Under review as a conference paper at ICLR 2026

PEF0OO-L: A GENERAL FRAMEWORK FOR PRECONDI-
TIONED FORWARD-ONLY OPTIMIZER ENABLING LLLM
FINE-TUNING ON THE EDGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Fine-tuning Large Language Models (LLMs) on resource-constrained edge de-
vices is a critical but challenging task, primarily due to the prohibitive memory
and computational costs of backpropagation. While forward-only optimizers like
MeZO mitigate these costs by eliminating the backward pass, they often suffer
from slow and unstable convergence, particularly on loss landscapes with het-
erogeneous curvature. To address this limitation, we introduce PeFoo, a general
framework for preconditioner enhanced forward only optimizer. PeFoo integrates
a carefully designed preconditioning strategy into the forward-only paradigm, cor-
rects a fundamental source of bias and instability present in prior work HiZOO.
Furthermore, to counteract the memory overhead introduced by the preconditioner
itself, we propose PeFoo-L, which employs a layer-wise update strategy. This ap-
proach constrains preconditioner storage and weight updates to a single layer per
iteration, reducing the overall memory footprint and data traffic. Experimental
results validate the effectiveness of our framework. On the OPT-1.3B model, Pe-
Foo surpasses the accuracy of leading zeroth-order methods MeZO and HiZOO
by 2.7% and 2.1%, respectively. Furthermore, PeFoo-L achieves a memory foot-
print reduction of over 2.73x and 1.75x compared to Adam and HiZOO, while
delivering faster convergence speed compared to MeZO and HiZOO.

1 INTRODUCTION

In recent years, the increasing number of applications for Transformers requires the training and fine-
tuning of these Transformer models on edge platforms (Lee & Yoo, [2021). Real-world scenarios
often demand that models be retrained or fine-tuned using personal or domain-specific data. The
transmission of sensitive data to centralized servers for this purpose introduces latency and privacy
risks, thereby emphasizing the critical need for on-device training solutions.

However, conventional Transformer training is dominated by the backpropagation algorithm, a pro-
cess requiring both forward and backward passes through the neural network. This dual-pass mech-
anism is resource-intensive, requiring substantial memory overhead from gradient storage and de-
manding extensive computational power for derivative calculations, which makes it prohibitive for
deployment on edge devices. This software-level challenge is mirrored in hardware design; the
majority of existing Application-Specific Integrated Circuit (ASIC) or Field-Programmable Gate
Array (FPGA) Transformer accelerators (e.g., ELSA (Ham et al.l [2021), DOTA (Qu et al.} |[2022),
FACT (Qin et al.} 2023)) are optimized exclusively for inference. They typically omit backpropaga-
tion capabilities due to the design complexities of co-locating them with forward-pass operations, a
decision that severely limits the utility of these accelerators for on-device learning.

In response to these challenges, recent work has pioneered forward-only optimization strategies,
most notably MeZO (Malladi et al.} 2023)). By avoiding the backward pass entirely, MeZO substan-
tially reduces memory consumption, making it feasible to fine-tune large scale models on memory
constrained devices. However, this memory efficiency comes at a cost of slow and unstable conver-
gence. To accelerate convergence, HiZOO (Zhao et al., |2025) makes a significant stride by incor-
porating estimated Hessian information into the MeZO framework. However, our analysis reveals
that HiZOO’s Hessian estimator is inherently biased due to the premature application of an abso-

Under review as a conference paper at ICLR 2026

2 x Perturbation 3 x Perturbation
l l l l l Update
Preconditioner
PeFoo
—L.(0) ; iy — L, (0) ;
MeZO Projected (Preconditioner L Co Projected
— L (6) grad -Enhanced — L () grad
2 x Forward MeZO) 3 x Forward
2 x Memory

3 x Perturbation

UL L L emaoner

PEFOO-!-) ’ —L.(9) 9projected
(Layer-wise — — - . g(gg)) | o
. .) .
Undate) 3 x Forward
\ Slightly More
Current Updating Layer Memory

Figure 1: Schematic of the MeZO and proposed PeFoo, PeFoo-L training pipeline. Updating the
preconditioner demands an additional forward pass and requires storage capacity equivalent to the
model parameters. In contrast, the layer-wise update method employed by PeFoo optimizes memory
efficiency by retaining preconditioners for only one block during the fine-tuning process.

lute value function, and its weight update rule is inconsistent with its gradient formulation. These
fundamental issues lead to numerical instability, particularly under FP16 precision, and can trap the
optimizer in suboptimal convergence paths.

Furthermore, incorporating conventional Hessian information into a forward-only framework
presents a fundamental dilemma: their associated storage overhead directly counteracts the mem-
ory efficiency gains that make methods like MeZO attractive in the first place. This inherent trade
off between convergence speed and memory footprint forms a significant barrier to deploying high
performance, preconditioned optimizers on resource constrained edge devices.

To address these critical shortcomings and unlock the true potential of second-order information in
Z0 methods, we introduce PeFoo, a general framework for preconditioner enhanced forward only
optimizer built upon a principled correction of HiZOO. To specifically counter the memory overhead
introduced by the preconditioner itself, we further propose PeFoo-L, a variant that incorporates a
hardware-friendly, layer-wise weight update strategy. This mechanism computes preconditioners
for a single layer per iteration, thereby preserving high memory efficiency and rapid convergence.

The primary contributions of this paper are as follows:

Theoretically-Grounded Preconditioning for Edge Fine-tuning. We introduce PeFoo, a precon-
ditioned forward only optimization framework designed for robustness and efficiency. Its innovation
is an unbiased Hessian estimator, which corrects a fundamental source of bias and instability present
in prior work like HiZOO. By preserving negative curvature information, PeFoo ensures both stable
and rapid convergence.

Hardware-Friendly Edge Fine-tuning Framework. We analyze the inefficiency in preconditioner
enhanced zeroth order optimizer and thus propose PeFoo-L, a layer-wise update strategy that opti-
mizes the preconditioner’s memory footprint. By localizing updates, this method minimizes storage
requirements and reduces memory traffic between on-chip cache and DRAM, making it particularly
suitable for deployment on edge hardware accelerators.

Comprehensive Evaluation. We conduct extensive experiments across multiple benchmark
datasets to validate the efficacy and generalizability of our methods. The results demonstrate that
PeFoo outperforms zeroth-order methods MeZO and HiZOO by 2.7% and 2.1% in average accuracy
on OPT-1.3B, respectively. Furthermore, PeFoo-L achieves a memory footprint reduction of over
2.73x and 1.75x compared to Adam and HiZOO, while delivering faster convergence speed than
MeZO and HiZOO.

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 PRELIMINARIES OF ZEROTH-ORDER OPTIMIZERS

2.1.1 MEZO

Recently, MeZO (Malladi et al., [2023)) firstly adapted the classical ZO-SGD method to fine-tune
LLMs, achieving comparable performance with significant memory reduction. Consider a labelled
dataset D = {(;, ¥:)}ie[|p|) and a minibatch B < D of size B, we let L(6; B) denote the loss on

the minibatch. Given a model with parameters 6 € R? and a loss function £, SPSA (Spall, |1992)

estimates the gradient on a minibatch B as

L0+ Ap; B)—L(0—p; B)
2\

where p € R? with p ~ N(0, 1) and X is the perturbation scale. The n-SPSA gradient estimate

averages V L(0; B) over n randomly sampled p.

VL(6;B)= p~pp' VL(O;B), (1)

Z0-SGD is an optimizer with learning rate 7 that updates parameters as 6, = 6;_1 — n@ﬁ(&; Bi_1),
where B; is the minibatch at time ¢ and V L is the SPSA gradient estimate.

2.2 RELATED WORK

2.2.1 ZEROTH-ORDER OPTIMIZATION FOR LLM

MeZO (Malladi et al.} |2023) is the first to demonstrate that forward-only updates can fine-tune LLMs
to high accuracy while reducing GPU memory. MeZO’s success has inspired further research, in-
cluding variants that incorporate sparsity (Guo et al., 2024; [Liu et al., 2024) and the creation of
extensive benchmarks for zeroth-order (ZO) fine-tuning methods (Zhang et al [2024). ReLIZO
(Wang et al 2024) is a zeroth-order optimizer that reuses historical query samples by modeling
gradient estimation as a quadratically constrained linear program, which reduces computation com-
plexity while maintaining efficacy. To accelerate convergence, HiZOO (Zhao et al., 2025) utilizes
estimated Hessian information within the ZO framework. However, this enhancement comes at
the cost of doubling the required memory, which counteracts the primary benefit of forward-only
methods. B-PDF (Yu et al., [2024) combines the block coordinate descent (BCD) method with a
Hessian-informed zeroth-order optimizer, yet provides limited accuracy improvement and acceler-
ation in convergence compared to MeZO. In contrast to previous methods, our method prioritizes
accuracy improvement by benchmarking and enhancing preconditioners, while remaining optimized
for the resource constraints of edge computing.

2.2.2 PRECONDITIONERS FOR STOCHASTIC TRAINING

High curvature directions in SGD require a small learning rate to avoid overshooting, leading to
slow progress in low curvature directions. Preconditioning (Dauphin et al., 2015} |Qu et al., 2024)
enhances optimization convergence and efficiency by regulating curvature, particularly in SGD.
Shampoo (Gupta et al., 2018)) maintains a preconditioning matrix for each dimension of a weight
tensor, which is updated using the second-moment statistics of accumulated gradients. AdaBelief
(Zhuang et al., 2020) introduces an adaptive preconditioner that scales the stepsize according to the
observed gradient. AdaHessian (Yao et al.} 2021)) and Sophia (Liu et al.,|2023)) are adaptive second-
order optimizers that estimate the diagonal Hessian as its preconditioner. However, preconditioner
introduces additional storage requirements and increases memory access times, which makes it less
practical in resource-constrained scenarios.

3 METHODOLOGY

3.1 PRECONDITIONER ENHANCED OPTIMIZER: PEFOO

Our approach beglns by applymg a preconditioner matrix D through a linear transformation of the
parameter space, § = D36. The resulting descent direction for the zeroth-order gradient estimate is

Under review as a conference paper at ICLR 2026

Algorithm 1 Training pipeline of proposed PeFoo.

Require: parameters f € R%, loss function £, perturbation scale), learning rate 1, smooth scale o

1: Dy« 1 > Preconditioner Initialization
2: fort=1,...,T do
3: Sample a random seed s
4: ¢ — L(0;B)
5: 0 < PerturbParameters(6, A, D;ll/ 2, s)
6: \ — L(6;B)
7: 0 <« PerturbParameters(6, —2A, D;ll/ 2 s)
8: l_\ — L(6;B)
9: 0 «— PerturbParameters(6, A, D;_ll/ 2, s) = Reset Parameters Before Descent
10 projected_grad « o (€ — (_\)D;?
11: Reset random number generator with seed s
12: for 6, € 6 do
13: Sample p; ~ N5(0,1)
14: 0; < 0; — n; x projected_grad, x p; > Update Weights
15: end for
16: H; ﬁ (Ir+L_x—20) (Dtl 1 21 pip) D: i 21 — Dt_l) = Unbiased Hessian Estimator
17: Dy — f (I{T t) = Post-Weight Preconditioner Update
18: end for
19: function PERTURBPARAMETER(6, A, D; /2, s)
20: Reset random number generator with seed s
21: for 6; € 6 do
22: Sample p; ~ N5(0,1)
23: 0; — 0;+ D, Y 2pi = Perturb Parameters With Preconditioner
24: end for
25: return ¢

26: end function

derived as:
VL(9:B) = DYV L(6,; B)
_ L (0+AD~Y2p;B) —L (6—AD~/?p;B) D12,
2 '

2

The key insight from Eq. [2|is that the perturbation AD~'/2p is no longer isotropic. This adaptive
scaling ensures that the exploration of the loss surface is aligned with its local geometry, enabling
more efficient optimization.

A critical challenge, however, is the selection of an appropriate preconditioner D. Drawing inspira-

tion from quasi-Newton methods, we leverage an unbiased Hessian estimator H from HiZOO (Zhao
et al.l [2025):

~ 1AL
H=v2L) = [)\2 : (Dl/zppTD1/2 - D)] : 3)
where AL = L(0+AD~2p; B)+ L(0—AD~"/2p; B) —2L(6; B). Note that this derivation permits
the use of any symmetric positive semi-definite preconditioner D without structural constraints.
We prove this in Appendix B. This flexibility permits a broad class of preconditioners of the form

D = f(H), significantly expanding the design space.

For PeFoo, we introduce a specific preconditioner: f(H;) = clip(abs(EMA(ﬁ) Dinins Dinaz)-
We set D,,in=1e-1 and D,,,,=1e4 in our practical use. We restrict our implementation to diagonal
matrices, which reduces memory complexity from O(d?) to O(d) while maintaining strong empiri-

Under review as a conference paper at ICLR 2026

cal performance and ensuring the preconditioner is positive semi-definite. Our design decouples the
estimation process from the preconditioner construction.

Two key factors can summarize the main difference between PeFoo and HiZOO: 1) Unbiased es-

timation of the Hessian matrix: PeFoo uses H; = ﬁ (Ix+0_x—20) (Dgﬁ%pipiTDtlﬁ —Dt,l)

to perform the EMA update. In contrast, HiZOO uses H; ' = 515 [(x+(_\—2(|H, Y ppl H2
Consequently, HIZOO’s estimation tends to be larger than PeFoo’s unbiased estimation and does not
account for the possibility of negative elements in the Hessian matrix, leading to saddle point attrac-
tion artifacts. 2) Weight update step: HiZOO uses the already updated Hessian matrix H; in its
weight update step, rather than H;_;. This approach is inconsistent with the gradient calculation in
Eq. 2} which uses D;_;. This inconsistency is the reason for the large variance in HiZOO’s Hessian
matrix estimation, which often results in extreme values that overflow the boundaries of FP16.

The full training pipeline for PeFoo is detailed in Algorithm [I} At each iteration, the algorithm
performs three forward passes to evaluate the loss function £(6): once at the current parameters,
and twice more after perturbing them. The resulting loss values are used to compute a projected
gradient estimate using the preconditioner from the previous step (D;_1). After the model weights
are updated, the same loss values are used to form an estimate of the Hessian }AIt, which in turn

updates the preconditioner for the next iteration via f(H;) = Clip(abs(EMA(fAI) Dinins Dinaz)-

3.2 CONVERGENCE ANALYSIS
We analyze the convergence of PeFoo under the following standard assumptions:

1. The objective function £(6) is L-smooth, i.e. L(0:11) < L(0:) —{(VL(0:),0:41 — Oty +
L)1 — 01
2 t+1 t

s

2. The stochastic gradient V£(6; B) has o2 variance, i.e. E [HVE(G; B) — Vﬁ(Q)HQ] <o’
3. D =diag(dy,. .., dy), with 0 < B¢ < d; < fa.

After T iterations with the update rule 6, = 6;_1 — n@ﬁ(@; B:_1), the average expected squared
norm of the gradient is bounded as follows:

1 T 5 T
E|= > IVLEO:B) | < = Y IVLO:B)|? -
3 = ¢

< W+Lﬁun02+0(>\2)-

Letn — 0as T — o (e.g., n = O(1/4/T)), we conclude that:
; . P .
lim E[|VL(6:B)|*] = 0.

Proof. Detailed proof can be found in Appendix C. O

It is important to highlight the implications of Assumption 3. The requirement for a bounded pre-
conditioner (d; < 3,,) is necessary to establish the convergence rate’s upper bound. This theoretical
condition underscores the practical importance of constraining the values of the preconditioner dur-
ing training to ensure stability.

3.3 THE BOTTLENECKS OF PRECONDITIONED ZEROTH-ORDER METHODS

While preconditioners offer significant convergence acceleration, they introduce a substantial mem-
ory cost that scales with the number of model parameters d: O(d) for a diagonal matrix and O(d?)
for a full one. As detailed in Table[I] this additional overhead can be severe, particularly for large
models on edge devices. This storage requirement directly undermines the primary objective of
forward-only methods like MeZO to achieve memory-efficient optimization.

Under review as a conference paper at ICLR 2026

Table 1: Peak GPU memory usage (GB) for fine-tuning OPT models on SST-2 (FP16 precision).
OOM: out of memory.

Device Model(Parameters) Adam MeZO HiZOO PeFoo PeFoo-L

OPT-1.3B (2.45GB) 10.22GB 3.17GB 6.06GB 6.27GB 3.46GB
OPT-6.7B (12.41GB) OOM 14.33GB OOM OOM 14.76GB

OPT-6.7B (12.41GB) 50.39GB 14.33GB 27.11GB 27.50GB 14.76GB
OPT-13B (23.94GB) OOM 26.35GB 50.77GB 51.37GB 26.63GB

RTX 4090 (24GB)

Tesla A100 (80GB)

Table 2: Average memory traffic on RTX 4090 per training step (GB) on OPT-1.3B. Lower values
are better.

Forward Pass Traffic Weight Update Traffic
Method L2 < L1 L2 < DRAM L2 < L1 L2 & DRAM

MeZO 57.41 9.58 100.49 58.53
PeFoo 86.12 14.38 249.99 144.48
PeFoo-L 86.12 14.38 28.96 17.75

Furthermore, beyond static memory costs, the parameter update step itself emerges as a significant
performance bottleneck. Unlike the forward pass, which benefits from high data reuse and effec-
tive use of on-chip caches, the weight update process is characterized by poor cache locality. The
weight update process requires frequent, high-volume data transfers between the power-hungry sys-
tem DRAM and the limited on-chip L2 cache, a phenomenon quantified in Table This issue
is intensified on edge devices where DRAM bandwidth is an insufficient resource (e.g., a DDR4
module offers a peak bandwidth of only 25.6 GB/s, far below the TB/s-level throughput of on-
chip SRAM). Alleviating this memory traffic bottleneck is therefore critical for enabling efficient
on-device training.

3.4 LAYER-WISE WEIGHT UPDATE: PEFOO-L

To address the dual challenges of memory traffic and preconditioner storage, we introduce PeFoo-
L, a hardware-friendly, layer-wise weight update strategy. This approach, which shares conceptual
similarities with other layer-wise methods like BAdam (Luo et al., 2024), LiSA (Pan et al.| [2024)),
and B-PDF (Yu et al.l[2024), is integrated directly into our preconditioned forward-only framework.
As illustrated in Fig. [I} PeFoo-L selectively updates only a subset of model layers during each
optimization step, leaving the remaining layers static. This targeted update strategy yields a crucial
benefit: by confining preconditioner computations exclusively to the active layer, it dramatically
reduces the memory required for their storage.

We present the pseudo-code for the proposed optimizer combined with the layer-wise weight update
algorithm in Appendix D. To optimize memory utilization, in each iterative step, we update the
weights of only one layer, and the preconditioner estimate is reinitialized upon completing updates.
The sequence of the selected layer is from the last layer to the first layer, which is empirically better
than from the first layer to the last layer. Detailed proof of PeFoo-L’s convergence is provided in
Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset & Baselines. To evaluate both the accuracy and training efficiency of PeFoo, we adopt the
experimental setup of MeZO. Our experiments are conducted using RoOBERTa-large (Liu},2019) and
OPT-1.3B (Zhang et al.,[2023)) on widely used datasets from the GLUE and SuperGLUE benchmark
(Wang et al., 2018} [2019). For both training and validation on RoBERTa-large, we set k=16, mean-
ing we have 16 examples per class. For experiments involving the OPT-1.3B model, we randomly

Under review as a conference paper at ICLR 2026

Table 3: Performance comparison on OPT-1.3B (with 1000 examples) using MeZO, HiZOO, PeFoo,
PeFoo-L and Adam (FT). ICL: in-context learning; LP: linear probing. PEFT represents the LoRA
and prefix and we report the best of them. All FT experiments train for 5 epochs, and MeZO,
HiZOO, PeFoo, PeFoo-L use 20K steps.

Task SST-2 RTE CB BoolQ WSC WIC COPA ReCoRD SQuAD Average
Task type ——classification ———— — multiple choice — generation
Zero-shot 536 534 375 455 433 57.1 75.0 70.6 27.1 51.5
ICL 803 53.1 482 585 45.2 50.9 69.0 71.1 589 59.5
LP 91.1 614 643 624 63.5 62.1 43.0 18.1 32 52.1
MeZO 91.7 643 69.6 655 63.5 57.7 77.0 71.2 75.8 70.7
MeZO(PEFT) 912 67.1 714 638 60.6 58.0 77.0 71.7 75.7 70.7
HiZOO 91.7 643 714 655 63.5 57.7 78.0 714 78.2 71.3
HiZOO(PEFT) 892 675 714 647 63.5 60.6 75.0 71.1 76.1 71.0
PeFoo 91.7 66.1 839 658 63.5 59.4 80.0 71.5 78.4 73.4
PeFoo(PEFT) 91.3 682 732 65.6 59.6 58.8 77.0 72.1 71.5 71.4
PeFoo-L 919 653 732 66.2 63.5 59.3 76.0 72.0 71.5 71.6
PeFoo-L(PEFT) 90.6 635 714 64.0 59.6 59.7 72.0 71.2 74.5 69.6
FT 944 758 893 749 62.5 65.2 79.0 71.9 83.6 774

Table 4: Performance comparison on RoOBERTa-large (350M parameters, sample numbers k& = 16)
using MeZO, variants of PeFoo, and Adam (FT). PEFT represents the LoRA and prefix and we
report the best of them. All FT experiments employs 1K steps, MeZO employs 100K steps, and
HiZOO, PeFoo and PeFoo-L use 5K steps. All reported numbers are averaged accuracy (standard
deviation) across 5 runs.

Task SST-2 SST-5 SNLI MNLI RTE TREC Average
Task type sentiment natural language inference — topic —

Zero-shot 79.0 355 50.2 48.8 51.4 32.0 49.5
LP 76.0 (£2.8) 403 (£1.9) 66.0(+£2.7) 56.5(£2.5) 59.4(£5.3) 51.3(£5.5) 58.3
MeZO 90.5 (+£1.2) 455(£2.0) 68.5(+£3.9) 58.7(£2.5) 64.0(£3.3) 76.9 (+2.7) 67.4
MeZO(PEFT) 91.4 (£0.9) 458 (£2.0) 71.6(£2.5) 64.0(£2.5) 654(£3.9) 80.3(+3.6) 69.8
HiZOO 91.5(£1.2) 443 (£1.2) 70.7(£3.1) 62.6(£09) 652 (£2.1) 73.6(+4.6) 68.0
HiZOO(PEFT) 91.6 (+0.8) 45.1(£2.2) 66.1 (+3.0) 62.5(£1.3) 66.2(+2.5) 70.1(£5.4) 66.9
PeFoo 91.7 (£1.4) 46.1(£0.8) 703 (£2.9) 64.7(£1.6) 65.6(£2.1) 74.0(£4.3) 68.7
PeFoo(PEFT) 923 (+1.1) 46.0(£1.2) 72.0(x1.6) 64.9(£1.2) 66.0(£2.6) 79.7(£3.3) 70.2
PeFoo-L 91.5(+0.8) 45.1(£1.7) 703 (+£19) 62.6(£1.1) 66.2(+£1.6) 73.8(+4.6) 68.2
PeFoo-L(PEFT) 91.8 (£0.7) 45.5(£2.0) 72.2(£2.6) 63.7(£1.2) 652(£3.1) 74.3(£+4.8) 68.8
FT 919 (+1.8) 475(£1.9) 77.5(£2.6) 70.0(£2.3) 664 (£7.2) 85.0(£2.5) 73.1

sample 1,000 examples for training, 500 examples for validation, and 1,000 examples for testing.
All models are trained using FP16 precision to simulate the constraints of edge device scenarios.
All accuracy evaluations are performed on a single NVIDIA RTX 4090 (24GB) GPU. Detailed
hyperparameter configurations used in our experiments are summarized in Appendix A.

For our comparative experiments, we noted that the official HIZOO implementation encounters
numerical instability when operating under FP16 precision, frequently leading to overflow issues
that halt the training process. To enable a stable and meaningful comparison, we introduced a
minimal necessary modification by clamping its Hessian estimator to a maximum value of 1e4.
This change specifically addresses the overflow problem while preserving the core algorithmic logic
presented in the original HiZOO paper.

4.2 ACCURACY AND CONVERGENCE SPEED

Tables[3]and[4] present the experimental results for our proposed frameworks, PeFoo and PeFoo-L, in
comparison with the MeZO baseline, HiZOO, and traditional fine-tuning using the Adam optimizer
(FT) on the OPT-1.3B model and the RoBERTa-large model. We highlight the best results for
full-parameter tuning and PEFT, respectively. As shown in Tables [3] and] PeFoo and PeFoo-L
across full-parameter tuning, LoRA and prefix, outperform Zero-shot, ICL, and LP on all datasets

Under review as a conference paper at ICLR 2026

SQuAD on OPT-1.3B SQuAD LoRA on OPT-1.3B

2.0 —— MeZ0:758% —— PeFoo: 18.4% 2.0 —— MeZO: 75.7% PeFoo: 75.7%
—— HiZ00:782% —— PeFoo-L: 77.5% —— HiZ00: 71.7% PeFoo-L: 70.7%
15 15 VAWM MNAA
2 2
E E FVRARRISA Nvney
- -
1.0 1.0 MMM A\ A\ n]
05 05
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Steps Steps

Figure 2: Steps-based loss curves of using MeZO, HiZOO, and proposed PeFoo and PeFoo-L.

SST-2 on OPT-1.3B CB on OPT-1.3B

= MeZ0: 91.7% PeFoo: 91.7% 1.0 = MeZO: 77.0% PeFoo: 83.2%
08 = HiZ0O0: 91.7% PeFoo-L: 91.8% = HIiZOO: 71.4% PeFoo-L: 73.2%
- 0.8
2 0.6 H
0.4 04
02 0.2
0 1000 2000 3000 4000 5000 6000 0 2500 5000 7500 10000 12500 15000

Time (seconds) Time (seconds)

Figure 3: Time-based loss curves of using MeZO, HiZOO, PeFoo and PeFoo-L on RTX 4090.

except WIC. PeFoo also outperforms MeZO by an average of 2.7%, HiZOO by 2.1% in OPT-1.3B
absolute accuracy, and outperforms MeZO by 1.3% and HiZOO by 0.7% in RoBERTa-large absolute
accuracy. Figs. 2]and[3]show the step-based and time-based loss curves, respectively, which indicate
that PeFoo demonstrates substantially faster convergence in terms of training steps compared to
MeZO and HiZOO within 20,000 steps for OPT-1.3B.

4.3 EXECUTION SPEED ANALYSIS

As shown in Fig. | PeFoo and HiZOO require approximately 2x the wall-clock time of MeZO
and PeFoo-L. Contrary to HiZOO’s claim that this is mainly due to an extra forward pass, our
profiling with NVIDIA Nsight Compute identifies the weight update stage as the true performance
bottleneck, which accounts for 71% of the total cycle count. While the forward pass contributes a
1.5 x overhead, our layer-wise method, PeFoo-L, accelerates the weight update by 3.26 x, effectively
closing the performance gap with MeZO. This demonstrates that optimizing the weight update is
more critical for execution speed than minimizing forward passes in this class of optimizers.

)
771 Forward pass =9 Normal Distribution [Weight Update Z 6000 1 Model Parameters
=
S) -
MeZO k=1 Gradient and Activation
N £140001 77 preconditioner Matrix
PeFoo F \4 é
< 2000
PeFoo-L 2 [— —__ | — |
w FNNNN e | Cime Cm
0e+00 le+08 2e+08 3e+08 4e+08 5e+08 6e+08 § 8 16 32 64

Runtime Clock Cycles Breakdown Batch Size

Figure 4: Training runtime clock cycles break-
down for MeZO, PeFoo, and PeFoo-L frame-
works for training OPT-1.3B on SST-2 dataset.
The analysis reveals that weight updates consti-
tute bottlenecks in the PeFoo’s training process.

4.4 MEMORY CONSUMPTION ANALYSIS

Figure 5: Memory consumption of different
components for fine-tuning the ROBERTa-large
model on SST-2 dataset using different meth-
ods. The left to right is Adam, MeZO, HiZOO
or PeFoo, PeFoo-L, respectively.

Fig. [3] illustrates a comparative analysis of memory consumption across several optimizers. Our
empirical assessment of GPU memory utilization revealed that PeFoo-L exhibits a memory cost
comparable to MeZO and reduces memory footprint by 1.84 x compared to HiZOO or PeFoo and
more than 2.73 x compared to Adam. In comparison, HiZOO demonstrates a 84% higher memory

Under review as a conference paper at ICLR 2026

cost than MeZO, indicating an impractical convergence-memory trade-off in scenarios demanding
low memory usage.

4.5 ABLATION STUDY OF PRECONDITIONER

We conduct ablation studies on the SST-2 dataset to analyze and validate the key design choices for
our preconditioner.

4.5.1 IMPACT OF PRECONDITIONER CLAMPING

We investigate the effect of constraining the preconditioner’s values, a practice suggested by our
convergence analysis. As shown in Fig. [6] applying a clamp results in more stable convergence
compared to using an unbounded preconditioner. Specifically, clamping the maximum value to 1.0
or 0.1 improves absolute accuracy by 0.8% and 1.1%, respectively, confirming the practical benefits
of this technique.

4.5.2 EFFECTIVENESS OF DIFFERENT PRECONDITIONERS

We validate the effectiveness of our specific preconditioner formulation, D = abs(EMA(H)). We
compare it against two primary baselines: an identity preconditioner, D = I (which is equivalent

to MeZO), and an alternative formulation, D = EMA (abs(H)), which applies the absolute value
before the moving average. The results in Fig. [6| demonstrate the clear superiority of our proposed
design. PeFoo exhibits significantly faster convergence speed than both baselines and achieves an

absolute accuracy gain of 2.6% over the D = EMA (abs(H)) formulation. This validates our choice
to maintain sign-aware Hessian during the EMA process.

Lo —— D=EMA(abs(H)): 89.1%
—— D=L:91.7%
—— D=abs(EMA(H)): 91.7%

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Steps Steps

Figure 6: Ablation Study of Preconditioners on the SST-2 Dataset. (Left): The effect of clamping
the preconditioner on the training loss. (Right): A comparison of training loss curves for different
preconditioner choices.

5 CONCLUSION

Our work demonstrates that PeFoo establishes an effective paradigm for memory-efficient fine-
tuning of large language models while maintaining competitive convergence rates. Through the
integration of preconditioner-enhanced optimization with a layer-wise update strategy, PeFoo-L
achieves a 2.73x reduction in memory footprint compared to Adam and outperforms existing zeroth-
order methods, MeZO and HiZOQ, in step-wise convergence speed. Theoretical analyses validate
the convergence guarantees of both PeFoo and its layer-wise variant, PeFoo-L, under practical as-
sumptions of smoothness and bounded curvature. The decoupling of preconditioner computation
from full-model updates enables PeFoo-L to bridge the gap between memory efficiency and opti-
mization efficacy—a critical advancement for edge-device deployment and offload the design effort
of backpropagation on a hardware accelerator.

While PeFoo-L significantly reduces wall-clock training time through selective layer activation, its
performance under extreme parameter sparsity or combined with advanced techniques like mixed-
precision quantization remains an open question. Future work will explore integrating PeFoo with
emerging sparse training frameworks and designing a specific hardware accelerator.

Under review as a conference paper at ICLR 2026

REFERENCES

Yann Dauphin, Harm De Vries, and Yoshua Bengio. Equilibrated adaptive learning rates for non-
convex optimization. Advances in neural information processing systems, 28, 2015.

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert
Bastani, Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of 1lms with extreme
sparsity. arXiv preprint arXiv:2406.02913, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842—-1850. PMLR, 2018.

Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung Kim, Hyunji Choi, Sung Jun Jung, and Jac W
Lee. Elsa: Hardware-software co-design for efficient, lightweight self-attention mechanism in
neural networks. In 2021 ACM/IEEE 48th Annual International Symposium on Computer Archi-
tecture, pp. 692-705. IEEE, 2021.

Jinsu Lee and Hoi-Jun Yoo. An overview of energy-efficient hardware accelerators for on-device
deep-neural-network training. IEEE Open Journal of the Solid-State Circuits Society, 1:115-128,
2021.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364, 2019.

Yong Liu, Zirui Zhu, Chaoyu Gong, Minhao Cheng, Cho-Jui Hsieh, and Yang You. Sparse
mezo: Less parameters for better performance in zeroth-order 1lm fine-tuning. arXiv preprint
arXiv:2402.15751, 2024.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter optimization
method for large language models. Advances in Neural Information Processing Systems, 37:
2492624958, 2024.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36:53038-53075, 2023.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Lay-
erwise importance sampling for memory-efficient large language model fine-tuning. Advances in
Neural Information Processing Systems, 37:57018-57049, 2024.

Yubin Qin, Yang Wang, Dazheng Deng, Zhiren Zhao, Xiaolong Yang, Leibo Liu, Shaojun Wei,
Yang Hu, and Shouyi Yin. Fact: Ffn-attention co-optimized transformer architecture with eager
correlation prediction. In Proceedings of the 50th Annual International Symposium on Computer
Architecture, pp. 1-14, 2023.

Zhaonan Qu, Wenzhi Gao, Oliver Hinder, Yinyu Ye, and Zhengyuan Zhou. Optimal diagonal pre-
conditioning. Operations Research, 2024.

Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei Ding, and Yuan Xie. Dota: detect and
omit weak attentions for scalable transformer acceleration. In Proceedings of the 27th ACM

International Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 14-26, 2022.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. /EEE transactions on automatic control, 37(3):332-341, 1992.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

10

Under review as a conference paper at ICLR 2026

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Xiaoxing Wang, Xiaohan Qin, Xiaokang Yang, and Junchi Yan. Relizo: Sample reusable linear
interpolation-based zeroth-order optimization. Advances in Neural Information Processing Sys-
tems, 37:15070-15096, 2024.

Zhewei Yao, Amir Gholami, Sheng Shen, Mustafa Mustafa, Kurt Keutzer, and Michael Mahoney.
Adahessian: An adaptive second order optimizer for machine learning. In proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 10665-10673, 2021.

Zhiyuan Yu, Yifei Cheng, Liang Ding, Xinmei Tian, Li Shen, and Dacheng Tao. Memory-efficient
block coordinate descent for hessian-informed zeroth-order optimizer, 2024. URL https://
openreview.net/forum?id=gq8H9t10Vsy.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models, 2022. URL https://arxiv. org/abs/2205.01068, 3:19-0, 2023.

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu
Chen, Jason D Lee, Wotao Yin, Mingyi Hong, et al. Revisiting zeroth-order optimization for
memory-efficient llm fine-tuning: A benchmark. arXiv preprint arXiv:2402.11592, 2024.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor Tsang. Second-order fine-
tuning without pain for LLMs: A hessian informed zeroth-order optimizer. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=bEgI6liBue.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. Advances in neural information processing systems, 33:18795-18806, 2020.

11

https://openreview.net/forum?id=q8H9t10Vsy
https://openreview.net/forum?id=q8H9t10Vsy
https://openreview.net/forum?id=bEqI61iBue
https://openreview.net/forum?id=bEqI61iBue

Under review as a conference paper at ICLR 2026

A HYPERPARAMETERS FOR EXPERIMENTS

The hyperparameters for all PeFoo and PeFoo-L experiments on the RoBERTa-large and OPT-1.3B
models are detailed in Table[5] An empirical observation from our tuning process is that the optimal
learning rate for the layer-wise PeFoo-L is consistently approximately an order of magnitude larger
than that for PeFoo. This finding aligns with similar phenomena reported in related papers on layer-
wise like optimization, such as B-PDF |Yu et al.|(2024)).

B FORMULA OF UNBIASED HESSIAN MATRIX ESTIMATION

We first assume preconditioner D is a symmetric positive semi-definite matrix. We denote
D=Y2V2L(0; B)D~'/? as A, use the nature of normal distribution and apply the outer product
transformation D/2ppT D'/? to the quadratic form p' Ap. Specifically, the (k,1)-th element of the
reconstructed matrix E [p" D=Y2V2£(0; B)D~Y/2p - D/2ppT D*/?] is obtained through this oper-
ation:

E [pTD*1/2V2£(0; B)D71/2p) D1/2ppTD1/2]

k.l
= Z Av,JD]iﬁDll»,{QE [pipjpmpn]
1,7,mMm,M
= > A DD (6140 mn + Simbjn + injm)
%,7,m,m
—tr (A) - Dy +2[D%AD%]M, @)

where §;; denotes the Kronecker delta symbol (0;; = 1if ¢ = j and 0 otherwise). The final
equality utilizes the symmetric property of matrix D and leverages the fundamental relationship
E[pipjpmpn] = 6ij0mn + 0im0jn + dindjm for standard normal variables. Expressed in matrix
notation, Eq. f] yields the closed-form relationship:

E [pTD—1/2v2£(9; B)D~2p. Dl/prTDl/Q] —tr (HD™Y) D + 2H.

The expectation term E [pT D~/2V2L(0; B)D~'/?p - D] provides an unbiased estimator for the
trace-term product tr (HD~') D. Therefore,

H=V2L(0) = % ((w(HD™")D + 2H) —tr(HD™") D)
= %E[pTD_1/2V2£(0;B)D_1/2p~ (02" D2 D).

Following HiZOO Zhao et al.| (2025)), through Taylor’s expansion, we yield the following results:

)\2
E(G +AD~Y2, B) —L(0; B)+ A <vz(9; B), D_1/2p>+?pTD_1/2V2£(9; B)D~2p+0(N?).
Then we can calculate the difference AL by:
AL = L(0 + XD Y2p; B) + L(0 — A\DY?p; B) — 2L(0; B)
= Np ' D7V2V2L(0; B)D " p+ O (N¥)

Therefore, we derive the Hessian approximation at parameter configuration § through the following
equation:
~ 1[AL

12

Under review as a conference paper at ICLR 2026

Table 5: The hyperparameter grids used for RoBERTa-large and OPT-1.3B experiments.

Method Hyperparameters Roberta-large Values OPT-1.3B Values
PeFoo Batch size 64 16
Learning rate {le-6, 2e-6} {le-7,2e-7, 3e-7}
A le-3 le-3
Weight Decay 0 0
EMA Type Constant le-5 Constant le-5
PeFoo Batch size 64 16
(prefix) Learning rate {3e-3, 5e-3} {1e-3, 3e-3, 5e-3}
A le-1 le-1
Weight Decay 0 0
EMA Type Constant le-2 Constant le-1, Constant 1e-2
prefix tokens 5 5
PeFoo Batch size 64 16
(LoRA) Learning rate {le-4,2e-4} {1e-6, 5¢-6, 8¢-6}
A le-3 le-3
Weight Decay 0 0
(r,) (8, 16) (8, 16)
EMA Type Constant le-4 Constant le-4
PeFoo-L. Batch size 64 16
Learning rate {5e-5,7e-5, le-4} {1e-6, 3e-6, 5e-6}
A le-3 le-3
Weight Decay 0 0
EMA Type Constant le-4 Constant le-4
Layer-wise Update Strategy ~ Select next layer every 10 steps Select next layer every 40 steps
PeFoo-L. Batch size 64 16
(prefix) Learning rate {5e-2, le-1, 2e-1, 3e-1} {7e-2, le-1, 1e-2}
A le-1 le-1
Weight Decay 0 0
EMA Type Constant le-1, Constant le-2 Constant le-2
Layer-wise Update Strategy ~ Select next layer every 10 steps Select next layer every 40 steps
prefix tokens 5 5
PeFoo-L Batch size 64 16
(LoRA) Learning rate {5e-3, Te-3, le-2} {le-4, 3e-4, Se-4}
A le-3 le-3
Weight Decay 0 0
(r, @) (8,16) (8, 16)
EMA Type Constant le-4 Constant le-4
Layer-wise Update Strategy ~ Select next layer every 10 steps Select next layer every 40 steps
Adam Batch size {2,4,8} {2,4,8}

Learning rate

{1e-5, 3e-5, 5e-5}

{1e-6, 3e-6, 5e-6}

C PEF0O CONVERGENCE ANALYSIS

We present a brief proof of the convergence of PeFoo. Our convergence analysis relies on the

following assumptions:

1. The objective function £(6) is L-smooth, i.e. L(0:11) < L(0:) —{(VL(0:),0:11 — Oty +

2

s

L)6¢ 41 — 0]

2. The stochastic gradient VL£(6; B) has o2 variance, i.e. E [HVK(G; B) — V£(9)H2] <o’

3. D =diag(dy,...,dy), with0 < By < d; < By.

13

Under review as a conference paper at ICLR 2026

Proof. According to Taylor’s expansion, we have:

L(0; + AD;?p) — £(0, — AD; D) 15
Dt
22
= D; Ppp ™DV L+ 0(N2).

VL)) = D,

Next, we compute the expectation of the squared norm of @E(Gt):

E [W,c(et)\\?] —E [chD*l/QppTD*ppTD*l/Qv.c]

—ElZ d2pir (VL) +];ld Y pRpV LV L,
#

=3 Z A2 (VL) +) dy ' dy VLV L
k#l

—QZd (VLy)? (Zd1V£k>2

k=1

<2ﬂl 1Hv£”D;1 + tr(Dt)HV‘CH Cl||v£Hi);17 (5)

Dyt T

where O7 = 28, + u(D; ") < (n + 2)3;". Using the update rule for 6, and the assumptions
above, we obtain the following bound on the expected change in the objective function:

BLL(01:1:5)] — EL(6,:5)]
<~ B (V0B TL(08)] + L 19 £(60:5)

Ly (6)
— VL + O + ’t (arlvel, . +o?)
L 2 .2
— TIVLE -+ T (9()\2),
where the last inequality is because we choose 7, = n < +-. Summing over ¢t = 0,1,....,T — 1,
we obtain: . 1
Ln?o?T
Y, TIVLIE . <E[L(80:B) - LOrB)] + ”tQ +0(\)
t=0
Ln?02T
E[£(00;B) — £*] + ”tT" +O(\).
Rearranging and summing over the 7" iterations, we have:
E[|VL(6:8)]%] l Z IVL(0::B IIZ]
_Bu a4 2B, (L(00)—L*
<5 Z IVLO:B)[F,+ < ((7];))+Lﬂun02+0(ﬁ)-
Letn — 0as T — oo (e.g., n = O(1/4/T)), we conclude that:
; . 27
Th_r)réoE [HVE(@,B)H] =0. O

D PEF0O-L ALGORITHM AND CONVERGENCE ANALYSIS

Details of PeFoo-L can be seen in Algorithm[2] Considering that layer-wise weight updates can lead
to cyclic behavior and hinder convergence, we provide a proof for PeFoo-L.

14

Under review as a conference paper at ICLR 2026

Algorithm 2 Training Pipeline of PeFoo-L.

Require: parameters f € R%, loss function £, perturbation scale), learning rate 1, smooth scale o
1: fort=1,...,7 do
2: Sample a random seed s
Select optimizing current layer or next layer
if not select current (j — 1)-th layer then
Remove Dgi _11) and D,Ej,)l — 1 > Preconditioner Initialization
end if
{— L(9;B)
0 «— PerturbParameters(6, \, (D\),)~1/2, 5)
9: Uy — L(0;B)
10: 0 « PerturbParameters(6, —2), (D))=1/2)
11: 0_y — L(9;B)

A

12: 0 < PerturbParameters(6, A, (Dii)l)*l/ 2s) = Reset Parameters Before Descent
13: projected_grad « 55 ({5 — 0_\)(DY)))=1/2

14: Reset random number generator with seed s

15: for 0; € selected layer do

16: Sample p; ~ N5(0,1)

17: 0; «— 6; — n; x projected_grad, x p; > Update Weights
18: end for

19: Ht‘_w (ba+lx— %)((7)1/2 iT(Dt(ﬂ)l/z_Dg)l)
20: Ht <« (1 — Oét)Ht_l + Oéth

21: (ng)) «— abs(Hy) = Update Preconditioner After Weights Update
22: end for

23: function PERTURBPARAMETER(6,), (Dt(j))—l/z, s)

24: Reset random number generator with seed s

25: for 0; € selected layer do

26: Sample p; ~ N5(0, 1)

27: 0; — 0; +)\(Dﬁj))_1/ 2p; = Perturb Parameters With Preconditioner
28: end for

29: return 6

30: end function

In the ¢-th iteration, the update for the ¢-th layer is given by: Gt(+)1 = G(i) —

VL(G(z B()) where VE(G,g):B l)) is a gradient estimate of 9(") based on parameter 0,5
(9(1) 9 9(1 9(1+1 Q(N))
P 0.

PP
We add the following assumptions:

t+1 ’

1. Layer-wise smoothness. There is a constant M that |V £(60:) — Voo L0571 <
Moy — 05571

2. For every layer 7, the variance of gradient have: E [||§£(9(i)) — D'V L(6) H2] <o?

Proof. Due to interlayer coupling, updating the i-th layer affects the input distribution of subsequent

layers. Define global parameter changes: 6,41 = 0, — Zivzl ngi)ﬁlj(ﬁgi); Bt(i)) - e;, where e; is the

unit vector of the i-th layer. Use the overall L-smoothness as well as Eq. [6}

2 2

E[L(6:11)] — < Z ”f—uw D L(0)30 + Z + Acouptings (7)

15

Under review as a conference paper at ICLR 2026

where CY) =20 Ly tr(D,) nt()< 7 éu) , and Acoupling accounts for the term introduced by the

interlayer coupling:

N
Acouping = E lZ n <Ve<i>c<9t>,D;lveu)ﬁ(ot)vaeﬁ“w |
i=1
According to assumption 1, we have:
i—1
[Voe) £(0:) = Vo LOZTH | <M[0: = 057 = M Y, nf [V L))
j=1

Next, we analyze each term of Acoupling:

E[(o £(8), D Vo £(8) — VLE))| =
E [(Vow L£(0), D (Vo £(0) = Voo LIO5TH))]
<[V L(0:)| p-1 - E [Hvomﬁ(et) — Vo LOT) HDt_l]

i—1
< Vo L0 o1 - B, M Z i E VL0

<[V £0) s ‘”2MZ O\ V0 OO 4o

< IV LI, + M25; z—lZ N2 (COIV g LO)21 +02)

where the first inequality is because of Cauchy’s Inequality, the third inequality uses Eq. 5] and the
last inequality is because of Young‘s Inequality. We select n such that:

i 1
() _ —n= : —
VT max{Lmaz;C fl),\/8M2B[1Nmaxj Cl(J)}

so that the second term can be absorbed into the main descent term:
N i—1) 1 N 770_2

M2 N (i —1) Y (clf IVo L(O)IF-+ + af-) <3 D nlVen L(0,)]? L+ 0 <%tl) .
i=1 j=1 i=1

Substituting Acoupling into the Eq. |Z|, we obtain:

Tzzli*HVamﬁ 6:) H < L(6)—E*—k%_
t=0 i=1
Since n = O(1/VT) and d; < 3., we conclude:
LN S 900 £(60)] < o(L). .
T = JT

E THE USE OF LARGE LANGUAGE MODELS

We use LLM only to polish our writing.

16

	Introduction
	Background
	Preliminaries of Zeroth-Order Optimizers
	MeZO

	Related Work
	Zeroth-order Optimization for LLM
	Preconditioners for Stochastic Training

	METHODOLOGY
	Preconditioner Enhanced Optimizer: PeFoo
	Convergence analysis
	The Bottlenecks of Preconditioned Zeroth-Order Methods
	Layer-wise Weight Update: PeFoo-L

	EXPERIMENTS
	Experimental Settings
	Accuracy and Convergence speed
	Execution speed analysis
	Memory Consumption Analysis
	Ablation Study of Preconditioner
	Impact of Preconditioner Clamping
	Effectiveness of different preconditioners

	Conclusion
	Hyperparameters for Experiments
	Formula of Unbiased Hessian Matrix Estimation
	PeFoo Convergence Analysis
	PeFoo-L algorithm and Convergence Analysis
	The Use of Large Language Models

