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Abstract

Over the past decade, there is a growing interest in collaborative learning that can
enhance AI models of multiple parties. However, it is still challenging to enhance
performance them without sharing private data and models from individual parties.
One recent promising approach is to develop distillation-based algorithms that ex-
ploit unlabeled public data but the results are still unsatisfactory in both theory and
practice. To tackle this problem, we rigorously analyze a representative distillation-
based algorithm in the view of kernel regression. This work provides the first
theoretical results to prove the (nearly) minimax optimality of the nonparametric
collaborative learning algorithm that does not directly share local data or models
in massively distributed statistically heterogeneous environments. Inspired by our
theoretical results, we also propose a practical distillation-based collaborative learn-
ing algorithm based on neural network architecture. Our algorithm successfully
bridges the gap between our theoretical assumptions and practical settings with
neural networks through feature kernel matching. We simulate various regression
tasks to verify our theory and demonstrate the practical feasibility of our proposed
algorithm.

1 Introduction

Collaborative learning of AI models in decentralized settings is an important problem covered in
various fields of machine learning such as distributed learning [10, 70], Federated Learning (FL) [23],
peer-to-peer learning [3], and miscellaneous collaborative learning [47]. In particular, this theme
has been most actively discussed in the context of FL [24, 31, 45, 61]. In this context, each local
party is typically viewed as a subordinate entity within the collective learning system. For example,
most FL algorithms mandate the exchange of local AI model information among participating local
parties. Under this scheme, local AI models are usually subjected to restrictions in their architecture.
However, from the perspective of collaboration, each local party may have to be regarded as an
independent learning agent, meaning they are not obligated to fully share their model information.
In short, the model (or parameter) exchange in FL algorithms can emerge as a critical issue in
collaborative learning.

Fundamentally, addressing this issue necessitates an alternative medium for sharing learning
information distinct from model exchange. Indeed, Distillation-based Collaborative Learning
(DCL) [14, 30, 44] provides a good answer. In these algorithms, local training information is
shared via the outcomes of AI models on additional unlabeled public data. The collected information
is then utilized for knowledge distillation [21] to each local AI model. As mentioned in [14, 48],
this procedure is agnostic to model heterogeneity and avoids the direct sharing of local AI model
information. This is a key advantage that distinguishes DCL from traditional FL.
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Despite its pioneering nature and potential utility, DCL has not been sufficiently explored. A
significant reason for this is the lack of theoretical understanding regarding knowledge distillation and
its effectiveness in massively distributed statistically heterogeneous environments. Our work stems
from the fundamental question of whether DCL algorithms can be theoretically effective in these
settings. Inspired by [48, 58], we analyze FedMD [30, 41], the most standard DCL algorithm from a
nonparametric perspective. Specifically, we adopt an operator-theoretic approach [5, 15, 37, 53, 65]
to obtain an upper rate of convergence for the nonparametric version of FedMD (named DCL-KR)
in the expected sense. Remarkably, our analysis reveals that DCL-KR achieves a nearly minimax
optimal convergence rate, where the prefactor is independent of the number of participating local
parties. It is worth noting that DCL-KR is the first nearly minimax optimal collaborative learning
algorithm that does not directly share local data or models in massively distributed statistically
heterogeneous environments. The novelty of our theoretical results and their comparison to prior
works are provided in Section 2 and 3.

Nevertheless, our theoretical analysis does not fully demonstrate the efficacy of DCL algorithms based
on neural network architectures. Instead, our theoretical results serve as inspiration for designing a
novel DCL algorithm for regression that refines existing approaches. Consequently, we propose a
Distillation-based Collaborative Learning algorithm over heterogeneous Neural Networks (named
DCL-NN) for regression tasks. DCL-NN leverages kernel matching to align the feature kernels
from the last hidden layer of each local AI model with an ensemble kernel. This procedure brings
heterogeneous neural networks into the regime of DCL-KR.

Finally, we conduct experiments on DCL-KR and DCL-NN. To illustrate the superiority of our
algorithms, we compare them with several baselines on various regression tasks. Experimental
results show that DCL-KR achieves the same performance as the centralized model, even beyond
the theoretical results. We also observe that DCL-NN significantly outperforms previous DCL
frameworks in most settings.

In summary, our contributions are as follows:

1. In Section 3, we theoretically prove that a nonparametric version of the most standard distillation-
based collaborative learning algorithm (named DCL-KR) is nearly minimax optimal in mas-
sively distributed statistically heterogeneous environments.

2. Inspired by the results provided in Section 3, we propose a distillation-based collaborative
learning algorithm with heterogeneous neural networks (named DCL-NN) in Section 4.

3. In Section 5, we conduct experiments to empirically confirm our theoretical results and show
the practical feasibility of our proposed algorithms.

2 Related Work

Federated Learning Most FL algorithms [45] communicate model parameters for collaboration.
This approach has been extensively studied under various constraints, including data privacy [1],
statistical heterogeneity [24, 31], communication efficiency [51], personalization [13, 59], and
robustness [25]. While it has been successful both theoretically and experimentally, this type of FL is
limited in terms of the privacy and flexibility of local AI models, as the algorithms directly access the
structures and parameters of the local models. Our study focuses on distillation-based collaborative
learning, where the privacy and flexibility of local AI models are fully guaranteed.

Distillation-based Collaborative (or Federated) Learning The type of algorithms we investigate
operates by communicating the functional information of local AI models. These algorithms typically
assume the availability of additional public data points. In this case, the outcomes of local models on
the public dataset are used for collaboration. For instance, Li and Wang [30], Lin et al. [41], Park
et al. [48] iteratively collect predictions of local models on the public dataset and then aggregate them
into a naive ensemble (with or without a fixed linear transformation) to distribute. On the other hand,
Cho et al. [7], Zhang et al. [69], Fan et al. [14] apply personalized ensemble strategies by additionally
learning the mutual trust between models. Makhija et al. [44] propose FedHeNN, which distills
training information in the form of matching feature kernels instead of the predictions of local AI
models on the public data. Both FedHeNN and DCL-NN utilize centered kernel alignment [8] to
match feature kernels of local models, but DCL-NN uses the ensemble distillation for predictions as
well. Thus, DCL-NN enables parties to learn from the entire input space.
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Table 1: Comparative analysis of decentralized environments for (nearly) minimax optimality of
representative collaborative learning algorithms with kernel regression. nFedAvg indicates the
nonparametric version of FedAvg in [58]. Note that IED [48] achieves a weaker version of minimax
optimality.

interaction local data massively non-i.i.d.&
Methods method privacy distributed unbalanced

DKRR [38] divide-and-conquer
DC-NY [66] divide-and-conquer X

DKRR-CM [40] model exchange
DKRR-RF-CM [43] model exchange
DKRR-NY-CM [67] model exchange X
nFedAvg [58] model exchange X X

IED* [48] knowledge distillation X X
DCL-KR (ours) knowledge distillation X X X

Decentralized Learning with Kernel Regression A number of studies have investigated the
minimax optimal rate of regularized kernel regression algorithms such as kernel ridge regression and
gradient descent-based kernel regression with early stopping [5, 15, 37, 65]. In particular, over the past
decade, the growing interest in decentralized learning has led to active research in the generalization
analysis of decentralized kernel regression. While divide-and-conquer algorithms [34, 38, 66, 70]
play a significant role in this research flow, most of them fail to account for statistical heterogeneity
and massively distributed cases, along with privacy preservation, which has received a lot of attention
recently. On the other hand, decentralized kernel regression algorithms with multiple communication
rounds [40, 43, 48, 58, 67] achieve superior theoretical results compared to the divide-and-conquer
algorithms. However, the discussions of these algorithms primarily focus on the efficiency of resource
costs [40, 43, 67], while research on relaxing environmental constraints has been scarce. For example,
most of these works assume a limited number of parties to prove the optimality in a minimax sense.

To the best of our knowledge, [48, 58] stand as the only investigations that consider general de-
centralized environments. Similar to our work, Park et al. [48] study the convergence rate of
distillation-based collaborative learning with kernel regression. However, their results demonstrate a
weaker version of minimax optimality and do not cover statistically heterogeneous environments. In
this regard, Su et al. [58] offer a promising methodology. They analyze nonparametric versions of
FedAvg [45] and FedProx [31], representative FL algorithms involving model exchange, in general
decentralized environments such as statistically heterogeneous and massively distributed scenarios. In
this work, we extend their methodology to analyze FedMD [30, 41] from a nonparametric perspective
in massively distributed statistically heterogeneous environments. We summarize the comparison
between our work and prior studies in Table 1. Note that algorithms that do not employ Nyström
scheme (including nonparametric FedAvg [58]) fail to preserve local data privacy due to the inherent
characteristics of kernel regression. On the other hand, DC-NY [66] and DKRR-NY-CM [67] can
achieve the local data privacy preservation by utilizing the public data as Nyström centers.

3 DCL-KR: A Nonparametric View of FedMD

In this section, we establish the theory of a nonparametric version of FedMD [30, 41], the most
standard distillation-based collaborative learning algorithm.

3.1 Preliminaries

Let ρx,y = ρx · ρy|x be a Borel probability measure on X × R where X is a compact subset of Rd
and we assume the support of ρx is X . The goal of the regression problem is to find a minimizer of
the population risk, i.e.,

min
h:X→R

E(h), E(h) := 1

2
E(x,y)∼ρx,y |y − h(x)|

2.

Then, the function f∗0 : X → R defined by x0 7→ Ey∼ρy|x(·|x0)[y], x0 ∈ X is a target function.
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Let k : X × X → R be a Mercer kernel [9] where κ := (supx∈X k(x,x))
1/2 < ∞ and Hk be a

reproducing kernel Hilbert space associated to k. We set kx := k(·,x) and the covariance operator
Tk,ν : Hk → Hk with respect to any Borel probability measure ν on X defined as

Tk,νh =

∫
X
h(x)kx dν(x).

Then we can see that Tk,ν = ι>ν ιν where ιν : Hk → L2
ν is a natural embedding, L2

ν = L2(X , ν)
denotes the L2 space, and a superscript > denotes the adjoint operator of a given operator. We also
define the sampling operator SD : Hk → Rn by h 7→ [h(x1), · · · , h(xn)]> and Tk,X := S>DSD
when D = {(x1, y1), · · · , (xn, yn)} with X = {x1, · · · ,xn} is given. Since SD depends only on
data inputs X , we can define the sampling operator for unlabeled datasets in the same way. See
Appendix A.1 for further details.

3.1.1 Kernel Gradient Descent with Early Stopping

Given a dataset D = {(x1, y1), · · · , (xn, yn)} generated from ρx,y, consider the empirical risk
ẼD : Hk → R given by

ẼD(h) =
1

2
‖SDh− y‖22

where y = [y1, · · · , yn]>. Here, ‖ · ‖2 denotes a scaled Euclidean norm ‖v‖2 = ( 1n
∑n
i=1 v

2
i )

1/2.
From the functional derivative∇ẼD(h) = S>D(SDh− y), the gradient descent scheme becomes

ν1 = 0, νt+1 = νt − ηtS>D(SDνt − y) (t = 1, 2, · · · )

where {ηt}t∈N is a set of learning rates. In this work, we set ηt = η, t ∈ N for a fixed η ∈ (0, 1/κ2).
Then, a simple calculation gives νt → S>D(SDS

>
D)
−1y as t→∞ provided that the operator SDS>D

is invertible. The limit is known as the minimum norm interpolation [49] ofD. Since the interpolation
regressor generalizes poorly unless there is no noise [32, 39], early stopping strategies are usually
applied to avoid the overfitting issue. With adequate stopping rules, gradient descent-based kernel
regression has an optimal rate in a minimax sense [36, 37, 65].

3.2 DCL-KR Algorithm

From now on, we consider the setting that there are m parties and the ith party has a private local
data Di = {(xji , y

j
i ) : j = 1, · · · , ni} for i = 1, · · · ,m. Assume that all data D =

⋃m
i=1Di are

i.i.d. with the distribution ρx,y but each local dataset does not need to have the same distribution.
Let Z = {z1, · · · , zn0} ⊂ X be the additional public inputs. The goal of all parties is to have their
models that perform well on the distribution ρx. In other words, each party expects to be able to
make good predictions not only for its local data distribution but also for unseen data distribution
through collaborative learning.

Similar to [58], we construct a nonparametric version of FedMD (called DCL-KR), which is pre-
sented in Algorithm 1. In Algorithm 1, Gi is a one-step local gradient descent update on ẼDi , i.e.,
Gih = h−ηS>Di(SDih−yi) where yi = [y1i , · · · , y

ni
i ]>. Similarly, G̃t is a one-step gradient descent

update on Ẽ(Z,yp,t), i.e., G̃th = h− ηS>Z (SZh− yp,t).

3.3 Theoretical Results

In this subsection, we show the nearly minimax optimality of DCL-KR. To derive theoretical results,
we assume the following conditions regarding regularity of noise, the kernel k, and the target function
f∗0 as below.

Assumption 3.1. We assume Ey∼ρyy2 <∞ and∫ (
exp

(
|y − f∗0 (x)|

M

)
− |y − f

∗
0 (x)|

M
− 1

)
dρy|x(y|x) ≤

γ2

2M2
, ∀x ∈ X

where M and γ are positive constants.
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Algorithm 1 DCL-KR Algorithm

1: Hyperparameters: T : total communication round, E: the number of local iterations at each
communication round, η: learning rate

2: Initialize local models fi,0 = 0 for i = 1, · · · ,m.
3: for t = 0, · · · , T − 1 do
4: for party i = 1, · · · ,m do
5: Update the local model E times by gradient descent on the empirical risk ẼDi

f ′i,t ← GEi fi,t.

6: Upload the local predictions on Z to the server

yip,t = SZf
′
i,t.

7: end for
8: The server aggregates the local predictions to compute the consensus prediction

yp,t =

m∑
i=1

ni
n
yip,t

and then distributes yp,t to all local parties.
9: For party i (i = 1, · · · ,m), update the local model by infinitely many iterations of gradient

descent on the empirical risk Ẽ(Z,yp,t)

fi,t+1 ← G̃∞t gi,t (1)

with an initialization gi,t chosen from a subspace spanned by kz1 , · · · , kzn0 .
10: end for

Assumption 3.2. Let λ1 ≥ λ2 ≥ · · · > 0 be eigenvalues of Tk,ρx . There are fixed positive constants
Cs and cs such that

csi
−1/s ≤ λi ≤ Csi−1/s, ∀i ∈ N

for some s ∈ (0, 1).

Assumption 3.3. The target function f∗0 satisfies

f∗0 ∈
{
h ∈ Hk : h = T

r−1/2
k,ρx

g where ‖g‖Hk ≤ R
}

for some r ∈ [ 12 , 1] where T r−1/2k,ρx
is the (r − 1/2) power of operator Tk,ρx and R > 0 is a fixed

constant. In particular, f∗0 ∈ Hk.

The above assumptions determine the minimax lower rate [5] and are standard assumptions in many
prior works [5, 15, 33, 35]. In detail,

• Assumption 3.1 implies that the noise is not excessively large. This assumption is a general
noise condition that encompasses a wide range of cases. For instance, noise with Bernstein
condition such as sub-Gaussian noise satisfies Assumption 3.1.

• Assumption 3.2 is about the eigenvalue decay of Tk,ρx . From this assumption, one can
derive bounds on the effective dimension that is related to covering and entropy number
conditions [15].

• Assumption 3.3 is related to the regularity of the target function, specifically how well the
RKHS induced by the kernel k represents the target function.

Under these assumptions, we can theoretically show the performance guarantee of DCL-KR. The
proof is provided in Appendix A.2. Note that E(h)− E(f∗0 ) = 1

2‖ιρx(h− f
∗
0 )‖2L2

ρx
is the excess risk

of a regressor h and so the quantity ‖ιρx(h− f∗0 )‖L2
ρx

indicates the generalization ability of h.
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Theorem 3.4. Under Assumption 3.1, 3.2, and 3.3, with n0 ≥ n
1

2r+s (log n)3 public inputs indepen-
dently generated from ρ̃x such that the Radon-Nikodym derivative dρx

dρ̃x
satisfies

0 ≤ dρx
dρ̃x
≤ B on X for some B ∈ [1,∞), (2)

DCL-KR gives the performance guarantee

E‖ιρx(fi,T − f∗0 )‖L2
ρx
≤ C ·Brn−

r
2r+s log n

for all i = 1, · · · ,m where η ∈ (0, 1/κ2) is a fixed learning rate, T is an adequate stopping rule,
and the prefactor C does not depend on B, m, and n.

Since the convergence rate n−
r

2r+s is the minimax lower rate under Assumption 3.1, 3.2, and 3.3,
Theorem 3.4 implies that DCL-KR has an almost same convergence rate as the minimax optimal
central training when there are sufficiently many public inputs. To the best of our knowledge, this
is the first work to prove the (nearly) minimax optimality of a collaborative learning algorithm that
does not directly share local data or models in massively distributed statistically heterogeneous
environments. For example, divide-and-conquer algorithms work for limited m. Specifically, DC-
NY [66] assumes m ≤ O(n

2r−1
2r+s ) and DKRR-NY-CM [67] assumes m ≤ O(n

2r+s−1
2r+s ). However,

Theorem 3.4 does not require any condition on m. Moreover, Theorem 3.4 deals with a more general
setting than the theory in [48, 58]. For example, Su et al. [58] only cover r = 1

2 of Assumption 3.3. On
the other hand, Park et al. [48] do not consider Assumption 3.2 which gives a finer result. Compared
with [48], we also reduce the required size of public inputs and drop the statistical homogeneity
condition.

The convergence rate in Theorem 3.4 has an additional factor log n compared with a minimax lower
rate [5, 15], but this logarithm term grows slower than any polynomial. Note that an additional
logarithm term commonly appears in the context of gradient descent-based kernel regression with
Nyström scheme [35, 36].

Theorem 3.4 allows that the public input distribution ρ̃x can be different from the local input
distribution ρx. It is natural that the condition (2) is required since ρ̃x should cover ρx for fully
distilling training information. We can see that the discrepancy between ρx and ρ̃x affects the upper
bound in Theorem 3.4 as the multiplication of Br. We can remove Br in the upper bound by
increasing public inputs. See Appendix A.3 for details.

3.3.1 Proof Sketch of Theorem 3.4 and Comments

In the proof of Theorem 3.4, we decompose the term ιρx(fi,T − f∗0 ) into four parts, say (I), (II), (III),
and (IV) (see Eq. (7)). The proof is to bound the norms of these terms. Note that DCL-KR can also
be understood as a Nyström version of nonparametric FedAvg [58] from the recurrence relation (6).

(I) and (II) appear similarly in [58], except that (I) and (II) incorporate projections. To handle these
terms, we reinterpret the proof presented in [58] in operator form instead of matrix form and extend
it to our setting. We obtain a norm bound of (II) containing a quantity linked to the local Rademacher
complexity. (Appendix A.2.2 and A.2.3)

Comparing with [58], (III) and (IV) are additional terms induced by the procedure that distills
functional information from the local regressors. We apply techniques used in [35, 48, 53] to bound
(III) and (IV). (Appendix A.2.4)

Note that previous works applying local Rademacher complexity-based stopping rule [50, 58] deal
with the case of r = 1

2 only. In this work, we set a new stopping rule T which is an extension of
previous works [50, 58] and prove an extended version (Lemma A.6) of a well-known property [60].
As a result, our theory covers r ∈ [ 12 , 1] which affects the minimax lower rate. (Appendix A.2.5)

4 DCL-NN Algorithm

In this section, we retain the problem setting from Section 3 but employ heterogeneous neural
networks as the local models. Based on the theoretical results in Section 3, we propose a novel
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distillation-based collaborative learning algorithm DCL-NN across heterogeneous neural networks
in a decentralized setting.

A key factor contributing to the successful theoretical guarantee of DCL-KR lies not only in the
linearity of kernel regression but also in the equality of kernels across local models. In fact, the public
data predictions can vary in different directions, even if the same training data points are used when
kernels differ (See Appendix B). Therefore, we match the kernels of local AI models. Specifically,
we use linear feature kernels [18, 64] induced by the features from the last hidden layers of local AI
models for kernel matching. For example, for a neural network f : X → R where f(·) = w>g(·)+b,
g : X → Rc, w ∈ Rc, and b ∈ R we use

kf (x
1,x2) = g(x1)>g(x2), x1,x2 ∈ X (3)

as the feature kernel of f . Through this idea, we can bring the setting closer to the regime of DCL-KR.
Note that our theoretical results suggest that the target kernel should be a good kernel. Indeed, we
observe that the naive ensemble

k =

m∑
i=1

ni
n
kfi . (4)

has a significantly better performance than individual feature kernels kf1 , · · · , kfm (See Section 5
and Appendix B). Here, fi is the local model of the ith party with its local feature kernel kfi obtained
by (3) (i = 1, · · · ,m). Therefore, we align local feature kernels kf1 , · · · , kfm in a kernel distillation
manner with the ensemble kernel k obtained by (4).

For this purpose, we introduce Centered Kernel Alignment (CKA) [8] as a kernel similarity mea-
sure. CKA is a typical measure associated with the similarity of two representations of neural
networks [27] and is often used for kernel matching in neural networks [44]. To compute empirical
CKA between two kernels k1 and k2 on inputs {c1, · · · , cp}, we first calculate the Gram matrices
K1 = [k1(c

j1 , cj2)]1≤j1,j2≤p and K2 = [k2(c
j1 , cj2)]1≤j1,j2≤p. We then compute the empirical

CKA via

ĈKA(k1, k2) =
ĤSIC(K1,K2)√

ĤSIC(K1,K1)ĤSIC(K2,K2)

.

Here, ĤSIC is an estimator of the Hilbert-Schmidt Independence Criterion (HSIC) defined as

ĤSIC(K1,K2) =
1

(p− 1)2
tr(K1HK2H)

where H := Ip − 1
p11

> is the centering matrix. In the kernel distillation procedure, the ith local

party maximizes ĈKA(kfi , k) on public inputs Z (i = 1, · · · ,m). Notably, this procedure requires
only a single communication round for exchanging pairwise feature kernel values on public inputs,
ensuring that our algorithm operates exclusively within the function space.

After the kernel distillation procedure, all local AI models have similar feature kernels up to constants.
So we can follow an analogous process as in DCL-KR. Note that we perform learning rate scaling
described in Appendix B to compensate the kernel scale difference. It makes the impact of local
iterations consistent. We also provide the complete algorithm (Algorithm 2) and further details for
Section 4 in Appendix B.

5 Experiments

In this section, we evaluate the performance of DCL-KR and DCL-NN. We compare them with
baselines on various regression tasks.

Datasets We use the following six regression datasets to evaluate the performance. Target variables
are one-dimensional in all datasets. (1) Toy-1D [33] and (2) Toy-3D [6] are synthetic datasets with
one-dimensional and three-dimensional inputs, respectively. (3) Energy is a tabular dataset from
the UCI database [12] to predict appliances energy use with 28 features. (4) RotatedMNIST is an
image dataset where it aims to predict the rotation angles for given rotated images of the MNIST [11]
images. (5) UTKFace [71] and (6) IMDB-WIKI [42, 52] are image datasets for age estimation.
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(a) Toy-1D Dataset
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(b) Toy-3D Dataset

Figure 1: Performance of central Kernel Ridge Regression (centralKRR), central Kernel Regression
with Gradient Descent (centralKRGD), DC-NY, DKRR-NY-CM, IED, and DCL-KR on Toy-1D and
Toy-3D
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(b) IED

Figure 2: Performance of IED and DCL-KR with n0 ≈ α · n
1

2r+s (log10 n)
3 on Toy-3D

We compare kernel machine-based collaborative learning algorithms on two datasets Toy-1D and
Toy-3D. On the other hand, we compare neural network-based collaborative learning algorithms on
five datasets Toy-3D, Energy, RotatedMNIST, UTKFace, and IMDB-WIKI.

Baselines We compare DCL-KR with two central kernel regression models to verify our theoretical
results. These two central models have the minimax optimal convergence rate. We also utilize
existing decentralized kernel regression algorithms that does not directly share local data and models
(DC-NY [66], DKRR-NY-CM [67], IED [48]) as baselines for DCL-KR. On the other hand, we
adopt FedMD with unlabeled public inputs [30, 41], FedHeNN [44], and KT-pFL [69] as baselines
for DCL-NN.

Setup The number of parties ranges from 10 to 100 for kernel machine-based algorithms and
is 50 for neural network-based algorithms. We construct statistically heterogeneous decentralized
environments with Algorithm 3. For neural network-based algorithms, we use 4 different neural
network architectures for local models in all settings. For instance, we use ResNet-18, ResNet-34,
ResNet-50 [20], and MobileNetv2 [54] for large-scale image datasets. We utilize the average of Root
Mean Squared Errors (RMSEs) of the local AI models on a test dataset as a performance metric. The
test data points have the same distribution as the whole local data distribution. We apply FedMD with
a few communication rounds for pretraining of DCL-NN. See Appendix C for detailed experimental
configurations.

5.1 Results on Kernel Machine-based Algorithms

The performance of DCL-KR and its baselines is presented in Figure 1. We set the number of parties
m = 10, 20, · · · , 100, the number of private data points n = 50m, and the number of public inputs
n0 = n

1
2r+s (log10 n)

3. We first set ρx = ρ̃x, i.e., the public data distribution is the same as the
entire local input distribution. As shown in Figure 1, DCL-KR outperforms the baselines in all
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Figure 3: Performance of IED and DCL-KR with ρ̃x 6= ρx on Toy-3D

experimental settings and achieves comparable performance to the central models. This result implies
that DCL-KR has not only the nearly optimal convergence rate but also the same performance as
central kernel regression models. In contrast, DC-NY and DKRR-NY-CM exhibit significantly lower
performance compared with DCL-KR in massively distributed environments where their theory does
not cover. IED does not show a significant performance drop in massively distributed environments
even though its theory is built on the statistical homogeneity condition of local data distributions.

To further compare the performance of DCL-KR and IED, which show similar results to central
models, we analyze the effect of n0 and ρ̃x on their performance (Figure 2 and 3). Figure 2 illustrates
that, as expected from the theoretical results, IED requires more public inputs than DCL-KR to
achieve good performance. Moreover, when there is a public distribution shift, DCL-KR maintains
its convergence rate, whereas the convergence rate of IED deteriorates. (See Appendix C.3.3 for
experimental details.) Overall, our experiments validate the theoretical results of DCL-KR and
demonstsrate its superiority over previous results. For additional experimental results and analyses,
please refer to Appendix C.3.

5.2 Results on Neural Network-based Algorithms

Table 2 shows the performance of DCL-NN and baselines on five regression tasks. We also present
the performance of standalone models and centralized models to assess the performance of the
collaborative algorithms. For some cases exhibiting training instability, we report the best test error
(marked with asterisks) observed across all communication rounds, while relying on a fixed number
of communication rounds for the other cases.

As can be seen in Table 2, DCL-NN outperforms the baselines on all regression tasks. Note that
FedHeNN employs kernel matching similar to DCL-NN, but it lacks supervision of label prediction
through collaboration, resulting in insufficient performance improvement compared to standalone
models. Given the superior performance of DCL-NN, it is evident that incorporating supervised
learning for label prediction alongside kernel matching is desirable. On the other hand, while FedMD
performs significantly better than standalone models, the performance of DCL-NN is consistently
better. Considering that we utilize FedMD for pretraining of DCL-NN, we can see that it performs
better than FedMD-only collaborative learning by first training local models with FedMD and then
using DCL-NN. In conclusion, the experimental results support the practical effectiveness and
superiority of DCL-NN over baselines.

Kernel Distillation Procedure To verify the necessity of kernel distillation, we examine the
changes in the performance of local feature kernels and the CKA between them during the kernel
distillation procedure. We conduct this experiment on UTKFace. We utilize the RMSE of a kernel
linear regression model trained on all local data as a kernel performance measure. The results
are presented in Figure 4. As shown in Figure 4, both kernel performance and CKA undergo a
temporary degradation due to the change of the objective function at the initial stages. However, as
training progresses, both metrics recover and kernel performance surpasses its initial level. Since
kernel distillation aims to ensure that all local feature kernels are similar with high performance, the
experimental results verify the effectiveness of kernel distillation.
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Table 2: Performance comparison of FedMD, FedHeNN, KT-pFL, and DCL-NN on five datasets.
The values are presented as the average of RMSEs along with standard deviations. For calibration,
the performance of standalone models and centralized models is also provided.

Toy-3D Energy RotatedMNIST UTKFace IMDB-WIKI

Central 0.041 0.085 0.139 0.143 0.095

Standalone 0.288 ± 0.008 0.095 ± 0.000 0.680 ± 0.003 0.216 ± 0.004 0.137±0.000
FedMD 0.200 ± 0.008 0.093 ± 0.000 0.249 ± 0.001 0.151 ± 0.004 0.113±0.000
FedHeNN 0.264∗ ± 0.009 0.094∗ ± 0.000 0.405 ± 0.016 0.177 ± 0.000 0.140∗±0.000
KT-pFL 0.243 ± 0.002 0.093∗ ± 0.000 0.317 ± 0.003 0.167 ± 0.001 0.130∗±0.002
DCL-NN 0.079 ± 0.005 0.087 ± 0.001 0.227 ± 0.003 0.148 ± 0.001 0.110±0.000
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Figure 4: Kernel performance and CKA (with standard deviations) during the kernel distillation
procedure. The performance of the target kernel obtained by (4) is also provided.

For additional experimental results, please refer to Appendix C.4.

6 Conclusions

In this work, we analyze distillation-based collaborative learning from a nonparametric perspective
and propose DCL-NN, a practical algorithm as an extension. We demonstrate that DCL-KR, a
nonparametric version of FedMD, has a nearly minimax optimal convergence rate in massively
distributed statistically heterogeneous environments. Inspired by DCL-KR, we propose DCL-NN,
a novel distillation-based collaborative learning algorithm for heterogeneous neural networks. Our
experiments confirm the theoretical results of DCL-KR and demonstrate the practical effectiveness of
DCL-NN. For a discussion of the limitations of our work, please refer to Appendix D.

Broader Impact Our work explores the methodologies of collaborative learning under data and
model privacy preservation. In this regard, our research holds the potential to positively impact the
facilitation of collaboration among AI models without raising concerns about information disclosure.
On the other hand, our work does not pose any particularly noteworthy negative consequences, given
its aim to contribute to the advancement of the general field of machine learning.
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Table 3: List of some notations

Notation Meaning

a ∧ b minimum of a and b
a ∨ b maximum of a and b
Rd d-dimensional Euclidean space
X the input space contained in Rd

C(X ) the collection of all continuous functions from X into R
ρx,y the data generating distribution on X × R
ρx, ρy the marginal distribution of ρx,y on X and R, respectively

ρy|x(·|x0) the conditional distribution on R w.r.t. x0 ∈ X and ρx,y
ρ̃x the public input distribution on X
k a given Mercer kernel
kx k(·,x)
κ (supx∈X k(x,x))

1/2

L2
ν the L2 space on X w.r.t. measure ν

Hk a reproducing kernel Hilbert space associated to kernel k
Tk,ν the covariance operator on Hk w.r.t. measure ν, Tk,ν : h 7→

∫
X h(x)kx dν(x)

ιν a natural embedding from Hk into L2
ν

SD a sampling operator from Hk into Rn,
SD : h 7→ [h(x1), · · · , h(xn)]> where D = {(xi, yi)}ni=1

SZ a sampling operator from Hk into Rn,
SZ : h 7→ [h(z1), · · · , h(zn)]> where Z = {zi}ni=1

Tk,X S>XSX
E(h) the population risk of h, E(h) = 1

2E(x,y)∼ρx,y |y − h(x)|2

ẼD(h) the empirical risk of h over D = {(xi, yi)}ni=1, ẼD(h) = 1
2‖SDh− y‖22

f∗0 a target function from X into R defined as f∗0 (x0) = Ey∼ρy|x(·|x0)[y], x0 ∈ X
η a learning rate, η ∈ (0, 1/κ2)
m the number of parties
Di private local data of the ith party, {(xji , y

j
i ) : j = 1, · · · , ni} (i = 1, · · · ,m)

Xi inputs of Di, {xji : j = 1, · · · , ni} (i = 1, · · · ,m)
yi labels of Di, [y1i , · · · , y

ni
i ]> (i = 1, · · · ,m)

D D =
⋃m
i=1Di

Z unlabeled public data, {z1, · · · , zn0}
M,γ the parameters related to the regularity of noise (Assumption 3.1)

{(λi, φi)}∞i=1 eigenvalues and eigenvectors of Tk,ρx such that λ1 ≥ λ2 ≥ · · · > 0
from Mercer’s representation (5).

s, Cs, cs the parameters related to the eigenvalue decay of Tk,ρx (Assumption 3.2)
C ′s Css/(1− s)
Nν(λ) tr(Tk,ν(Tk,ν + λI)−1) where ν is a probability measure
N (λ) Nρx(λ)
r,R the parameters related to the regularity of f∗0 (Assumption 3.3)
B the uniform bound of the Radon-Nikodym derivative dρx

dρ̃x
in (2)

E the number of local iterations at each communication round in DCL-KR (Algorithm 1)
T total communication round in DCL-KR (Algorithm 1)

A Details on Section 3

Before we start the proof of Theorem 3.4, we present basic notions.

A.1 Basic Notions

In Subsection 3.1, the reproducing kernel Hilbert space Hk is a subset of C(X ), i.e., all elements in
Hk are continuous [57]. Since

ι>ρxh(·) = 〈ι
>
ρxh, k·〉Hk = 〈h, ιρxk·〉L2

ρx
=

∫
X
h(x)k(·,x) dρx(x),
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we have Tk,ρx = ι>ρxιρx . The compactness of ι>ρx [57] gives the fact that Tk,ρx is compact, self-adjoint,
and positive. Furthermore, Mercer’s theorem [62] gives a Mercer representation

k(x1,x2) =

∞∑
i=1

λiφi(x
1)φi(x

2). (5)

The fact that Hk ⊂ C(X ) and Tk,ρx = ι>ρxιρx implies the injectivity of Tk,ρx and so λi 6= 0 for all
i ∈ N. We define

Nν(λ) := tr(Tk,ν(Tk,ν + λI)−1)

for any probability measure ν. For convenience, N (λ) := Nρx(λ). From [5, 15], we have N (λ) ≤
C ′sλ

−s where C ′s := Css/(1− s) andNν(λ) ≤ κ2λ−1. Given a dataset D = {(xi, yi)}ni=1, a similar
argument as above gives

S>D : c = [c1, · · · , cn] 7→
1

n

n∑
i=1

cikxi

and Tk,X : h 7→ 1
n

∑n
i=1 h(x

i)kxi .

Note that Assumption 3.1 implies that

E(f∗0 ) =
1

2
E(x,y)∼ρx,y |y − f

∗
0 (x)|2 ≤

γ2

2
<∞.

We have

E(x,y)∼ρx,y |y − h(x)|
2 = Ex∼ρx |h(x)− f∗0 (x)|2 + E(x,y)∼ρx,y |y − f

∗
0 (x)|2

and so the excess risk becomes

E(h)− E(f∗0 ) =
1

2
Ex∼ρx |h(x)− f∗0 (x)|2 =

1

2
‖ιρx(h− f∗0 )‖2L2

ρx
.

Therefore, ‖ιρx(h− f∗0 )‖2L2
ρx

indicates the generalization ability of h.

Table 3 presents meaning of some notations.

A.2 Proof of Theorem 3.4

Without loss of generality, we assume n ∧ n0 ≥ κ2e.

A.2.1 Recurrence Relation of DCL-KR

Consider a subspace W of Hk spanned by {kz1 , · · · , kzn0}. We first show that for a fixed h∗ ∈ Hk
and a gradient update Gu = u − ηS>Z (SZu − SZh∗) we have Gtu1 → PZh

∗ as t → ∞ for any
u1 ∈ W where PZ is an orthogonal projection onto the subspace W . Set ut+1 = Gut for t ≥ 1.
Then

ut+1 = (I − ηS>Z SZ)ut + ηS>Z SZh
∗ = (I − ηS>Z SZ)tu1 +

t−1∑
k=0

(I − ηS>Z SZ)kηS>Z SZh
∗.

Since SZh∗ = SZPZh
∗, we have

t−1∑
k=0

(I − ηS>Z SZ)kηS>Z SZh
∗ =

t−1∑
k=0

(I − ηS>Z SZ)kηS>Z SZPZh
∗ = PZh

∗ − (I − ηS>Z SZ)tPZh
∗.

Note that there exists {z̃1, · · · , z̃ñ0} ⊂ Z such that {kz̃1 , · · · , kz̃ñ0 } is a basis of W . Define a matrix

B =

 b11 · · · b1ñ0

...
. . .

...
bn01 · · · bn0ñ0

 ∈ Rn0×ñ0

such that kzi =
∑ñ0

j=1 bijkz̃j . Then KZZ̃ = BKZ̃Z̃ where

KZZ̃ =

 k(z1, z̃1) · · · k(z1, z̃ñ0)
...

. . .
...

k(zn0 , z̃1) · · · k(zn0 , z̃ñ0)

 ∈ Rn0×ñ0
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and

KZ̃Z̃ =

 k(z̃1, z̃1) · · · k(z̃1, z̃ñ0)
...

. . .
...

k(z̃ñ0 , z̃1) · · · k(z̃ñ0 , z̃ñ0)

 ∈ Rñ0×ñ0 .

Set PZh∗ =
∑ñ0

j=1 ajkz̃j . Then we can see that

(I − ηS>Z SZ)

(
ñ0∑
j=1

ajkz̃j

)
=

ñ0∑
r=1

(
ar −

η

n

n0∑
i=1

ñ0∑
j=1

ajk(z̃j , zi)bir

)
kz̃r

=

ñ0∑
r=1

(
ar −

η

n
[B>BKZ̃Z̃a]r

)
kz̃r =

ñ0∑
r=1

[(
I − η

n
B>BKZ̃Z̃

)
a
]
r
kz̃r

where [·]r is the rth component of the given vector and a = [a1, · · · , añ0 ]
>. Note that KZ̃Z̃ is

invertible since v>KZ̃Z̃v = 0 implies v = 0. We can also see that KZZ = BKZ̃Z̃B
> where

KZZ =

 k(z1, z1) · · · k(z1, zn0)
...

. . .
...

k(zn0 , z1) · · · k(zn0 , zn0)

 ∈ Rn0×n0 .

So ∥∥∥K1/2

Z̃Z̃
B>BK

1/2

Z̃Z̃

∥∥∥ =
∥∥∥BKZ̃Z̃B

>
∥∥∥ ≤ ∥∥∥BKZ̃Z̃B

>
∥∥∥
F
≤ nκ2.

Thus, 0 < η
nK

1/2

Z̃Z̃
B>BK

1/2

Z̃Z̃
< I and

(I − ηS>Z SZ)tPZh
∗ =

ñ0∑
r=1

[
K
−1/2

Z̃Z̃

(
I − η

n
K

1/2

Z̃Z̃
B>BK

1/2

Z̃Z̃

)t
K

1/2

Z̃Z̃
a

]
r

kz̃r → 0

as t→∞. Similarly, we get (I − ηS>Z SZ)tu1 → 0 as t→∞. Therefore, we attain Gtu1 → PZh
∗

as t→∞ for any u1 ∈W .

From this fact, DCL-KR has the recurrence relation

ft = PZ

m∑
i=1

ni
n

(
T
E
k,Xift−1 + η

E−1∑
s=0

T
s
k,XiS

>
Diyi

)
(6)

where ft = fi,t for any i = 1, · · · ,m and T k,Xi := I − ηTk,Xi for i = 1, · · · ,m. Then we obtain a
closed form

ft =

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
f0 +

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

m∑
i=1

ni
n
η

E−1∑
s=0

T
s
k,XiS

>
Diyi.

We first compute

f∗0 −

(PZ m∑
i=1

ni
n
T
E
k,Xi

)t
f∗0 +

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

m∑
i=1

ni
n
η

E−1∑
s=0

T
s
k,XiTk,Xif

∗
0

 .

From

η

E−1∑
s=0

T
s
k,XiTk,Xi = η

E−1∑
s=0

(I − ηTk,Xi)
sTk,Xi = I − (I − ηTk,Xi)

E ,

we have

f∗0 −

(PZ m∑
i=1

ni
n
T
E
k,Xi

)t
f∗0 +

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

m∑
i=1

ni
n
η

E−1∑
s=0

T
s
k,XiTk,Xif

∗
0


= f∗0 −

(PZ m∑
i=1

ni
n
T
E
k,Xi

)t
f∗0 +

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)
f∗0


=

(
I +

(
m∑
i=1

ni
n
PZT

E
k,Xi

)
+ · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−1)
(I − PZ)f∗0

= (I − PZ)f∗0 +

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
m∑
i=1

ni
n
T
E
k,Xi − I

)
(I − PZ)f∗0 .
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where the last equality follows from PZ(I − PZ) = 0. Thus, we obtain the equality
ιρx(ft − f∗0 )

= ιρx

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
(f0 − f∗0 )

+ ιρx

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

m∑
i=1

ni
n
η

E−1∑
s=0

T
s
k,XiS

>
Di(yi − SDif

∗
0 )− ιρx(I − PZ)f∗0

+ ιρx

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)
(I − PZ)f∗0 . (7)

A.2.2 Norm Bound of First Term in (7)

We first bound the norm of the first term in (7) as∥∥∥∥∥ιρx
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
(f0 − f∗0 )

∥∥∥∥∥
L2
ρx

≤
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZf

∗
0

∥∥∥∥∥
Hk

+
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t∥∥∥∥∥ ‖(I − PZ)f∗0 ‖Hk (8)

where λ > 0. The first term in (8) is bounded as∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZf

∗
0

∥∥∥∥∥
Hk

≤
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZ(Tk,X + λI)r−1/2

∥∥∥∥∥
·
∥∥∥(Tk,X + λI)−(r−1/2)T

r−1/2
k,ρx

g∗0

∥∥∥
Hk
.

Note that ∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZ(Tk,X + λI)r−1/2

∥∥∥∥∥
≤

∥∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t/2r∥∥∥∥∥∥
2r

by Lemma A.8. Set Ai = T
E

k,Xi ⇔ Tk,Xi =
1
η (I −A

1/E
i ). We observe that∥∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t/2r∥∥∥∥∥∥
2r

=

∥∥∥∥∥∥
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t/2r
PZ(Tk,X + λI)PZ

(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t/2r∥∥∥∥∥∥
r

≤

1

η

∥∥∥∥∥∥
(

m∑
i=1

ni
n
PZAiPZ

)t/2r (
I −

n∑
i=1

ni
n
PZAiPZ

)(
m∑
i=1

ni
n
PZAiPZ

)t/2r∥∥∥∥∥∥+ λ

r

where the equality follows from 0 ≤ Ai ≤ I ⇒ A
1/E
i ≥ Ai and I ≥ PZ . Since supx∈[0,1] x

t/r(1−
x) = r

t+r · (
t
t+r )

t/r, we attain the inequality∥∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t/2r∥∥∥∥∥∥
2r

≤

(
r

t+ r
· 1

η

(
t

t+ r

)t/r
+ λ

)r
. (9)
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Next, Lemma A.8 gives∥∥∥(Tk,X + λI)−(r−1/2)T
r−1/2
k,ρx

∥∥∥ ≤ ∥∥∥(Tk,X + λI)−(r−1/2)(Tk,ρx + λI)r−1/2
∥∥∥

≤
∥∥(Tk,X + λI)−1(Tk,ρx + λI)

∥∥r−1/2

and∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ≤ ∥∥∥(Tk,ρx + λI)1/2(Tk,X + λI)−1/2

∥∥∥ ≤ ∥∥(Tk,ρx + λI)(Tk,X + λI)−1
∥∥1/2 .

By Lemma A.10,

‖(Tk,ρx + λI)(Tk,X + λI)−1‖ ≤ 2 + 2

((
2κ2

nλ
+

√
4κ2N (λ)

nλ

)
log(2/δ)

)2

(10)

holds with confidence at least 1− δ where δ ∈ (0, 1). Combining (9) and (10) and applying r
t+r ≤

1
t

and ( t
t+r )

t/r ≤ 1
2 yield

∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZf

∗
0

∥∥∥∥∥
Hk

≤

(
r

t+ r
· 1

η

(
t

t+ r

)t/r
+ λ

)r
‖g∗0‖Hk

(
2 + 2

((
2κ2

nλ
+

√
4κ2N (λ)

nλ

)
log(2/δ)

)2)r

≤ R
(

1

2ηt
+ λ

)r (
2 + 2

(
2κ2

nλ
+

√
4κ2N (λ)

nλ

)2)r
(log(4/δ))2r

with confidence at least 1− δ where δ ∈ (0, 1). Therefore, putting λ = n−
1

2r+s yields

E

∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t
PZf

∗
0

∥∥∥∥∥
Hk


≤
(

1

2ηt
+ n−

1
2r+s

)r
R · 4Γ(2r + 1)

(
2 + 2(2κ2 + 2κ

√
C′s)

2
)r

.

(
1

t
+ n−

1
2r+s

)r
.

Here, we apply the fact that EA =
∫∞
0

P(A ≥ t) dt for A ≥ 0.

We next turn to bound the second term in (8). Note that∥∥∥∥∥(Tk,X + λI)1/2
(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t∥∥∥∥∥
=

∥∥∥∥∥
(

m∑
i=1

ni
n
T
E
k,XiPZ

)t
(Tk,X + λI)

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t∥∥∥∥∥
1/2

≤

∥∥∥∥∥
m∑
i=1

ni
n
T
E
k,Xi

∥∥∥∥∥ ·
∥∥∥∥∥
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1

PZ(Tk,X + λI)PZ

(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1∥∥∥∥∥
1/2

≤

∥∥∥∥∥
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1

PZ(Tk,X + λI)PZ

(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1∥∥∥∥∥
1/2

.

Set Ai = T
E

k,Xi . Using a similar argument as before gives∥∥∥∥∥
(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1

PZ(Tk,X + λI)PZ

(
PZ

m∑
i=1

ni
n
T
E
k,XiPZ

)t−1∥∥∥∥∥
1/2

≤
(

1

η(2t− 1)
+ λ

)1/2

≤
(

1

ηt
+ λ

)1/2

.
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Since Z and X are independent, we have

E

[∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t∥∥∥∥∥ ‖(I − PZ)f∗0 ‖Hk

]

≤
(

1

ηt
+ λ

)1/2

E
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ · E ‖(I − PZ)f∗0 ‖Hk .

We already see that

∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ≤ (2 + 2

((
2κ2

nλ
+

√
4κ2N (λ)

nλ

)
log(2/δ)

)2)1/2

≤

(
2 + 2

(
2κ2

nλ
+

√
4κ2N (λ)

nλ

)2)1/2

log(4/δ)

holds with confidence at least 1− δ where δ ∈ (0, 1) and so

E
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ≤ 4
(

2 + 2(2κ2 + 2κ
√
C′s)

2
)1/2

by putting λ = n−
1

2r+s as before.

The remaining part is to bound E‖(I − PZ)f∗0 ‖Hk . Applying Lemma A.9 yields ‖(I − PZ)f∗0 ‖Hk ≤
λ
1/2
0 ‖(Tk,Z + λ0I)

−1/2T
r−1/2
k,ρx

‖‖g∗0‖Hk where λ0 > 0. Then Lemma A.8 gives

λ
1/2
0 ‖(Tk,Z + λ0I)−1/2T

r−1/2
k,ρx

‖‖g∗0‖Hk
≤ Rλ1/2

0 ‖(Tk,Z + λ0I)−(1−r)‖‖(Tk,Z + λ0I)−(r−1/2)T
r−1/2
k,ρx

‖

≤ Rλr−1/2
0 ‖(Tk,Z + λ0I)−1/2T

1/2
k,ρx
‖2r−1.

From dρx
dρ̃x
≤ B, we obtain

‖T 1/2
k,ρx

(Tk,Z + λ0I)−1/2‖ = ‖ιρx(Tk,Z + λ0I)−1/2‖

≤ B1/2‖ιρ̃x(Tk,Z + λ0I)−1/2‖ = B1/2‖T 1/2
k,ρ̃x

(Tk,Z + λ0I)−1/2‖.

Set λ0 = 128(κ2 + 1)2(log n0)
3/n0 where we assume n is sufficiently large such that λ0 ≤ 1 and

Nρ̃x(λ0) ≥ 1 for n0 ≥ n
1

2r+s (log n)3. By Lemma A.8 and Lemma A.12,

‖T 1/2
k,ρ̃x

(Tk,Z + λ0I)−1/2‖ ≤ ‖(Tk,ρ̃x + λ0I)1/2(Tk,Z + λ0I)−1/2‖ ≤
√

2

holds with confidence at least 1− δ where δ ∈ [4 exp(−1/4(κ2 + 1)B0), 1) and

B0 =
1 + logNρ̃x(λ0)

λ0n0
+

√
1 + logNρ̃x(λ0)

λ0n0
.

Since
‖(I − PZ)f∗0 ‖Hk ≤ ‖f

∗
0 ‖Hk = ‖T r−1/2

k,ρx
g∗0‖Hk ≤ ‖Tk,ρx‖

r−1/2‖g∗0‖Hk ≤ Rκ
2r−1,

we have

E‖(I − PZ)f∗0 ‖Hk ≤ Rλ
r−1/2
0 Br−1/22r−1/2 +Rκ2r−1 · 4 exp

(
− 1

4(κ2 + 1)B0

)
.

From n0 ≥ κ2e, we get

B0 ≤
log κ2e+ logn0

128(κ2 + 1)2(logn0)3
+

√
log κ2e+ logn0

128(κ2 + 1)2(logn0)3

≤ 2 logn0

128(κ2 + 1)2(logn0)3
+

√
2 logn0

128(κ2 + 1)2(logn0)3
≤ 1

4(κ2 + 1) logn0
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and so Rκ2r−1 · 4 exp
(
− 1

4(κ2+1)B0

)
≤ 4Rκ2r−1 · 1

n0
. Therefore,

E

[∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ∥∥∥∥∥(Tk,X + λI)1/2

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)t∥∥∥∥∥ ‖(I − PZ)f∗0 ‖Hk

]

≤
(

1

ηt
+ n−

1
2r+s

)1/2

4
(

2 + 2(2κ2 + 2κ
√
C′s)

2
)1/2(

Rλ
r−1/2
0 Br−1/22r−1/2 + 4Rκ2r−1 · 1

n0

)
. Br−1/2

(
1

t
+ n−

1
2r+s

)1/2

n−
r−1/2
2r+s

where the last inequality comes from n0 ≥ n
1

2r+s (log n)3.

A.2.3 Norm Bound of Second Term in (7)

Set

P =


∑E−1
s=0 (I − ηSD1S

>
D1

)s 0 · · · 0

0
∑E−1
s=0 (I − ηSD2S

>
D2

)s · · · 0
...

...
. . .

...
0 0 · · ·

∑E−1
s=0 (I − ηSDmS>Dm)s

 .
Note that

I − ηS>DPSD = I −
m∑
i=1

ni
n
ηS>Di

E−1∑
s=0

(I − ηSDiS
>
Di)

sSDi

= I −
m∑
i=1

ni
n

(I − (I − ηS>DiSDi)
E) =

m∑
i=1

ni
n
T
E
k,Xi . (11)

Then the second term in (7) becomes

ιρx

t−1∑
j=0

(
PZ

m∑
i=1

ni
n
T
E
k,Xi

)j
PZ

m∑
i=1

ni
n
η

E−1∑
s=0

T
s
k,XiS

>
Di(yi − SDif

∗
0 )

= ιρx

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 ).

We can see that∥∥∥∥∥ιρx
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
L2
ρx

≤ ‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥(Tk,X + λI)1/2
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk

≤ ‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥T 1/2
k,X

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk

+λ1/2

∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk

 .

We first bound the expectation of the first term in the above. By the Cauchy-Schwartz inequality, we
have

E

‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥T 1/2
k,X

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk


≤
(
E‖T 1/2

k,ρx
(Tk,X + λI)−1/2‖2

)1/2E

∥∥∥∥∥T 1/2
k,X

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
2

Hk

1/2

.
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Observe that ∥∥∥∥∥T 1/2
k,X

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk

=

∥∥∥∥∥SD
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
2

and

SD

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

= P−1/2(I − (I − ηP 1/2SDPZS
>
DP

1/2)t)P 1/2(y − SDf∗0 )

= (I − (I − ηSDPZS>DP )t)(y − SDf∗0 ).

Using E(y − SDf∗0 )(y − SDf∗0 )> ≤ γ2I , we have

E
[∥∥∥(I − (I − ηSDPZS>DP )t)(y − SDf∗0 )

∥∥∥2
2
|X,Z

]
=

1

n
tr
(

(I − (I − ηSDPZS>DP )t)E
[
(y − SDf∗0 )(y − SDf∗0 )>

]
(I − (I − ηSDPZS>DP )t)>

)
≤ γ2

n

∥∥∥(I − (I − ηSDPZS>DP )t)
∥∥∥2
HS
≤ γ2E

n

∥∥∥(I − (I − ηP 1/2SDPZS
>
DP

1/2)t)
∥∥∥2
HS

where the last inequality follows from the fact that ‖AB‖HS ≤ ‖A‖‖B‖HS , ‖AB‖HS ≤
‖A‖HS‖B‖, and

‖P 1/2‖2‖P−1/2‖2 ≤ E

(
E−1∑
s=0

(1− ηκ2)s
)−1

≤ E.

Since

0 ≤ ηP 1/2SDPZS
>
DP

1/2 ≤ ηP 1/2SDS
>
DP

1/2 ≤ I (12)

which follows from (11), we can see that

0 ≤ λi(ηP 1/2SDPZS
>
DP

1/2) ≤ λi(ηP 1/2SDS
>
DP

1/2) ≤ 1

⇒ 0 ≤ λi(I − (I − ηP 1/2SDPZS
>
DP

1/2)t) ≤ λi(I − (I − ηP 1/2SDS
>
DP

1/2)t) ≤ 1

where λi(·) is the ith largest eigenvalue of a given operator. Therefore,

γ2E

n

∥∥∥(I − (I − ηP 1/2SDPZS
>
DP

1/2)t)
∥∥∥2
HS
≤ γ2E

n

∥∥∥(I − (I − ηP 1/2SDS
>
DP

1/2)t)
∥∥∥2
HS

.

Using (12) and 1 ∧ u2 ≤ 1 ∧ u for u ≥ 0 lead to

λi(I − (I − ηP 1/2SDS
>
DP

1/2)t)2 = (1− (1− ηλi(P 1/2SDS
>
DP

1/2))t)2

≤ 1 ∧ (η2t2λi(P
1/2SDS

>
DP

1/2)2)

≤ 1 ∧ (ηtλi(P
1/2SDS

>
DP

1/2))

≤ 1 ∧ (ηtEλ̂i)

where λ̂1 ≥ · · · ≥ λ̂n are eigenvalues of SDS>D , the first inequality comes from the Bernoulli
inequality, and the last inequality follows from the fact that ‖P‖ ≤ E. We define

R(ε) =

√√√√ 1

n

n∑
i=1

(λ̂i ∧ ε2).

Then
γ2E

n

∥∥∥(I − (I − ηP 1/2SDS
>
DP

1/2)t)
∥∥∥2
HS
≤ γ2ηtE2 · R

(
1√
ηtE

)2

.

Similarly as in Appendix A.2.2, putting λ = n−
1

2r+s gives

E‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖2 ≤ 2 + 4Γ(3)(2κ2 + 2κ
√
C′s)

2.
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Therefore, the Cauchy-Schwartz inequality gives a bound as

E

‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥T 1/2
k,X

t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk


≤
√

(2 + 4Γ(3)(2κ2 + 2κ
√
C′s)2)γ2ηtE2 ·

(
ER

(
1√
ηtE

)2
)1/2

.

We now bound the expectation of

λ1/2‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk

.

By the Cauchy-Schwartz inequality and the same argument as before, we have

E

λ1/2‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk


≤ (2 + 4Γ(3)(2κ2 + 2κ

√
C′s)

2)1/2

λ · E ∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSDPZ

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
2

Hk

1/2

.

Also, the same argument as before yields

E

∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSDPZ

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
2

Hk

=
1

n
E
[
(y − SDf∗0 )>A(y − SDf∗0 )

]

≤ γ2

n
E[tr(A)]

where

A = ηPSDPZ

(
t−1∑
j=0

(
PZ − ηPZS>DPSDPZ

)j)2

ηPZS
>
DP

= ηPSDPZ

(
t−1∑
j=0

(
I − ηPZS>DPSDPZ

)j)2

ηPZS
>
DP.

To bound E[tr(A)], note that

tr(A) ≤ E · tr

ηP 1/2SDPZ

(
t−1∑
j=0

(
I − ηPZS>DPSDPZ

)j)2

ηPZS
>
DP

1/2


= ηE · tr

ηP 1/2SDPZS
>
DP

1/2

(
t−1∑
j=0

(I − ηP 1/2SDPZS
>
DP

1/2)j
)2
 .

Let B = ηP 1/2SDPZS
>
DP

1/2. Then 0 ≤ B ≤ I and

ηE · tr

ηP 1/2SDPZS
>
DP

1/2

(
t−1∑
j=0

(I − ηP 1/2SDPZS
>
DP

1/2)j
)2


= ηE

n∑
i=1

λi(B)

(
t−1∑
j=0

(1− λi(B))j
)2

= ηE

n∑
i=1

1

λi(B)
(1− (1− λi(B))t)2

≤ ηE
n∑
i=1

1

λi(B)
∧ (t2λi(B)) ≤ ηE

n∑
i=1

t ∧ (t2λi(B))

where the first inequality follows from 1− xt ≤ 1 ∧ t(1− x) and the second inequality follows from
1/x ∧ t2x ≤ t ∧ t2x for all t ≥ 0 and x ∈ [0, 1]. From the fact that

λi(B) ≤ η‖P 1/2‖2λi(SDPZS>D) ≤ ηEλi(SDS>D) = ηEλ̂i,
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we have

ηE

n∑
i=1

t ∧ (t2λi(B)) ≤ ηE
n∑
i=1

t ∧ (ηt2Eλ̂i) = nη2t2E2 · R
(

1√
ηtE

)2

.

Therefore, we obtain

E

λ1/2‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

∥∥∥∥∥
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
Hk


≤
√

(2 + 4Γ(3)(2κ2 + 2κ
√
C′s)2)(λγ2η2t2E2) ·

(
ER

(
1√
ηtE

)2
)1/2

.

In conclusion, we have an upper bound of the norm of the second term in (7) as

E

∥∥∥∥∥ιρx
t−1∑
j=0

(
PZ − ηPZS>DPSD

)j
ηPZS

>
DP (y − SDf∗0 )

∥∥∥∥∥
L2
ρx

≤
√

(2 + 4Γ(3)(2κ2 + 2κ
√
C′s)2)γ2ηtE2 ·

(
ER

(
1√
ηtE

)2
)1/2

+

√
(2 + 4Γ(3)(2κ2 + 2κ

√
C′s)2)(λγ2η2t2E2) ·

(
ER

(
1√
ηtE

)2
)1/2

.

(
t1/2 + n−

1/2
2r+s t

)
·

(
ER

(
1√
ηtE

)2
)1/2

by taking λ = n−
1

2r+s . We will bound ER
(

1√
ηtE

)2
in Appendix A.2.5.

A.2.4 Norm Bound of Third and Last Term in (7)

Note that∥∥∥∥∥ιρx
(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)
(I − PZ)f∗0

∥∥∥∥∥
L2
ρx

≤ ‖T 1/2
k,ρx

(Tk,X + λI)−1/2‖

·

∥∥∥∥∥∥(Tk,X + λI)1/2
(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)1/2
∥∥∥∥∥∥

·

∥∥∥∥∥∥
(
I −

m∑
i=1

ni
n
T
E
k,Xi

)1/2

(I − PZ)f∗0

∥∥∥∥∥∥
Hk

where 0 < λ ≤ 1. From (11) and 0 ≤ P ≤ EI , we have 0 ≤ I −
∑m
i=1

ni
n T

E

k,Xi = ηS>DPSD ≤
ηES>DSD = ηETk,X . Using this fact, we find that∥∥∥∥∥∥(Tk,X + λI)1/2

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)1/2
∥∥∥∥∥∥

≤ (ηE)1/2
(∥∥∥∥∥T 1/2

k,X

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZT

1/2
k,X

∥∥∥∥∥
+λ1/2

∥∥∥∥∥
(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZT

1/2
k,X

∥∥∥∥∥
)
.
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To bound this, we first observe that∥∥∥∥∥T 1/2
k,X

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZT

1/2
k,X

∥∥∥∥∥
≤

t−2∑
j=0

∥∥∥∥∥∥T 1/2
k,XPZ

(
m∑
i=1

ni
n
PZT

E
k,XiPZ

)j
PZT

1/2
k,X

∥∥∥∥∥∥
≤

t−2∑
j=0

∥∥∥∥∥∥
(

m∑
i=1

ni
n
PZT

E
k,XiPZ

)j/2
PZTk,XPZ

(
m∑
i=1

ni
n
PZT

E
k,XiPZ

)j/2∥∥∥∥∥∥ ≤ 1

η

(
1 +

t−2∑
j=1

1

j

)

where the last inequality follows by a similar calculation as before. On the other hand, we have∥∥∥∥∥
(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZT

1/2
k,X

∥∥∥∥∥
≤

t−2∑
j=0

∥∥∥∥∥∥
(

m∑
i=1

ni
n
PZT

E
k,XiPZ

)j
PZT

1/2
k,X

∥∥∥∥∥∥
=

t−2∑
j=0

∥∥∥∥∥∥
(

m∑
i=1

ni
n
PZT

E
k,XiPZ

)j
PZTk,XPZ

(
m∑
i=1

ni
n
PZT

E
k,XiPZ

)j∥∥∥∥∥∥
1/2

≤ 1
√
η

(
1 +

t−2∑
j=1

1√
2j

)

by the same argument. Using a simple calculation, we get

1

η

(
1 +

t−2∑
j=1

1

j

)
≤ 1

ηE
(2 + log t)E

and
1
√
η

(
1 +

t−2∑
j=1

1√
2j

)
≤ 1
√
η

+
1√
2η

(2
√
t− 2− 1) ≤ 1

(ηE)1/2
·
√

6tE.

Note that the norm of the third term in (7) is bounded as

‖ιρx(I − PZ)f∗0 ‖L2
ρx
≤
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥∥∥∥(Tk,X + λI)1/2(I − PZ)f∗0

∥∥∥
Hk
.

Therefore, the norm of the sum of the third and last terms in (7) is bounded by

(1 + 2E + E log t+
√

6ηtλE)
∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ∥∥∥(Tk,X + λI)1/2(I − PZ)f∗0

∥∥∥
Hk
.

To bound
∥∥(Tk,X + λI)1/2(I − PZ)f∗0

∥∥
Hk

, observe that

‖(Tk,X + λI)1/2(I − PZ)f∗0 ‖Hk ≤ ‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖‖(Tk,ρx + λI)1/2(I − PZ)f∗0 ‖Hk
and

‖(Tk,ρx + λI)1/2(I − PZ)f∗0 ‖2Hk = ‖ιρx(I − PZ)f∗0 ‖2L2
ρx

+ λ‖(I − PZ)f∗0 ‖2Hk
≤ B‖ιρ̃x(I − PZ)f∗0 ‖2L2

ρx
+ λ‖(I − PZ)f∗0 ‖2Hk

= B‖(Tk,ρ̃x + λI)1/2(I − PZ)f∗0 ‖2Hk .

Under Assumption 3.3, we have

B1/2‖(Tk,ρ̃x + λI)1/2(I − PZ)f∗0 ‖Hk
≤ B1/2‖(Tk,ρ̃x + λI)1/2(I − PZ)(Tk,ρ̃x + λI)r−1/2‖‖(Tk,ρ̃x + λI)−(r−1/2)T

r−1/2
k,ρx

‖‖g∗0‖Hk .

Since

‖(Tk,ρ̃x + λI)−(r−1/2)T
r−1/2
k,ρx

‖ ≤ ‖(Tk,ρ̃x + λI)−1/2T
1/2
k,ρx
‖2r−1 = ‖T 1/2

k,ρx
(Tk,ρ̃x + λI)−1/2‖2r−1

which follows from Lemma A.8 and

‖T 1/2
k,ρx

(Tk,ρ̃x + λI)−1/2‖ = ‖ιρx(Tk,ρ̃x + λI)−1/2‖ ≤ B1/2‖ιρ̃x(Tk,ρ̃x + λI)−1/2‖

≤ B1/2‖T 1/2
k,ρ̃x

(Tk,ρ̃x + λI)−1/2‖ ≤ B1/2,
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we have ‖(Tk,ρ̃x + λI)−(r−1/2)T
r−1/2
k,ρx

‖ ≤ Br−1/2. On the other hand,

‖(Tk,ρ̃x + λI)1/2(I − PZ)(Tk,ρ̃x + λI)r−1/2‖

≤ ‖(Tk,ρ̃x + λI)1/2(I − PZ)‖‖(I − PZ)2r−1(Tk,ρ̃x + λI)r−1/2‖

≤ ‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r

by Lemma A.8. Therefore,∥∥∥T 1/2
k,ρx

(Tk,X + λI)−1/2
∥∥∥ ∥∥∥(Tk,X + λI)1/2(I − PZ)f∗0

∥∥∥
Hk

≤ RBr
∥∥∥(Tk,ρx + λI)1/2(Tk,X + λI)−1/2

∥∥∥
· ‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r.

Since X and Z are independent, we have

E
[∥∥∥T 1/2

k,ρx
(Tk,X + λI)−1/2

∥∥∥ ∥∥∥(Tk,X + λI)1/2(I − PZ)f∗0

∥∥∥
Hk

]
≤ RBrE

[∥∥∥(Tk,ρx + λI)1/2(Tk,X + λI)−1/2
∥∥∥ ‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖

]
· E‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r.

By Lemma A.8 and Lemma A.10,

‖(Tk,ρx + λI)1/2(Tk,X + λI)−1/2‖ ≤

(
2 + 2

((
2κ2

nλ
+

√
4κ2N (λ)

nλ

)
log(2/δ)

)2)1/2

holds with confidence at least 1− δ where δ ∈ (0, 1). Also, by Lemma A.8 and Lemma A.11

‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖ ≤

(
1 +

(
2κ2

nλ
+

√
4κ2N (λ)

nλ

)
log(2/δ)

)1/2

holds with confidence at least 1− δ where δ ∈ (0, 1). Thus,

‖(Tk,ρx + λI)1/2(Tk,X + λI)−1/2‖‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖

≤

(
2 + 2

(
2κ2

nλ
+

√
4κ2N (λ)

nλ

)2)1/2(
1 +

(
2κ2

nλ
+

√
4κ2N (λ)

nλ

))1/2

(log(4/δ))3/2

with confidence at least 1− δ where δ ∈ (0, 1). Set λ = 128(κ2 +1)2n−
1

2r+s where n is sufficiently
large such that λ ≤ 1 and Nρ̃x(λ) ≥ 1. Then

E
[∥∥∥(Tk,ρx + λI)1/2(Tk,X + λI)−1/2

∥∥∥ ‖(Tk,X + λI)1/2(Tk,ρx + λI)−1/2‖
]

≤ 4Γ (2.5) (2 + 2(2κ2 + 2κ
√
C′s)

2)1/2(1 + 2κ2 + 2κ
√
C′s)

1/2 . 1.

We now bound E‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r. By Lemma A.9, we have

‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r ≤ λr‖(Tk,ρ̃x + λI)1/2(Tk,Z + λI)−1/2‖2r.

By Lemma A.12, ‖(Tk,ρ̃x + λI)1/2(Tk,Z + λI)−1/2‖ ≤
√
2 with confidence at least 1 −

4 exp(−1/4(κ2 + 1)B0) where

B0 =
1 + logNρ̃x(λ)

λn0
+

√
1 + logNρ̃x(λ)

λn0
.

Also, ‖(Tk,ρ̃x + λI)1/2(I − PZ)‖ ≤ (κ2 + 1)1/2 almost surely. Thus,

E‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r ≤ 2rλr + (κ2 + 1)r · 4 exp

(
− 1

4(κ2 + 1)B0

)
.

Note that

B0 ≤
log κ2e+ log(1/λ)

λn0
+

√
log κ2e+ log(1/λ)

λn0
≤ 1

4(κ2 + 1) logn
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and so (κ2 + 1)r · 4 exp
(
− 1

4(κ2+1)B0

)
≤ 4(κ2 + 1)r · 1n . Therefore,

E‖(Tk,ρ̃x + λI)1/2(I − PZ)‖2r ≤ 2r128r(κ2 + 1)2r · n−
r

2r+s + 4(κ2 + 1)r · n−1 . n−
r

2r+s .

We can conclude that

E

∥∥∥∥∥−ιρx(I − PZ)f∗0 + ιρx

(
I + · · ·+

(
m∑
i=1

ni
n
PZT

E
k,Xi

)t−2)
PZ

(
I −

m∑
i=1

ni
n
T
E
k,Xi

)
(I − PZ)f∗0

∥∥∥∥∥
L2
ρx

≤ (1 + 2E + E log t+
√

6ηtλE)RBr · 4Γ (2.5) (2 + 2(2κ2 + 2κ
√
C′s)

2)1/2(1 + 2κ2 + 2κ
√
C′s)

1/2

·
(

2r128r(κ2 + 1)2r · n−
r

2r+s + 4(κ2 + 1)r · n−1
)

. Br(1 + log t+ t1/2n−
1/2
2r+s )n−

r
2r+s .

A.2.5 Stopping Rule and Rademacher Complexity Bound

For convenience, we abuse the notation D = {(x1, y1), · · · , (xn, yn)} and X = {x1, · · · ,xn}.
Define the local empirical Rademacher complexity

Qn(ε) = E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx,n

≤ε

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X


and the local population Rademacher complexity

Qn(ε) = E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx
≤ε

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣


where w1, · · · , wn are independent Rademacher random variables and ρx,n = 1
n

∑n
i=1 δxi . We also

define

R(ε) =

√√√√ 1

n

∞∑
i=1

λi ∧ ε2

where λ1 ≥ λ2 ≥ · · · ≥ 0 are eigenvalues of Tk,ρx . We recall the following well-known property.
Lemma A.1 ([46], [60]). We have

Qn(ε) ≤
√

2 · R(ε)

for ε > 0.

We can prove the following lemma using a similar argument as in [46].
Lemma A.2. There is an absolute constant c > 0 which satisfies that for every ε > 0,

c · R(ε) ≤ Qn(ε).

Proof of Lemma A.2. We divide the proof into three parts.

Part 1. Since Tk,X = S>DSD, λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 are eigenvalues of Tk,X . For convenience,
set λ̂i = 0 for i > n and define n̂ ≤ n such that λ̂n̂ > 0 and λ̂n̂+1 = 0. Choose an orthonormal basis
{ψ̂i}∞i=1 of Hk such that ψ̂i is an eigenvector of Tk,X corresponding to λ̂i. Then 〈ψ̂i, ψ̂j〉L2

ρx,n
=

〈SDψ̂i, SDψ̂j〉2 = 〈Tk,X ψ̂i, ψ̂j〉Hk = δ{i=j}λ̂i. We will show that

kx =

n̂∑
i=1

ψ̂i(x)ψ̂i

where x ∈ {x1, · · · ,xn}. Let W1 be the subspace of Hk spanned by {ψ̂i : i = 1, · · · , n̂} and
W2 be the subspace of Hk spanned by {kxi : i = 1, · · · , n}. Observe that W⊥1 = kerTk,X
and W⊥2 ⊂ kerTk,X by the reproducing property. Thus, W1 ⊂ W2. Conversely, choose a basis
{kx̃i : i = 1, · · · , ñ′} ⊂ {kxi : i = 1, · · · , n} of W2. Then, using a similar argument as in
Appendix A.2.1 implies that there exists a matrix

B =

b11 · · · b1ñ′
...

. . .
...

bn1 · · · bnñ′

 ∈ Rn×ñ
′
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such that kxi =
∑ñ′

j=1 bijkx̃j . Then KXX̃ = BKX̃X̃ where

KXX̃ =


k(x1, x̃1) · · · k(x1, x̃ñ

′
)

...
. . .

...
k(xn, x̃1) · · · k(xn, x̃ñ

′
)

 ∈ Rn×ñ
′

and

KX̃X̃ =


k(x̃1, x̃1) · · · k(x̃1, x̃ñ

′
)

...
. . .

...
k(x̃ñ

′
, x̃1) · · · k(x̃ñ

′
, x̃ñ

′
)

 ∈ Rñ
′×ñ′ .

Since KX̃,X̃ and B>B are invertible,

Tk,X

 ñ′∑
i=1

[nK−1

X̃,X̃
(B>B)−1b]ikx̃i

 =

ñ′∑
i=1

bikx̃i

for any b = [b1, · · · ,bñ′ ]> ∈ Rñ′ where [·]r is the rth component of the given vector. Therefore,
W2 ⊂ ran Tk,X = (kerTk,X)⊥ = W1 and so W1 = W2. From this fact, we can see that kxi =∑n̂
r=1 arψ̂r for some a1, · · · , an̂ ∈ R. Then ar = 〈kxi , ψ̂r〉Hk = ψ̂r(x

i) for all r = 1, · · · , n̂
and so we are done. Note that kx =

∑∞
i=1 ψ̂i(x)ψ̂i where x ∈ {x1, · · · ,xn} since ψ̂i(x) = 0 for

x ∈ {x1, · · · ,xn} and i > n̂.

Part 2. Define

F :=
{
h : ‖h‖Hk ≤ 1 and ‖h‖L2

ρx,n
≤ ε
}

=

{
∞∑
i=1

hiψ̂i :

∞∑
i=1

h2
i ≤ 1 and

n̂∑
i=1

λ̂ih
2
i ≤ ε2

}
and

E :=

{
∞∑
i=1

hiψ̂i :

∞∑
i=1

λ̂i

λ̂i ∧ ε2
h2
i ≤ 1

}
where 0

0 = 1. Then E ⊂ F since(
∞∑
i=1

h2
i

)
∨

(
∞∑
i=1

λ̂i
ε2
h2
i

)
≤
∞∑
i=1

(
1 ∨ λ̂i

ε2

)
h2
i =

∞∑
i=1

λ̂i

λ̂i ∧ ε2
h2
i ≤ 1

for h =
∑∞
i=1 hiψ̂i ∈ E . Thus,

E

[
sup
h∈E

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
2 ∣∣∣∣∣ X

]
≤ E

[
sup
h∈F

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
2 ∣∣∣∣∣ X

]
where ε1, · · · , εn are i.i.d. Rademacher variables. By the reproducing property,

n∑
i=1

εih(xi) = 〈h,
n∑
i=1

εikxi〉Hk = 〈h,
n∑
i=1

εi

n̂∑
j=1

ψ̂j(x
i)ψ̂j〉Hk

=

n̂∑
j=1

hj

n∑
i=1

εiψ̂j(x
i) = 〈

∞∑
j=1

√
λ̂j

λ̂j ∧ ε2
hjψ̂j ,

n̂∑
j=1

√
λ̂j ∧ ε2

λ̂j

n∑
i=1

εiψ̂j(x
i)ψ̂j〉Hk

where h =
∑∞
i=1 hiψ̂i. Thus,

sup
h∈E

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
2

=

∥∥∥∥∥
n̂∑
j=1

√
λ̂j ∧ ε2

λ̂j

n∑
i=1

εiψ̂j(x
i)ψ̂j

∥∥∥∥∥
2

Hk

.

Since ∥∥∥∥∥
n̂∑
j=1

√
λ̂j ∧ ε2

λ̂j

n∑
i=1

εiψ̂j(x
i)ψ̂j

∥∥∥∥∥
2

Hk

=
n̂∑
j=1

λ̂j ∧ ε2

λ̂j

(
n∑
i=1

εiψ̂j(x
i)

)2

,
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we have

E

[
sup
h∈E

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
2 ∣∣∣∣∣ X

]
= E

[
n̂∑
j=1

λ̂j ∧ ε2

λ̂j

(
n∑
i=1

εiψ̂j(x
i)

)2 ∣∣∣∣∣ X
]

=

n̂∑
j=1

λ̂j ∧ ε2

λ̂j

(
n∑
i=1

ψ̂j(x
i)2
)

= n

n∑
j=1

λ̂j ∧ ε2.

Therefore, √√√√n

n∑
j=1

λ̂j ∧ ε2 ≤ E

[
sup
h∈F

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
2 ∣∣∣∣∣ X

]1/2
.

Part 3. By Khintchine’s inequality,

E

[
sup
h∈F

∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
∣∣∣∣∣ X
]
≥ sup
h∈F

E

[∣∣∣∣∣
n∑
i=1

εih(xi)

∣∣∣∣∣
∣∣∣∣∣ X
]
≥ 1√

2
sup
h∈F

(
n∑
i=1

h(xi)2
)1/2

=

√
n

2
ε.

Set Z = g(ε1, · · · , εn) where

g(t1, · · · , tn) = sup
h∈F

∣∣∣∣∣
n∑
i=1

tih(xi)

∣∣∣∣∣ .
By Remark A.14, g is convex and suph∈F (

∑n
i=1 h(x

i)2)1/2 =
√
nε-Lipschitz on [−1, 1]n. By

Lemma A.13, we have

P (Z − E [Z|X] ≥ tE [Z|X] |X) ≤ exp

(
− t2

16ε2n
E [Z|X]2

)
≤ exp

(
− t

2

32

)
.

From

E
[
Z2|X

]
= E

[
Z21{Z<E[Z|X]}|X

]
+

∞∑
m=0

E
[
Z21{(m+1)E[Z|X]≤Z<(m+2)E[Z|X]}|X

]
≤ E[Z|X]2 +

∞∑
m=0

(m+ 2)2E[Z|X]2P(Z ≥ (m+ 1)E[Z|X]|X)

≤ E[Z|X]2
(

1 +

∞∑
m=0

(m+ 2)2 exp

(
−m

2

32

))
,

we have

E[Z|X] ≥ c · E
[
Z2|X

]1/2 ≥ c ·
√√√√n

n∑
j=1

λ̂j ∧ ε2

where c =
(
1 +

∑∞
m=0(m+ 2)2 exp

(
−m

2

32

))−1/2
is an absolute constant. Therefore,

c ·

√√√√ 1

n

n∑
j=1

λ̂j ∧ ε2 ≤ E

[
sup
h∈F

∣∣∣∣∣ 1n
n∑
i=1

εih(xi)

∣∣∣∣∣
∣∣∣∣∣ X
]
.

We set the population radius as

εn = inf

{
ε ≥ 0 : Qn(ε) ≤ ε1+2r

16κ

}
.

We also define
ε̃n = inf

{
ε ≥ 0 : R(ε) ≤ ε1+2r

16
√

2κ

}
.

By Lemma A.1, we have εn ≤ ε̃n. We can easily see thatR,R, Qn, and Qn are increasing functions.
The following lemma can be shown by a similar argument as in [2].
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Lemma A.3. If g : [0,∞)→ [0,∞) is a function such that g is non-decreasing and r 7→ g(r)/r is
non-increasing, then g is continuous on (0,∞).

Since
R(ε)

ε
=

√√√√ 1

n

n∑
i=1

1 ∧ λ̂i
ε2

and
R(ε)

ε
=

√√√√ 1

n

∞∑
i=1

1 ∧ λi
ε2
,

ε 7→ R(ε)/ε and ε 7→ R(ε)/ε are non-increasing and soR andR are continuous.

Lemma A.4. ε 7→ Qn(ε)/ε and ε 7→ Qn(ε)/ε are non-increasing. In particular, Qn is continuous
and εn <∞.

Proof. From the fact that

Qn(ε)

ε
=

1

ε
E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx,n

≤ε

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X


= E

 sup
‖g‖Hk≤1/ε,‖g‖

L2
ρx,n

≤1

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X
 ,

we can easily see that ε 7→ Qn(ε)/ε is non-increasing. Similarly, we can show that ε 7→ Qn(ε)/ε is
non-increasing. Note that

lim
ε→0+

Qn(ε)

ε
> 0 and lim

ε→0+

Qn(ε)

ε
> 0.

Also, we can observe that

lim
ε→∞

Qn(ε)

ε
= 0 and lim

ε→∞

Qn(ε)

ε
= 0.

Since ε 7→ ε2r/16κ is increasing, goes 0 as ε→ 0+, and goes∞ as ε→∞, we can conclude that
εn <∞.

Similarly, we have ε̃n < ∞. In fact, we can find the lower and the upper bound of ε̃n under
Assumption 3.2.
Lemma A.5. We have(

29/(4r+2s)κ1/(2r+s)cs/(4r+2s)
s ∧ c1/2s

(
s

s+ 2

)1/2s
)
n−

1
4r+2s ≤ ε̃n

≤ 29/(4r+2s)κ1/(2r+s)

(
2− s
1− s

)1/(4r+2s)

Cs/(4r+2s)
s n−

1
4r+2s .

Proof. Since csi−1/s ≤ λi ≤ Csi−1/s, we have√√√√ 1

n

∞∑
j=1

(csj−1/s) ∧ ε2 ≤ R(ε) ≤

√√√√ 1

n

∞∑
j=1

(Csj−1/s) ∧ ε2.

We first consider the lower bound of ε̃n. We first observe that√√√√ 1

n

∞∑
j=1

(csj−1/s) ∧ ε2 =

√√√√√√ 1

n

⌊(cs
ε2

)s⌋
ε2 +

∞∑
j=
⌊(
cs
ε2

)s⌋
+1

csj−1/s

.
Set

ε =

(
29/(4r+2s)κ1/(2r+s)cs/(4r+2s)

s ∧ c1/2s

(
s

s+ 2

)1/2s
)
n−

1
4r+2s .

Note that

cs
⌊(cs
ε2

)s⌋−1/s

≥ ε2 and
s

1− s

(⌊(cs
ε2

)s⌋
+ 1
)(s−1)/s

≥
⌊(cs
ε2

)s⌋−1/s
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hold. The first formula is trivial. To show the second formula, we observe that the function
u(t) = ( s

1−s )
s · t

(1+t)1−s is an increasing function. Thus, for t ≥ 2/s

u(t) ≥ u
(

2

s

)
=

2

(1− s)s(s+ 2)1−s
≥ 2

2− 2s2
≥ 1.

Here, we apply an elementary inequality: asb1−s ≤ sa+ (1− s)b ∀a, b > 0. Since

ε ≤ c1/2s

(
s

s+ 2

)1/2s

⇒
⌊(cs
ε2

)s⌋
≥
(cs
ε2

)s
− 1 ≥ 2

s
,

putting t =
⌊(
cs
ε2

)s⌋
gives (

s

1− s

)s
·

⌊(
cs
ε2

)s⌋
(1 +

⌊(
cs
ε2

)s⌋
)1−s

≥ 1

and so the second formula holds. Therefore,
∞∑

j=
⌊(
cs
ε2

)s⌋
+1

csj
−1/s ≥ cs

∫ ∞
⌊(
cs
ε2

)s⌋
+1

1

t1/s
dt =

scs
1− s

(⌊(cs
ε2

)s⌋
+ 1
)(s−1)/s

≥ cs
⌊(cs
ε2

)s⌋−1/s

≥ ε2

holds and so we have√√√√√√ 1

n

⌊(cs
ε2

)s⌋
ε2 +

∞∑
j=
⌊(
cs
ε2

)s⌋
+1

csj−1/s

 ≥√ 1

n

(⌊(cs
ε2

)s⌋
+ 1
)
ε2 ≥ c

s/2
s

n1/2
ε1−s ≥ ε1+2r

16
√

2κ

where the last inequality follows from ε ≤ 29/(4r+2s)κ1/(2r+s)c
s/(4r+2s)
s n−

1
4r+2s . We can conclude

that

ε̃n ≥

(
29/(4r+2s)κ1/(2r+s)cs/(4r+2s)

s ∧ c1/2s

(
s

s+ 2

)1/2s
)
n−

1
4r+2s

by Lemma A.4. We now derive the upper bound of ε̃n. Note that√√√√ 1

n

∞∑
j=1

(Csj−1/s) ∧ ε2 =

√√√√√√ 1

n

⌊(Cs
ε2

)s⌋
ε2 +

∞∑
j=
⌊(
Cs
ε2

)s⌋
+1

Csj−1/s

.
Since

∞∑
j=
⌊(
Cs
ε2

)s⌋
+1

Csj
−1/s −

∫ ∞
⌊(
Cs
ε2

)s⌋
+1

Cs
t1/s

dt ≤ Cs
(⌊(

Cs
ε2

)s⌋
+ 1

)−1/s

and ∫ ∞
⌊(
Cs
ε2

)s⌋
+1

Cs
t1/s

dt =
sCs

1− s

(⌊(
Cs
ε2

)s⌋
+ 1

)1−1/s

≥ sCs
1− s

(⌊(
Cs
ε2

)s⌋
+ 1

)−1/s

,

we have
∞∑

j=
⌊(
Cs
ε2

)s⌋
+1

Csj
−1/s ≤ 1

s

∫ ∞
(
Cs
ε2

)s Cs
t1/s

dt =
Css

1− sε
2−2s.

Hence, we have√√√√√√ 1

n

⌊(Cs
ε2

)s⌋
ε2 +

∞∑
j=
⌊(
Cs
ε2

)s⌋
+1

Csj−1/s

 ≤
√

1

n

(
Css +

Css
1− s

)
ε2−2s.

Set

ε = 29/(4r+2s)κ1/(2r+s)

(
2− s
1− s

)1/(4r+2s)

Cs/(4r+2s)
s n−

1
4r+2s

which is equivalent to
√

1
n

(
Css +

Css
1−s

)
ε2−2s = ε1+2r

16
√
2κ

. Therefore, we attain the upper bound of ε̃n:

ε̃n ≤ 29/(4r+2s)κ1/(2r+s)

(
2− s
1− s

)1/(4r+2s)

Cs/(4r+2s)
s n−

1
4r+2s .
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Without loss of generality, we assume n is sufficiently large such that

n ≥ 29κ2

(
2− s
1− s

)
Css ⇔ 29/(4r+2s)κ1/(2r+s)

(
2− s
1− s

)1/(4r+2s)

Cs/(4r+2s)
s n−

1
4r+2s ≤ 1.

Then εn ≤ ε̃n ≤ 1. We now prove the following lemma. It is an extended version of Theorem 14.1
in [60].
Lemma A.6. We have

P

 sup
‖h‖Hk≤1

∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣
‖h‖2

L2
ρx

+ t2
≤ 1

2

 ≥ 1− exp
(
−c1nt4r

)
for any t ∈ [εn, 1] where c1 is a constant independent of t and n.

Proof of Lemma A.6. We use a similar argument as in the proof of Theorem 14.1 in [60]. Define

Zn(t) := sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣
where t ∈ (0, 1]. Let

E :=

 sup
‖h‖Hk≤1

∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣
‖h‖2

L2
ρx

+ t2
≤ 1

2


c

, A :=

{
Zn(t) ≥ t2

2

}
, Ã :=

{
Zn(t) ≥ t1+2r

2

}
.

We first show that E ⊂ A. On the event E , there exists h ∈ Hk such that ‖h‖Hk ≤ 1 and∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣
‖h‖2

L2
ρx

+ t2
>

1

2
.

If ‖h‖L2
ρx
≤ t, we have

∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣ > 1
2‖h‖

2
L2
ρx
+ 1

2 t
2 ≥ 1

2 t
2. Otherwise, set h̃ = t

‖h‖L2
ρx

h

then ‖h̃‖L2
ρx

= t and
∣∣∣‖h̃‖2L2

ρx,n
− ‖h̃‖2L2

ρx

∣∣∣ > t2

‖h‖2
L2
ρx

·
(

1
2‖h‖

2
L2
ρx

+ 1
2 t

2
)
≥ 1

2 t
2. Therefore, E ⊂ A.

Since t2

2 ≥
t1+2r

2 for t ∈ (0, 1], we have E ⊂ A ⊂ Ã. To find an upper bound of EZn(t), we use the
symmetrization argument as follows:

EZn(t) = E

 sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣∣∣ 1n
n∑
i=1

h(xi)2 − Eh(x)2

∣∣∣∣∣


= E

 sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣∣∣E
[

1

n

n∑
i=1

h(xi)2 − 1

n

n∑
i=1

h(x̃i)2

∣∣∣∣∣ X
]∣∣∣∣∣


≤ E

 sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣∣∣ 1n
n∑
i=1

wi
(
h(xi)2 − h(x̃i)2

)∣∣∣∣∣


≤ 2E

 sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣∣∣ 1n
n∑
i=1

wih(xi)2

∣∣∣∣∣


where w1, · · · , wn are i.i.d. Rademacher variables. By Lemma A.15,

2E

 sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

∣∣∣∣∣ 1n
n∑
i=1

wih(xi)2

∣∣∣∣∣
 ≤ 4κ ·Qn(t).

For t ≥ εn, we have 4κ ·Qn(t) ≤ t1+2r

4 since

Qn(εn) =
ε1+2r
n

16κ
and Qn(ε) ≤ ε1+2r

16κ
, ∀ε ≥ εn. (13)
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Since
1

n

n∑
i=1

sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

E
[
(h(xi)2 − Eh(x)2)2

]
≤ sup
‖h‖Hk≤1,‖h‖

L2
ρx
≤t

E
[
h(x)4

]
≤ κ2t2,

Lemma A.16 gives

P
(
Zn(t) ≥ EZn(t) +

u1+2r

4

)
≤ exp

(
−

1
16
n2u2+4r

4κ2 · nEZn(t) + 2nκ2t2 + 2
3
κ2 · 1

4
nu1+2r

)

≤ exp

(
−c1n

(
u2+4r

t1+2r
∧ u

2+4r

t2
∧ u1+2r

))
where c1 = 1

96κ2 . Putting u = t gives

P(Ã) ≤ P
(
Zn(t) ≥ EZn(t) +

t1+2r

4

)
≤ exp

(
−c1n

(
t1+2r ∧ t4r

))
≤ exp(−c1nt4r),

i.e., P(Ec) ≥ P(Ãc) ≥ 1− exp(−c1nt4r).

Let us return to our problem. Consider the event

Ec =

 sup
‖h‖Hk≤1

∣∣∣‖h‖2L2
ρx,n
− ‖h‖2L2

ρx

∣∣∣
‖h‖2

L2
ρx

+ ε̃2n
≤ 1

2

 .

By Lemma A.6, we have P(Ec) ≥ 1− exp(−c1nε̃4rn ) where c1 is a constant that does not depend on
n. Define

T := min

{
t ∈ N :

1√
ηEt

≤ ε̃n
}
.

By the definition, we can easily obtain the upper bound of T as T < 1 + 1
ηEε̃2n

. Since R(·) is
non-decreasing,

R
(

1√
ηET

)
≤ R(ε̃n) ≤ 1

cl
Qn(ε̃n)

for some absolute constant cl where the second inequality follows from Lemma A.2. Note that

‖h‖2L2
ρx,n
− ‖h‖2L2

ρx
≥ −1

2

(
‖h‖2L2

ρx
+ ε̃2n

)
⇒ ‖h‖2L2

ρx,n
≥ 1

2
‖h‖2L2

ρx
− 1

2
ε̃2n

for all h such that ‖h‖Hk ≤ 1 on the event Ec. Thus,

Qn(ε̃n) = E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx,n

≤ε̃n

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X
 ≤ E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx
≤2ε̃n

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X


on the event Ec. Set F =
{
g : X → R : ‖g‖Hk ≤ 1, ‖g‖L2

ρx
≤ 2ε̃n

}
. Then the ranges of functions

in F are contained in [−κ, κ] and F = −F . By Lemma A.17 we have

E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx
≤2ε̃n

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
∣∣∣∣∣∣ X
 ≤ 2E

 sup
‖g‖Hk≤1,‖g‖

L2
ρx
≤2ε̃n

∣∣∣∣∣ 1n
n∑
i=1

wig(xi)

∣∣∣∣∣
+ c1κε̃

1+2r
n

with probability at least 1− exp(−c1nε̃1+2r
n ) ≥ 1− exp(−c1nε̃4rn ). Hence,

R
(

1√
ηET

)
≤ 2

cl
·Qn(2ε̃n) +

c1κ

cl
ε̃1+2r
n ≤

(
1

κcl
+
c1κ

cl

)
ε̃1+2r
n

holds with probability at least 1− 2 exp(−c1nε̃4rn ). Here, the second inequality follows from (13).
Therefore,

ER
(

1√
ηET

)2

≤
(

8

κcl
+
κc1
cl

)2

ε̃2+4r
n · (0 ∨ (1− 2 exp(−c1nε̃4rn ))) + κ2 · 2 exp(−c1nε̃4rn )

≤
(

8

κcl
+
κc1
cl

)2

ε̃2+4r
n + 2κ2 exp(−c1nε̃4rn )

sinceR
(

1√
ηET

)
≤ κ. From the fact that exp(−c1nε̃4rn )

ε̃2+4r
n

. n
2r+1
2r+s exp(−c′1n

s
2r+s ) . 1, we have(

ER
(

1√
ηET

)2
)1/2

. ε̃1+2r
n . n−

2r+1
4r+2s .
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A.2.6 Conclusion

Note that
1

T
. ε̃2n . n−

1
2r+s and T ≤ 1 +

1

ηEε̃2n
. n

1
2r+s .

Therefore, we bound the expected risk as

E‖ιρx(fT − f∗0 )‖L2
ρx

. Br−1/2

(
1

T
+ n−

1
2r+s

)1/2

n−
r−1/2
2r+s +

(
T 1/2 + n−

1/2
2r+s T

)
·

(
ER

(
1√
ηTE

)2
)1/2

+Br(1 + log T + T 1/2n−
1/2
2r+s )n−

r
2r+s

. Brn−
r

2r+s logn.

A.3 Corollary of Theorem 3.4

As mentioned in Section 3.3, one can remove Br in the upper bound in Theorem 3.4 by using more
public inputs. The precise statement is as follows:

Corollary A.7. Under Assumption 3.1, 3.2, and 3.3, with n0 ≥ B1+εn
1

2r+s (log(Bn))3 public inputs
independently generated from ρ̃x satisfying (2) DCL-KR gives the performance guarantee

E‖ιρx(fj,T − f∗0 )‖L2
ρx
≤ C · n−

r
2r+s log n

for all j = 1, · · · ,m where ε > 0 is a fixed constant, η ∈ (0, 1/κ2) is a fixed learning rate, T is an
adequate stopping rule, and the prefactor C does not depend on B, m, and n.

Proof. In the proof of Theorem 3.4, there are two terms in the upper bound affected by B. One is

Br−1/2
(
(log n0)

3

n0

)r−1/2
in the norm bound of the first term in (7). The other is

E‖(Tk,ρ̃x + λI)1/2(I − PDp)‖2r ≤ 2rλr + (κ2 + 1) · 4 exp
(
− 1

4(κ2 + 1)B0

)
in the norm bound of the third and fourth terms in (7). For the first part, n0 ≥ B1+εn

1
2r+s (log(Bn))3

implies

Br−1/2
(
(log n0)

3

n0

)r−1/2
≤ B−ε(r−1/2)n−

r−1/2
2r+s (log(Bn))−3r+3/2

(
(1 + ε) logB +

1

2r + s
log n+ 3 log log(Bn)

)3r−3/2

. n−
r−1/2
2r+s .

For the latter part, set λ = 128(κ2 + 1)2n−
1

2r+s /B. Then

B0 ≤
log κ2e+ log(1/λ)

λn0
+

√
log κ2e+ log(1/λ)

λn0
≤ 1

4(κ2 + 1) log(Bn)

and hence

E‖(Tk,ρ̃x+λI)1/2(I−PDp)‖2r ≤ 2rλr+(κ2+1)·4 exp
(
− 1

4(κ2 + 1)B0

)
. B−rn−

r
2r+s +

1

Bn
.

Since it eliminates Br in the upper bound, we are done.
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A.4 Useful Lemmas

Recall Cordes’ inequality [16].
Lemma A.8 (Cordes’ Inequality). Let A,B be two bounded positive linear operators on a seperable
Hilbert space. Then for any s ∈ [0, 1]

‖AsBs‖ ≤ ‖AB‖s

holds.

We also recall a property of projection operators.
Lemma A.9 ([53]). Let Z be a bounded linear operator and P be a projection operator such that
ran P = ran Z>. Then for any bounded operator X and λ > 0 we have

‖(I − P )X‖ ≤ λ1/2‖(Z>Z + λI)−1/2X‖.

There are some useful lemmas for PAC bounds.
Lemma A.10 ([17]). Let X = {x1, · · · ,xn} be a dataset where data points are independently
generated from ν. Then

‖(Tk,ν + λI)(Tk,X + λI)−1‖ ≤ 2 + 2

((
2κ2

nλ
+

√
4κ2Nν(λ)

nλ

)
log(2/δ)

)2

holds with confidence at least 1− δ where δ ∈ (0, 1).
Lemma A.11 ([38]). Let X = {x1, · · · ,xn} be a dataset where data points are independently
generated from ν. Then

‖(Tk,ν + λI)−1(Tk,X + λI)‖ ≤ 1 +

(
2κ2

nλ
+

√
4κ2Nν(λ)

nλ

)
log(2/δ)

holds with confidence at least 1− δ where δ ∈ (0, 1).
Lemma A.12 ([48]). Let X = {x1, · · · ,xn} be a dataset where data points are independently
generated from ν. For λ ∈ (0, 1] such that Nν(λ) ≥ 1,

‖(Tk,ν + λI)(Tk,X + λI)−1‖ ≤ 2

holds with confidence at least 1− δ where

4 exp

− 1

4(κ2 + 1)
·

(
1 + logNν(λ)

λn
+

√
1 + logNν(λ)

λn

)−1 ≤ δ < 1.

To prove Lemma A.2 in Appendix A.2.5, we introduce a concentration inequality for Lipschitz
functions.
Lemma A.13 ([60]). Let X1, · · · , Xn be independent random variables whose supports are con-
tained in [a, b] and f : Rn → R be convex and L-Lipschitz with respect to the Euclidean norm. Then
we have

P(f(X) ≥ Ef(X) + t) ≤ exp

(
− t2

4L2(b− a)2

)
where X = [X1, · · · , Xn] and t > 0.

Precisely, we use the following fact in Appendix A.2.5
Remark A.14 ([60]). Let A ⊂ Rn be a bounded set and

f(x) = sup
a∈A

n∑
k=1

akxk

where x = [x1, · · · ,xn] ∈ [−1, 1]n and a = [a1, · · · , an]. Since

f(x)− f(x′) = sup
a∈A

n∑
k=1

akxk − sup
a∈A

n∑
k=1

akx
′
k ≤ sup

a∈A
〈a,x− x′〉Rn ≤ sup

a∈A
‖a‖Rn‖x− x′‖Rn ,

f is a supa∈A ‖a‖Rn -Lipshitz function where ‖ · ‖Rn is the Euclidean norm on Rn. We can observe
that f is convex since f is a supremum of convex functions defined on a convex compact set.
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To prove Lemma A.6 in Appendix A.2.5, we recall the Ledoux-Talagrand contraction inequality
[29, 56] and Talagrand’s inequality [4, 56].
Lemma A.15 (Ledoux-Talagrand Contraction Inequality). If φ : R → R is a L-Lipshitz function,
then

E

[
sup
h∈F

1

n

n∑
i=1

εiφ(h(xi))

]
≤ L · E

[
sup
h∈F

1

n

n∑
i=1

εih(xi)

]
.

Lemma A.16 (Talagrand’s Inequality). Let X1, · · · , Xn be independent X -valued random variables.
Let F be a countably family of measurable real-valued functions on X such that ‖f‖∞ ≤ U <∞
and Ef(Xi) = 0 for all f ∈ F . Let

Z := sup
f∈F

n∑
i=1

f(Xi), σ2 ≥ 1

n

n∑
i=1

sup
f∈F

E[f(Xi)
2], νn := 2UEZ + nσ2.

Then

P(Z ≥ EZ + t) ≤ exp

(
− t2

2νn + 2
3Ut

)
for all t ≥ 0.

Lastly, we recall the following well-known property used in Appendix A.2.5.
Lemma A.17 ([2]). Let F be a class of functions with ranges in [a, b] and w1, · · · , wn be i.i.d.
Rademacher variables. Then

1

n
E

[
sup
h∈F

n∑
i=1

wif(x
i)

]
≤ inf
α∈(0,1)

(
1

1− α
1

n
E

[
sup
h∈F

n∑
i=1

wif(x
i)

∣∣∣∣∣ X
]
+

(b− a) log(1/δ)
4nα(1− α)

)
holds with probability at least 1− δ. Also,

1

n
E

[
sup
h∈F

n∑
i=1

wif(x
i)

∣∣∣∣∣ X
]

≤ inf
α>0

(
(1 + α)

1

n
E

[
sup
h∈F

n∑
i=1

wif(x
i)

]
+

(b− a) log(1/δ)
2n

(
1

2α
+

1

3

))
holds with probability at least 1− δ.

B Details on DCL-NN Algorithm

As we mentioned before, DCL-NN considers the same problem as in Section 3 but local models are
heterogeneous neural networks. That is, there are m parties and Di = {(xji , y

j
i ) : j = 1, · · · , ni} is

the private dataset of the ith party (i = 1, · · · ,m) whereD =
⋃m
i=1Di are i.i.d. whose distribution is

ρx,y . One remark is that the local data distributions of parties are not the same in general. To commu-
nicate training information, we introduce an unlabeled public input dataset Z = {z1, · · · , zn0} ⊂ X .
The goal of parties is to find a minimizer of the population risk E defined in Section 3.

To extend DCL-KR to heterogeneous neural network settings, it is necessary to ensure that the
assumptions of DCL-KR are satisfied as much as possible. Specifically, one important assumption in
DCL-KR is the equality of kernels across local models. Indeed, public data predictions can vary in
conflicting directions after the local training procedure, even when using the same local datasets, if
the kernels differ.

For further explanation of this claim, we consider the simple case of E = 1 in DCL-KR where E is
the number of local iterations. After the consensus prediction u is distributed to local parties, the
server then receives the updated local prediction on Z:

(I − η

ni
KZXiKXiZ̃

K−1
Z̃Z̃

)u+
η

ni
KZXiyi (14)

from the ith local party. (The notation is consistent with Appendix A) Suppose two parties have
exactly the same dataset. If the same kernel is used in these two parties, the updated local predictions
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Algorithm 2 DCL-NN Algorithm

1: Hyperparameters: Di: local dataset of party i (i = 1, · · · ,m), Z = {z1, · · · , zn0}: public
inputs, E: the number of local iterations at each communication round, T : total communication
rounds, Tk: epochs of kernel distillation

2: Pretrain: Pretrain local AI models fi(·) = w>i gi(·) + bi (i = 1, · · · ,m).

3: # Feature Kernel Distillation Procedure
4: For party i (i = 1, · · · ,m), compute the feature kernel values on public inputs {kfi(zj1 , zj2) :

1 ≤ j1, j2 ≤ n0} via (3) and upload them to the server.
5: The server aggregates the local feature kernel values to the target kernel values {k(zj1 , zj2) :

1 ≤ j1, j2 ≤ n0} with (4) and distributes them to all parties.
6: for party i = 1, · · · ,m do
7: for tk = 0, · · · , Tk − 1 do
8: for mini-batch Z0 ⊂ Z do
9: Update parameters of its model fi by maximizing ĈKA(k, kfi) on Z0 defined as (16)

via gradient descent where k is fixed.
10: end for
11: end for
12: end for
13: # Collaborative Learning Procedure
14: Initialize the consensus prediction yp,0 = 0.
15: for t = 0, · · · , T − 1 do
16: for party i = 1, · · · ,m do
17: Update wi and bi by maximizing MSE (Mean Squared Error) on the public inputs Z with

consensus prediction yp,t via gradient descent with sufficiently many iterations.
18: for e = 1, · · · , E do
19: Update wi and bi by maximizing MSE on Di via gradient descent.
20: end for
21: Upload the local prediction yip,t+1 on Z to the server.
22: end for
23: The server aggregates the local predictions to compute the consensus prediction yp,t+1 =∑m

i=1
ni
n yip,t+1 and distributes yp,t+1 to all parties.

24: end for

will be identical. However, if the kernels are different, this will not be the case. For kernels like the
Gaussian kernel, which have high correlation between close inputs, the updated local predictions will
be strongly influenced by data points close to each input. On the other hand, for kernels like the linear
kernel, which have high correlation between distant inputs, the updated local prediction on Z will
be influenced more by data points farther from each input. We can observe this fact from the above
formula (14). This observation implies that aggregating local learning information becomes very
challenging when the kernels differ. In short, using the same kernel ensures that the shift mechanisms
of predictions on Z at the edges are identical, making it possible for the aggregation through simple
weighted averaging to work well. This is a key element of the strong theoretical results of DCL-KR
and explains why kernel matching between neural networks is necessary in DCL-NN.

Let fi be a local model of the ith party such that fi(·) = w>i gi(·) + bi, gi : X → Rci , wi ∈ Rci ,
ci ∈ N, and bi ∈ R for i = 1, · · · ,m. Since most modern neural network architectures have a
linear layer as the last layer, this setting is general enough. As (3), we set the feature kernel of fi
(i = 1, · · · ,m) to be

kfi(x
1,x2) = gi(x

1)>gi(x
2), x1,x2 ∈ X .

To bring the setting to the DCL-KR scheme, DCL-NN matches kf1 , · · · , kfm via kernel distillation
procedure. Obviously, the target kernel in this procedure is a key factor in enhancing performance.

Theoretically, using the ensemble kernel

k =

m∑
i=1

ni
n
kfi . (15)
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can be a good way to construct a good kernel derived from local feature kernels. The reason is that
this ensemble kernel is identical to the kernel induced by the (scaled) concatenation of the local
feature maps, i.e.,

k(x1,x2) =

m∑
i=1

ni
n
kfi(x

1,x2) =

m∑
i=1

ni
n
gi(x

1)>gi(x
2)

=
[√

n1

n g1(x
1)>

√
n2

n g2(x
1)> · · ·

√
nm
n gm(x1)>

] 
√

n1

n g1(x
2)√

n2

n g2(x
2)

· · ·√
nm
n gm(x2)

 .
In other words, the ensemble kernel has greater expressive power than individual feature kernels,
and with a sufficient amount of data, it leads to better performance. We empirically verify that the
performance of this ensemble kernel surpasses that of individual feature kernels in Figure 4.

DCL-NN sets this ensemble kernel k as the target kernel and local parties match their local feature
kernels kf1 , · · · , kfm with the kernel k using the public dataset Z. For this purpose, we introduce
Centered Kernel Alignment (CKA) [8] as a kernel similarity measure. The CKA between two kernels
k1 and k2 on the public input distribution ρ̃x is given by

CKA(k1, k2) =
HSIC(k1, k2)√

HSIC(k1, k1)HSIC(k2, k2)

where HSIC(·, ·) is a Hilbert-Schmidt Independence Criterion (HSIC) defined as

HSIC(ki, kj) = Ex1,x2∼ρ̃x [k
c
i (x

1,x2)kcj(x
1,x2)]

and the centered kernel kci is given by

kci (x
1,x2) = ki(x

1,x2)− Ex̃2∼ρ̃x [ki(x
1, x̃2)]− Ex̃1∼ρ̃x [ki(x̃

1,x2)] + Ex̃1,x̃2∼ρ̃x [ki(x̃
1, x̃2)],

x1,x2 ∈ X (i = 1, 2). However, since we have a finite number of samples, we employ the empirical
CKA. The empirical CKA between two kernels k1 and k2 on inputs {c1, · · · , cp} is given by

ĈKA(k1, k2) =
ĤSIC(K1,K2)√

ĤSIC(K1,K1)ĤSIC(K2,K2)

(16)

where

K1 =

k1(c
1, c1) · · · k1(c

1, cp)
...

. . .
...

k1(c
p, c1) · · · k1(c

p, cp)

 and K2 =

k2(c
1, c1) · · · k2(c

1, cp)
...

. . .
...

k2(c
p, c1) · · · k2(c

p, cp)


are Gram matrices and ĤSIC is an estimator of HSIC defined as

ĤSIC(L,M) =
1

(p− 1)2
tr(LHMH), L,M ∈ Rp×p

where H := Ip − 1
p11

> is the centering matrix, Ip is a p× p identity matrix, and 1 = [1, 1, · · · , 1]>
is a p-dimensional one vector. During the kernel distillation procedure, the ith local party maximizes
ĈKA(kfi , k) on Z where k is a fixed target kernel given by (4). In practice, we use batching to
perform the kernel distillation to reduce computational costs.

Due to the definition of the empirical CKA, it is necessary to calculate the Gram matrix of k over Z.
To this end, the ith local party calculates the Gram matrix of kfi over Z and uploads it to the server
for i = 1, · · · ,m. Then the server computes the Gram matrix of k by weighted averaging the Gram
matrices of local feature kernels kf1 , · · · , kfm . Since this process only requires communication of
feature kernel values, DCL-NN still preserves the privacy of local model information.

While (empirical) CKA is a good metric for kernel matching, it is invariant to scaling, and therefore
the local feature kernels resulting from the kernel distillation may have different scales. This affects
the degree to which each local training influences during the DCL-KR-like follow-up procedure. To
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illustrate this point, consider the following example: Let the feature kernels of two local models f1
and f2 be as follows:

kf1(x,y) = φ(x)>φ(y), kf2(x,y) = (αφ(x))>(αφ(y)).

After distilling on the public data with consensus predictions, these two models become like

f1(·) = w>φ(·) + b, f2(·) =
(
1

α
w

)>
(αφ(·)) + b = w>φ(·) + b,

i.e., two models are the same. Nevertheless, a gradient descent update on a data point (x0, y0) with a
learning rate η is

w1 ← w − η(w>φ(x0) + b− y0)
for f1 and

w2 ←
1

α
w − η(w>φ(x0) + b− y0)

for f2. Thus, after the gradient descent step we have

f1(·) = (w − η(w>φ(x0) + b− y0))>φ(·) + b

and

f2(·) =
(
1

α
w − η(w>φ(x0) + b− y0)

)>
(αφ(·))+ b = (w−αη(w>φ(x0)+ b−y0))>φ(·)+ b.

Hence the scale α affects the collaborative learning procedure. To address this issue, we compute the
scale α using the estimator ĤSIC. Specifically, at the beginning of the collaborative learning phase,
we compute αi = ĤSIC(Ki,Ki) where Ki is the Gram matrix with respect to the feature kernel of
the ith party on Z (i = 1, · · · ,m). Then we set the learning rate for the ith party as

η0 ·
max1≤j≤m α

1/2
j

α
1/2
i

where η0 is a base learning rate. In practice, computing HSIC over all public inputs is costly and
unnecessary. Using only a small subset of public inputs is sufficient.

We present DCL-NN in Algorithm 2. Here are some remarks.

(1) The feature kernel distillation procedure requires only one round of two-way communication
between the server and the parties.

(2) The collaborative learning procedure follows the same process as in DCL-KR with
g1, · · · , gm fixed. Note that kernel gradient descent reduces to standard gradient descent
since the kernels have finite rank. In this process, if possible, optimization on the public
dataset can be performed using the closed-form solution of kernel linear regression instead
of gradient descent.

(3) In this work, we apply FedMD for the pretraining of DCL-NN in the experiment. However,
DCL-NN is a general algorithm that can use any algorithm for pretraining to obtain good
local feature kernels. For example, kernel learning techniques [63] may be applied for
pretraining.

(4) Our algorithm can be naturally extended to regression problems with multi-dimensional
outputs.

C Details and Further Discussion on Experiments

C.1 Dataset Description

For all datasets, we follow Algorithm 3 to construct non-i.i.d. settings. Note that this procedure is
similar to the non-i.i.d. data generation procedure in classification tasks [44, 69].
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Algorithm 3 Data Generating Procedure

1: Inputs: the number of parties m, the total number of private data n, the number of public inputs
n0, the partition of input space A = {A1, · · · ,Ac}

2: Generate the whole private dataset size of n from ρx,y and the public inputs size of n0 from ρ̃x.
3: Sample a base private data ratio (α1, · · · , αm) from Dir([10, 10, · · · , 10]).
4: while

∑m
j=1 Cij 6= 0 for all i = 1, · · · , c do

5: for party j = 1, · · · ,m do
6: Sample two elements uniformly from the partition A.
7: end for
8: Set Cij = 1 if Ai is chosen at the jth party and Cij = 0 otherwise.
9: end while

10: for i = 1, · · · , c do
11: Put the private data points where inputs are in Ai into the datasets of parties with ratio[

αkCik∑m
j=1 αjCij

]
k=1,··· ,m

.

12: end for

C.1.1 Toy-1D

Let X = [0, 1] ⊂ R and ρx be the uniform distribution on X . The space

H1 :=

{
f ∈ AC[0, 1]

∣∣∣ f(0) = 0,

∫
f ′(x)2 dρx(x) <∞

}
is the reproducing kernel Hilbert space associated to the kernel k(x, y) = min(x, y) where AC[0, 1]
is the collection of all absolutely continuous functions on [0, 1] [33, 60]. As mentioned in [33], the
covariance operator Tk,ρx has eigenpairs {(λi, ei)}i∈N where

λi =

(
2i− 1

2
π

)−2
, ei(x) =

√
2 sin

(
2i− 1

2
πx

)
.

Thus, the eigenvalue decay rate s is 1
2 . Set a target function

f∗0 (x) =

∞∑
i=1

ei(x)

i3
=

∞∑
i=1

√
2

i3
sin

(
2i− 1

2
πx

)
.

From the fact that ∥∥∥∥∥T 1/2−r
k,ρx

∞∑
i=1

hiei

∥∥∥∥∥
Hk

≤ R ⇔
∞∑
i=1

h2i
λ2ri
≤ R2,

we have f∗0 = T
1/2
k,ρx

g∗0 such that

‖g∗0‖Hk =

( ∞∑
i=1

1

i6

(
2i− 1

2
π

)4
)1/2

=: R <∞.

Then r = 1. We generate data points from ρx · ρy|x such that ρx is the uniform distribution on X as
above and

ρy|x = N (y|f∗0 (x), 0.442).

We divide X into a partition A :=
{[

i
8 ,

i+1
8

]
: i = 0, · · · , 7

}
. We follow Algorithm 3 with m ∈

[10, 20, · · · , 100], n = 50m, and n0 ≈ n
1

2r+s (log10 n)
3. With n0 ≈ n

1
2r+s (log10 n)

3, we also
achieve the same bound (with different prefactors) in Theorem 3.4. In the main experiments, we set
ρx = ρ̃x.
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C.1.2 Toy-3D

Let X = [0, 1]3 ⊂ R3 and ρx be the uniform distribution on X . Define a kernel k(x,y) =
(1 − ‖x − y‖R3)2+. The reproducing kernel Hilbert space Hk associated to the kernel k is norm-
equivalent to Sobolev space H2(X ) [55] and the eigenvalue decay of Tk,ρx is s = 3

4 [68]. Note that
k′(x,y) = (1 − ‖x − y‖R3)6+(35‖x − y‖2R3 + 18‖x − y‖R3 + 3) is a kernel and its reproducing
kernel Hilbert space is norm-equivalent to Sobolev space H4(X ). Using the interpolation relation
between H2(X ) and H4(X ) gives that

f∗0 (x) = (1− ‖x‖R3)6+(35‖x‖2R3 + 18‖x‖R3 + 3)

is in Hk and the regularity r is 1. Similarly as before, we generate data points from ρx · ρy|x such
that ρx is the uniform distribution on X and

ρy|x = N (y|f∗0 (x), 0.442).

We divide X into a partition A := {[k12 ,
k1+1

2 ] × [k22 ,
k2+1

2 ] × [k32 ,
k3+1

2 ] ⊂ R3 : (k1, k2, k3) ∈
{0, 1}3}. Again, we follow Algorithm 3 with m ∈ [10, 20, · · · , 100], n = 50m, n0 ≈
n

1
2r+s (log10 n)

3, and ρx = ρ̃x for kernel machine-based algorithms. For neural network-based
algorithms, m = 50, n0 = 2500, and the other configurations are the same.

C.1.3 Real World Datasets

Energy Energy dataset is a real-world tabular dataset from the UCI database [12]. It has 28 input
features including measurement time, temperature and humidity of each room, outside temperature,
and wind speed. The output is the appliances energy use. We normalize all features, including the
output, using MinMaxScaler. There are 12,000 training data points distributed across the parties. We
use 6,000 samples as public inputs and 1,000 samples for testing. To construct a non-i.i.d. setting,
we set a partition A consisting of 8 subsets, each formed by splitting three normalized variables
(measurement time, visibility, and dewpoint) at their midpoints. We apply Algorithm 3 with m = 50.

RotatedMNIST RotatedMNIST is a dataset derived from MNIST [11]. The task is to predict the
rotated angle of a given rotated MNIST image. Each image is 1× 28× 28 image, and we normalize
all images by their mean and variance. To generate RotatedMNIST, we rotate MNIST images by a
random angle between −π2 and π

2 and use the angle as the label. To construct a large-scale dataset,
each image is rotated at multiple angles to generate multiple data instances. For training data, we
additionally inject Gaussian noise with a standard deviation of 0.2 to each label. We use 200,000
images as the entire training data, 50,000 images as public inputs, and 50,000 images as test data. The
whole training input distribution, public input distribution, and test input distribution are uniformly
distributed across digits 0 to 9. For example, there are 20,000 rotated images of the digit ‘4’ in the
training set. For a non-i.i.d. setting, we partition the data into A where |A| = 10, based on the digit
(0 ∼ 9) and follow Algorithm 3 with m = 50.

UTKFace UTKFace dataset [71] is an image dataset used for age estimation. Since the image
sizes vary, we resize all images to 3× 128× 128 and normalize them by their mean and variance for
each channel. The labels are normalized to the range [0, 1] using MinMaxScaler. For training data,
we inject Gaussian noise with a standard deviation of 0.5 to each label before normalization. We
use 12,544 samples for training and 1,039 samples for testing. We have 6,234 public inputs. These
three datasets have the same distribution for metadata (gender and race). Based on this metadata, we
construct a partition A with |A| = 10 and distribute the training data among 50 parties according to
Algorithm 3.

IMDB-WIKI IMDB-WIKI dataset [52] is also an image dataset for age estimation. In experiments,
we utilize a clean version [42]. We further resize all images to 3× 64× 64 and normalize them as
UTKFace. The labels are also normalized to the range [0, 1] using MinMaxScaler. We use 147,107
images as the entire training data, 36,780 images as public inputs, and 56,087 images as test data. In
this dataset, we utilize the triplet (head_roll, head_yaw, head_pitch) as metadata. Both training inputs
and public inputs have the same distribution for metadata. We construct a decentralized setting among
50 parties using a partition A based on the metadata, following Algorithm 3. The partitioning is
performed by dividing the dataset into regions based on the median values of each metadata variable.
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Table 4: Hyperparameters C and D on kernel machine-based algorithms in main results

centralKRR centralKRGD DC-NY DKRR-NY-CM IED DCL-KR

Toy-1D C = 0.055 D = 15 C = 0.006 C = 0.008 C = 0.025 D = 2.5
Toy-3D C = 0.016 D = 50 C = 0.002 C = 0.005 C = 0.007 D = 12.5

C.2 Implementation

The experiments are implemented in PyTorch. We simulate a decentralized setting on a single deep
learning workstation (Intel(R) Xeon(R) Gold 6430 with one NVIDIA GeForce RTX 4090 GPU
and 189GB RAM). All DCL-KR implementations take less than 10 minutes per simulation. The
non-parallel implementation of DCL-NN for large-scale datasets is completed within 48 hours. With
parallel computing, the execution time for the same setup is expected to be reduced to within 2 hours.

C.3 Experimental Setup and Results on Kernel Machine-based Algorithms

C.3.1 Experimental Setup Details and Main Results

In this experiment, we evaluate DCL-KR by comparing its performance against two central models
and three baselines. Specifically, we employ DC-NY [66], DKRR-NY-CM [67], and IED [48] as
baselines. We also compare DCL-KR with central Kernel Ridge Regression (centralKRR) and central
Kernel Regression with Gradient Descent (centralKRGD). As mentioned earlier, we evaluate the
performance of these algorithms on Toy-1D and Toy-3D datasets.

There are several hyperparameters for kernel machine-based algorithms: the ridge regularization
hyperparameter λ in the ridge regressions and the number of iterations (or communication rounds) in
the gradient descent-based regressions. We set λ = C · n−

1
2r+s and T = int(D · n

1
2r+s ) which are

the optimal choices from theory. We determine the best values for C and D by grid search in our
experiments (see Table 4 for the selected hyperparameter values). For centralKRGD and DCL-KR,
we set the learning rate η = 0.5 which satisfies η ∈ (0, 1/κ2) in Theorem 3.4. The number of local
iterations E for DCL-KR is set to 5. For DKRR-NY-CM, we modify its Newton-Raphson iteration
as shown below due to an instability issue, and we set the learning rate η = 0.01:

u← u− η ·
m∑
j=1

nj
n
(PZTk,XiPZ + λI)−1((PZTk,XPZ + λI)u− PZS>Dy).

The communication round T for DKRR-NY-CM is set to 10.

To measure performance, we sample data from the distribution presented in Appendix C.1 for each
simulation and compute E‖ιρx(fi,T −f∗0 )‖L2

ρx
by averaging the Root Mean Squared Errors (RMSEs)

on the test dataset. We conduct 500 simulations for each setting, and the results are summarized in
Figure 1.

As shown in Table 1, DC-NY and DKRR-NY-CM have theoretical performance guarantees under the
statistically homogeneous condition for a limited number of parties. However, they do not exhibit
sufficiently good performance in massively distributed statistically heterogeneous settings. The
performance degradation of DKRR-NY-CM appears to be linked to its second-order optimization
scheme, which leads to ineffective batching in statistically heterogeneous settings. The performance
degradation of DC-NY is expected, given the inherent limitations of divide-and-conquer algorithms.

In contrast, IED demonstrates relatively better performance, despite the strong assumptions underlying
its theory. Nevertheless, it still exhibits performance degradation compared to centralized models.
DCL-KR, on the other hand, achieves performance comparable to centralized models, validating both
the theoretical results and its practical feasibility.

C.3.2 Effect of n0

As public inputs directly affect the training information sharing, we anticipate that the performance
of DCL-KR will vary depending on the number of public inputs n0. To examine this effect, we
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Figure 5: Performance of IED and DCL-KR with ρ̃x 6= ρx on Toy-3D

measure the performance of DCL-KR on Toy-3D for n0 ≈ α · n
1

2r+s (log10 n)
3 with various α ∈

{0.1, 0.3, 0.5, 1, 2}. Additionally, we conduct the same experiment with IED, the most competitive
baseline, for comparison.

The results are summarized in Figure 2. Consistent with theoretical results, the value of α does not
affect the convergence rate of IED and DCL-KR. However, IED displays significant performance
variations across different α values. In contrast, DCL-KR achieves its maximum performance when
α is not too small (i.e., α ≥ 0.3 in Figure 2). This implies that DCL-KR requires fewer public inputs
to achieve its maximal performance compared to IED, as predicted by theoretical results.

C.3.3 Effect of ρ̃x

So far, we consider the settings with ρx = ρ̃x. However, Theorem 3.4 covers the general case where
ρ̃x 6= ρx. To verify this, we define the public input distribution in Toy-3D with the following density
function (parametrized by β):

p(x1, x2, x3|β) =
3∏
i=1

((2− 2β)xi + β), (x1, x2, x3) ∈ [0, 1]3, β ∈ (0, 1].

The Radon-Nikodym derivative dρx
dρ̃x

satisfies 0 ≤ dρx
dρ̃x
≤ ( 1β )

3. We conduct additional experiments
to verify Theorem 3.4 and Corollary A.7, considering the case where β = 0.5 (with α = 1) and the
case where β = 0.5 but α = 4 to compensate. The results are provided in Figure 5. In the log-scale
plot, the slope represents the convergence rate.

First, we observe that the convergence rate of DCL-KR remains unchanged when β is changed from
1 (i.e., ρx = ρ̃x) to 0.5. This observation is consistent with Theorem 3.4. Additionally, regarding
Corollary A.7, we confirm that DCL-KR achieves performance almost identical to the case of ρx = ρ̃x
by increasing n0. In contrast, the convergence rate of IED worsens when ρ̃x changes, even when
n0 is increased. These experimental results highlight the advantages of DCL-KR in statistically
heterogeneous environments.
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Table 5: Hyperparameters for Standalone

Toy-3D Energy MNIST UTKFace IMDB

batch size 10 16 128 16 32
learning rate 1e-2 2e-2 5e-3 1e-4 5e-3

Table 6: Hyperparameters for FedMD

Toy-3D Energy MNIST UTKFace IMDB

communication rounds 500 100 50 50 50
sample size of public data 500 1000 5000 2000 5000
learning rate 2e-4 1e-4 1e-4 5e-5 2e-4
local epochs 10 10 5 5 5
distillation epochs 5 1 20 20 20
batch size (local) 10 10 32 16 32
batch size (public) 32 32 16 16 32

Table 7: Hyperparameters for FedHeNN

Toy-3D Energy MNIST UTKFace IMDB

communication rounds ≤100 ≤100 50 100 ≤50
sample size of public data 500 500 5000 1000 5000
learning rate 2e-4 2e-4 1e-4 1e-4 5e-4
distillation coefficient 1 1 1 0.1 1
batch size (local) 10 10 32 10 16
batch size (public) 32 32 16 32 16

C.4 Experimental Setup and Results on Neural Network-based Algorithms

C.4.1 Experimental Setup Details

In the experiments on neural network-based collaborative learning algorithms, we evaluate three
baselines (FedMD, FedHeNN, KT-pFL) and our algorithm DCL-NN. Note that while KT-pFL is
a personalized collaborative learning algorithm, it also performs well in non-personalized settings,
so we include it for comparison. Additionally, we evaluate centralized models as ideal cases and
standalone models as worst cases. Centralized models are trained using all local data.

We use two tabular datasets, Toy-3D and Energy, and three image datasets, RotatedMNIST, UTKFace,
and IMDB-WIKI. The number of parties is set to 50 for all settings. For the tabular datasets, we
employ four different fully connected neural networks (FNNs) with a ratio of 30%, 30%, 20%, and
20%. Specifically, There are fifteen 4-layer FNNs with 32 hidden units, fifteen 4-layer FNNs with
64 hidden units, ten 5-layer FNNs with 32 hidden units, and ten 3-layer FNNs with 64 hidden units.
Similarly, for the image datasets, we use four different convolutional neural networks (CNNs) with
the same ratio of 30%, 30%, 20%, and 20%. For the large-scale image datasets (RotatedMNIST and
IMDB-WIKI), we construct 50 local parties using fifteen ResNet-18, fifteen ResNet-34, ten ResNet-
50 [20], and ten MobileNetv2 [54]. For UTKFace, which is an image dataset with limited data,
we utilize four simpler CNN architectures due to the ineffectiveness of knowledge distillation with
large underperforming models. The first and third CNNs share a similar architecture, featuring two
convolutional layers with batch normalization [22], two max pooling layers, and two fully-connected
layers at the end. They differ only in the number of channels. In contrast, the second and fourth
CNNs are more complex, featuring four convolutional layers with batch normalization, two max
pooling layers, and two fully-connected layers at the end. They also differ in the number of channels.
We use the ReLU activation function throughout.
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Table 8: Hyperparameters for KT-pFL

Toy-3D Energy MNIST UTKFace IMDB

communication rounds 50 ≤50 100 50 ≤50
sample size of public data 500 500 5000 2000 1000
learning rate 2e-4 1e-4 1e-4 1e-4 2e-4
distillation epochs 2 1 10 2 10
batch size (local) 10 10 32 16 16
batch size (public) 32 16 32 16 16

Table 9: Hyperparameters for DCL-NN

Toy-3D Energy MNIST UTKFace IMDB

epochs (kernel matching) 100 100 200 200 200
base learning rate (local) 5e-2 1e-2 8e-3 8e-3 8e-3
local epochs 50 50 25 25 25

All optimizers used are Adam [26].2 One remark is that baseline algorithms only utilize a subset
of public inputs through random sampling in each communication round, as performance tends to
deteriorate due to overfitting when all public inputs are used in every round. Hyperparameters are
tuned via grid search.

Standalone models are trained with cross-validation and early stopping to prevent overfitting. To
evaluate centralized models, we first compute the averaged test Root Mean Squared Error (RMSE)
from at least 10 simulations for each neural network architecture and then calculate the weighted
average of the performances of all architectures according to their ratio. For standalone models, we
use the average of the test RMSEs of local models with the hyperparameters listed in Table 5. In the
table, RotatedMNIST is abbreviated as MNIST, and IMDB-WIKI is abbreviated as IMDB.

For FedHeNN, we set the number of local epochs to 30 in all experiments. For KT-pFL, we set the
number of local epochs to 10, the distillation coefficient to 0.5, and the learning rate of knowledge
coefficient to 1e-3. Lastly, for DCL-NN in the main experiment, we set the learning rate for kernel
matching to 1e-4 and the number of communication rounds in the collaborative learning phase to
50. We use the closed-form solution to train public data and full-batch gradient descent to train local
data in the collaborative learning phase of DCL-NN and utilize FedMD for pretraining in DCL-NN.
In the pretraining phase, the hyperparameters are the same as in the FedMD setting, except that the
number of communication rounds is 100 for tabular data and 50 for image data. The remaining
hyperparameters are presented in Table 6, 7, 8, and 9. For all distillation-based collaborative learning
algorithms, we simulate each setting at least 5 times with different initializations.

Communication Efficiency Compared with FedMD and KT-pFL, DCL-NN incurs higher commu-
nication costs of O(n20) due to the transmission of the Gram matrix. FedHeNN also utilizes kernel
matching but performs it in batches for each communication round. Thus, in scenarios requiring
many communication rounds, DCL-NN is more efficient than FedHeNN. However, pretraining also
demands more communication cost. We leave the study of communication-efficient methods in
DCL-NN for future work.

C.4.2 Effect of Public Inputs

In practice, the public inputs can be sampled from a distribution whose support is disjoint from that
of the whole local input distribution. In this case, the assumption of DCL-KR does not hold; however,
DCL-NN can still be applicable. To evaluate the performance of DCL-NN under these conditions, we
compare the performance of DCL-NN and FedMD when the distribution of public inputs differs, as
in Table 10. We use CIFAR10 [28] for public inputs on UTKFace. As shown in Table 10, DCL-NN

2Note that while DCL-NN should use vanilla gradient descent according to DCL-KR, Adam performs better
in practice.
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Table 10: Performance comparison of FedMD and DCL-NN on UTKFace with different public
datasets. In addition to performance, the kernel performance of local feature kernels, computed in the
same way as before, is shown in parantheses.

FedMD DCL-NN

w/ UTKFace 0.151 ± 0.004 (0.149) 0.148 ± 0.001 (0.146)
w/ CIFAR10 0.160 ± 0.000 (0.159) 0.162 ± 0.001 (0.158)

does not yield better results in this case. Note that the kernel performance of local feature kernels is
improved compared to FedMD, leading us to conclude that the performance degradation of DCL-NN
with CIFAR10 is due to the violation of the DCL-KR assumption rather than the ineffectiveness of
the kernel distillation procedure.

D Limitations and Future Works

Privacy Benefits of Distillation-based Collaborative Learning Due to its black-box nature,
distillation-based information interaction is expected to offer privacy preservation benefits com-
pared to parameter exchange (mainly done in FL) as mentioned in [19]. To the best of our knowledge,
there is no rigorous study that discusses the privacy preservation advantages of distillation-based
collaborative learning. We hope to see further discussion on this as well.

Public Input Distribution Theorem 3.4 covers the case where the public input distribution ρ̃x
differs from that of local data inputs ρx, but at least the support of ρ̃x must include the support of
ρx. Therefore, we experimentally observe a performance drop in DCL-NN, a practical extension of
DCL-KR, when ρ̃x and ρx have different supports. Enhancing the robustness of DCL-NN in this
scenario is considered a promising direction for future work. Our theory does not cover situations
where collecting public inputs is difficult. In such cases, a seperate generative model is usually trained
to generate public inputs [72]. We leave the theoretical discussion that includes these cases for future
work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately describe the motivations, theoreti-
cal/experimental contributions, and scope of our work.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The theoretical results and its assumptions are clearly described in Section 3
and Appendix A. Idea of the proof is briefly described in Section 3 and the full proof is
provided in Appendix A.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed algorithms are clearly stated in Algorithm 1 and Algorithm 2.
Experimental details such as experimental setting, performance measure, data preprocessing,
and hyperparameter setting are also explained in Section 5 and Appendix C. The code is
also provided via the supplementary material.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided via the supplementary material. Regarding datasets,
the paper contains data source and preprocessing descriptions. The paper also provides
sufficient experimental details to reproduce the experimental results. See Section 5 and
Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details such as data split, hyperparameters, optimizers, and
model architectures are provided in Section 5 and Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results contains 1-sigma error bars and the explanations
about the error bars are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Descriptions of computer resources are provided in Appendix C.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors verify that the research is conducted in the paper conform, in
every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All data and models used in the paper are credited through citations according
to the license.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code is provided via the supplementary material with a well-written
documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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