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Abstract

Many self-supervised methods have been proposed with the target of image
anomaly detection. These methods often rely on the paradigm of data augmentation
with predefined transformations such as flipping, cropping, and rotations. However,
it is not straightforward to apply these techniques for non-image data, such as time
series or tabular data, while the performance of the existing deep approaches has
been under our expectation on tasks beyond images. In this work, we propose a
novel active learning (AL) scheme that relied on neural autoregressive flows (NAF)
for self-supervised anomaly detection, specifically on small-scale data. Unlike
other generative models such as GANs or VAEs, flow-based models allow to ex-
plicitly learn the probability density and thus can assign accurate likelihoods to
normal data which makes it usable to detect anomalies. The proposed NAF-AL
method is achieved by efficiently generating random samples from latent space and
transforming them into feature space along with likelihoods via invertible mapping.
The samples with lower likelihoods are selected and further checked by outlier
detection using Mahalanobis distance. The augmented samples incorporating with
normal samples are used for training a better detector so as to approach decision
boundaries. Compared with random transformations, NAF-AL can be interpreted
as a likelihood-oriented data augmentation that is more efficient and robust. Ex-
tensive experiments show that our approach outperforms existing baselines on
multiple time series and tabular datasets, and a real-world application in advanced
manufacturing, with significant improvement on anomaly detection accuracy and
robustness over the state-of-the-art.

1 Introduction

Anomaly detection, finding rare data that substantially differs from the majority of the data, is one of
the essential problems in artificial intelligence. One typical anomaly detection setting is a one class
classification, where the target is to detect samples as normal or anomalous. Many deep anomaly
detection methods are recently proposed to solve one class classification tasks, specifically on image
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benchmarks, with different scenarios, including supervised anomaly detection, unsupervised anomaly
detection, and self-supervised anomaly detection [Ruff et al., 2021]. Here, we focus on the self-
supervised setting where we have a training set of normal samples without anomalies and detect
anomalies in the testing set which contains both normal and anomalous samples.

However, for data beyond images, such as tabular or time series data, we have several challenges
in pursuing accurate and robust detection of anomalies. First, many recent advances in anomaly
detection rely on data augmentation. Typical transformations, such as translation, rotation and
reflection, are designed for images so that a strong detector is obtained based on the transformation
predictions. Unfortunately, it is less well known which transformations are useful and hand-crafted
transformation is not a straightforward task for non-image data [Bergman and Hoshen, 2020, Qiu
et al., 2021]. Second, many tabular and time series data are from medical and healthcare. Small
dataset size with sparse labels gives rise to unique difficulties which result that the anomaly detection
performance is always under our expectation [Zong et al., 2018]. Third, although many deep anomaly
detection methods show exceptional performance on large-scale image benchmarks, it is still a
non-trivial task to handle small-scale tabular and time series data with high reliability and robustness
[Pang et al., 2021]. This work aims at addressing these challenges in the scenario of self-supervised
anomaly detection for data types beyond images. We develop a novel active learning scheme for
effective data augmentation, which is a simple end-to-end procedure built upon a likelihood-based
anomaly detection. The key idea is to leverage the advantages of neural autoregressive flows to assign
likelihoods to normal data which enables to detect anomalies. Augmented samples with explicit
likelihoods, drawn from the learned flow models can incorporate with original small data to improve
the detector accuracy with high robustness.
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Figure 1: NAF-AL first transforms the data into
multiple subspaces and learns a feature space by a
neural network. Then we build an accurate density
estimation via NAF and assign a higher likelihood
to normal (a lower likelihood to anomaly) in latent
space. NAF-AL is free to draw samples and trans-
form them to feature space with explicit likelihoods
via invertible mapping. Using a marginal strategy,
these samples are partially selected to approach de-
cision boundary by incorporating with normal data
for improving the detector during training. This
allows for more effective data augmentation.

Specifically, our proposed method consists of
two core components: NAF anomaly detection
framework (NAF-AD) and NAF-based active
learning scheme (NAF-AL). Figure 1 visual-
izes the core idea behind our method. NAF-
AD first performs data augmentation via ran-
dom affine transformations and learns a feature
space extracted by a neural network. The fea-
ture distribution of normal samples is captured
by utilizing the latent space of a NAF model
[Huang et al., 2018]. Unlike GANs or VAEs,
flow-based models enable a bijective mapping
between feature space and latent space in which
each sample is assigned to a likelihood, which
is used to derive a score function to decide if
a sample is normal or anomalous. We propose
NAF-AL by efficiently generating random sam-
ples from latent space and transforming them
into feature space via bijective mapping. The
samples with lower likelihoods are selected and
further checked by outlier detection using Ma-
halanobis distance. The left effective samples
are merged into normal data to approach deci-
sion boundaries for better detection. Compared
with random transformations, NAF-AL can be
interpreted as a likelihood-oriented data aug-
mentation that is more active and efficient. As a
result, we achieve superior performance in deep anomaly detection beyond images, specifically on
small-scale tabular and time series data, with significant improvement on anomaly detection accuracy
and robustness over the state-of-the-art.

2 Related Work

Deep Anomaly Detection. Many recent advances have been proposed to use deep learning for
anomaly detection. Ruff et al. [2021], Pang et al. [2021] provided a thorough survey and review on the
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recent development of deep anomaly detection approaches. Related work on deep anomaly detection
include one class classification [Ruff et al., 2018, Liznerski et al., 2020, Ruff et al., 2019], outlier
exposure [Hendrycks et al., 2019a, Goyal et al., 2020], and out-of-distribution (OOD) detection [Ren
et al., Hendrycks and Gimpel, 2017, Kirichenko et al., 2020].

There has been an increasingly growing interest in self-supervised scenarios since this supervision is
easy to obtain in practical settings and also shows promising accuracy in detecting anomalies [Pang
et al., 2019, Hendrycks et al., 2019b, Sohn et al., 2020, Tack et al., 2020, Li et al., 2021, Sehwag
et al., 2020]. Self-supervised methods solve one or more classification-based auxiliary tasks (e.g.,
data transformations [Golan and El-Yaniv, 2018, Wang et al., 2019]), using normal data for training
and the learned classifier is useful to detect anomalies. Bergman and Hoshen [2020] extended the
work from Golan and El-Yaniv [2018], Wang et al. [2019] to investigate self-supervised anomaly
detection for general data. This approach is established based on the open-set setting with affine
transformations for tabular datasets. Qiu et al. [2021] followed a similar scope for anomaly detection
but with learnable transformations, and demonstrated a higher performance.

Likelihood (Density)-based Anomaly Detection. Differing from the classification-based meth-
ods [Ruff et al., 2018, 2019, Bergman and Hoshen, 2020], likelihood-based methods offer a proba-
bilistic view for anomaly detection. In this scenario, a flow-based model, learning a bijective mapping
between data distributions and latent distributions via invertible neural networks, is an ideal candidate
because it has significant advantages in explicit likelihood calculation and efficient sample generation
[Kobyzev et al., 2020, Papamakarios et al., 2021]. Much recent effort has been made to improve
model expressivity and computational efficiency that allow more accurate likelihood calculation
and enable faster sampling [Rezende and Mohamed, 2015, Dinh et al., 2017, Kingma et al., 2016,
Papamakarios et al., 2017, Kingma and Dhariwal, 2018, Grathwohl et al., 2018, Ho et al., 2019].
Huang et al. [2018] proposed a neural autoregressive flow (NAF) which is a universal approximator
for density functions, and addresses the challenges in inverse AFs [Kingma et al., 2016].

Although the properties of normalizing flows are promising, flow-based models for anomaly detection
have not raised much attention yet, although some works presented promising results using RealNVP
[Rudolph et al., 2021], residual flows [Zisselman and Tamar, 2020] and conditional normalizing flows
[Gudovskiy et al., 2021]. However, all of these works deal with large-scale image datasets. It remains
an open, and sometimes contentious, debate as to why and why not flow-based models can guarantee
anomaly detection [Kirichenko et al., 2020, Schirrmeister et al., 2020, Lan and Dinh, 2020].

Active Learning for Anomaly Detection. Deep anomaly detection tends to require immense
amounts of computational and human resources for training and labeling. The design of effective
training methods that require small labeled training sets is a fundamental research challenge [Tran
et al., 2019]. To address this issue, two are particularly interesting: data augmentation, which
artificially generates new samples for training, while active learning selects the most informative
subset of unlabeled samples to be labeled. Although successful in image data, data augmentation does
not utilize computational resources since the generated samples are not guaranteed to be informative
[Shorten and Khoshgoftaar, 2019]. Active learning deals with this limitation through an iterative
selection of small subsets while assessing how informative those subsets are for the training process.
Recent advances on active learning rely on the incorporation of Bayesian approach [Gal et al., 2017,
Tran et al., 2019] and deep generative models [Sinha et al., 2019, Liu et al., 2019].

Active learning strategies for anomaly detection [Stokes et al., 2008, Görnitz et al., 2009, Pelleg and
Moore, 2004] which identify informative instances for labeling, have primarily only been explored
for shallow detectors and could be extended to deep learning approaches [Pimentel et al., 2020,
Trittenbach and Böhm, 2019]. Our goal is to integrate a likelihood-based detector with active learning,
which leads to a more effective data augmentation scheme for designing anomaly detection that
continuously improves via likelihood feedback loops, see Figure 1. This idea has not yet been
explored for deep self-supervised anomaly detection.

3 NAF-AL Method

We develop a novel approach that relies on neural autoregressive flows with active learning (NAF-AL),
which is designed for self-supervised anomaly detection beyond images.
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3.1 Data Transformations in Self-Supervised Setting

Our method is built upon the self-supervised scenario which can be typically defined by

Definition 1 Assume all data X lies in space Sd, where d is the data dimension. Normal data X
lie in subspace X ⊂ Sd but all anomalies X∗ lie outside X . The task of self-supervised anomaly
detection is to build a classifier C based on completely normal data, such that C(x) = 1 if x ∈ X
and C(x) = 0 if x ∈ Sd \X .

In the self-supervised setting, data transformations T = {T1, ..., Tk|Tk : X → X} (e.g., translation,
rotation and reflection), are often used to generate K different views, which leads to a strong anomaly
detector based on the transformation prediction or representations learned using these views. However,
these transformations are not applicable to non-image data. To this end, we generalize the set of
transformations to random affine transformations:

Tk(x) = Ak(x) + bk, Ak ∼ N (0, Id) (1)

where Ak and bk are affine matrix and coefficient respectively, defined by random Gaussian distribu-
tions. The random affine transformation is a more general class that works for general data type with
an unlimited number of transformations.

Since only normal data are used for training, we first transform the normal data X into K subspaces
X1, ..., Xk, and then learn a feature extractor fθ(x) using a neural network parametrized by θ, which
maps the original normal data space X into a feature representation space X̃ . The probability of
data point x after transformation k is denoted by p(Tk(x) ∈ Xk). By assuming independence
between different transformations Tk, the probability that x is normal p(x ∈ X) is the product of the
probabilities that all transformed samples are in their respective subspace.

P(x) = log p(x ∈ X) =

K∑
k=1

log p(Tk(x) ∈ Xk) (2)

where P(x) computes the degree of anomaly of each data. Lower probabilities (likelihoods) indicate
a more anomalous data. We will introduce how to explicitly calculate these probabilities (likelihoods)
using flow-based models below.

3.2 Learning Likelihood by Autoregressive Flows

Normalizing flows (NF) are a flexible class of generative models that map a target distribution pX(x)
into a base distribution in the latent space pZ(z) via an invertible transformation fψ : Z → X where
fψ is an invertible neural network parametrized by ψ. Based on the change of variable theorem, the
likelihood for an input x is

pX(x) = pZ(f−1ψ (x))

∣∣∣∣∣det
∂f−1ψ
∂x

∣∣∣∣∣ . (3)

Flow-based models are typically trained by minimizing the negative log-likelihood of the training
data D with respect to the parameters ψ of the invertible transformation fψ .

ψ∗ = arg min
ψ
{− log p(D)} = arg min

ψ
{− log

∏
x∈D

pX(x)}.

Much effort in NFs focuses on designing expressive transformations while retaining efficient comput-
ing the determinant of the Jacobian |detJ |. In particular, autoregressive flows (AFs) decompose a
joint distribution pX(x) into a product of m univartiate conditional densities:

pX(x) = pX1
(x1)

m∏
i=2

pXi|X<i
(xi|x<i) (4)

where each univariate density is parametrized by a NF. In particular, the transformation f−1,(i)ψ can

be decomposed via invertible transformers t(i)ψ and conditioners c(i)ψ :

zi = f
−1,(i)
ψ (x≤i) = t

(i)
ψ (xi, c

(i)
ψ (x<i)). (5)
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The resulting flows have a lower triangular Jacobian and the invertibility of the flows as a whole
depends on each t(i)ψ being an invertible function of xi and each c(i) is an unrestricted function.

RealNVP [Dinh et al., 2017] model each t(i)ψ by using an affine transformation whose parameters
are predicted by c(i). However, these models require complex conditioners and a composition of
multiple flows due to their simplicity which leads to a limitation on expressiveness of fψ. Neural
autoregressive flow (NAF) [Huang et al., 2018] was proposed by learning a complex bijection using a
neural network monotonic in xi. NAF is a universal approximator for explicitly learning likelihood
with greater expressivity that allows it to better capture multimodal target distributions. The NAF
architecture is illustrated by Figure 2.

We propose to utilize NAF to learn the distribution of feature space and train NAF using a maximum
likelihood objective, which is equivalent to minimizing loss defined by

L(θ,ψ)(Dn) = − 1

|Dn|
∑
x∈Dn

log pX(x) ≈ 1

n

n∑
i=1

[
‖z‖22

2
− log |detJi|

]
+ const. (6)

where n is the size of training data D. During training, L(Dn) is optimized for feature space x of
different transformations T of an input data. After training, the learned NAF model can be used to
evaluate the log-likelihood of the testing dataset Dt that contains normal and anomalous samples.
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Figure 2: NAF architecture: each c(i) (a neural net-
work) predicts pseudo-parameters for t(i), which
in turns processes xi.

We use the calculated likelihoods as a criterion
to classify a sample as normal or anomalous. To
pursue a robust anomaly score function S(x),
we concatenate all the variable z from multi-
ple transformations Tk(x) ∈ T and average the
negative log-likelihood as

S(x) = −ETk∈T [log pZ(f−1ψ (Υ))], (7)

where Υ = fθ(Tk(x)) represents the feature
space extracted by a neural network fθ. If the
anomaly score S(x) is above the threshold value ξ, the sample is identified as anomalous, otherwise
as normal, which is given by

Q(x) =

{
1 if S(x) ≥ ξ
0 if S(x) < ξ

, (8)

where Q(x) = 1 indicates an anomaly. The threshold value ξ is varied to calculate the AUC and F1
score in experiments. Figure 3 shows empirical evidence for NAF-AD method. While the histogram
of anomaly scores (computed using Eq. (7)) is similar for inliers and anomalies before training, this
changes drastically after training, and held-out inliers and anomalies become easily distinguishable.

3.3 Active Learning with Marginal Strategy

Formally, active learning is used to automatically select the most informative subset of unlabeled
training samples and label them by an oracle. One of the key enabling techniques is uncertainty
sampling, which uses one classifier to identify unlabeled samples with least confidence [Zhu et al.,
2009]. However, active learning for self-supervised anomaly detection is different from the original
scope. To this end, we devise a novel active learning scheme to query low-confidence decisions,
hence guiding the detector with augmented normal samples in the training process. Such a marginal
strategy can be expressed by adding the sample x∗ that is close to the likelihood-based decision
boundary:

x∗ = arg min
x∈{x1,...,xn}

|L(x)|
Ω

, Ω = max
i
|L(xi)|. (9)

This is achieved by generating samples xaugj from the learned NAF model, calculating the log-
likelihood L(xaugj ) and retaining the samples with lower likelihoods if L(xaugj ) < Qα(L(xi)) where
Qα is referred to as the α-quantile (α = 0.9 ∼ 0.95 is a hyperparameter) and L(xi) is the log-
likelihood of current training samples. It is critical to design an appropriate likelihood level set
trade-off between aggressive boundary and conservative boundary, see Figure 6 for more discussion.
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The sample with lower likelihoods are desired but it is probably an outlier (anomalous sample) if the
likelihood is too small. Thus we have an additional step to check the sample by outlier detection,
which is done by Mahalanobis distance M(x) [Lee et al., 2018, Ren et al., 2021]

M(x)2 = (x− µ)TΣ−1(x− µ). (10)

We define a threshold δM that is Mahalanobias distance at χ2
0.05. The samples with M(x) > δM are

rejected. We eventually determine the augmented samples x∗ by solving the optimization problem in
Eq. (9) subject to two constrains:

L(x∗) < Qα(L(xi)), M(x∗) < δM . (11)
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Figure 3: Histogram of anomaly score before train-
ing and after training. The data come from the
Cardio. experiments in Table 5.

These samples x∗ are selected as normal sam-
ples and added to update the training process.
Appropriate stopping criterion for active learn-
ing is a trade-off issue between training cost and
effectiveness of the detector. We set up a crite-
rion to stop if the number of training iteration
increase to five due to time cost limitation or
the augmented samples size reaches 50% of the
original training size given the concern of sam-
ple efficiency. In summary, we propose an active
data augmentation by leveraging these synthesized normal samples based on meaningful likelihoods,
without changing the original training, testing, and proportion of anomalies. Note that the augmented
samples generated from the NAF are located on the feature space rather than the original data space.
The details of the NAF-AL are provided in Algorithm 1.

Algorithm 1 The NAF-AL algorithm
1: Require: training and testing datasets Dn,Dt, number of transformations K, feature extractor fθ , NAF

model fψ , hyperparameters α, δm and stopping criterion in active learning
2: while Active learning stopping criterion do
3: // Training process
4: Transform each training sample according to Eq. (1): T1(xi), T2(xi), ..., Tk(xi)← xi, i = 1, ..., n

5: Extract feature representation T̃k(xi)← Tk(xi), k = 1, ...,K via a neural network model fθ
6: Concatenate all different affine transformations T̃k(xi)
7: Evaluate the NAF model fψ for z and | detJ |
8: Minimize the loss L in Eq. (6) to update θ, φ
9: // Testing process

10: Transform testing sample by all transformations 1 to K: T1(xt), ..., Tk(xt)← xt, t = 1, ..., nt
11: Calculate the log likelihood pZ ← f−1

ψ (fθ(Tk(xt)))

12: Concatenate transformations and average the log-likelihoods to compute anomaly score S(x) in Eq. (7)
13: // Active learning process
14: Draw samples xaugj from the learned NAF model fψ
15: Evaluate the log-likelihood of new augmented samples L(xaugj ) and original training samples L(xi)
16: Retain the samples xaugj with lower likelihoods if L(xaugj ) < Qα(L(xi)) according to Eq. (9)
17: Check the outlier samples of xaugj if the Mahalanobis distance M(xaugj ) < δM based on Eq. (11)
18: Add the new samples xaugj with normal labels to the current training dataset, then iteratively update the

training process
19: end while
20: return Anomaly score S(x)

4 Experiments

We provide several experiments to demonstrate the effectiveness of our NAF-AL approach on deep
anomaly detection beyond images. Most image datasets are large-scale and have existing strong
baselines so we do not expect significant improvement via our NAF-AL method. Instead, our focus is
on small-scale tabular data and time series data.
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4.1 Anomaly Detection Baseline Methods

We compare our NAF-AL with a couple of anomaly detection methods, including:

• Shallow AD baselines: Isolation Forest (IForest) [Liu et al., 2008] uses a tree-based model to
isolate anomalies. Local Outlier Factor (LOF) [Breunig et al., 2000] utilizes density estimation
with k-nearest neighbors. One-Class SVM (OC-SVM) [Schölkopf et al., 1999] is a kernel-based
approach for one-class classification.

• Deep AD baselines: Deep Autoencoding Gaussian Mixture Model (DAGMM) [Zong et al.,
2018] uses latent space to estimate density. Deep Support Vector Data Description (DSVDD)
[Ruff et al., 2018] is a distance-based method with one-class SVM in the feature space. Feature
Bagging Autoencoder (FB-AE) [Chen et al., 2017] is an ensemble method with autoencoders as
the base classifier. GOAD [Bergman and Hoshen, 2020] is a self-supervised classification-based
method. Neural Transformation Learning for Anomaly Detection (NeuTral) [Qiu et al., 2021],
is a self-supervised method with learned transformations. For time series data, we also include
LSTM-ED [Malhotra et al., 2016] which is an encoder-decoder model to detect anomalies based
on reconstruction error.

4.2 Tabular Data Experiments

Tabular data plays a crucial role in anomaly detection applications since many medical, health, and
cybersecurity data come in this format. However, many important areas, e.g., medical, only have
small-scale data because the data collection is time-consuming, while labeling relied on expert
opinion is expensive.

Datasets. We focus on six tabular datasets, including four small-scale medical datasets, Arrhyth-
mia, Cardiotocograph, Lymphography and Thyroid from the Outlier Detection Datasets (ODDs)
repository2, and two cybersecurity datasets, KDD and KDDRev from the empirical studies of Zong
et al. [2018], Bergman and Hoshen [2020], Qiu et al. [2021] which are used to show our potential to
large-scale datasets. Table 4 shows the key statistics (data size, dimension, and anomaly ratio) of
the tabular datasets, and all relevant details of the datasets can be found in the Appendix. Following
the setting of Zong et al. [2018], we train all models on 50% of the normal data and evaluate the
performance on testing data containing the rest of normal data as well as all the anomalies.

0 10 20 30 40 50
Proportion of augmented samples (%)

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

In
cr

em
en

t r
at

io
 o

f F
1-

sc
or

e

Arrhythmia
Lympho.
Cardio.
Thyroid

0 10 20 30 40 50
Proportion of augmented samples (%)

75

76

77

78

79

80

F1
-s

co
re

 o
f T

hy
ro

id
 d

at
as

et

256 Trans
128 Trans
64 Trans
32 Trans

Figure 4: Left: F1 score increment ratio (NAF-
AL/NAF-AD) as a function of the proportion of
augmented samples from active learning. Right:
the effect of varying number of transformations
on the F1-score with a specific proportion of aug-
mented samples.

Implementation Details. We use a standard
normal distribution to generate random affine
transformation matrices for each case. Similar
as the setting in Bergman and Hoshen [2020],
we use 256 transformations for small-scale med-
ical datasets and 64 for large-scale datasets
(KDD and KDDRev). For the feature extrac-
tor, we used fully-connected hidden layers (1
layer with 8 hidden nodes for the small-scale
datasets and 5 layers with 128 hidden nodes
for large-scale datasets) with leaky-ReLU acti-
vations, as well as one 1d convolutional layer
on the top. The NAF model consists of 4 flow
blocks with 2 layers (128 hidden units) for small
data and 8 flow blocks with 3 layers (1024 hid-
den units). We optimized the network parame-
ters using Adam with a learning rate of 0.001.

Considering the training cost limit, we set up a stop criterion by using a maximum number of iteration
(Nmax = 5) for active learning. For each iteration, we draw a branch of samples where the sample
size equals the training sample size, then rank the samples based on their likelihoods and finally reject
the larger 90% samples (retain 10% samples with lower likelihoods near the decision boundaries).
These samples are further checked by Mahalanobis distance criterion if it is an outlier. After that, we
combine these augmented samples with the existing normal samples to update training.

2http://odds.cs.stonybrook.edu/
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Table 1: F1-score (%) for anomaly detection on tabular datasets.
Arrhythmia Cardio. Lympho. Thyroid KDD KDDRev

IForest 57.4 79.5 60.4 46.9 90.7 90.6
LOF 50.0 75.3 62.9 52.7 83.8 81.6

OC-SVM 45.8 72.6 58.7 38.9 79.5 83.2

DAGMM 49.8 74.4 61. 47.8 93.7 93.8
DSVDD 53.9±3.1 80.1±1.9 64.1±1.9 70.8±1.8 99.0±0.1 98.6±0.2
FB-AE 51.5±1.6 78.9±1.1 66.2±1.2 75.0±0.8 92.7±0.3 95.9±0.4
GOAD 52.0±2.3 79.7±1.5 66.8±1.4 74.5±1.1 98.4±0.2 98.9±0.3

NeuTraL 60.3±1.1 - - 76.8±1.9 99.3±0.1 99.1±0.3

NAF-AD 55.2±1.1 81.3±1.1 67.3±1.2 77.8±1.1 97.9±0.2 98.2±0.2
NAF-AL 61.1±0.9 84.0±1.0 71.3±0.9 79.8±0.8 98.5±0.1 99.0±0.2

The implementation details of the baseline methods are replicated from the existing studies [Zong
et al., 2018, Bergman and Hoshen, 2020], as we report their results with mean and standard deviation
(if they provide). We also implement these baselines for two additional small-scale datasets (Cardio.
and Lympho.) using their official code (if they have, otherwise keep the relevant cell blank).

Results. The results of NAF-AL in comparison to all baseline methods on tabular data are shown
in Table 1. We follow the configuration of previous work [Zong et al., 2018, Bergman and Hoshen,
2020, Qiu et al., 2021] to report results in terms of F1-scores.

• Small-scale datasets: all medical datasets are small with a low anomaly to normal ratio. Our
NAF-AD performs reasonably well as similar to most baselines. Our NAF-AL outperforms all
baselines on these small-scale datasets thanks to the benefits from active learning. Compared with
GOAD which is a classification-based method, our probabilistic flow-based model is competitive
even without the help of active learning. NeuTral beats our NAF-AD in the Arrhythmia dataset but
underperforms our NAF-AL method. Since our NAF-AL is flexible to incorporate any number of
transformations such that our robustness (with a smaller variance) is better than NeuTral.

• Large-scale datasets: The deep baselines show superior performance than the shallow methods
in this case. NAF-AD is slightly lower than NeuTral, GOAD, and DSVDD but NAF-AL is still
competitive. One explanation is that the performance improvement in such a large dataset is not
significant as the small-scale case discussed above. The large datasets, having different dynamics
from very small datasets found by Bergman and Hoshen [2020], are probably not well-suited to
the probabilistic methods.

4.3 Time Series Data Experiments

Differing from novelty detection within time series (point or group anomalies), we aim to detect
abnormal time series on a whole time sequence. In other words, the whole time series data is labeled
by normal or anomalies. This scenario is also important in practice. For example, we identify
abnormal facility operations by detecting abnormal sensor measurements over the whole time-series
signals in scientific applications. Anomalies in medical, health, and sport monitoring may indicate
injury, disease, or more serious issues.

Datasets. We focus on five multivariate time series datasets from the UEA multivariate time series
classification archive 3 which has been widely used for anomaly detection tasks [Zhang et al., 2020,
Ruiz et al., 2021, Jiao et al., 2020, Zerveas et al., 2021, Qiu et al., 2021]. The datasets include
two relatively large cases, Character Trajectories (CT) and Spoken Arabic Digits (SAD), and three
small-scale cases, Epilepsy (EPSY), NATOPS, and Racket Sports (RS). Table 5 provides the necessary
information, e.g., data size, dimension, data length, and the number of classes, and more details are
offered in the Appendix.

Evaluation Protocol. We evaluate NAF on these benchmark datasets based on two protocols:
3http://www.timeseriesclassification.com/ and more details can be found in Bagnall et al. [2018].
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• one-vs-rest: The goal is to create N one class classification tasks by splitting the dataset by N
class labels. The anomaly detection models are trained on data from one class and tested on data
from the rest of classes. The class used for training is labeled as normal data, while the other
classes are labeled as anomalies.

• m-vs-rest: This protocol is more challenging because multiple classes m (1 < m < N ) are labeled
as normal and the rest of classes are treated as anomalies. In this case, the normal data is no longer
from one class such that the variability increases significantly.

Table 2: Mean and standard deviation of AUC for one-vs-rest tasks
CT EPSY NATOPS RS SAD

IForest 94.3 67.7 85.4 69.3 88.2
LOF 97.8 56.1 89.2 57.4 98.3

OC-SVM 97.4 61.1 86.0 70.0 95.3

DAGMM 89.8±0.7 72.2±1.6 78.9±3.2 51.0±4.2 80.9±1.2
DSVDD 95.7±0.5 57.6±0.7 88.6±0.8 77.4±0.7 86.0±0.1
FB-AE 96.3±0.3 80.1±0.4 89.9±1.2 78.0±0.7 93.9±0.1
GOAD 97.7±0.1 76.7±0.4 87.1±1.1 79.9±0.6 94.7±0.1

LSTM-ED 79.0±1.1 82.6±1.7 91.5±0.3 65.4±2.1 93.1±0.5
NeuTraL 99.3±0.1 92.6±1.7 94.5±0.8 86.5±0.6 98.9±0.1

NAF-AD 97.8±0.1 90.4±0.5 91.9±0.5 85.4±0.6 97.8±0.1
NAF-AL 99.5±0.1 93.2±0.3 95.7±0.3 88.2±0.5 98.4±0.1

Implementation Details. The implementation details of most baselines are replicated from Qiu
et al. [2021] and we implemented the FB-AE method using their official code. For the time series
datasets in Table 5, the first four are small-scale while the SAD dataset is slightly large. We therefore
use a similar setting in small-scale tabular datasets for the time series AD tasks. For the m-vs-rest
tasks, we use the same setting m = N − 1, which makes the task more challenging.

Results. Table 2 shows the results of NAF-AD and NAF-AL in comparison to the shallow and deep
AD baselines on multiple time series experiments summarized in Table 5. NAF-AL outperforms
all baselines in CT, EPSY, NATOPS, and RS experiments. In most cases, the performance from
NAF-AD is already competitive and further improved by augmented samples from active learning.
Only on the SAD dataset, our NAF-AL is outperformed by NeuTral with learned transformations
which have an advantage over the random transformations, while our active learning improvement
looks marginal because its dataset size is larger than the other experiments. Our NAF-AL shows
a superior performance close to LOF but still better than the other deep baselines, like GOAD and
FB-AE. The shallow baselines perform worse on the small-scale datasets, like EPSY, NATOPS, and
RS, but show better on CT and SAD. Our NAF-AL can well handle both scenarios although it is
designed for addressing the specific challenges from small data.

The results of the m-vs-rest tasks are shown in Table 3. In this case, NAF-AL outperforms all
baselines on EPSY, NATOPS, and RS experiments. LOF performs best on CT and SAD and is
also competitive in one-vs-rest tasks in Table 2. It is interesting to see this KNN-based method that
outperforms all deep baselines. Compared with the deep baseline, our NAF-AL shows superior
performance on 4 out of 5 experiments. On SAD, NAF-AL is only slightly lower than NeuTral but
still very competitive. Although the m-vs-rest is more challenging, the results are consistent with the
performance under one-vs-rest tasks in Table 2.

4.4 A real-world application to advanced manufacturing

Our NAF-AL method is naturally generalized to solve anomaly detection problems on general data.
In this section, we demonstrate our capability to study self-supervised anomaly detection on images.
This problem is a challenging real-world application in advanced manufacturing where only sparse
labeled data is provided because the labeling process is time-consuming and needs expert’s help.

Datasets. We collected data from an Okuma MU-8000V Laser EX hybrid manufacturing system
using a coaxial meltpool camera, as shown in Figure 5. This camera is used to monitor the shape and
size of the meltpool during the directed energy deposition process. A total number of 7913 meltpool
images are collected but we only have 104 labeled normal data. There are three subsets: Cube T4,

9



Table 3: Mean and standard deviation of AUC for m-vs-rest tasks
CT EPSY NATOPS RS SAD

IForest 57.9 55.3 56.0 58.4 56.9
LOF 90.3 54.7 71.2 59.4 93.1

OC-SVM 57.8 50.2 57.6 55.9 60.2

DAGMM 47.5±2.5 52.0±1.0 53.2±0.8 47.8±3.5 49.3±0.8
DSVDD 54.4±0.7 52.9±1.4 59.2±0.8 62.2±2.1 59.7±0.5
FB-AE 77.2±0.3 63.0±1.2 60.8±0.9 65.3±1.1 70.8±1.3
GOAD 81.1±0.1 62.7±0.9 61.5±0.7 68.2±0.9 70.5±1.4

LSTM-ED 50.9±1.2 56.8±2.1 56.9±0.7 63.1±0.6 58.9±0.5
NeuTraL 87.0±0.2 80.5±1.0 74.8±0.9 80.0±0.4 85.1±0.3

NAF-AD 86.7±0.2 77.3±0.8 71.3±0.6 78.9±0.4 83.0±0.4
NAF-AL 89.3±0.2 81.7±0.7 75.8±0.5 82.7±0.3 83.9±0.3

T5, and T6, and we have 2450 total with 31 normal data for T4, 2323 total with 40 normal data
for T5, and 3140 total with 33 normal data for T6. The image resolution is 576×704. The normal
data is labeled by domain experts from the Manufacturing Demonstration Facility at Oak Ridge
National Laboratory. This manufacturing data can be used as a benchmark dataset for future testing
and comparison in AI/ML community.

Figure 5: A real-world demonstration in advanced manufacturing. Our objective is to determine
correct processing parameters for deposition of stainless steel. We utilized the coaxial laser camera to
capture meltpool images to detect normal and anomalies via our proposed NAF-AL method.

Results. Our proposed NAF-AL method is well-suited to such problems with sparse labels. We
use the limited normal data for training and sequentially identify more normal data with higher
likelihoods via an active learning scheme. Using this way, our prediction will be gradually improved
as we update our training models with more normal data. After five active learning iterations, the
histogram of anomaly scores is shown in Figure 5. From the distribution, we can easily identify
normal and anomalous data since our training model has clearly separated the normal and anomalies.
The predicted normal data with lower scores show a very consistent pattern with the data identified by
experts and the anomalies with higher scores show a substantially different pattern from the normal
data. Our method also enables automatically labeling based on limited initial sparse labels, which
will significantly improve the working efficiency in anomaly detection for advanced manufacturing.
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5 Conclusion

We propose a likelihood-based active learning method for self-supervised anomaly detection on small
data beyond images. The key contribution is to develop a new active learning strategy that benefits
from efficient sampling and explicit likelihoods from neural autoregressive flows. We demonstrate
the novel method on several tabular, time series benchmarks and real-world application in advanced
manufacturing with superior performance over the state of the art. We plan to generalize NAF-AL to
further improve the anomaly detection performance on general large-scale datasets.
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A Discussion

Aggressive Conservative

Decision
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Normal (testing)
Anomalous

Ideal level set

Augmented samples

Figure 6: Sample (for training) augmentation via
active learning in NAF: aggressive strategy (left)
vs conservative strategy (right).

How does the active learning work with NAF?
Figure 6 shows the data augmentation scheme
via active learning in NAF. Ideally, we expect the
augmented samples are near the decision bound-
ary as close as possible. However, the decision
boundary is typically unknown and difficult to
determine. Instead, we pursue an ideal level set
of the data likelihood (black dash line), which
enables us to detect normal and anomalies. For
each iteration in active learning, an aggressive
strategy is to only retain the samples with very
low likelihoods but this way will expand the
likelihood boundary (red dash line) across the
decision boundary. Under this way, the likelihood of anomalous data (red dots) in testing may lie at
the same level set as the normal data (green dots), which confuses the detector (anomalous→ normal)
and hurt the detection performance. On the contrary, one can choose a conservative strategy by
rejecting the samples with relatively low likelihoods but this way will shrink the likelihood boundary
which is far away from the decision boundary. The potential issue is that the likelihood of normal
samples in testing tends to be smaller and these samples are probably labeled as anomalous data
(normal→ anomalous). To deal with this trade-off issue, We propose a marginal strategy that sequen-
tially augments samples with a small proportion in each iteration and adaptively pushes them to the
boundary, while controlling the likelihood level set by detecting outliers with Mahalanobis distance.
This scheme effectively avoids active learning from being too aggressive or too conservative.

How does NAF-AL improve the AD performance? Figure 4 shows the improvement of F1-score
with respect to the proportion of augmented samples (λ = Naug/Ntrain). We choose the NAF-AD
results as the base for four small-scale experiments in tabular datasets and compare the increment of
F1-score via five active learning iterations. All experiments show a consistent trend as augmented
samples are gradually added to the training. Arrhythmia and Lympho. experiments show better
improvement since their original training data is very small. The improvement tends to converge
if more iterations are used but we choose 50% as a threshold given training cost limitation. Figure
4 (right) shows the effect of transformations on active learning. Although a smaller number of
transformations increases the classification error (also reported by Bergman and Hoshen [2020]),
our NAF-AL can decrease the error via sample augmentation and achieve an equivalent accuracy by
using fewer transformations and thus reduce the computational cost.
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B Tabular and time series data information and statistics

The statistical information of the tabular datasets and time series dataset are provided in Table 4 and
5 respectively.

Table 4: Statistical information of the tabular benchmark datasets
Dataset Data size Dim Anomaly ratio Domain

Arrhythmia 274 452 0.15 Medical
Cardio. 1831 21 0.096 Medical

Lympho. 148 18 0.04 Medical
Thyroid 3772 6 0.025 Medical

KDD 494,021 120 0.2 Cybersecurity
KDDRev 121,597 120 0.2 Cybersecurity

Table 5: Statistical information of the time series benchmark datasets
Dataset Data size Dim Length Classes

Character Trajectories 2858 3 182 20
Epilepsy 275 3 206 4
NATOPS 360 24 51 6

Racket Sports 303 6 30 4
Spoken Arabic Digits 8800 13 93 10
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