed attacks. The first main division is
between attacks where the adversary has no interactive access
to the target model, and ones where some level of interaction
is available. Within each of these, we consider threat models
based on the quality and quantity of data available to the
adversary. For the rest of this paper, we interchangeably use
‘transfer attacks’ with ‘non-interactive attacks’, and ‘query-
based attacks’ with ‘interactive attacks’.

A. No Interactive Access to Target Model
A significant fraction of attacks in the literature assume

an adversary with no ability to submit queries and obtain

responses from the target model. Without such access, the
adversary has limited options and must use local resources
to find good candidate examples.

1) Low Quality Data: No Overlap with Target: This threat
model assumes the least adversarial knowledge as the auxiliary
data available for the attacker has no overlap with the training
data for the target model, and the availability of the auxiliary
data is limited. Works in this threat model have only appeared
recently and to our knowledge, there is only one work that does
not consider additional information (e.g., pretrained models)
and obtains successful adversarial examples with frequency
manipulation [156]. A relaxation of this setting allows the
adversary access to pretrained model(s) where the training
set does not overlap with the target. As noted in Table I,
attacks in the literature that assume access to a pretrained
surrogate do not leverage any additional auxiliary data and
therefore, the quantity of auxiliary data is actually zero.
Despite having a distribution mismatch, surrogate model(s)
can capture some level of image semantics that can be valuable
for adversaries. Customized loss functions with respect to the
pretrained models are designed by the adversaries to generate
successful adversarial examples [90–92, 157–165]. We note
that some works [92, 155, 158, 163] relax their setting to allow
the auxiliary data to have partial overlap with the target in
the data points and/or the labels, and also the availability of
pretrained models (trained on data with partial overlap with
target). These attacks still design customized loss functions to
cope with distribution mismatch, and the (minor) difference to



the “no” overlap setting mainly lies in how to map the labels
of the local surrogate to the labels of the target. As expected,
attacks in partial-overlap settings achieve better results than
ones with no overlap. To the best of out knowledge, no work in
the literature assumes sufficient low-quality (no/partial overlap
with target) auxiliary data, while this situation is likely to
be common in practice. For example, when attacking some
unknown target model (e.g., medical image classifier [186]),
attackers may leverage the ImageNet dataset.

2) High Quality Data: Complete Overlap with Target:
The distribution of auxiliary data is highly similar (or even
the same) to the target training distribution. Under limited
availability of such data, shallow surrogates can be trained
to enable higher transferability [168, 169]. This assumption
may be further relaxed when adversaries have access to some
pretrained models trained on high-quality auxiliary data. Like
the case of low-quality auxiliary data, existing works that
use pretrained models do not utilize auxiliary data. This is
the most explored attack setting in the literature: methods
include gradient stabilization [24–40], input augmentation
[32, 34, 37, 42–52, 170], better loss designs [31, 53–67, 165]
and surrogate refinement [32, 72–75, 77–79, 81–88], as dis-
cussed in Section III-A. One example of a scenario with an
insufficient amount of high-quality auxiliary data is the case
of a face recognition target model. In this context, auxiliary
data might only consist of a few face images captured under
the same conditions (such as the same setting, background,
etc.) as the target model’s training data, but acquiring a large
amount of such high-quality data can be challenging.

When there are sufficient amount of high-quality auxil-
iary data available (attackers can also naturally obtain well-
performing surrogate models), the proposed methods can
be quite diverse: directly training better surrogate classi-
fiers to generate more transferable adversarial examples [81–
83, 85, 86], training auxiliary classifiers on top of the surrogate
classifiers [58, 59, 91], training generators to generate likely-
to-transfer adversarial examples [89, 91, 93, 180–182]. Besides
these methods, some attacks also focus on finding better
transformation methods with neural networks [49, 50, 52] so
that these inputs, when input to some surrogate classifiers, can
lead to improved transferability. Notably, many of these attacks
(e.g., training auxiliary classifiers and finding better input
transformations) are compatible with each other, indicating
that stronger attacks might be possible by composing these
attacks, which are not explored in the literature, and we
encourage researchers to investigate this possibility.

B. Hard-Label with Interactive Access

In this subsection, we consider attacks where the adversary
can actively query the target model, but only receives hard-
label responses. Within this category, we break down attacks
according to the auxiliary data available to the adversary,
following a structure similar to that of the previous subsection.

1) Low Quality Data: No Overlap with Target: Attacks
in this category are rather restricted in terms of the attacker
knowledge as existing attacks in the literature in fact did

not utilize any auxiliary data, leading to the category of the
quantity of auxiliary data being zero. The quality of data
should not be relevant in this case, but we still put it into the
setting of “no overlap with target” mainly for convenience in
categorization. Despite being a challenging setting, many hard-
label query-based attacks are proposed. The common methods
include estimating the gradients [98–100, 112–116], deploying
some classic black-box optimization techniques [108, 166],
leveraging random-walk strategy [129–135], or developing
other gradient-free random search based methods [97, 136–
139]. The categories that allow adversaries to leverage some
(sufficient or insufficient but not zero) amount of auxiliary data
are largely missing from the current literature.

C. High Quality Data: Complete Overlap with Target
Attacks in this category have access to auxiliary data

sampled from a distribution highly similar to/same as the target
distribution. When the amount of auxiliary data is insufficient,
the proposed methods include finding better (untargeted) uni-
versal adversarial perturbations that are agnostic to the victim
images [164], training surrogate models using synthetic dataset
[171–174] and boost existing hard-label attacks using limited
amounts of unlabeled dataset [175]. When sufficient auxiliary
data is available, this data can be used to train generators
to obtain better gradient estimates [94, 95]. Interestingly, the
number of works published under this category is still much
less compared to the more restrictive category above.

D. Top-K Confidence Vector with Interactive Access
Attacks in this category can interact with the target model

and get the top-k part of the confidence vector from the target
model. So far, there is only one work [3] that explicitly designs
an attack for this setting, although such a scenario is also
very common in practice. Driven by limited exploration in this
category, we conduct preliminary experiments in Section VI-A
to show that, currently under-explored areas may not be solved
by trivially adapting techniques from other well-explored areas
and motivate future investigation along this direction.

E. Complete Confidence Vector with Interactive Access
Attacks in this category will receive the complete predic-

tion confidence vector returned from the target model. The
remaining breakdowns are still similarly based on the quality
and quantity of the auxiliary data available.

1) Low Quality Data: No Overlap with Target: The strictest
setting is when the adversaries do not use any auxiliary data. In
this setting, many works propose generating highly successful
adversarial examples (e.g., finding many untargeted adversarial
examples in < 100 queries). Typical methods include gradient
estimation [3, 4, 16, 101–111], leveraging classical black-box
optimization techniques [117–121] or proposing some efficient
random search methods [96, 117–119, 122–128].

When the assumption is relaxed to allow limited number
of auxiliary data that overlaps with the target distribution
partially, a generator [167] on the perturbation distribution
can be trained to boost the performance of the state-of-the-
art Square Attack [96] that does not use any auxiliary data.



2) High Quality Data: Complete Overlap with Target:
Under limited availability of high-quality auxiliary data, exist-
ing works train generators to improve performance by better
capturing the low-dimensional latent space where the adversar-
ial examples reside [167, 176–179]. The availability of some
(auxiliary) unlabeled data also improves existing attacks that
(originally) do not rely on auxiliary data [175]. Like the low-
quality data case, a generator for the perturbation distribution
can still be trained on the limited high-quality auxiliary data
to boost performance of the Square Attack [167]. When
the assumption is further relaxed to allow some pretrained
models trained on data highly similar to the target’s training
data, the pretrained models can be used to boost query-based
attacks [140–149, 151] or queries from the target model can
be used to refine the surrogate model [143, 150, 152]. The
most relaxed setting is when there are sufficient high-quality
auxiliary data available. Existing works train generators on
(sufficient) high-quality data to generate adversarial examples
directly. In particular, a generator is first trained on some local
surrogate models (can be easily obtained by training on the
auxiliary data if not available beforehand) and later fine-tuned
with queries from the unknown target model [87, 183–185].

VI. INSIGHTS FROM TAXONOMY

Studying published attacks from the perspective of our
threat model taxonomy results in several insights about gaps
in the current research (Section VI-A), ways to improve evalu-
ation (Section VI-B), and opportunities to improve techniques
by incorporating ideas from related fields, such as model
extraction and inversion (Section VI-C).

A. Technical challenges in Underexplored Areas

As can be seen from Table I, many threat models are
unexplored (marked with ∅) or have only been considered
by a few works. Across the rows, there is little work in
settings where ample data is available but from sources that
have limited overlap with the target model’s data distribution.
However, this is perhaps the most relevant practical scenario—
for most classification tasks, adversaries are likely to be able
to acquire large amounts of somewhat similar data (e.g., from
the Internet, open image datasets), but unlikely to be able
to sample from the same distribution as the target model’s
(private) training distribution.

Across the columns, only one attack explicitly optimizes for
the availability of top-k prediction scores. This is surprising
since this is the most likely scenario for API attacks on
deployed classifiers. For example, ClarifAI’s models3 return
scores for at most 200 classes. For these unexplored or
under-explored settings, we suspect there is a technical gap
in addition to a knowledge gap, so the settings cannot be
addressed satisfactorily by adapting state-of-the-art methods
from well-explored areas [92, 155]. To support our argument,
we propose an attack for the top-k setting, specifically for the
setting with no auxiliary data or pretrained models is available,

3https://docs.clarifai.com/api-guide/predict/prediction-parameters/

the typical setting for query-based attacks (Section III-B). Our
adapted attack is based on the Square Attack [96] that is
originally designed for the setting that receives full confidence
vector of prediction and the adaptation idea is built on top of
the design of NES: top-k attack in Ilyas et al. [3] with non-
trivial modifications (details in Appendix A3).
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Fig. 1: Comparison of top-k attacks. Square: top-k is our
proposed adaption of the Square Attack for the top-k setting.
NES: top-k is the current state-of-the-art attack. SignFlip [136]
is a more restrictive hard-label attack.

Following the setup in the baseline NES: top-k [3], we
consider targeted attacks, set the query limit to 100,000 for
both attacks, and assume only the top-1 prediction confi-
dence is available. As shown in Figure 1, the Square: top-
k outperforms the NES: top-k attack significantly as the
number of queries increases. However, the Square: top-k is
mostly outperformed by the hard-label SignFlipAttack [136],
which ensures the targeted label yt is always in the top-1
prediction and then chooses to ignore the extra prediction
confidence. This comparison illustrates that there is substantial
room for improving attacks in the top-k setting, as attacks
designed for this setting are not performing nearly as well
as attacks with less information. Moreover, it is essential to
underscore the significance of considering baseline attacks
that operate with a subset of the available information in
the given context. One might improve further top-k attack
performance by harnessing the available confidence score for
hard-label attacks or adapting techniques from multi-label
learning [187]. However, this task is not straightforward, as
our preliminary experiments suggest. In general, research in
the underexplored areas, such as the ones we outline, faces two
unique challenges. First, well-explored methods that require
extra information do not directly extend to other threat models,
and their adaptation can be complex, with no reasonable
estimates on the performance drops—we demonstrate one such
case in our experiments in Figure 1. Second, well-explored
attacks from more restrictive settings (i.e., less information)
can be trivially extended to less restrictive settings, but the
room for improvement with additional information provided
by such less restrictive settings is unclear. For instance, the
state-of-the-art hard-label attack has a success rate of 20% at
10,000 query limit, while the full-score setting has near-perfect
attack success at the same number of queries. While one can

https://docs.clarifai.com/api-guide/predict/prediction-parameters/


Attacks Square Attack ODS-RGF Hybrid-Square

Attack Success (%) 100 97.7 100
Average Queries 2,317 1,242 117

TABLE II: Comparing query-based attacks in a setting where
all attacks are given access to an ensemble of four surrogate
models. Experimental setup follows from Tashiro et al. [142].
Hybrid-Square is our proposed stronger baseline.

argue that hard-label attacks can be used in top-k setting and
yield 20% success rate, it is intuitively clear that additional
information via top-k should be usable to increase success
rates significantly. While our adaptation (Figure 1) achieves
a success rate of over 30%, there may still be room for
improvement. We thus encourage researchers to concentrate
on crafting and examining attacks designed for relevant threat
model scenarios, such as the ones we identify.

B. Stronger Baselines Under Same Threat Model

Works introducing black-box attacks often make various as-
sumptions about the knowledge of the adversary and often end
up comparing adversaries across different levels of knowledge
directly in terms of attack effectiveness. We advocate that with
the categorization of the threat space (as outlined in Table I),
attacks should be carefully compared within the same threat
space. Further, researchers should be mindful of the possibility
of combining additional information made available to the
adversary to design stronger baselines.

Here, we use a preliminary experiment on the category
of complete access to prediction vectors and an ensemble of
local surrogates to demonstrate that, when evaluated under the
same threat model, a strong baseline can exist (and be easily
found) to overturn the state-of-the-art claims in the paper.
Specifically, ODS-RGF [142] leverages diversified gradient
vectors from the local surrogate models as the perturbation
vector for the RGF attack [145]. This attack performs better
than the Square Attack [96] that does not require any pre-
trained surrogate models. Using a simple strategy of generating
candidate adversarial examples against the (assumed) local
surrogates, followed by running the Square Attack on the
remaining examples that fail to transfer from, can easily
establish a (much) stronger baseline. This idea is inspired by
Suya et al. [140], which appears before the ODS-RGF attack
[142]. Details of the transfer experiment (on generating local
adversarial examples) can be found in Appendix A1. Table II
compares ODS-RGF, Square Attack and our proposed Hybrid-
Square in terms of the attack success rate and the average
number of queries, using the same experimental setup as the
original apper [142]. The first two attacks are the proposed
and baselinesattacks in Tashiro et al. [142]. We observe that
both ODS-RGF and Hybrid-Square improve query efficiency
compared to the original Square Attack. However, the Hybrid-
Square attack significantly outperforms the proposed ODS-
RGF attack, demonstrating the importance of considering
simple adaptations of known attacks to new threat models.

At last, stronger baselines may emerge not only when
extra information is available but also when attacks utilize
auxiliary data, even in the absence of such extra information.
As mentioned in Section IV-D, it is worth noting that attacks
that operate with auxiliary data can theoretically be applied
in settings with varying data sizes. The key distinction lies in
the degree of effectiveness these attacks exhibit under different
data sizes. Therefore, we recommend that attack methods,
which implicitly assume the availability of “sufficient” or
“insufficient” auxiliary data, should also use methods from
the opposite category as baselines. Furthermore, researchers
should conduct ablation studies to examine how the attack
performance evolves, compared to the baselines, when transi-
tioning from “insufficient” to “sufficient” auxiliary data.

C. Interaction Among Attacker Knowledge

The most straightforward interaction of attacker knowledge
is adversaries can train many pretrained models given enough
auxiliary data. Therefore, attacks may treat the existence of
sufficient auxiliary data the same as the existence of both
the data and the pretrained models (obtained from the data).
Further, proper identification of threat models using our tax-
onomy uncovers connections to other related fields such as
model stealing (also known as model extraction) [8] and model
inversion [10]. Model stealing adversaries aim to steal a copy
of a remotely deployed machine learning model given Oracle
prediction access. In contrast, model inversion adversaries seek
to infer (parts of) the training distribution of the remote model.
These attacks can significantly boost the performance of black-
box attacks with interactive access to the target model by
providing better surrogate models (via model extraction) and
more representative training data (via model inversion). We do
not implement these ideas but discuss their potential in detail
below.

Model-Extraction Attacks. Simply identifying the target
model structure (or family of models) [9, 188] can improve
attack success, especially in settings where the auxiliary data
highly overlaps with the target model’s training data. The
extensive literature on attack transferability [33, 42, 58, 64] can
thus serve as a “handbook” for adversaries. Further, when we
look to utilize model extraction for better transferability of
adversarial examples, an adversary’s specific goal is to ensure
the extracted and victim models have a similar vulnerability
space, so that better surrogates can boost black-box attack
performance. This is an easier objective that the original model
extraction objective of having prediction consistency [189]
as it is believed that adversarial examples reside in a low
dimensional subspace [9] that is easier to capture than the
full input space.

When enough auxiliary data exists, state-of-the-art model
extraction attacks can be readily applied [9]. Limited auxiliary
data settings are more challenging. Several works on black-
box adversarial examples use surrogate training to enhance
transferability [171–173] or improve query efficiency [143].
Surrogate training is also common in model extraction [189].



However, these surrogate extraction methods fail for com-
plex image classification tasks. Recent advances in data-
free extraction attacks show promise for addressing complex
classification tasks and can be further enhanced with pretrained
models.

Data-free model-extraction attacks [190–193] rely on a
generator to generate queries, which are then labeled by
the target model and used to update the generator and the
extracted model. These methods work well without any pre-
trained model—in particular, generators are randomly ini-
tialized and optimized with the estimated gradient from the
target model [190, 191]. With pretrained models, one may
first (pre-)train a generator with auxiliary models (using their
actual gradients) and then continue training the generator
with estimated gradients from the black-box model. Such
a generator is likely better than a randomly initialized one
and may enable extraction in fewer queries. The feasibility
of pretraining a generator and then fine-tuning for the target
model has already been demonstrated when directly generating
adversarial examples [87, 183–185]. Additionally, knowledge
from the surrogate models may still transfer to the target when
the training data of the two models have partial or no overlap
[167]. We note that the obtained generator can also be used
to augment the adversary’s data. When limited quantities of
data are available, this increased data can in turn enable other
model extraction methods that require more auxiliary data [9].

Model-Inversion Attacks. Model-inversion attacks aim to
recover representative and semantically meaningful training
data [194] of a given model. However, to generate adver-
sarial examples, the extracted data need not be semanti-
cally meaningful [87, 94]. Model inversion can help either
directly [87, 94, 95, 183–185] by providing more representative
data (which can be further diversified with data augmenta-
tions [195]), or indirectly by boosting the performance of
model extraction attacks via better query synthesis [195]. In
settings with sufficient auxiliary data, state-of-the-art model-
inversion attacks [196, 197] can be applied directly to recover
more representative data and improve the quality of the auxil-
iary data. For settings with limited auxiliary data, an adversary
may use a query-generator trained during a model-extraction
attack (where the generator is a common component in most
techniques, as described earlier) to generate more auxiliary
data. State-of-the-art black-box inversion attacks [197] can
then be utilized in the absence of a surrogate model.

Still motivated by the success of pretraining and fine-tuning
generators for adversarial example generation [87, 183–185],
we see opportunities for exploiting the presence of pretrained
auxiliary models in improving the effectiveness of model
inversion attacks against the unknown target, to eventually
improve performance of black-box attacks. Particularly, the
conditional generative model in Liu et al. [197] can first use
labels from auxiliary models, followed by fine-tuning with la-
bels from the target model to improve performance. Similarly,
white-box inversion attacks [196] may utilize the auxiliary
model for gradient computation and then use predictions from

the target model to estimate gradients using black-box gradient
estimation [3, 16] techniques for fine-tuning.

Combining Model-Stealing and Model-Inversion. Model
stealing and model inversion attacks can be combined
dynamically—for instance, by iteratively running model steal-
ing and inversion attacks to boost each other. One thing to note
is that these attacks’ query requirements can be quite high and
unrealistic for resource-constrained adversaries, even though
attackers only have to run these two attacks once and then
use the results to boost future black-box attacks. For example,
even state-of-the-art black-box model inversion attacks require
millions of queries (e.g., DiSGUIDE [192] use at least 4M
queries for models trained on CIFAR-10 [198]).

VII. RETHINKING BASELINE COMPARISONS

Most interactive and non-interactive attacks involve running
an optimization loop locally for some number of iterations to
find a candidate adversarial example. It is in the adversary’s
interest to run the attack for as many iterations as possible as
long as more iterations improve success rates. The number
of iterations is also used as a grounding factor in attack
comparisons, running attacks for the same number of iterations
for fair comparison [24, 33, 36, 38, 45, 170]. 4 We argue that
such measures, while well-meaning, are in fact not “fair” and
misaligned with what adversaries care about. Fixing the num-
ber of iterations limits some attacks, clipping their potential
for the sake of comparison. In most cases, the iteration-wise
cost of attacks is low, and an adversary that does not have
severe latency requirements would only care about maximizing
its success rate. When latency or compute costs matter, an
adversary would prefer the attack that yields the highest attack
success rate within the given time or resource constraints.
As pointed out by Apruzzese et al. [5] through a thorough
analysis of real-world adversarial scenarios, attackers prefer
cheap and effective methods that can be easily automated, and
the relevant cost metric is the total effort spent on the process
of completing an attack—a metric that is harder to count than
number of iterations, but is more direct.

Another issue with many evaluations is the lack of chal-
lenging settings for attack comparisons. Untargeted attacks are
much easier than targeted ones; attacking non-robust standard
models is easier than attacking adversarially-robust models.
Success rates can be very high in easy settings and thus fail
to provide useful insights about relative attack performance
that can transfer to harder settings. These harder settings are
in fact the ones where attacks matter most.

We advocate for evaluating black-box attacks with a re-
alistic consideration of actions that adversaries can take in
practice. Specifically, instead of fixating on a specific number
of iterations for non-interactive settings (Section VII-A) as
the primary metric for comparison, we argue that adversaries
should be able to use more iterations when beneficial and the

4Ablation studies report the impact of iteration numbers on ASR, but
only up to 30 iterations [42]. Studies on higher attack iterations (up to 1,000)
do not report iteration-wise results [155].
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Fig. 2: ASR (y-axis) for various targeted attacks on DenseNet201 models, varying across iterations (a) and time (b). All attacks
on the left are run for 100 iterations, while attacks on the right are run for 30 minutes per batch. ASR at each iteration is
computed using adversarial examples at that iteration. ASR at 40 iterations are marked with ⋆ for each attack.

only constraints such as total time should be motivated by the
evaluation scenario. Our analysis with this new lens uncovers
several interesting insights and suggestions for researchers. For
non-interactive transfer attacks, we discover how running at-
tacks for more iterations helps attack success (Section VII-A1),
and that simply stopping attacks when they succeed on lo-
cal models can hamper performance (Section VII-A2), and
observe much clearer trends in relative attack performance
trends when evaluated in hard settings such as targeted attacks
(Section VII-A3). In Appendix C, we also show how the ASR
of different interactive query-attacks can change when the
evaluation metric shifts from the number of queries to the local
runtime, and advocate using local runtime as an additional
metric on top of the commonly considered query costs for the
interactive black-box attacks.

A. Transfer Attacks
Attack success rate (ASR) has been the guiding metric for

evaluating different transfer attacks’ the effectiveness of differ-
ent transfer attacks. However, more effective transfer attacks
often require complicated computation processes and can lead
to local computation costs that are orders of magnitude higher
than baselines.

For convenience in comparison, we selected transfer attacks
that augment the baseline I-FGSM attack [23] with various
gradient and input manipulation techniques, including new
combinations (details in Appendix A2)—this leaves us with
20 attacks. Since these attacks are based on iterative local
optimizations, we can conveniently measure the impact of
different local time constraints on ASR against the target
models. Of these 20 attacks, we picked 11 that span a wide
range of local runtimes. Note that for each of the following
graphs, we re-evaluate the attack at each iteration using the
adversarial inputs generated at the end of that iteration, thus
giving us multiple attack success rates as iterations progress.

1) Time and iterations: It is conventional to evaluate attacks
for a fixed number of iterations: usually 10 for untargeted set-

tings. However, the lack of targeted attack evaluations means
there is no such standard for that setting, with MI-FGSM [33]
being one of the few attacks that evaluate targeted attacks,
using 40 iterations (which is what we set for targeted attacks).
However, the number is arbitrary and it is unclear whether
attacks have the potential to have improved performance. Prior
work [22] also recommends running attacks until convergence,
instead of a fixed number of iterations. To test this hypothesis,
we run attacks for 100 iterations, instead of the usual 40 for
targeted attacks, and analyze ASR trends (Figure 2-a). Most
attacks seem to benefit from increased iterations.

Given this potential for improved success beyond 40 iter-
ations, it is important to extend evaluations for valid com-
parisons. Execution time should be used if resource con-
straints like runtime exist, especially when the cost-per-
iteration varies. Motivated by these factors, we re-run all the
attacks but instead of running them for a fixed number of
iterations as in prior work, we run them for the same time
duration (30 minutes per batch)5.

Iteration-wise analysis (Figure 2-a) would suggest MIDI-
FGSM to be slightly worse off than SMI-FGSM, even when
compared under the setting of 100 iterations. However, looking
at the same results across time (Figure 2-b), this trend flips
once we observe that MIDI-FGSM is nearly 2x as fast and
can thus execute double the number of iterations in the same
amount of time. Similarly, MIDI-FGSM and Admix-FGSM do
not seem very far apart in their performance when looking at
the same number of iterations, but time-wise analysis shows
how the difference in their performance is much higher.

This analysis based on runtimes paints a clearer picture
that is better aligned with what an adversary would desire—
maximizing attack success within their available resources
(e.g., limit on the total execution time). As an example,

5We opt for measuring total runtime over algorithmic measures due to
the challenge in standardizing components’ runtimes across different hardware
configurations, acknowledging both methods have their merits and limitations.
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Fig. 3: Attack success rates (ASR) (y-axis, left) for target
and local models, along with loss (y-axis, right) while opti-
mizing the objective locally, varying across time (x-axis), for
targeted attacks on DenseNet201 (a) and untargeted attacks on
adversarially-robust Inception-v3adv (b), using SMIMI-FGSM
[24]. ASR at representative iterations (40 for targeted, 10 for
untargeted) are marked with a ⋆ for each of the metrics.

consider an adversary looking at results in the literature to
select an attack. Assuming computational constraints are not
an issue, the literature would suggest SMI-FGSM being a
good candidate instead of candidates like MIDI-FGSM, and
the adversary may pick SMI-FGSM to conduct the attack.
However, once we realize that these comparisons are based
on the number of attack iterations (an arbitrary metric) and
instead compare them based on the local runtime, it is clear
that MIDI-FGSM can generate better attack results (Figure 2).
These are the kind of cases we have in mind while advocating
for time-based comparisons. Our motive is not to encourage
researchers to add execution-time as an ”extra metric”, but
rather remember that these attacks are designed for adversaries
that would only want to maximize success rates given available
resources [5], and not care about running the attack for a fixed
number of attack iterations.

Recommendation: Run attacks for enough iterations
until attack success rates plateau. Execution cost such as
the local attack runtime should be used as the equalizing
factor when comparing black-box attack performance, not
the number of iterations.

2) Knowing When to Stop: As observed in Figure 2, simply
running attacks for more iterations often improves attack suc-
cess rates. For instance, attack success for MIDI-FGSM jumps
from < 20% to nearly 80% when run for sufficient iterations
which, interestingly, is still faster than running Admix-FGSM
for 40 iterations. Similarly, SMIMI-FGSM jumps from ∼75%
to ∼85%, once the attack runs for longer. However, success
rates do not always improve with more iterations. For instance,
while MIDI-FGSM in the targeted setting (Figure 2-b) sees
an improvement, it fluctuates between 70 and 80%. While
running attacks for more iterations helps in most cases, it
is not obvious when an adversary should stop their attack to
maximize ASR—the adversary cannot know the optimal num-
ber of iterations before executing their attack. One possible

workaround is keeping track of metrics for the local models
(which are used to compute gradients), and possibly running
more iterations as long as metrics such as local success rates
and loss do not stagnate.

Intuitively, an adversary has no reason to continue local
attack optimization once it successfully generates adversarial
examples for its local models. The only possible motiva-
tion lies in changing the model’s prediction probabilities—
increasing confidence for targeted attacks, and decreasing
confidence for untargeted attacks. Our analysis shows how the
rate of finding successful adversarial examples against local
models gets to 100% almost immediately, even when attack
success rates on the target models are low. An adversary that
only inspects local attack success rates would thus stop its
optimization prematurely, leading to sub-optimal ASR for the
target model.

For the targeted setting (Figure 3-a), we interestingly ob-
serve the local loss value to continue dropping (not by much;
note that the right y-axis is on log-scale for loss in targeted
attack), even though target ASR starts stagnating in the 500-
750s range. Looking at such a loss trajectory, it may be
tempting to conclude running the attack till the local loss
converges, should be a good heuristic for knowing when the
target ASR will be highest. However, inspecting the case of
an adversarially-robust target model (Figure 3-b) disabuses us
of this notion—ASR peaks at around ten iterations, while the
local loss keeps increasing and converging until the very end
of attack execution. It is not surprising that local loss continues
to converge, since this is what the attacks optimize for while
computing gradients, and this may not necessarily align well
enough with the target model.

The fact that ASR for the target model keeps increasing
significantly even after the attack succeeds for local models is
intriguing and a challenge unique to black-box attacks. While
this goes hand in hand with the suggestion to evaluate attacks
for longer iterations, it raises the question of knowing when
the attack running locally should be stopped to maximize ASR
for the target model.

Recommendation: Do not rely on attack success or
loss on local models as a metric to stop optimization.
Developing metrics that can help predict optimal target
ASR is a direction for future work.

3) Harder settings: Since almost all attacks against stan-
dard models with sufficient perturbation budget achieve nearly
100% attack success, there is limited room for improvement.
However, attacks in harder settings (Figure 4) can be much
less effective (e.g., < 60% ASR when perturbation budget
is halved to 8/255) and can demonstrate different trends in
relative performance. For example, against an adversarially
trained target model, the least and most performant attacks
differ by as much as ∼30% in their ASR (similar trends
hold for the targeted setting). Although attacks like SMIMI-
FGSM seem to perform well across all settings, this is indeed
a posterior observation that can only be verified for a new
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Fig. 4: ASR (y-axis) for various attacks: targeted attacks for Inception-v3 with perturbation budget 16/255 (ℓ∞) (a), untargeted
attacks for Inception-v3 with reduced perturbation budget 8/255 (b), and untargeted attacks for adversarially robust model
Inc-v3adv with perturbation budget 16/255 (c). ASR at each iteration is computed using adversarial examples at that iteration.
ASR at representative iterations (40 for targeted, 10 for untargeted) are marked with ⋆ for each attack.

attack when it is evaluated across diverse and hard settings
and, in fact, does not hold for other hard settings like IncRes-
v2ens target models (SMIMI-FGSM is out-performed by VMI-
FGSM and VNI-FGSM, Figure 5 in the Appendix).

Recommendation: When evaluating and comparing at-
tacks, researchers should include harder attack settings,
such as targeted attacks, low perturbation budgets, and
adversarially robust target models.

VIII. DISCUSSION

We highlight our key findings, discuss their implications,
and make recommendations for future research. We also
identify the limitations of this work.

Many Interesting Settings Underexplored. Categorizing at-
tacks from the literature uncovers how several threat models
have close to little or no research dedicated to those specific
settings (Section VI-A) despite these areas being some of the
most relevant to practical attacks—most model APIs return
top-k scores (not full confidence vector) and the availabil-
ity of abundant data from non-overlapping distributions is
possible via the Internet, yet both of these settings have
hardly any research. We also identify the utility of orthogonal
yet useful fields in ML security, such as model extraction
and model inversion, and how they can be utilized under
certain threat models to boost the performance of black-
box attacks (Section VI-C). Future research should focus on
developing specific attacks for these unexplored but important
and interesting settings.

Careful Evaluation Matters. Even within well-explored
threat spaces, researchers often compare proposed attacks with
baselines that require different (and often more restrictive)
assumptions over the adversary’s capabilities, and in settings
that are easy enough that all attacks work well. We show how
small tweaks to adapt existing methods to utilize the available

knowledge fully can strengthen the baselines and outperform
the proposed attacks (Section VI-B). Additionally, several
attacks focus on the untargeted setting where most attacks
already achieve near-perfect ASR, instead of harder settings
such as targeted attacks and adversarially robust target models,
where attack performance trends can change drastically. We
implore researchers to conduct evaluations in settings where
differences matter, and to either use state-of-the-art baselines
from the same threat space or to adapt baselines to utilize
assumed knowledge.

Evaluate Attacks under Well-motivated Constraints. When
constraints are imposed on attacks, they should be motivated
by realistic adversarial constraints and focus on attack cost.
Our experiments demonstrate how several proposed attacks
can benefit from more iterations, yet predicting the optimal
number of local attack iterations is non-trivial. We thus ad-
vocate for a shift in paradigm when reporting attack results
for adversarial attacks: using time as the equalizing metric
for comparing attacks instead of iterations to infer the attack
effectiveness better. We also hope our results motivate future
work to use a better selection method for choosing the best
candidate examples across iterations.

Limitations. Our analysis of evaluated attacks is focused on
image classifiers, which is not a security-critical application.
While there are claims that attacks from image classifiers can
be adapted to other domains like malware classifiers, there is
little evidence that the decisions about which attack to adapt
would be based on extensive evaluations in image space.
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APPENDIX

A. Experiments

1) Implementation Details: Below, we provide details around our experimental setup and evaluations.

Models. For the normal setting, we consider DenseNet201 [199], Inception-v3 [200], Resnet101 [201], and VGG19 [202] as
the target models. All of these normally-trained models were used from the Torchvision [203] library. Additionally, we also
consider two robust target models: Inc-v3adv [204] and IncRes-v2ens [204]. For all of our attacks, our local (surrogate) models
consist of an ensemble of: DenseNet-121 [199], Inception-v4 [200], ResNet-50 [201], and VGG-16 [202], which do not overlap
with the target models.

Data. We randomly sampled 100 images from the ImageNet [205] validation set. To avoid confusion between the two definitions
of untargeted attacks (flipping the model’s prediction, or making the prediction mismatch the ground-truth), we picked these
100 examples such that all target models have 100% classification accuracy on them.

Attacks. Unless explicitly specified otherwise, all attacks are generated under 16/255 ℓ∞ perturbation budget, and hyper-
parameters are adopted from the original papers for each of the attacks. The typical setting of step size α is set as ϵ/T , where
T is number of iterations, and is set as 40 for targeted attacks, and 10 for untargeted attacks.

Code/Experiments. We used a batch-size of 5 across all transfer attack experiments to make sure that all attacks (given their
varying GPU memory requirements) can fit on the GPU for any given batch. All of our experiments we performed on a 2 CPU,
8-core (2 threads/core) CPU, with 64GB RAM and an Nvidia GTX1080Ti server with 11GB memory, running on Ubuntu
Server 22.04. All of our attacks were implemented using PyTorch 1.12.1, running on Python 3.7.13. We exclusively run one
experiment at a time on the machine while, although time consuming, helps calculate accurate runtime estimates of attacks
without potential fluctuations or slowdowns because of other jobs possibly running on the same machine.

2) Attacks Evaluated in This Paper: Below, we provide brief details about the attacks used for evaluations in Section VII.

Non-interactive Transfer Attacks. Fast Gradient Sign Method (FGSM) [2] generates input perturbation by adding noise in
the direction of the sign of gradient of the loss with respect to the input image. I-FGSM (Iterative FGSM) [23] is an iterative
version of FGSM that applies the FGSM with smaller step size for multiple iterations and strengthens the effectiveness. I-
FGSM also becomes the building block of stronger attacks incorporate additional information. For input augmentation methods,
Admix-FGSM [170] augments the input of I-FGSM by adding a small patch from other images. ODS-FGSM [142] introduces
a sampling strategy for the generated adversarial examples to prioritize diversity in the target model’s outputs and improves
transferability. The rest of the described attacks enhance the performance of I-FGSM with gradient stabilization. MI-FGSM
(Momentum Iterative FGSM) [33] enhances I-FGSM by incorporating momentum in gradient calculation while NI-FGSM [34]
uses Nesterov accelerated gradient for I-FGSM to effectively look ahead and improve performance. VMI-FGSM [38] and VNI-
FGSM [38] respectively further stabilize the MI-FGSM and NI-FGSM method by incorporating variance of previous gradients.
SMI-FGSM [24] considers the (spatial) context gradient information from different regions of the image for stabilization while
SMIMI-FGSM from the same paper further augments it by adding temporal momentum. EMI-FGSM [36] considers the
average gradient of data points sampled in the gradient direction from previous iterations.

Query-based Interactive Attacks. Bayesian optimization with perturbation sampling from a low dimensional space is leveraged
to improve the query efficiency of black-box attacks in the low-query regime, for both the full-score (complete confidence
vector) [120] and the hard-label settings [166]. The bayesian optimization based attacks can be efficient in the low-query regime
as it judiciously chooses the next sample to query based on a proper modeling of the adversarial space distributed around the
victim image. However, this attack cannot scale to larger number of queries because the associated Gaussian process will need
to maintain a very large kernel matrix, and make the attack extremely slow to optimize and consume huge memory at high
number of queries. Some efficient random search based strategies are also proposed for the full-score [96] and hard-label [97]
attacks. Although these attacks are not particularly designed for the low-query regime, they are very efficient to run locally
and also shows competitive attack success rate in different query regimes (especially for very high number of queries).

3) top-k Adaptation Details: For untargeted attacks, full-score attacks can be applied directly to the top-k setting—most
of these attacks only require the prediction score of the ground-truth class, which is always available as the top-1 prediction
score except for inputs for which the attack is successful. The setting of targeted attacks is thus much more interesting since
the target class may not be included in the top-k scores. As an illustration of adapting an attack to this setting, we adapt the
Square Attack to the top-k targeted attack setting. We call this attack Square: top-k.

The top-k version of the NES attack (NES: top-k) modifies the original version that operates with complete prediction
vector by starting from a random image of the target class (instead of the original seed in the original version), and leverages
estimated gradients to gradually reduce the perturbation distance with respect to the original image while still maintaining the
class prediction. This way, the confidence score of the target class is guaranteed to be in the top-k predictions. We speculate



that this idea can also be used to adapt the state-of-the-art Square Attack [96] by starting the attack with a random image of
the target class and using corresponding perturbation generation methods to generate perturbed inputs that gradually get closer
to the original seed while the target class is still in the top-k predictions. However, using the same fixed threshold on the loss
function to decide when to start reducing the perturbation size, as done in NES: top-k, does not work for the Square Attack
and makes the attack even less ineffective. We solve this by designing a dynamic scheduler that reduces a relatively small
threshold (initially 1 in our experiments) by half if the attack is not successful in finding useful perturbations with reduced
size for 10 consecutive iterations, and make the attack successful in generating useful adversarial examples.

B. Transfer Attacks

We provide additional results of transfer attacks on other target models (not covered in the main paper) in Figure 5. The
overall findings still support the main claims made in Section VII.
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Fig. 5: ASR (y-axis) for various attacks varying across time: targeted attacks for VGG19 (a) and Resnet101 (b), and untargeted
attacks for IncRes-v2ens (c). ASR at each iteration is computed using adversarial examples at that iteration. ASR at representative
(40 for targeted, 10 for untargeted) are marked with ⋆ for each attack. Note that although SMIMI-FGSM seems to outperform
other attacks in most settings, it is outperformed by VMI-FGSM and VNI-FGSM for the case of IncRes-v2ens (c). ASR at each
iteration is computed using adversarial ex, further supporting our argument for evaluation under hard and diverse settings.

C. Query-based Attacks

Query-based attacks compare attacks by tracking ASR as queries are progressively submitted to the target model. Query
cost is an important factor, as each query may incur a financial cost [124] as well as a risk of detection [206]. However, for
resource constrained adversaries or situations where API costs are not a major issue (e.g., model hosted in secure enclave), the
local computational cost (runtime) may be a higher priority for attackers. Adversaries in such scenarios might prefer attacks
that are efficient to run locally and also require fewer queries.

In this section, we compare the bayesian optimization based attack for the hard-label setting (BayesOpt) [166] to the locally
efficient RayS attack [97]. We choose these two attacks because the first attack achieves state-of-the-art performance in the
low-query regime at the cost of high local runtime, while the latter achieves best performance in larger queries and is highly
efficient locally. We will use these two attacks to demonstrate how the effectiveness of the attacks can change when the focus
of the adversary shifts from the query cost to the local runtime cost. A secondary purpose is to check if BayesOpt attack is still
the best in the low-query regime, as the BayesOpt is not compared to RayS in the original paper, despite RayS being published
a year before BayesOpt at the same conference. We run untargeted attacks against Inception V3 model and set the query limit
to 1,000 for the BayesOpt attack [166] and 10,000 for the RayS attack [97], all consistent with the respective original papers
(we do not include targeted attacks since we could not get the BayesOpt attack to successfully generate adversarial examples
in the targeted setting within the query limit).

Figure 6-a shows that the BayesOpt attack still achieves better results in the low query regime, by showing that the ASR is
consistently higher than the RayS baseline. This confirms that the BayesOpt attack still achieves better performance in terms of
attack success for low numbers of queries. However, when we solely measure the local runtime as the metric (Figure 6-b), the
attacks proposed for the efficient attacks with sufficient queries achieve significantly higher attack success rate. Therefore, an
attacker with more focus on the local cost might opt for RayS over BayesOpt in practice. Some might argue that the runtime
of both attacks on a significant fraction of images are close to 0s. This is because these fraction of seeds are indeed very
easy to attack and simple addition of random noise (or adding noises for a few queries) can lead to successful untargeted
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Fig. 6: ASR (y-axis) for various query-based untargeted attacks under the hard-label (a, b) and full-score setting (c, d), for
Inceptionv3 target model, varying across queries (a, c) and time (b, d). ASR at each iteration is computed using adversarial
examples at that number of queries.

attacks. This can also be validated by the ASR (≈ 35%) of Square Attack [96] at 1 query, which adds a random noise without
receiving the feedback from the target model. Different adversaries under different settings can have different priorities, such
as avoiding discovery (minimizing number of queries), or wanting to be computationally efficient (minimizing local runtime).
This difference in priorities, along with the demonstrated difference in attack trends, is exactly why it is important to include
both kinds of metrics, instead of solely relying on the query based metric, in the future evaluation of query-based attacks.

We also repeated the same experiment in the setting of complete confidence vector, where we used the complete confidence
score version of the BayesOpt attack using their corresponding implementation [166], and compared to the state-of-the-art
locally efficient Square Attack [96]. We note that, there also exists another bayesian optimiation attack [120] that is reported
to have even higher attack success than the results we obtained by running the BayesOpt attack above. However, the provided
code by Ru et al. [120] runs extremely slowly (due to large number of CPU computations) and the attack was also not
successful. The authors were also not responsive to our inquiries on possible ways to replicate their results. Therefore, we opt
to use the results from the BayesOpt attack mentioned. The results are given in (Figure 6-c,d). We can see that, the locally
efficient Square Attack is more efficient than the BayesOpt attack using the both metrics on the number of queries and the
local runtime. This shows that, when accessing the complete confidence vector from the target, attacks explicitly proposed for
the low-query regime does not seem to be the best option when compared to a more recent baseline, and encourage future
research to pick the more competitive baselines for comparison.
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