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Abstract

The pointwise mutual information profile, or simply profile, is the distribution of pointwise
mutual information for a given pair of random variables. One of its important properties is
that its expected value is precisely the mutual information between these random variables.
In this paper, we analytically describe the profiles of multivariate normal distributions and
show that for an expressive family of distributions, termed Bend and Mix Models, the profile
can be accurately estimated using Monte Carlo methods. We then show how Bend and
Mix Models can be used to study the limitations of existing mutual information estimators,
investigate the behavior of neural critics used in variational estimators, and understand the
effect of experimental outliers on mutual information estimation. Finally, we show how Bend
and Mix Models can be used to obtain model-based Bayesian estimates of mutual information,
suitable for problems with available domain expertise in which uncertainty quantification is
necessary. The accompanying code is available at https://github.com/cbg-ethz/bmi.
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Figure 1: First two panels: samples from a bivariate normal distribution and the same distribution with
marginals transformed. Both distributions have the same PMI profile (blue histogram in the fourth panel).
Third panel: mixture distribution, which cannot be obtained as a transformation of the normal distribution
due to a distinct PMI profile (green histogram in the fourth panel). All three distributions have the same
mutual information, marked with the black line in panel four.

1 Introduction

Mutual information (MI) is a key measure of dependence between two random variables (r.v.s). Due to its
theoretical properties, including invariance to reparametrization, it has found many applications (Polyanskiy
& Wu, 2022). However, estimating mutual information from a finite sample remains challenging (McAllester &
Stratos, 2020) and the development of mutual information estimators remains an active area of research (Kay,
1992; Kraskov et al., 2004; Oord et al., 2018; Belghazi et al., 2018; Carrara & Ernst, 2023). In response to
the introduction of new estimators, various benchmarks have been proposed to assess trade-offs (Khan et al.,
2007; Poole et al., 2019; Czyż et al., 2023).

In this manuscript we study the pointwise mutual information profile (PMI profile), a closely related statistical
measure which has received much less attention. The PMI profile is a distribution whose expected value is
the mutual information between two considered r.v.s. We determine the PMI profile for multivariate normal
distributions analytically and show that the PMI profile, similarly to mutual information, is invariant to
reparametrization. This last property has an important implication for MI benchmarks (Czyż et al., 2023)
which transform simple distributions with known MI to create more complex benchmarking tasks: using the
invariance of the profile, we demonstrate that the family of distributions obtained in this manner is inherently
limited. For example, distributions such as those studied by Grabowski et al. (2019) and Carrara & Ernst
(2023), cannot be obtained by transforming a normal distribution.

To overcome this limitation, we study a family of distributions, here termed Bend and Mix Models (BMMs),
for which the PMI profile can be efficiently approximated. By extension, since MI is the expected value of the
PMI profile, it can also be readily estimated using Monte Carlo methods. BMMs include highly-expressive
Gaussian mixture models, and thus allow us to model complex distributions. Through a series of numerical
experiments we demonstrate the usefulness of BMMs for creating non-trivial benchmark tasks; in particular,
we discuss robustness of mutual information estimators to inlier and outlier noise. Additionally, BMMs allow
us to investigate the properties of PMI profiles directly. Based on empirical evidence, we argue that existing
estimators based on neural variational lower bounds (Nguyen et al., 2007; Belghazi et al., 2018) implicitly
estimate the PMI profile, even though they do not reliably estimate the pointwise mutual information function.

Finally, we show that BMMs can provide model-based Bayesian estimates of both the MI and the PMI profile,
generalizing the earlier approaches of Kay (1992) and Brillinger (2004) to a large class of models. Although
this approach is not universal, we demonstrate that in low-dimensional problems with available domain
expertise, BMMs provide state-of-the-art point estimates. Additionally, they offer a principled approach to
uncertainty quantification in MI estimation, which has been lacking in other approaches.

To summarize, the main contributions of this manuscript are as follows:
• We describe the PMI profile, an invariant generalizing mutual information, determine the PMI profile for

normal distributions and prove further characterising properties (Sec. 2.1).
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• We show that for an expressive family of distributions, called Bend and Mix Models, the PMI profile, and
hence mutual information, is tractable using Monte Carlo methods (Sec. 2.2).

• We use Bend and Mix Models to construct novel benchmarking tasks (Sec. 3.1–3.2 and Appendix C.2),
study variational MI estimators (Sec. 3.3), and propose model-based Bayesian MI estimators (Sec. 3.4).

2 Theoretical framework

In this section, we first introduce PMI profiles and then define Bend and Mix Models, an expressive family of
distributions for which the PMI profile can be estimated with Monte Carlo methods.

2.1 Pointwise mutual information profiles

Consider random variables X and Y valued in spaces X and Y. Provided that the joint distribution PXY is
sufficiently regular (in the sense of belonging to the family P(X ,Y) defined in Appendix A.1), the mutual
information is given as follows (Pinsker & Feinstein, 1964):
Definition 1. Let X and Y be random variables valued in spaces X and Y, respectively, such that PXY ∈
P(X ,Y). The mutual information (MI) is defined as I(X; Y ) = E(x,y)∼PXY

[PMIXY (x, y)] , where the
pointwise mutual information (PMI) function is given as1

PMIXY (x, y) = log pXY (x, y)
pX(x) pY (y) ,

where pXY , pX and pY are PDFs (or PMFs) of the joint and marginal distributions, respectively.

While mutual information measures whether two variables are independent (which is equivalent to I(X; Y ) = 0),
the pointwise mutual information function can be understood as a measure of similarity of two events: it is
positive if they jointly occur at a higher frequency than if they were sampled independently from the marginal
distributions. It is also often associated with variational MI estimators (Nguyen et al., 2007; Belghazi et al.,
2018; Oord et al., 2018), where one aims to approximate it using a neural network (cf. Sec. 3.3). However, in
this work we focus on the distribution of its values, i.e., its profile:
Definition 2. The pointwise mutual information profile2 ProfXY is defined as the distribution of the random
variable T = PMIXY (X, Y ).

We discuss generalizations of the PMI profile in Appendix A.5. A key property of the PMI profile is that its
mean is equal to mutual information, I(X; Y ) = ET ∼ProfXY

[T ]. In the following, we characterize the profile
for multivariate normal and discrete distributions, and study its invariance properties. It is known that MI is
invariant under diffeomorphisms (Kraskov et al., 2004). More generally, in Appendix A.1, we show that the
entire profile is invariant:
Theorem 3. Let PXY ∈ P(X ,Y) and f : X → X and g : Y → Y be diffeomorphisms. Then for X ′ = f(X)
and Y ′ = g(Y ) it holds that PX′Y ′ ∈ P(X ,Y) and ProfXY = ProfX′Y ′ .

We demonstrate this result in Fig. 1. The profile of the mixture distribution cannot be obtained as a
transformation of the bivariate normal distribution. This, in particular, implies that benchmarks relying on
transforming normal distributions for generating more complex problems (Czyż et al., 2023), cannot create
distributions with PMI profiles that differ from the normal distributions being transformed.

In fact, for multivariate normal distributions we can express the PMI profile analytically based on the notion
of canonical correlations (Hotelling, 1936):
Theorem 4. Let X and Y be r.v.s such that the joint distribution PXY ∈ P(Rm,Rn) is multivariate normal.
If k = min(m, n) and ρ1, ρ2, . . . , ρk are canonical correlations between X and Y , then the profile ProfXY is a

1We use the natural logarithm, meaning that all quantities are measured in nats.
2Although we are not aware of a prior formal definition and studies of the PMI profile, histograms of approximate PMI

between words have been studied before in the computational linguistics community (Allen & Hospedales, 2019).

3



Published in Transactions on Machine Learning Research (01/2025)

generalized χ2 distribution, namely the distribution of the variable

T = I(X; Y ) +
k∑

i=1

ρi

2 (Qi −Q′
i),

where {Qi, Q′
i}i=1,...,kare independent and identically distributed (i.i.d.) variables drawn from the χ2

1 distribu-
tion. In particular, ProfXY is symmetric around its median, which coincides with the mean

I(X; Y ) = −1
2

k∑
i=1

log
(
1− ρ2

i

)
,

and all moments of this distribution exist. Its variance is equal to Var[T ] = ρ2
1 + · · ·+ ρ2

k.

Additionally, in Appendix A.2, we derive bounds on the variance of the PMI profile of multivariate normal
distributions given the MI. In the same place, we prove the following results, characterising PMI profiles
when MI is zero and for discrete random variables:
Proposition 5. Let X and Y be r.v.s with joint distribution PXY ∈ P(X ,Y). Then, I(X; Y ) = 0 if and
only if ProfXY = δ0 is the Dirac measure with a single atom at 0.

Proposition 6. If X and Y are discrete r.v.s with PXY ∈ P(X ,Y), then the PMI profile is discrete:

ProfXY =
∑
x∈X

∑
y∈Y

pXY (x, y) δPMIXY (x,y).

For more complex distributions, analytic formulae governing the PMI profiles are not known. Below we
address this issue by offering a Monte Carlo approximation for a wide family of distributions.

2.2 Bend and Mix Models

As discussed above, PMI profiles are analytically known only for a small number of basic distributions
and their reparametrizations, which do not change the PMI profile (Fig. 1). To generate a wider family of
distributions with distinct PMI profiles, we introduce Bend and Mix Models which combine two strategies:
bending a distribution (transforming with diffeomorphisms; see also the literature on normalizing flows, e.g.,
Kobyzev et al. (2021) and Papamakarios et al. (2021)) and mixing (combining multiple models into a mixture
model). Although the mixing operation generally leads to distributions whose PMI profile is not available
analytically, we can efficiently construct numerical approximations via Monte Carlo approaches. To ensure
this, we require the following property:
Definition 7 (informal). Every distribution PXY ∈ P(X ,Y) for which we can efficiently sample (X, Y ) ∼ PXY

and numerically evaluate the densities pXY (x, y), pX(x) and pY (y) at every point (x, y) ∈ X ×Y is considered
a Bend and Mix Model (BMM).

Any distribution that satisfies this definition can be used as a basic building block for a BMM. Examples
include discrete distributions as well as multivariate normal and Student distributions. More complex
distributions, such as a mixture of discrete and continuous random variables (see discussion and example
in Appendix B), can then be constructed using bending and mixing operations:
Proposition 8. If PXY is a BMM and f and g are diffeomorphisms with numerically tractable Jacobians
(e.g., normalizing flows), then Pf(X)g(Y ) is a BMM.

Proposition 9. Consider BMMs PX1Y1 , . . . , PXKYK
. If w1, . . . , wK are positive weights, such that w1 + · · ·+

wK = 1, then the mixture distribution PX′Y ′ = w1PX1Y1 + · · ·+ wKPXKYK
is a BMM.

We prove both propositions in Appendix A.3. Note that since Gaussian mixture models are universal
approximators of smooth densities, and they belong to the BMM family, in principle one could use these
constructions to approximate any distribution. In practice, the evaluation time of PMI grows linearly with
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the number of components and can become costly for a high number of mixture components (or when large
normalizing flow architectures are used).

Unfortunately, the MI of a mixture cannot be computed naively by a weighted sum of the information shared
within the individual components. To illustrate this, we study two special cases in which constructing a
mixture decreases, as well as increases the overall MI compared to the weighted sum of the components:
Proposition 10. Consider r.v.s (Xk, Yk) such that I(Xk; Yk) <∞ for k = 1, . . . , K. Let (X ′, Y ′) be their
mixture with weights w1, . . . , wK . Then,

0 ≤ I(X ′; Y ′) ≤
K∑

k=1
wk I(Xk; Yk) + log K.

Moreover, these inequalities are tight:

1. There exists a mixture such that I(X ′; Y ′) = log K even though I(Xk; Yk) = 0 for all k.
2. There exists a mixture such that I(X ′; Y ′) = 0 even though I(Xk; Yk) > 0 for all k.

More general bounds on MI in mixture models have also been studied by Haussler & Opper (1997) and
Kolchinsky & Tracey (2017), but for completeness we include a proof in Appendix A.4.

The properties of BMMs are chosen so that we can estimate the MI using Monte Carlo approaches up to
an arbitrary accuracy, rather than relying on upper and lower bounds. We can sample T ∼ ProfXY by
sampling a data point (x, y) from the joint distribution PXY and evaluating t = PMIXY (x, y). Then, MI can
be approximated with a Monte Carlo estimate of the integral I(X; Y ) = E[T ]. Assuming I(X; Y ) <∞, the
Monte Carlo estimator of MI is guaranteed to be unbiased. However, the quality of the estimation depends
on the variance of the PMI profile and the number of Monte Carlo samples used. For example, if the variance
is infinite, the Monte Carlo estimates (even though unbiased) will not be adequate due to enormous variance
and several independent runs may be necessary to diagnose such problems. Additionally, the relative error
of the Monte Carlo approximation can be large when the number of samples is not large enough, but the
ground-truth MI is close to zero. For a more detailed discussion of Monte Carlo standard error (MCSE)
under different regularity conditions we refer to Flegal et al. (2008) and Koehler et al. (2009).

Analogously, we can estimate the PMI profile with a histogram: for a bin B ⊂ R one can introduce its
indicator function 1B and integrate E[1B(T )]. Its cumulative density function can be approximated with
an empirical sample using the expectations E[1(−∞,ak](T )] for a given increasing sequence (ak). Since the
indicator functions are bounded between 0 and 1, the Monte Carlo estimator for both quantities is unbiased.
For N samples, the standard error is bounded above by 1/

√
4N , according to the inequality of Popoviciu

(1935).

3 Case studies

In this section, we apply Bend and Mix Models to four distinct problems. In Sec. 3.1 we demonstrate how
they can be used to extend existing benchmarks of MI estimators (with an explicit benchmark constructed in
Appendix C.2). In Sec. 3.2 we show how BMMs can be used to investigate the robustness of MI estimation to
outliers and inliers. In Sec. 3.3 we apply BMMs to investigate the biases and sample efficiency of variational
estimators employing neural critics. Finally, in Sec. 3.4 we show that if the distribution PXY is known to be
well-approximated by a family of BMMs, we can provide Bayesian estimates of both MI and the PMI profile.

3.1 Novel distributions for estimator evaluation

To illustrate how BMMs can be used to create expressive benchmark tasks, we implemented a benchmark of
26 continuous distributions in TensorFlow Probability on JAX (Dillon et al., 2017; Bradbury et al., 2018)
(Appendix C.2). Additionally, in Appendix B, we consider distributions involving discrete variables. In
Fig. 2 we visualise samples from four example distributions: the X distribution is a mixture of two bivariate
normal distributions. The marginal distributions PX and PY are normal, although the joint distribution
PXY is not. The AI distribution is a mixture of six bivariate normal distributions, illustrating how expressive
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Figure 2: Samples from the example distributions. Distributions X and AI represent one-dimensional variables
X and Y . Distributions Waves and Galaxy plot two-dimensional X variable using spatial coordinates, while
one-dimensional Y variable is represented by color. The rightmost plot presents estimates according to
different mutual information algorithms using independently generated data sets with N = 5 000 points each,
compared to the ground-truth MI of the distribution (dotted line).
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Figure 3: Left: increasing the contamination level α with inlier noise distribution. Middle: increasing the
contamination level α with outlier noise distribution. Right: increasing the variance of the noisy normal
distribution for constant contamination of 20%. Outliers have less impact than inliers.

BMMs can be. The two final distributions consist of a two-dimensional X variable and a one-dimensional Y
variable, allowing us to apply more complex transformations to the X variable. The Waves distribution is
a mixture of twelve multivariate normal distributions with the X variable transformed, while the Galaxy
distribution is a mixture of two multivariate normal distributions with the X variable transformed by the
spiral diffeomorphism (Czyż et al., 2023). A detailed description of these distributions can be found in
Appendix C.1.

For each BMM we sampled ten data sets with N = 5 000 points and applied five estimators: the histogram-
based estimator (Cellucci et al., 2005; Darbellay & Vajda, 1999), the popular KSG estimator (Kraskov
et al., 2004), canonical correlation analysis (CCA; Kay (1992); Brillinger (2004)), and two neural estimators:
InfoNCE (Oord et al., 2018) and MINE (Belghazi et al., 2018) (see Appendix C.3 for hyperparameters used).
The estimates are shown in Fig. 2.

Even though problems in Fig. 2 are low-dimensional and do not encode more information than 1.5 nats, they
pose a considerable challenge for the estimators. The KSG estimator, which performs well in low-dimensional
tasks, gave the best estimate in all tasks. However, the Waves task was not solved by any estimator. The
CCA estimator, excelling at distributions that are close to multivariate normal (Czyż et al., 2023), is not able
to capture any information at all. This suggests that BMMs can provide a rich set of distributions that can
be used to test MI estimators. In Appendix C.2 we evaluate KSG, CCA and four neural estimators on the
compiled list of 26 proposed benchmark tasks. Particularly interesting are the tasks including inliers, which
we study in the next section.

3.2 Modeling inliers and outliers

In this section, we use BMMs to study the effect of inliers and outliers on MI estimation. Consider an electric
circuit or a biological system modeled as a communication channel pY |X(y | x). The researcher controls the
input variable X, which results in a distribution PX , and subsequently measures the outcome variable Y . The
mutual information I(X; Y ) is then estimated from the experimental samples (Nałęcz-Jawecki et al., 2023).
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However, every experimental system can suffer from occasional failures. We model the output of a failing
system with a noise distribution with a PDF n(y). If the probability of system failure, denoted by α, and
the distribution of noise n(y) do not depend on the input value x, the communication channel becomes a
mixture pY ′|X(y | x) = (1 − α)pY |X(y | x) + αn(y). By multiplying both sides by the density pX(x), the
distribution of the channel inputs provided by the scientist, we arrive at the mixture distribution PXY ′ with
PDF pXY ′(x, y) = (1− α)pXY (x, y) + αn(y)pX(x). If the system failure is unnoticed, one can only measure
Y ′, rather than Y . It is therefore of interest to understand how much I(X; Y ) and I(X; Y ′) can differ under
realistic assumptions on the noise n(y) and whether the standard MI estimation techniques are robust to it.
In Appendix A.4 we prove the following upper bound:
Proposition 11. Let α ∈ [0, 1] be a parameter. Consider variables X, Y and Y ′, s.t. pXY ′(x, y) =
(1− α)pXY (x, y) + αn(y)pX(x). Then, I(X; Y ′) ≤ (1− α) I(X; Y ) .

Alternatively, we can model the system as a BMM and evaluate this quantity using the Monte Carlo
approximation. For example, consider a setting with a two-dimensional input variable X and two-dimensional
output variables Y (perfect output) and Y ′ (contaminated output). As the joint density pXY we use a
multivariate normal with unit scale and correlations corr(X1, Y1) = corr(X2, Y2) = 0.8 and for the noise n(y)
we use a multivariate normal distribution with covariance σ2I2. If σ2 ≈ 1 this results in inliers, where the
noise distribution is hard to distinguish from the signal. For σ2 ≪ 1 the system failures are all close to 0,
while outliers are present for σ2 ≫ 1.

In Fig. 3 we present the results of three experiments: in the first two, we changed the contamination level
α ∈ [0, 0.5] for σ2 = 1 (inlier noise) and σ2 = 52 (outlier noise) respectively. In the third experiment, we fixed
α = 0.2 and varied σ2 ∈

[
2−7, 28]. We see that the inlier noise results in a slightly faster decrease of mutual

information, while the outlier noise decreases almost linearly following the upper bound (1 − α)I(X; Y ).
Interestingly, in this low-dimensional setting, the KSG, MINE, and InfoNCE estimators reliably estimate
the mutual information I(X; Y ′), which can significantly differ from I(X; Y ). Although CCA would be the
preferred method to estimate I(X; Y ) without any noise in this linear setting (Czyż et al., 2023), even a small
number of outliers (α = 5%) can result in unreliable estimates.

3.3 Variational estimators and the PMI profile

Variational estimators of mutual information are frequently used in self-supervised learning (Oord et al., 2018)
and optimize a critic function f : X × Y → R to obtain an approximate lower bound on mutual information.
For example, Belghazi et al. (2018) use the Donsker–Varadhan loss, IDV(f) = EPXY

[f ]− logEPX ⊗PY
[exp f ],

which is a lower bound on I(X; Y ) for any bounded function f . This lower bound becomes tight when
f = PMIXY + c where c is any real number, i.e., IDV(f) = I(X; Y ). Hence, one can approach MI estimation
by optimizing IDV over a flexible family of functions f , usually parameterized by a neural network. Other
examples include the NWJ estimator (Nguyen et al., 2007), which becomes tight for f = PMIXY + 1, and
InfoNCE (Oord et al., 2018), which has a functional degree of freedom, i.e., f(x, y) = PMIXY (x, y) + c(x)
for a function c. We provide more details on these methods in Appendix C.4. Typically, these losses are
interpreted as approximate lower bounds on MI and connect f to the PMI function (Poole et al., 2019; Song
& Ermon, 2020) in the infinite sample limit. In practice, however, only a finite sample is available and the
critic f is modeled via some parametric family (e.g., a neural network), which has to be learned from the data
available. Since the ideal critic function of a neural estimator is an approximation of PMI, we investigate how
well the PMI function can be learned by the previously described estimators, as well as investigate how they
behave under misspecification.

Critics and the PMI function We simulated N = 5 000 data points from a mixture of four bivariate
normal distributions (Fig. 4) with I(X; Y ) = 0.36 and fitted the neural critics (see Appendix C) to half
of the data, retaining the latter half as the test set, on which the final estimates were obtained, yielding
INWJ = 0.33, IDV = 0.32, INCE = 0.35. This (minor) difference can be attributed to the learned critic not
matching the true PMI (up to the required constants), estimation error due to evaluation on a finite batch,
or both. In Fig. 4 we plot the PMI function and the optimized critics. As the Donsker–Varadhan estimator
estimates PMI only up to an additive constant, we normalized the critic and the PMI plots to have zero mean.
Analogously, we removed the functional degree of freedom c(x) from the InfoNCE estimator by removing

7



Published in Transactions on Machine Learning Research (01/2025)

4 2 0 2 4

4

2

0

2

4

PDF fNWJ 1 fDV mean fNCE meany

3 2 1 0 1 2

PMI profile
fNWJ 1 profile

PMI PMI mean PMI meany

3 2 1 0 1 2

PMI profile (shifted)
fDV profile (shifted)

Figure 4: Left: PDF of the considered distribution. Middle: neural critic and PMI values. Right: normalized
neural critic and PMI profiles.

16 64 256 1024 4096
Number of points

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
e

Unbiased critic

16 64 256 1024 4096
Number of points

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
e

Constant bias

16 64 256 1024 4096
Number of points

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
e

Functional bias

16 64 256 1024 4096
Number of points

10

20

Es
tim

at
e

Unbiased critic, high dimensions
Estimator

DV
InfoNCE
MC
NWJ

Figure 5: Estimation of mutual information using a function approximating PMI as a function of sample
size for Monte Carlo (MC), InfoNCE, Donsker-Varadhan and NWJ losses. From left to right: true PMI
function from Fig. 4 is used, a constant bias is added, a functional bias is added. The rightmost plot: true
PMI function for a different, high-dimensional problem is used.

the mean calculated along the y dimension. Overall we saw a mismatch, suggesting that neural critics do
not capture the PMI function of the distribution well. However, we can compare the PMI profile with the
histogram of the values predicted by the critic in Fig. 4 (shifting the PMI profile and the histogram to have
mean 0 for the Donsker–Varadhan estimator; for InfoNCE it is not possible to compare the PMI profile
with the critic values due to the functional degree of freedom c(x)). For both NWJ and DV, we see little
discrepancy between the (shifted) PMI profile and learned values. This suggests that although the neural
critics may not learn the PMI function properly in regions with low density, the PMI profile (and, hence, the
MI) can still be approximated well.

Robustness to misspecification of the critic In the next experiment (Fig. 5), we evaluated IDV, INWJ,
IInfoNCE, and the simple Monte Carlo estimator (MC) for increasing sample size N where we provided them
with an “oracle” critic f , which we varied as follows: f(x, y)− PMIXY (x, y) ∈ {0, c, sin(x2)}. Using a perfect
critic, f = PMIXY , we saw that all estimators performed well in this problem. When a constant bias was
added, f = PMIXY + c, the Monte Carlo and NWJ estimators became biased. Finally, InfoNCE was the
only unbiased estimator when a functional degree of freedom was added, f(x, y) = PMIXY (x, y) + sin(x2),
confirming the known theoretical limitations of the estimators.

Increasing the Dimensionality In low dimensions variational approximations perform comparably to the
Monte Carlo estimator when the correct critic function is used, and are more robust to misspecification due
to additional degrees of freedom. However, this additional robustness results in a bias in higher dimensions
(Fig. 5, right panel). We simulated a data set using a multivariate normal distribution with 25 strongly
interacting components, corr(Xi, Yi) = 0.8, which results in I(X; Y ) ≈ 12.8. Although the Monte Carlo
estimator and NWJ estimator (which are not robust to additional degrees of freedom) provided estimates
close to the ground-truth (with Monte Carlo slightly outperforming NWJ in both bias and variance), Donsker–
Varadhan estimator resulted in a strong positive bias for small batch sizes and InfoNCE had a negative bias
with very low variance which has been observed in previous studies and has been related to the O(log N)
behavior of this approximate lower bound (Oord et al., 2018; Song & Ermon, 2020).
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is available, can be more accurate than generic black-box alternatives. We plot the posterior mean and an
interval created using 10th and 90th percentile of the posterior distribution. Ground truth is represented
with a dashed line.
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Figure 7: Top row: data generated according to the AI distribution, data generated according to a single
MCMC sample, posterior distribution of the mutual information (red line denotes posterior mean and black
line denotes the ground-truth value), and the posterior distribution of the PMI profile (black curve denotes
the ground-truth value). For a well-specified model the posterior reflects epistemic uncertainty well. Bottom
row: experiment with a misspecified model fitted to the Galaxy distribution. Misspecification results in biased
inferences (two right-most panels) with miscalibrated posterior, although it can be diagnosed by comparing
true data with the data generated from the model.

3.4 Model-based mutual information estimation

As the final application of BMMs, we investigate the problem of Bayesian model-based MI estimation.

The general idea Consider a family of distributions {Pθ | θ ∈ Θ}, such that for every value of the parameter
vector θ, the mutual information contained in Pθ is known. That is, for (Xθ, Yθ) ∼ Pθ we can compute
I(Xθ; Yθ), which we denote by I(Pθ). If the observed data are modeled as i.i.d. r.v.s (Xi, Yi) ∼ Pθ, one can
estimate θ and use I(Pθ) as an estimate of the mutual information. For example, Brillinger (2004) interprets
the CCA-based MI estimator of Kay (1992) as the plug-in estimator I(Pθ̂), where θ̂ is the maximum likelihood
estimate (MLE) in the model in which Pθ is a multivariate normal distribution. For discrete data it is
well-known the plug-in estimator is biased (Goebel et al., 2005; Suzuki, 2016; Bu et al., 2018; Marx & Vreeken,
2019) and one particular way of regularizing the estimate is to approximate the Bayesian posterior over the
MI (Hutter, 2001). We note that one can construct a Bayesian alternative for the CCA-based estimator by
using a prior on the covariance matrix (Lewandowski et al., 2009) and Markov chain Monte Carlo (Gelman
et al., 2013, Ch. 11) to provide samples θ1, . . . , θM from the posterior P (θ | X1, Y1, . . . , XN , YN ) and construct
a sample-based approximation to the posterior on mutual information, I(Pθ1), . . . , I(PθM

).
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More generally, consider a statistical model {Pθ | θ ∈ Θ} such that all Pθ are BMMs, and a prior P (θ). One
can then apply Bayesian inference algorithms to construct a sample θ1, . . . , θM from the posterior. Although
the exact values for I(Pθ1), . . . , I(PθM

) are not available, they can be approximated as in Sec. 2. Hence,
we can construct an approximate posterior distribution and quantify epistemic uncertainty of the estimate
(Fig. 7). Since BMMs include both mixture models and normalizing flows, this approach could, in principle,
be used as a general technique for building model-based mutual information estimators, where the generative
model can be constructed using domain knowledge. Moreover, this is the first Bayesian estimator of the PMI
profile: as all distributions Pθm are BMMs, one can construct M histograms (or CDFs) approximating the
profile.

Proof of concept To illustrate this approach we implemented a sparse Gaussian mixture model (see
Appendix C.5) in NumPyro (Phan et al., 2019) and used the NUTS sampler (Hoffman & Gelman, 2014)
to obtain the Bayesian posterior for selected low-dimensional problems from the proposed benchmark (see
Table 2 in Appendix C.5.2). We visualise the predictions for four distributions in Fig. 6: we stress that
other methods can only provide a single point estimate (for each given data set), while BMMs can provide
uncertainty quantification in the form of posterior distribution, visualised by credible intervals. Interestingly,
even for low-dimensional problems where KSG has been considered state-of-the-art (Czyż et al., 2023), the
BMM-based estimator provided better estimates.

On the role of assumptions All parametric statistical methods rely on assumptions (Gelman et al., 2020,
Sec. 2). In particular, Bayesian inference can result in unreliable inferences when the model is misspecified,
i.e., the true data-generating process PXY does not belong to the assumed family Pθ (Watson & Holmes,
2016). To illustrate the role of the assumptions, we obtained a Bayesian posterior conditioned on 500 data
points from the AI and Galaxy distributions (see Fig. 7). We see that the for the AI distribution, the posterior
is concentrated around the ground-truth mutual information value and the ground-truth PMI profile is
well-approximated by the posterior samples.

The misspecification in the Galaxy distribution can be immediately diagnosed via posterior predictive
checking (Gelman et al., 2013, Ch. 6): in Fig. 7 we see that a data sample simulated from the model looks
substantially different from the observed data, meaning that the model did not capture the distribution
well (cf. Appendix C.5). This provides a clear indication that the estimates should not be trusted: most of
the probability mass of the Bayesian posterior is far from the ground-truth mutual information. Similarly,
the posterior on the PMI profile is biased. We therefore recommend using model-checking techniques such
as posterior predictive checks and discriminator-based validation (Sankaran & Holmes, 2023, Sec. 4) to
understand the deficiencies of the model. To mitigate the risk of overfitting, which can bias the model (see
Appendix C.5), we recommend cross-validation (Piironen & Vehtari, 2017).

In summary, although BMMs are not generic estimators applicable to problems without available domain
knowledge, in some situations, principled Bayesian modeling can be beneficial to obtain better estimates
along with uncertainty quantification.

4 Discussion

In this article, we have studied pointwise mutual information profiles (PMI profiles), determining them
analytically for multivariate normal distributions (Theorem 4), and proposed the family of Bend and
Mix Models (BMMs), which include multivariate normal and Student distributions, mixture models and
normalizing flows, for which the PMI profile can be approximated using Monte Carlo methods. We showed
how BMMs can be used to provide novel benchmark tasks to test MI estimators and calculate MI transmitted
through a communication channel in the presence of inliers and outliers (which can be used in the experimental
design in electrical and biological sciences). BMMs allowed us to study how well neural critics approximate
PMI profiles. Finally, we showed how Bayesian estimates of MI between continuous r.v.s can be performed
using BMMs; additionally, the proposed method estimates the PMI profiles. Although this approach is not
universal, we find it suitable for problems with precise domain knowledge available (which can be used to
construct the generative distribution Pθ and provide the prior P (θ)) and in which uncertainty quantification
is desired.
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Limitations and further research Generalized PMI profiles (see Appendix A.5) allow one to provide
a wide family of invariants, which can be related to f -divergences (Nowozin et al., 2016). We leave the
exploration of potential ramifications of this generalization to future work.

Although in Sec. 3.4 we propose BMMs as a basis for model-based Bayesian inference of mutual information,
model misspecification (Watson & Holmes, 2016) as well as underfitting and overfitting can bias inference. We
therefore recommend, as usual in Bayesian statistics, to validate the model (Gelman et al., 2020). Overfitting
and model misspecification may be more difficult to detect especially in high-dimensional situations or when
more expressive models are constructed, for example using normalizing flows, as Bayesian inference for models
involving neural networks is known to be challenging (Izmailov et al., 2021). We hypothesise that tempering
the likelihood (Grünwald & van Ommen, 2017) or employing alternative inference schemes (Lyddon et al.,
2018) may improve robustness to model misspecification, although we leave this topic to future work.

In Sec. 3.2, we study a channel in which the probability of failure α is constant and independent of the input
variable X. However, in both biological and electric systems this assumption does not necessarily hold: for
large values of X the system may result in an outlier more easily. Unfortunately, cases in which α depends
on X are not easily modeled by BMMs. Moreover, BMMs do not allow modeling additive noise. Although
adding Gaussian noise can be viewed as a continuous mixture, marginalizing the latent variable to obtain an
analytic form of log pY ′(y) is not possible. Employing unbiased estimators, such as SUMO (Luo et al., 2020),
may hence become an interesting direction for future research.

More generally, replacing analytical formulae with accurate numerical estimates has the potential to extend
the family of distributions with tractable MI beyond BMMs. In Sec. 2.2 we construct BMMs in a bottom-up
fashion, where simple distributions are transformed and mixed together to obtain more expressive distributions.
The introduced operations allow us to evaluate the probability densities and directly sample from the joint
distribution, resulting in a Monte Carlo estimator for mutual information.

Alternatively, one could imagine a top-down approach, where for a given distribution PXY one derives a family
of unbiased log-density estimators (Luo et al., 2020). Namely, let LXY (x, y) be a family of estimators indexed
by (x, y) ∈ X×Y , such that E[LXY (x, y)] = log pXY (x, y) for all points (x, y) in the support of PXY . Similarly,
let LX(x) and LY (y) be families of estimators such that E[LX(x)] = log pX(x) and E[LY (y)] = log pY (y). We
can then construct an unbiased estimator of the PMI function, E[LXY (x, y)−LX(x)−LY (y)] = PMIXY (x, y),
and aim to approximate the PMI profile and the ground-truth MI via nested Monte Carlo sampling (Rainforth
et al., 2018). However, the feasability of this approach relies on construction of the required families LXY ,
LX and LY , as well as on ensuring that the variance of the resulting estimate is sufficiently small.

Similarly, Monte Carlo integration of the PMI function with respect to the PXY measure can, in principle, be
replaced by other integration methods, such as Markov chain Monte Carlo (Brooks et al., 2011) or sequential
Monte Carlo samplers (Del Moral et al., 2006). These integration methods could allow one to integrate
the PMIXY function for distributions in which the log-density functions log pXY , log pX and log pY (or
their unbiased estimates) are available, but Monte Carlo sampling from PXY is not possible. However, this
approach relies on ensuring whether the employed integration method is accurate enough, e.g., by controlling
the convergence diagnostics and the effective sample size (Vehtari et al., 2021; Vats & Knudson, 2021).

We hope that our analysis of pointwise mutual information profiles provides a fresh perspective on mutual
information estimators, and that BMMs will prove to be a useful tool for benchmark design and will renew
interest in Bayesian approaches to mutual information estimation.

Reproducibility To facilitate reproducibility, the experiments have been implemented as Snakemake
workflows (Mölder et al., 2021). The code available at https://github.com/cbg-ethz/bmi can be used to
reproduce all experimental results and figures.
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A Technical results

In this section we formalize the results described in Sec. 2. In Sec. A.1 we precisely define the family of
P(X ,Y) distributions, which is then used to prove that the PMI profile is invariant to diffeomorphisms. In
Sec. A.2 we derive the PMI profiles in the cases where they are analytically tractable. Then, in Sec. A.3 we
formalize the properties of Bend and Mix Models. In Sec. A.4 we derive the bounds on mutual information in
finite mixture models. Finally, in Sec. A.5 we provide a measure-theoretic analysis of the PMI profile, which
offers more general invariance results, though it requires more complex mathematical machinery.

A.1 Proof of the invariance of the pointwise mutual information profile

In this section, we consider random variables valued in smooth manifolds without boundary (Lee, 2012, Ch. 1)
equipped with their Borel σ-algebras and given reference measures. In particular, the results in Section 2
apply to both discrete and continuous r.v.s, as the considered manifolds include open subsets of the Euclidean
space Rn with the Lebesgue measure as well as zero-dimensional discrete spaces {1, . . . , m} with the counting
measure.

For a given pair of smooth manifolds X and Y, we equip their product X × Y with the product measure
and define the set P(X ,Y) to consist of all probability measures PXY on X × Y such that the joint measure
PXY , as well as the marginal measures PX(A) = PXY (A × Y) and PY (B) = PXY (X × B), have smooth
and positive PDFs (or PMFs) pXY , pX and pY with respect to the reference measures on X × Y, X and Y,
respectively. In particular, the PMI function (Definition 1) exists (without the need to define expressions of
the form log 0/0) and is a smooth function from the manifold X ×Y to the set of real numbers, R. Note that
as smooth functions are measurable, the PMI profile, introduced in Definition 2, indeed exists.

More generally, it is possible to work with standard Borel spaces (instead of smooth manifolds) and prove
invariance of the profile with respect to arbitrary continuous injective mappings (instead of diffeomorphisms).
We discuss this approach in Appendix A.5.

Recall a well-known result (Kraskov et al., 2004, Appendix):

Lemma 12 (Invariance of PMI). Let X ′ = f(X) and Y ′ = g(Y ), where f and g are diffeomorphisms. Then
for every x′ and y′ we have

PMIX′Y ′(x′, y′) = PMIXY (x, y),

where x = f−1(x′) and y = g−1(y′).

Proof. From
pX′Y ′(x′, y′) = pXY (x, y)

∣∣det D
(
f−1 × g−1) (x′, y′)

∣∣
and analogous quantities we conclude that pX′Y ′ as well as pX′ and pY ′ are smooth and everywhere positive
functions, so that PMIX′Y ′ is well-defined. As D(f−1 × g−1)(x′, y′) is a block matrix with Df−1(x′) and
Dg−1(y′) blocks on the diagonal and other blocks zero, we have det D(f−1 × g−1)(x′, y′) = det Df−1(x′) ·
det Dg−1(y′).

Now we can prove invariance of the PMI profile:

Theorem 3. Let PXY ∈ P(X ,Y) and f : X → X and g : Y → Y be diffeomorphisms. Then for X ′ = f(X)
and Y ′ = g(Y ) it holds that PX′Y ′ ∈ P(X ,Y) and ProfXY = ProfX′Y ′ .

Proof. From the proof of Lemma 12 we conclude that PX′Y ′ ∈ P(X ,Y). Then, we note the profile is the
pushforward measure

ProfXY := (PMIXY )#PXY .
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Now let B ⊆ R be any set in the Borel σ-algebra and 1B be its characteristic function. Using the change of
variables formula for pushforward measure and invariance of PMI:

ProfX′Y ′(B) =
∫

1B(t) d((PMIX′Y ′)#PX′Y ′)(t)

=
∫

1B (PMIX′Y ′(x′, y′)) dPX′Y ′(x′, y′)

=
∫

1B (PMIX′Y ′(f(x), g(y))) dPXY (x, y)

=
∫

1B (PMIXY (x, y)) dPXY (x, y)

= ProfXY (B)

Remark 13. The above proof can be understood also in the following manner. Lemma 12 allows us to
express the PMI function of the transformed variables as the composition PMIX′Y ′ = PMIXY ◦ (f−1 × g−1).
As ProfX′Y ′ = (PMIX′Y ′)♯ PX′Y ′ and PX′Y ′ = (f × g)♯PXY , the f × g cancels out with its inverse:

ProfX′Y ′ =
(
PMIXY ◦ (f−1 × g−1)

)
♯
(f × g)♯PXY

=
(
PMIXY ◦ (f−1 × g−1) ◦ (f × g)

)
♯
PXY

= (PMIXY ◦ identity)♯ PXY

= (PMIXY )♯PXY = ProfXY .

This perspective allows one to generalize PMI profile invariance to more general mappings, such as continuous
injective functions. We prove a general result in Appendix A.5.

A.2 Derivations of pointwise mutual information profiles

The following result shows that the distributions from the class P(X ,Y) with zero mutual information have
the same profile:
Proposition 5. Let X and Y be r.v.s with joint distribution PXY ∈ P(X ,Y). Then, I(X; Y ) = 0 if and
only if ProfXY = δ0 is the Dirac measure with a single atom at 0.

Proof. If ProfXY = δ0, then the expected value is I(X; Y ) = 0. To prove the converse, if I(X; Y ) = 0, then X
and Y are independent. As the probability density functions of distributions in the P(X ,Y) class are smooth,
we have pXY (x, y) = pX(x)pY (y) at every point (x, y) ∈ X × Y and PMIXY (x, y) = 0 everywhere.

The following result characterizes the PMI profiles for discrete r.v.s:
Proposition 6. If X and Y are discrete r.v.s with PXY ∈ P(X ,Y), then the PMI profile is discrete:

ProfXY =
∑
x∈X

∑
y∈Y

pXY (x, y) δPMIXY (x,y).

Proof. The measure PXY is discrete and given by

PXY =
∑
x∈X

∑
y∈Y

pXY (x, y) δ(x,y),

so its pushforward by the PMIXY function has the form

ProfXY = (PMIXY )#PXY =
∑
x∈X

∑
y∈Y

pXY (x, y) δPMIXY (x,y).
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The next results describe the properties of PMI profiles associated with multivariate normal variables:
Theorem 4. Let X and Y be r.v.s such that the joint distribution PXY ∈ P(Rm,Rn) is multivariate normal.
If k = min(m, n) and ρ1, ρ2, . . . , ρk are canonical correlations between X and Y , then the profile ProfXY is a
generalized χ2 distribution, namely the distribution of the variable

T = I(X; Y ) +
k∑

i=1

ρi

2 (Qi −Q′
i),

where {Qi, Q′
i}i=1,...,kare independent and identically distributed (i.i.d.) variables drawn from the χ2

1 distribu-
tion. In particular, ProfXY is symmetric around its median, which coincides with the mean

I(X; Y ) = −1
2

k∑
i=1

log
(
1− ρ2

i

)
,

and all moments of this distribution exist. Its variance is equal to Var[T ] = ρ2
1 + · · ·+ ρ2

k.

Proof. Without loss of generality assume that m ≤ n. As the PMI profile is invariant to diffeomorphisms
(Theorem 3), we can also assume that variables X and Y have been whitened by applying canonical correlation
analysis (Jendoubi & Strimmer, 2019), that is E[X] = 0, E[Y ] = 0 and the covariance matrix is given by

Σ =
(

Im ΣXY

ΣT
XY In

)
=

Im R 0
R Im 0
0 0 In−m


where

ΣXY =
(
R 0m×(n−m)

)
is an m×n matrix with the last n−m columns being zero vectors and R = diag(ρ1, . . . , ρm) being the m×m
diagonal matrix representing canonical correlations.

We can write the inverse in the block form

Σ−1 =
(

ΛX ΛXY

ΛT
XY ΛY

)
=

ΛX R̃ 0
R̃ ΛX 0
0 0 In−m

 ,

where the blocks have been calculated using the formula from Petersen & Pedersen (2012, Sec. 9.1):

ΛX = (Im − ΣXY ΣT
XY )−1 = diag (u1, . . . , um)

ΛY = (In − ΣT
XY ΣXY ) = diag (u1, . . . , um, 1, . . . , 1)

ΛXY = −ΣXY ΛY =
(
R̃ 0m×(n−m)

)
,

where R̃ = −diag (u1ρ1, . . . , umρm) and ui = 1/
(
1− ρ2

i

)
.

We define a quadratic form

s(x, y) = xT ΛXx + yT ΛY y + 2xT ΛXY y

=
m∑

i=1
ui

(
x2

i + y2
i − 2ρixiyi

)
+

n∑
j=m+1

y2
j

which can be used to calculate log-PDFs:

log pXY (x, y) = −1
2s(x, y)− 1

2 log det Σ− m + n

2 log 2π,

log pX(x) = −1
2xT x− m

2 log 2π,

log pY (y) = −1
2yT y − n

2 log 2π.
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Hence,

PMIXY (x, y) = xT x + yT y − s(x, y)
2 − 1

2 log det Σ.

We recognize the last summand as

I(X; Y ) = 1
2 log

(
det Im · det In

det Σ

)
= −1

2 log det Σ.

Define quadratic form

q(x, y) = 2
(
PMIXY (x, y)− I(X; Y )

)
= xT x + yT y − s(x, y)

=
m∑

i=1

(
(1− ui)

(
x2

i + y2
i

)
+ 2ρiuixiyi

)
,

which has a corresponding matrix

Q =

K F 0
F K 0
0 0 0

 ,

where
K = diag(1− u1, . . . , 1− um)

and
F = diag(ρ1u1, . . . , ρmum).

We are interested in the distribution of

q(X, Y ) =
(
XT Y T

)
Q

(
X
Y

)
,

where (X, Y ) ∼ N (0, Σ).

Imhof (1961) presents a general approach to evaluating the distributions of such quadratic forms. Consider a
r.v.

Z =

η
ϵ
ξ

 ∼ N (0, Im+n)

which is split into blocks of sizes m, m and n−m. If we construct a linear transformation A such that

(
X
Y

)
= A

η
ϵ
ξ

 ,

then the distribution of q(X, Y ) is the distribution of

ZT
(
AT QA

)
Z, Z ∼ N (0, Im+n).

We can construct A as

A =

 P− P+ 0
−P− P+ 0

0 0 In−m


where

P− = diag
(√

1− ρ1

2 , · · · ,

√
1− ρm

2

)
, P+ = diag

(√
1 + ρ1

2 , · · · ,

√
1 + ρm

2

)
.
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We calculate

AAT =

P 2
− + P 2

+ P 2
+ − P 2

− 0
P 2

+ − P 2
− P 2

− + P 2
+ 0

0 0 In−m

 =

Im R 0
R Im 0
0 0 In−m

 = Σ

and

AT QA =

2P 2
−(K − F ) 0 0

0 2P 2
+(K + F ) 0

0 0 0

 ,

where
2P 2

−(K − F ) = diag (−ρ1, . . . ,−ρm) , 2P 2
+(K + F ) = diag (ρ1, . . . , ρm) .

Hence, the distribution of q(X, Y ) is the same as the distribution of

m∑
i=1

ρi(−η2
i + ϵ2

i ) +
n−m∑
j=1

0 · ξ2
j ,

where (η,ϵ, ξ) ∼ N (0, Im+n). To summarize, let Q1, . . . , Qm, Q′
1, . . . , Q′

m be i.i.d. random variables distributed
according to the χ2

1 distribution. The quadratic form q(X, Y ) has the same distribution as
m∑

i=1
ρi(Qi −Q′

i),

which can also be written as

q(X, Y ) ∼
m∑

i=1

(
ρiχ

2
1 − ρiχ

2
1
)

.

Note that this distribution is symmetric around 0. We can now reconstruct the profile from q(X, Y ):

ProfXY = I(X; Y ) +
m∑

i=1

(ρi

2 χ2
1 −

ρi

2 χ2
1

)
,

which is symmetric around I(X; Y ) and, in agreement with Proposition 5, degenerates to the atomic
distribution δ0 if and only if I(X; Y ) = 0, which is equivalent to ρi = 0 for all i.

As a linear combination of independent χ2
1 variables, the profile has all finite moments. Using the fact that the

variance of χ2
1 distribution is 2, and quadratic scaling of variance, each term has variance 2 ·(ρi/2)2 = ρ2

i /2. As
variances of independent variables are additive, we can sum up all the 2m terms to obtain ρ2

1 + · · ·+ ρ2
m.

Proposition 14. For a multivariate normal distribution with fixed mutual information, the variance of the
PMI profile is maximized when ρ2

1 = ρ2
2 = . . . = ρ2

m.

Proof. Let ai = 1− ρ2
i . To maximize the variance we equivalently have to minimize a1 + . . . + am preserving

given constraint on mutual information and ai ∈ (0, 1].

The constraint on mutual information takes the form

I(X; Y ) = −1
2

m∑
i=1

log
(
1− ρ2

i

)
= −1

2 log (a1 · · · am) .

Hence, the product a1 · · · am has to be constant. Denote this constant by Am for A ∈ (0, 1] as well. Let
a1, . . . , am be such that a1 · · · am = Am and ai ∈ (0, 1]. From the inequality between arithmetic and geometric
means we note that

a1 + . . . + am

m
≥ m
√

a1 · · · am = A,

where the equality holds only if a1 = · · · = am = A. Hence, this is the unique minimum under the constraints
provided. It follows that ρ2

1 = · · · = ρ2
m.
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Corollary 15. For a multivariate normal distribution with fixed mutual information and m canonical
correlations, the variance of the PMI profile does not exceed

V = m (1− exp (−2I(X; Y ) /m)) .

Proof. The variance is maximized when ρ2
1 = · · · = ρ2

m. Writing ρ2 for the common value, we have

ρ2 = 1− exp (−2I(X; Y ) /m)

and
V = mρ2 = m (1− exp (−2I(X; Y ) /m)) .

The mutual information can also be written as function of variance

I(X; Y ) = −1
2m log

(
1− ρ2) = −1

2m log(1− V/m).

Proposition 16. For a multivariate normal distribution with fixed non-zero mutual information the variance
of the PMI profile is minimized when ρi ̸= 0 for exactly one i.

Proof. Let ai ∈ (0, 1] be any numbers. We have

(1− a1)(1− a2) ≥ 0

which is equivalent to
1 + a1a2 ≥ a1 + a2

where the equality holds if and only if a1 = 1 or a2 = 1.

Using the principle of mathematical induction one can prove a more general inequality:

a1a2 · · · am + (m− 1) = 1 + a1(a2 · · · am) + (m− 2)
≥ a1 +

(
a2 · · · am + (m− 2)

)
≥ a1 + a2 +

(
a3 · · · am + (m− 3)

)
...
≥ a1 + a2 + · · ·+ am.

Let us analyze when the equality can hold. To obtain equality in the first step, we need a1 = 1 or a2 · · · am = 1,
which, given the constraints ai ∈ (0, 1] would mean that a2 = · · · = am = 1. Reasoning inductively, one
proves that equality holds only when at least m− 1 among these numbers are 1.

Now define ai = 1− ρ2
i and note that we are solving a maximization problem ai ∈ (0, 1] under a constraint

a1 · · · am = P.

Using the argument above we note that all the maxima for the above problem are permutations of the
sequence P, 1, 1, . . . , 1. This proves that at most one ρ2

i ̸= 0. Hence, we have at most one ρi ̸= 0.

A.3 Constructing new Bend and Mix Models

In this section we prove Proposition 8 and Proposition 9.
Proposition 8. If PXY is a BMM and f and g are diffeomorphisms with numerically tractable Jacobians
(e.g., normalizing flows), then Pf(X)g(Y ) is a BMM.
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Proof. From the proof of Lemma 12 and the assumption of tractability of the Jacobians of f and g we obtain
the tractability of the formulae for the densities pf(X)g(Y ), pf(X) and pg(Y ). Sampling (f(X), g(Y )) amounts
to sampling (X, Y ) and then transforming the sample using f and g.

Proposition 9. Consider BMMs PX1Y1 , . . . , PXKYK
. If w1, . . . , wK are positive weights, such that w1 + · · ·+

wK = 1, then the mixture distribution PX′Y ′ = w1PX1Y1 + · · ·+ wKPXKYK
is a BMM.

Proof. We can evaluate the densities pX′Y ′(x, y), pX′(x) and pY ′(y) of the mixture distribution using the
weighted sums of pXkYk

(x, y), pXk
(x) and pYk

(y), respectively. To sample (X ′, Y ′) ∼ PX′Y ′ from the
mixture distribution we can sample an auxiliary variable Z ∼ Categorical(K; w1, . . . , wK). Then, we have(
(X ′, Y ′) | Z = k

)
= (Xk, Yk), so that we can sample from PXkYk

.

A.4 Mutual information in finite mixtures

In this section we discuss the counterintuitive properties of mutual information in mixture models. We start
with the proof of the failing channel inequality:
Proposition 11. Let α ∈ [0, 1] be a parameter. Consider variables X, Y and Y ′, s.t. pXY ′(x, y) =
(1− α)pXY (x, y) + αn(y)pX(x). Then, I(X; Y ′) ≤ (1− α) I(X; Y ) .

Proof. Let Z ∼ Bernoulli(1− α) be an auxiliary variable. We have (X, Y ′) | (Z = 1) ∼ PXY and (X, Y ′) |
(Z = 0) ∼ PX ⊗NY .

From the data processing inequality and the chain rule we conclude that

I(X; Y ′) ≤ I(X; Y ′, Z) = I(X; Z) + I(X; Y ′ | Z) .

Now note that X and Z are independent, so I(X; Z) = 0.

Hence,

I(X; Y ′) ≤ I(X; Y ′ | Z)
= αDKL

(
PXY ′|Z=0 ∥ PX|Z=0 ⊗ PY ′|Z=0

)
+ (1− α)DKL

(
PXY ′|Z=1 ∥ PX|Z=1 ⊗ PY ′|Z=1

)
= αDKL

(
PXY ′|Z=0 ∥ PX ⊗NY

)
+ (1− α)DKL (PXY ∥ PX ⊗ PY )

= αDKL (PX ⊗NY ∥ PX ⊗NY ) + (1− α)I(X; Y )
= (1− α)I(X; Y ) .

In this example, mixing the signal with a noise component, not encoding any information, decreased the
information. However, mixing with independent noise components can also increase mutual information.
Example 17. Let A = (0, 1) and B = (1, 2) be two disjoint intervals of unit length. We define two pairs of
random variables:

(X1, Y1) ∼ Uniform(A×A), (X2, Y2) ∼ Uniform(B ×B).

Note that
I(X1; Y1) = I(X2; Y2) = 0.

If (X, Y ) ∼ 0.5PX1Y1 + 0.5PX2Y2 is distributed according to a mixture, we have

pXY (x, y) = 1
21[(x, y) ∈ A×A ∪B ×B]

and
pX(x) = 1

21[x ∈ A ∪B], pY (y) = 1
21[x ∈ A ∪B].
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Figure 8: Mixing two distributions with zero MI can result in a mixture distribution with MI equal to one
bit. Mixing two one-bit distributions can result in a mixture distribution with no mutual information.

Hence,
PMIXY (x, y) = log 2 · 1[(x, y) ∈ A×A ∪B ×B]

and
I(X; Y ) = 1

2 log 2 + 1
2 log 2 = log 2.

Mixing two distributions with one bit of information each, can however result in independent random variables:
Example 18. Recall the distribution constructed as above:

pXY (x, y) = 1
21[(x, y) ∈ A×A ∪B ×B]

and a symmetric one
pUV (x, y) = 1

21[(x, y) ∈ A×B ∪B ×A].

We have
I(X; Y ) = I(U ; V ) = log 2.

On the other hand, the mixture distribution

(Z, T ) ∼ 0.5PXY + 0.5PUV

has zero mutual information, I(Z; T ) = 0, as

pZT (x, y) = 1
41[(x, y) ∈ (A ∪B)× (A ∪B)]

= 1
21[x ∈ A ∪B] · 1

21[y ∈ A ∪B]

= pZ(x) · pT (y).

Both examples have been visualised in Fig. 8. Note that similarly counterintuitive examples can be constructed
using BMMs by using mixtures of multivariate normal distributions.

This demonstrates that mixtures can create and destroy information. There is however an upper bound on
the amount of information mixtures can create (see also Haussler & Opper (1997) and Kolchinsky & Tracey
(2017)):
Proposition 10. Consider r.v.s (Xk, Yk) such that I(Xk; Yk) <∞ for k = 1, . . . , K. Let (X ′, Y ′) be their
mixture with weights w1, . . . , wK . Then,

0 ≤ I(X ′; Y ′) ≤
K∑

k=1
wk I(Xk; Yk) + log K.

Moreover, these inequalities are tight:
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1. There exists a mixture such that I(X ′; Y ′) = log K even though I(Xk; Yk) = 0 for all k.
2. There exists a mixture such that I(X ′; Y ′) = 0 even though I(Xk; Yk) > 0 for all k.

Proof. The examples provide explicit constructions of distributions with the specified properties. To prove
the upper bound, consider a variable Z ∼ Categorical(K; w1, . . . , wK). The random variables corresponding
to the mixture distribution, (X ′, Y ′), have conditional distributions

(X ′, Y ′) | Z = k ∼ PXkYk
.

From the data processing inequality and chain rule we have

I(X ′; Y ′) ≤ I(X ′; Y ′, Z) = I(X ′; Z) + I(X ′; Y ′ | Z) .

As Z is discrete, the first summand, I(X ′; Z), is bounded from above by the entropy H(Z) (Polyanskiy &
Wu, 2022, Th. 3.4e), which cannot exceed log K (Polyanskiy & Wu, 2022, Th. 1.4b). The second summand
can be written as

I(X ′; Y ′ | Z) =
K∑

k=1
P (Z = k) DKL

(
PX′Y ′|Z=k ∥ PX′|Z=k ⊗ PY ′|Z=k

)
=

K∑
k=1

wk DKL (PXkYk
∥ PXk

⊗ PYk
) =

K∑
k=1

wk I(Xk; Yk) .

A.5 Divergence profiles

In this section we show how to define the PMI profile in a more general setting of a divergence profile and
prove a general invariance result (Theorem 19). The main ideas stay similar to the proof of Theorem 3.

We consider a standard Borel space M equipped with two probability measures, P and Q, such that P ≪ Q.
For example, if one analyses the mutual information between random variables X and Y , they can define
M = X ×Y with P = PXY representing the joint distribution and Q = PX ⊗PY representing the product of
marginals. Then, a sufficient condition for P ≪ Q is to assume that I(X; Y ) <∞.

As P is absolutely continuous with respect to Q, the Radon–Nikodym derivative f = dP/dQ can be defined.
It is a measurable function f : M→ [0,∞) defined up to a Q-null set.

This allows one to define the Kullback–Leibler divergence:

DKL (P ∥ Q) =
∫

f log f dQ =
∫

log f dP,

where 0 log 0 = 0 in the first expression. In the second expression, one can notice that as P ≪ Q, log 0
can occur only on a P -null set. Additionally, using another Radon–Nikodym derivative (differing from f
on a Q-null set), does not change the value of the integral, so that Kullback–Leibler divergence is indeed
well-defined.

These properties correspond to the following properties of the divergence profile, defined as the pushforward
measure

ProfP ∥Q = (log f)♯P.

Namely, this distribution does not depend on the choice of f (i.e., we can replace f by a function differing on
a Q-null set) and it is easy to prove that ProfP ∥Q({−∞,∞}) = 0. As this distribution does not have atoms
at the infinite values, we can treat it as a distribution over real numbers, R.

Now consider a measurable mapping i : M→M′ between standard Borel spaces, allowing us to define the
pushforward measures i♯P and i♯Q on M′. We are interested in investigating the profile defined using these
pushforward distributions. For example, if M = X × Y, M′ = X ′ × Y ′, P = PXY , Q = PX ⊗ PY and one
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considers random variables X ′ = i1(X) and Y ′ = i2(Y ), then the mapping i = i1 × i2 : M→M′ defines the
pushforward measures PX′Y ′ = i♯PXY and PX′ ⊗ PY ′ = i♯(PX ⊗ PY ).

Note that the profile Profi♯P ∥i♯Q can be defined in this case: as P ≪ Q, then also i♯P ≪ i♯Q, because
i♯Q(B) = 0 is equivalent to Q(i−1(B)) = 0, which then implies P (i−1(B)) = 0.

In general, Profi♯P ∥i♯Q can differ from ProfP ∥Q: for example, using a constant mapping i results in
Profi♯P ∥i♯Q = δ0, independently on the original profile ProfP ∥Q. However, we can generalize Theorem 3 as
follows:
Theorem 19. Let i : M→M′ be a measurable mapping between standard Borel spaces with a measurable left
inverse. If P and Q are two probability distributions on M such that P ≪ Q, then Profi♯P ∥i♯Q = ProfP ∥Q.

To prove it, we use the following version of Lemma 12, which generalizes a result of G. (2022):
Lemma 20. Let i : M→M′ be a measurable mapping between standard Borel spaces such that there exists
a measurable left inverse a : M′ →M. If P and Q are two probability distributions on X such that P ≪ Q
and f = dP/dQ is the Radon–Nikodym derivative, then i♯P ≪ i♯Q and the Radon–Nikodym derivative is
given by di♯P/di♯Q = f ◦ a.

Proof of Lemma 20. Let a : M′ →M be any measurable left inverse of i. To prove that f ◦ a : M′ → [0,∞)
is the Radon–Nikodym derivative we need to show that

i♯P (B) =
∫

B

f ◦ a di♯Q

for every Borel subset B ⊆M′. Using the change of variables formula:∫
B

f ◦ a di♯Q =
∫

i−1(B)
f ◦ a ◦ i dQ

=
∫

i−1(B)
f dQ

=
∫

i−1(B)
dP

= P (i−1(B)) = i♯P (B),

where the second equality follows from the definition of the left inverse, a ◦ i = idM.

Note that even if a is substituted for another left inverse, the Radon–Nikodym derivative f ◦ a is still
determined uniquely up to an i♯Q-null set.

Proof of Theorem 19. The profile is defined as Profi♯P ∥i♯Q = (log di♯P/di♯Q)♯ (i♯P ). Take any measurable
left inverse a of i and write

log di♯P

di♯Q
= log f ◦ a,

where f = dP/dQ. We have

Profi♯P ∥i♯Q = (log f ◦ a)♯ i♯P = (log f ◦ a ◦ i)♯P = (log f)♯P = ProfP ∥Q.

Remark 21. The above proof suggests that for P ≪ Q on a standard Borel space M and sufficiently
well-behaved functions u : [0,∞)→ R, one could define a generalized profile(

u ◦ dP

dQ

)
♯

P,

which stays invariant under measurable mappings i : M→M′ with measurable left inverses.
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These quantities can be used to study whether a distribution could not be obtained as a simple reparametrization
of another one, similarly as the PMI profiles were used in Fig. 1.

We suspect that it may also be possible to generalize the profile to use a general f -divergence (Polyanskiy & Wu,
2022, Ch. 7), rather than the Kullback–Leibler divergence studied in this manuscript. Nowozin et al. (2016)
related f-divergences and their variational lower bounds (cf. Sec. 3.3) to generative adversarial networks
(GANs), although a relation between a “f -divergence profile” and the GAN training remains unclear to us.

Theorem 19 proves invariance under the existence of a measurable left inverse. Czyż et al. (2023, Theorem
2.1) prove invariance of the mutual information under reparametrizations by continuous injective mappings.
As the lemma below shows, Theorem 19 holds also for continuous injective mappings:
Lemma 22. Let i : M→M′ be a continuous injective mapping between two standard Borel spaces. Then, i
admits a measurable left inverse.

Proof. Choose an arbitrary point x0 ∈M and define a function a : M′ →M in the following manner:

a(y) =
{

x0 if y ̸∈ i(M)
x if x is the (unique) point such that i(x) = y

This function is well-defined due to the fact that i is injective and it is a left inverse: a(i(x)) = x for all
x ∈M. Now we need to prove that it is measurable.

Take any Borel set B ⊆ M and consider its preimage a−1(B) = {y ∈ M′ | a(y) ∈ B}. If x0 /∈ B, we have
a−1(B) = i(B), which is Borel by Lusin–Suslin theorem. If x0 ∈ B, we can write

a−1(B) = a−1(B \ {x0}) ∪ a−1({x0})
= i(B \ {x0}) ∪ {i(x0)} ∪ (M′ \ i(M)),

which is Borel as a finite union of Borel sets.

B Distributions involving discrete variables

The formalism in Section 2 is applicable to both continuous and discrete random variables, although in
Section 3.1 we focus on the distributions in which both X and Y are continuous. If X and Y are discrete,
mutual information I(X; Y ) can be calculated analytically from the joint probability matrix and there exist
numerous approaches to estimate it from collected samples (Hutter, 2001; Brillinger, 2004).

In this section we consider the mixed case, in which one variable is continuous and the other one is discrete.
For example, Carrara & Ernst (2023) describe a particle physics experiment in which X is an 18-dimensional
random variable, but Y is binary. Grabowski et al. (2019) consider a cell transmitting information through
the MAPK signalling pathway, assuming the input signal X to be discrete and the measured response Y to
be continuous.

B.1 Known distributions

There are only a few distributions PXY with known ground-truth mutual information assuming this discrete-
continuous case. Gao et al. (2017, Sec. 5) describe a discrete random variable X which is uniformly sampled
from the set X = {0, . . . , m− 1} and the continuous Y variable is sampled as

(Y | X = x) ∼ Uniform(x, x + 2),

which is therefore distributed on Y = (0, m + 1). Gao et al. (2017) prove that mutual information in this case
is

I(X; Y ) = log m− m

m− 1 log 2
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Figure 9: Left: samples from the PXY distribution, colored by the value of the binary variable Y . Right:
the PMI profile of PXY distribution.

for m ≥ 2 and I(X; Y ) = 0 for m = 1 and consider a multivariate analogue of this distribution, in which
pairs of variables (Xk, Yk) for k = 1, . . . , K are sampled independently using the above procedure. Then,
they are concatenated into multivariate vectors (X1, . . . , XK) and (Y1, . . . , YK) with K times larger mutual
information.

We will show how to relate the bivariate example to the framework of Bend and Mix Models (multivariate
case can be constructed analogously). Note that the joint distribution PXY is not strictly in P(X ,Y), as it is
supported on the one-dimensional manifold M⊂ X × Y with m connected components (cf. Politis (1991)
and Marx et al. (2021)), on which

pXY (x, y) = 1
2m

1[y ∈ (x, x + 2)],

but it is possible to extend the definitions of Section 2, so that this technical difficulty is resolved. The
marginal distributions are tractable and admit PDFs:

pX(x) = 1/m,

pY (y) =
m−1∑
x=0

pXY (x, y).

Although pY is not smooth on Y (at integer points), this technical difficulty can also be resolved as this set is
of measure zero. Hence, although this distribution is not strictly a BMM, it can still be modeled using the
introduced framework.

Next, Gao et al. (2017, Sec. 5) consider the zero-inflated Poissonization of the exponential random variable
valued in X = {x ∈ R | x ≥ 0}, with: X ∼ Exp(1) and Y being a discrete random variable valued in the set
of non-negative integers Y = {0, 1, 2, . . . }:

(Y | X = x) ∼ p δ0 + (1− p) Poisson(x).

They show that

I(X; Y ) = (1− p)
(

2 log 2− γ −
∞∑

k=0
log k · 2−k

)
,

where γ is the Euler–Mascheroni constant.

To use BMMs in this case, one has to formally extend the definition of P(X ,Y) as X is a manifold with
boundary (Lee, 2012, Ch. 1). The joint probability distribution is then given by

pXY (x, y) = pX(x) · pY |X(y | x) = e−x ·
(

p · 1[y = 0] + (1− p)e−xxy

y!

)

29



Published in Transactions on Machine Learning Research (01/2025)

and the PMF function of the Y variable is also analytically known:

pY (y) = p · 1[y = 0] + (1− p) · 2−(1+y)

Hence, the framework of BMMs, with minor technical adjustments, can accommodate the above distributions.

B.2 Novel distributions

However, Bend and Mix Models also allow one to create more expressive distributions, for which analytical
formulae for ground-truth mutual information are not available, but can be approximated with the Monte
Carlo methods as explained in Section 2: consider a continuous random variable X and a discrete random
variable Y . To introduce a dependency between X and Y variable, we can use a mixture of distributions in
which the component variables are independent, i.e., PXkYk

= PXk
⊗ PYk

. Therefore, we consider a graphical
model X ← Z → Y , in which the distributions PXk

= PX|Z=k are known and have tractable PDFs. The
distributions of PYk

= PY |Zk
are given by probability tables. Monte Carlo estimators of Section 2 can then

be used to estimate I(X; Y ) with high accuracy. Note also that this general procedure includes the case
X ← Y by setting Z = Y .

We illustrate it in a simple example with X = R2, Y = {0, 1} and K = 3 components. The first component
models a cluster in the X space, strongly associated with Y = 1 value. For PX1 we use a bivariate Student
distribution centered at (1, 1) with isotropic dispersion Ω = 0.2 · I2 and 8 degrees of freedom. We take PY1 to
be the Bernoulli variable with probability P (Y1 = 1) = 0.95.

Analogously, we define a second cluster, strongly associated with Y = 0 value: PX2 is a bivariate Student
distribution with the same dispersion matrix, but centered at (−1,−1) and with 8 degrees of freedom. Then,
Y2 is a Bernoulli variable with P (Y2 = 1) = 0.05.

We then define a third component using a bivariate normal distribution centered at (0, 0) and with covariance
matrix

Σ = 0.1
(

1 0.95
0.95 1

)
.

This component is not informative of Y , that is P (Y3 = 1) = 0.5.

We used weights w1 = w2 = 1/4 and w3 = 1/2, what resulted in the distribution visualised in Fig. 9. We
estimated both the profile and the mutual information using N = 106 samples and obtained I(X; Y ) = 0.224
with MCSE of 5.1 · 10−4.

In principle, the above construction can be used to generate realistic high-dimensional data sets (e.g., audio or
image) with known ground-truth mutual information, by assuming the generative model Y → X (i.e., Z = Y )
and modeling each PXk

using a normalizing flow or an autoregressive model (Murphy, 2023, Ch. 22) trained on
an auxiliary data set with fixed label Yk = yk. Hence, at least in principle, one could obtain highly-expressive
generative process pX|Y (x | y) with tractable probability and sampling. Pairing this with an arbitrary
probability vector pY (y) one can obtain pXY (x, y) and pX(x) even for high-dimensional data sets, so that
Monte Carlo estimator can be used to determine the ground-truth mutual information. However, we anticipate
possible practical difficulties with scaling up the proposed approach to high-dimensional data and we leave
empirical investigation of this topic to future work.

C Experimental protocols and additional experiments

In this section we provide detailed information on experimental protocols used (such as hyperparameter
choices) and supplement the findings of Sec. 3 with additional experiments.

C.1 Specification of the proposed distributions

In this section we provide the details of the distributions introduced in Sec. 3.1. To estimate the ground-truth
mutual information we used the Monte Carlo approach described in Sec. 2 with N = 200 000 samples.
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C.1.1 The X distribution

We constructed the X distribution as a mixture of bivariate normal distributions with equal weights, zero
mean and covariance matrices specified by

Σ± = 0.3
(

1 ±0.9
±0.9 1

)
.

Note that the marginal distributions of each of component distributions is N (0, 0.32) and subsequently their
mixture has exactly the same marginal distributions. This is therefore an interesting example of a distribution
in which the joint probability distribution is not multivariate normal, although the marginal distributions of
X and Y variables are normal individually. The mutual information is in this case I(X; Y ) = 0.41 nats.

C.1.2 The AI distribution

The AI distribution was constructed as an equally-weighted mixture of six bivariate normal distributions
with equal weights and the following parameters:

µ1 = (1, 0)
Σ1 = diag(0.01, 0.2)
µ2 = (1, 1)
Σ2 = diag(0.05, 0.001)
µ3 = (1,−1)
Σ3 = diag(0.05, 0.001)
µ4 = (−0.8,−0.2)
Σ4 = diag(0.03, 0.001)
µ5 = (−1.2, 0)

Σ5 =
(

0.04 0.085
0.085 0.2

)
µ6 = (−0.4, 0)

Σ6 =
(

0.04 −0.085
−0.085 0.2

)

The mutual information of this distribution is I(X; Y ) = 0.78 nats.

C.1.3 The Galaxy distribution

The Galaxy distribution was constructed as an equally-weighted mixture of isotropic multivariate normal
distributions with µ± = ±(1, 1, 1) and unit covariance matrix and the X variable was transformed using
the spiral diffeomorphism with v = 0.5, which is described by Czyż et al. (2023). The Galaxy distribution
contains I(X; Y ) = 0.49 nats.

C.1.4 The Waves distribution

The Waves distribution was created as an equally-weighted mixture of 12 multivariate normal distributions
with equal covariance matrices Σ = diag(0.1, 1, 0.1) and mean vectors

µi = (x, 0, x mod 4), i ∈ {0, 1, . . . , 11}.

This construction results in a distribution where different vertical components of the X variable are assigned
Y values calculated modulo 4. Then, we transformed the X variable with a continuous injection

f(x1, x2) = (x1 + 5 sin(3x2), x2),
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which does not change the mutual information. Finally, we applied the affine mappings

a1(x) = 0.1x− 0.8, a2(y) = 0.5y,

to make the range of the typical values comparable with other distributions. This distribution encodes
I(X; Y ) = 1.31 nats.

C.2 A benchmark extension proposal

In Sec. 3.1 and Appendix C.1 we provide examples of novel low-dimensional distributions, which pose a
significant challenge to the mutual information estimators. Therefore, we would like to propose a new
benchmark of mutual information estimators, extending the benchmark of Czyż et al. (2023).

C.2.1 Included distributions

The original benchmark of Czyż et al. (2023) consists of 40 distributions. On several problems the estimator
performance was similar, so that choosing a representative from a group could allow us to reduce the
computation amount. Additionally, we decided to remove the tasks which we considered too difficult: for
example, the Student distributions are mapped through the asinh transform to remove the tails. Together
with the new tasks, based on BMMs the new version of the benchmark consists of 26 distributions grouped
as follows:

One-dimensional variables We include four distributions such that X = Y = R. From the original
benchmark we decided to retain the additive noise task with ε = 0.75 and the asinh-transformed version
of the centered bivariate Student distribution with one degree of freedom and the identity matrix for the
dispersion (see Czyż et al. (2023, Appendix D) for precise descriptions). Additionally, we include X and AI
distributions described in Appendix C.1.

Embeddings We retained the Swiss roll embedding distribution (Czyż et al., 2023, Appendix D). In this
problem the distribution PXY is supported on a two-dimensional surface embedded in R3. This distribution
does not have a density with respect to the Lebesgue measure on R3.

Many-versus-one distributions We consider multiple distributions with X = Rm and Y = R. For
m = 2 we consider the Waves and Galaxy distributions described in Appendix C.1. For other m we
propose the concentric isotropic multivariate normal distributions. Namely, let K be a parameter, specifying
the number of components of a BMM. Each component has independent (multivariate) normal variables
Xk ∼ N (0, k2Im) and Yk ∼ N (k, 10−4). To obtain non-zero mutual information we mix these distributions
with equal proportions, i.e., the weights vector is given by wk = 1/K for all k. We consider four tasks
obtained by varying m ∈ {3, 5} and K ∈ {5, 10}. Additionally, we consider a high-dimensional distribution
with m = 25 and K = 5 components.

Multivariate normal and Student distributions We selected five problems from multivariate normal
distributions (Czyż et al., 2023). We use X = Rm and Y = Rn and the dense interaction model jointly
changing m = n ∈ {5, 25, 50} dimensions and the sparse interactions model (with two pairs of interacting
dimensions) in m = n ∈ {5, 25} dimensions.

Additionally, we selected three multivariate Student distributions with the dispersion being the identity
matrix. For m = n = 2 we consider a distribution with one degree of freedom (i.e., the multivariate Cauchy
distributions, which does not have first two moments) and for m = n ∈ {3, 5} we consider a distribution with
two degrees of freedom (for which the first moment is defined, but not the second). As described above, the
Student distributions had been transformed with the asinh mapping to reduce the tails.

Spiral diffeomorphism As described in Czyż et al. (2023), one can transform the multivariate normal
distribution with the spiral diffeomorphism, which results in empirically challenging problems. We selected
the distributions corresponding to the sparse interactions in m = n ∈ {3, 5} dimensions.
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Table 1: Benchmark results. New benchmark problems are marked in green. Best-perfoming estimator in
each row has been marked with bold font.

CCA DV InfoNCE KSG MINE NWJ True MI

AI 0.00 ± 0.01 0.57 ± 0.06 0.61 ± 0.03 0.78 ± 0.02 0.49 ± 0.07 0.53 ± 0.10 0.78
X 0.00 ± 0.01 0.37 ± 0.02 0.38 ± 0.02 0.42 ± 0.02 0.33 ± 0.04 0.36 ± 0.02 0.41
Additive 0.18 ± 0.01 0.31 ± 0.02 0.30 ± 0.02 0.32 ± 0.01 0.32 ± 0.02 0.32 ± 0.01 0.33
Swiss roll 0.02 ± 0.01 0.37 ± 0.02 0.37 ± 0.03 0.42 ± 0.02 0.37 ± 0.03 0.37 ± 0.02 0.41
Galaxy 0.01 ± 0.01 0.31 ± 0.04 0.36 ± 0.03 0.46 ± 0.01 0.26 ± 0.06 0.23 ± 0.04 0.49
Waves 0.04 ± 0.01 0.14 ± 0.07 0.34 ± 0.13 0.66 ± 0.01 0.13 ± 0.10 0.11 ± 0.07 1.31
Concentric (3-dim, 10) 0.00 ± 0.01 0.50 ± 0.02 0.50 ± 0.02 0.51 ± 0.01 0.45 ± 0.02 0.44 ± 0.03 0.56
Concentric (3-dim, 5) 0.00 ± 0.01 0.41 ± 0.03 0.41 ± 0.02 0.42 ± 0.02 0.38 ± 0.04 0.36 ± 0.03 0.46
Concentric (5-dim, 10) 0.00 ± 0.01 0.65 ± 0.03 0.66 ± 0.03 0.55 ± 0.01 0.62 ± 0.04 0.56 ± 0.02 0.75
Concentric (5-dim, 5) 0.00 ± 0.01 0.55 ± 0.03 0.56 ± 0.02 0.46 ± 0.01 0.53 ± 0.03 0.42 ± 0.05 0.63
Concentric (25-dim, 5) 0.00 ± 0.01 0.67 ± 0.06 0.68 ± 0.04 0.12 ± 0.01 0.65 ± 0.04 0.28 ± 0.06 1.19
Student (1-dim) 0.00 ± 0.01 0.17 ± 0.07 0.20 ± 0.02 0.22 ± 0.01 0.18 ± 0.01 0.18 ± 0.06 0.22
Student (2-dim) 0.00 ± 0.01 0.36 ± 0.03 0.37 ± 0.03 0.36 ± 0.02 0.27 ± 0.10 0.24 ± 0.08 0.43
Student (3-dim) 0.00 ± 0.01 0.16 ± 0.08 0.20 ± 0.03 0.17 ± 0.01 0.09 ± 0.08 0.03 ± 0.01 0.29
Student (5-dim) 0.01 ± 0.01 0.21 ± 0.07 0.28 ± 0.03 0.23 ± 0.01 0.13 ± 0.12 0.03 ± 0.03 0.45
Inliers (25-dim, 0.2) 0.58 ± 0.03 0.34 ± 0.04 0.27 ± 0.09 0.12 ± 0.03 0.39 ± 0.05 0.41 ± 0.04 0.63
Inliers (25-dim, 0.5) 0.24 ± 0.02 −0.11 ± 0.09 −0.08 ± 0.04 0.05 ± 0.02 0.08 ± 0.02 0.06 ± 0.04 0.27
Inliers (5-dim, 0.2) 0.52 ± 0.02 0.55 ± 0.03 0.55 ± 0.03 0.45 ± 0.02 0.54 ± 0.05 0.56 ± 0.08 0.63
Inliers (5-dim, 0.5) 0.18 ± 0.01 0.19 ± 0.02 0.18 ± 0.03 0.19 ± 0.01 0.20 ± 0.04 0.21 ± 0.04 0.27
Normal (25-dim, dense) 1.35 ± 0.02 1.09 ± 0.07 1.06 ± 0.06 1.05 ± 0.02 1.16 ± 0.05 0.18 ± 0.38 1.29
Normal (5-dim, dense) 0.60 ± 0.02 0.55 ± 0.03 0.54 ± 0.03 0.56 ± 0.01 0.56 ± 0.03 0.56 ± 0.02 0.59
Normal (50-dim, dense) 1.87 ± 0.02 1.26 ± 0.07 1.20 ± 0.09 1.25 ± 0.02 1.45 ± 0.05 0.62 ± 0.78 1.62
Normal (25-dim, sparse) 1.08 ± 0.02 0.69 ± 0.05 0.67 ± 0.07 0.18 ± 0.02 0.78 ± 0.05 0.79 ± 0.03 1.02
Normal (5-dim, sparse) 1.03 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.69 ± 0.02 0.92 ± 0.05 0.95 ± 0.02 1.02
Spiral (3-dim) 0.24 ± 0.02 0.50 ± 0.03 0.53 ± 0.04 0.65 ± 0.02 0.43 ± 0.05 0.45 ± 0.03 1.02
Spiral (5-dim) 0.39 ± 0.02 0.48 ± 0.03 0.52 ± 0.03 0.50 ± 0.01 0.45 ± 0.03 0.48 ± 0.03 1.02

Inliers Finally, we implemented four distributions based along the principles described in Sec. 3.2. Namely,
we took the multivariate normal distributions with sparse interactions (described above) with m = n ∈ {5, 25}
dimensions PXY and then constructed a mixture (1−α)PXY + αPX ⊗PY for the inlier fraction α ∈ {0.2, 0.5}.

C.2.2 Experimental protocol

Determining the ground-truth value The ground-truth mutual information for distributions proposed
by Czyż et al. (2023) is analytically available. For the tasks based on BMMs we used N = 200,000 Monte
Carlo samples to provide an estimate, as described in Section 2.2. The additional computational cost of
estimating the ground-truth mutual information for these distributions is minor: on a standard laptop,
estimating the mutual information of the Galaxy task to be 0.4953± 0.0012 (which results in the relative
MCSE smaller than 0.5%, using 200,000 samples) takes less than 2.5 seconds. Similarly, estimating the
mutual information of the Concentric task (25-dimensional variant with 5 components) to be 1.1911± 0.0015
(using 200,000 samples again) takes less than 3.5 seconds.

Included estimators We included a total of six estimators in this benchmark: four variational estimators,
the neigbhorhood-based KSG estimator (Kraskov et al., 2004), and the simple CCA-based estimator of Kay
(1992). We chose them as the most promised approaches: Czyż et al. (2023) argue that KSG is the preferred
estimator for low-dimensional problems, neural estimators are preferred choices for high-dimensional problems
if only a few dimensions are interacting, and the CCA-based estimator is the optimal choice for multivariate
normal distributions.

Reported uncertainty For each distribution we sampled N ′ = 5,000 data points S = 10 times to obtain
different data sets on which the estimators were run. For each estimator and a task we then calculated
the mean and the standard deviation (basing on the S − 1 degrees of freedom), which we reported in the
table up to two decimal digits. We rounded the standard deviation upwards to two decimal digits to not
underestimate it.

C.2.3 Benchmark results

We present the obtained results in Table 1. Results for the BMM estimator on low-dimensional tasks are
shown in Table 2.

Problems not solved Interestingly, the Waves task is not solved by any estimator, with the best-performing
one being KSG and underestimating the MI by 50%. Similarly, a high-dimensional Concentric distribution
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(25-dimensional variables with 5 components) is not solved by any estimator. This contrasts with using a
single component (Normal (25-dim, dense) and Normal (25-dim, sparse)), for which the CCA estimator can
be used. Problems involving the spiral diffeomorphism remain unsolved.

KSG For low-dimensional problems, the KSG estimator seems preferable, which agrees with the conclusions
from Czyż et al. (2023).

Neural estimators In high-dimensional problems (25-dimensional or 50-dimensional variables), neural
estimators generally outperform KSG. However, they typically still underestimate the ground-truth mutual
information and the model-based CCA estimate may be preferable in the problems involving multivariate
normal distribution.

CCA In the proposed benchmark it is visible that a CCA-based estimator is not competitive on majority of
the problems. The concentric multivariate normal distributions, designed as adversarial examples, indeed
result in CCA not being able to find any mutual information. Moreover, we see that larger numbers of inliers
result in worse predictions. Interestingly, for N = 5,000 data points and high-dimensional problems the
CCA-based estimator can overestimate the result, by overfitting to the noise. This supports the view that
regularizing may improve the estimates (see Sec. 3.4).

C.3 Estimator hyperparameters

Czyż et al. (2023, Appendix E.4) study the effects of hyperparameters on mutual information estimators. We
decided to use the histogram-based estimator (Cellucci et al., 2005; Darbellay & Vajda, 1999) with a fixed
number of 10 bins per dimension and the popular KSG estimator (Kraskov et al., 2004) with k = 10 neighbors.
Canonical correlation analysis (Kay, 1992; Brillinger, 2004) does not have any hyperparameters. Finally,
we variational estimators with the neural critic being a ReLU network of variant M (with 16 and 8 hidden
neurons), as it obtained competitive performance in the benchmark of Czyż et al. (2023, Appendix E.4). As
a preprocessing strategy, we followed Czyż et al. (2023, Appendix E.3) and transformed all samples to have
zero empirical mean and unit variance along each dimension. Our code is based on the MIT-licensed code
associated with the Czyż et al. (2023) publication.

C.4 Variational estimators of mutual information

In Sec. 3.3 we study the loss of Belghazi et al. (2018) as well as two other loss functions. This section provides
a more detailed overview of these approaches. At the same time, our review is not exhaustive: many more
variational lower bounds exist and have been described in the literature. For a detailed overview we refer to
the articles by Poole et al. (2019) and Song & Ermon (2020), as well as to Chapters 4 and 7 of the textbook
by Polyanskiy & Wu (2022).

Belghazi et al. (2018) use the Donsker–Varadhan loss,

IDV(f) = EPXY
[f ]− logEPX ⊗PY

[exp f ] ,

which is a lower bound on I(X; Y ) for any bounded function f . Hence, they decide to use a neural critic, i.e.,
a neural network f : X × Y → R maximizing the functional form to obtain an (approximate) lower bound on
mutual information.

As Poole et al. (2019) describe, this bound becomes tight if c is any real number and f = PMIXY + c, i.e.,
IDV(f) = I(X; Y ), so one can approach MI estimation to optimisation IDV over a flexible family of functions f
parameterized by neural networks. However, we note that as only a finite sample is available, the expectation
value cannot be calculated exactly, so that any provided estimate does not need to be a lower bound on
MI. Moreover, if no split into training and test set is used, then f may overfit and provide biased estimates
(McAllester & Stratos, 2020).

Another lower bound, introduced in Nguyen et al. (2007),

INWJ(f) = EPXY
[f ]− EPX ⊗PY

[exp (f − 1)] ,

becomes tight for f = PMIXY + 1.
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Oord et al. (2018) propose a variational approximation loss which uses a batch of (xi, yi)i=1,...,n samples from
PXY to estimate

INCE(f) = E

[
1
n

n∑
i=1

log exp f(xi, yi)
1
n

∑n
j=1 exp f(xi, yj)

]
Here, if f(x, y) = PMIXY (x, y) + c(x), where c is any function, then INCE(f)→ I(X; Y ) as n→∞.

C.5 Bayesian estimation of Gaussian mixture models

In this section we provide additional details on using BMMs to estimate mutual information and the pointwise
mutual information profile.

C.5.1 Model description

Recall from Sec. 3.4 that Bayesian estimation of mutual information consists of the following steps:

1. Propose a parametric generative model of the data, Pθ := P (X, Y | θ), and assume a prior P (θ) on
the parameter space.

2. Use a Markov chain Monte Carlo method to obtain a sample θ(1), . . . , θ(m) from the posterior
P (θ | X1, Y1, . . . , XN , YN ).

3. Estimate mutual information (and the PMI profile) for each θ(m) using the Monte Carlo method
described in Sec. 2.

4. Validate the findings using e.g., posterior predictive checks and cross-validation.

We consider the following sparse Gaussian mixture model with K = 10 components:

π ∼ Dirichlet(K; 1/K, 1/K, . . . , 1/K),
Zn | π ∼ Categorical(π), n = 1, . . . , N,

µk ∼ N
(
0, 32ID

)
, k = 1, . . . , K,

Σk ∼ ScaledLKJ(1, 1), k = 1, . . . , K,

(Xn, Yn) | Zn, {µk, Σk} ∼ N (µZn , ΣZn), n = 1, . . . , N.

Sampling a single covariance matrix Σ from ScaledLKJ(σ, η) distribution corresponds to sampling the
correlation matrix R from the Lewandowski-Kurowicka-Joe (LKJ) distribution (Lewandowski et al., 2009):

p(R) ∝ (det R)η−1,

sampling the scale parameters

λ1, λ2, . . . , λD ∼ HalfCauchy(scale=σ),

and then constructing the covariance matrix as Σij = Rijλiλj .

The sparse Dirichlet prior is a finite-dimensional alternative to the Dirichlet process, which truncates the
number of occupied clusters depending on the data (Frühwirth-Schnatter & Malsiner-Walli, 2019). In
particular, the a priori expected number of clusters depends on the number of data points to be observed.
We generally use NumPyro (Phan et al., 2019) with local latent variables Zn marginalized out, what allowed
us to run Markov chain Monte Carlo inference using the NUTS sampler (Hoffman & Gelman, 2014).

The mth sample is therefore given by

θ(m) =
(

π(m),
(

µ
(m)
k , Σ(m)

k

)
k=1,...,K

)
which is then used to parametrize a Gaussian mixture distribution Pθ(m) . Finally, using the Monte Carlo
method described in Sec. 2, we then estimated mutual information I(Pθ(m)) and the PMI profile.
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Table 2: BMM-provided estimates for selected low-dimensional problems. Each run corresponds to estimation
on a different sample and reports the mean together with a credibility interval obtained from the 10th and
90th percentile. Bold font represents problems solved by BMMs.

True MI Run 1 Run 2 Run 3

Additive 0.33 0.31 (0.29–0.34) 0.29 (0.26–0.31) 0.31 (0.29–0.34)
X 0.41 0.42 (0.38–0.45) 0.41 (0.38–0.45) 0.41 (0.38–0.44)
AI 0.78 0.78 (0.74–0.82) 0.76 (0.73–0.80) 0.78 (0.75–0.82)
Galaxy 0.49 0.27 (0.24–0.29) 0.29 (0.26–0.31) 0.30 (0.27–0.32)
Concentric (3-dim, 5) 0.46 0.46 (0.43–0.48) 0.46 (0.43–0.49) 0.45 (0.42–0.48)
Concentric (5-dim, 5) 0.63 0.64 (0.61–0.68) 0.63 (0.60–0.66) 0.63 (0.60–0.66)
Concentric (3-dim, 10) 0.56 0.56 (0.53–0.59) 0.57 (0.53–0.60) 0.46 (0.43–0.49)
Concentric (5-dim, 10) 0.75 0.63 (0.60–0.66) 0.62 (0.58–0.65) 0.56 (0.53–0.59)
Inliers (5-dim, 0.2) 0.63 0.69 (0.63–0.74) 0.66 (0.61–0.71) 0.64 (0.59–0.69)
Inliers (5-dim, 0.5) 0.27 0.18 (0.15–0.21) 0.29 (0.26–0.33) 0.19 (0.16–0.21)
Normal (5-dim, dense) 0.59 0.58 (0.54–0.62) 0.61 (0.57–0.65) 0.59 (0.56–0.63)
Normal (5-dim, sparse) 1.02 1.02 (0.97–1.07) 1.04 (0.99–1.09) 1.03 (0.98–1.08)
Student (1-dim) 0.22 0.24 (0.21–0.27) 0.23 (0.20–0.26) 0.22 (0.19–0.25)
Student (2-dim) 0.43 0.43 (0.39–0.47) 0.41 (0.37–0.44) 0.40 (0.37–0.44)
Student (3-dim) 0.29 0.19 (0.16–0.22) 0.20 (0.17–0.23) 0.22 (0.19–0.25)
Student (5-dim) 0.45 0.26 (0.22–0.31) 0.22 (0.19–0.25) 0.26 (0.22–0.30)

C.5.2 BMMs performance on the proposed benchmark

We evaluated the performance of the BMM described above on a subset of distributions proposed in
Appendix C.2. We excluded the high-dimensional distributions due to the high computational cost of fitting
Markov chains: in our preliminary experiments used to select sampling hyperparameters, the chains often
failed to sample properly the posterior distribution. For lower-dimensional problems we did not notice
convergence problems in our preliminary runs (apart from the label-switching issues, which do not affect
the predictive distribution). To reduce the computational cost, we decided to use three (rather than ten)
samples from each distribution. Then, for each sample we ran a single Markov chain with 1,000 warm-up
steps and 1,000 collected samples. As we ran a single chain and the model is not identifiable due to the label
switching of Zn variables, we could not employ metrics diagonosing convergence failures, such as R̂ (Vehtari
et al., 2021). We then used 1,000 Monte Carlo samples to estimate the MI in each distribution.

In Table 2 we report the MI estimates across three runs. Each estimate is a summary of the posterior
distribution, specifying the mean and the 10th and 90th percentile of the distribution.

Overall, we see that BMMs offer good performance and appropriate uncertainty quantification in low-
dimensional problems, such as X, AI, normal and low-dimensional concentric distributions. Interestingly,
even when the model is slightly misspecified (additive and low-dimensional Student distributions with
tail-shortening transformation applied), we obtain good performance.

It is however important to note that the proposed approach is not universal: for a 5-dimensional concentric
distribution and 10 components and 5-dimensional problem with 50% of inliers, the model, even though it is
well-specified, does not always estimate the mutual information appropriately, underestimating the mutual
information. We suppose that posterior predictive checking and sensitivity analysis can be used to diagnose
problems with this model. We investigate this issue in more detail in Appendix C.5.3.

C.5.3 Posterior predictive checking and estimation of pointwise mutual information profiles

As discussed in Section 3.4, BMMs allow one to do model-based estimation of both MI and the PMI profile.
At the same time, they require domain expertise to propose a generative model as well as careful model
criticism. In this section we further investigate these aspects, by applying the model to the X, AI, Waves and
Galaxy distributions, changing the number of data points N ∈ {125, 250, 500, 1000}.

For each distribution we sampled N data points once, ran a single Markov chain with 2000 warm-up steps
and collected 800 samples. Then, for each sample we estimated MI and the profile via the Monte Carlo
approximation using 100,000 samples. We visualise the observed sample, a single posterior predictive sample
and posterior on mutual information and the PMI profile in Fig. 10, Fig. 11, Fig. 12 and Fig. 13.

Although the model performance is good for the X and AI distributions, which additionally suports the
results obtained in Appendix C.5.3, we see that model misspecification results in unreliable estimates for the
Waves and Galaxy distributions.
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Figure 10: Gaussian mixture model fitted to the X distribution with 125, 250, 500 and 1000 samples.

37



Published in Transactions on Machine Learning Research (01/2025)

-1 0 1
X

-1

0

1

Y

Ground-truth sample

-1 0 1
X

-1

0

1

Y

Simulated sample

0 1
MI

Posterior MI

0.0 2.5
PMI

Posterior PMI profile

-1 0 1
X

-1

0

1

Y

Ground-truth sample

-1 0 1
X

-1

0

1

Y

Simulated sample

0 1
MI

Posterior MI

0.0 2.5
PMI

Posterior PMI profile

-1 0 1
X

-1

0

1

Y

Ground-truth sample

-1 0 1
X

-1

0

1

Y

Simulated sample

0 1
MI

Posterior MI

0.0 2.5
PMI

Posterior PMI profile

-1 0 1
X

-1

0

1

Y

Ground-truth sample

-1 0 1
X

-1

0

1

Y

Simulated sample

0 1
MI

Posterior MI

0.0 2.5
PMI

Posterior PMI profile

Figure 11: Gaussian mixture model fitted to the AI distribution with 125, 250, 500 and 1000 samples.
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Figure 12: Gaussian mixture model fitted to the Waves distribution with 125, 250, 500 and 1000 samples.
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Figure 13: Gaussian mixture model fitted to the Galaxy distribution with 125, 250, 500 and 1000 samples.
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