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ABSTRACT

Efficient high-dimensional integration enables novel approaches to calibrate and
control model uncertainty during training. In particular, the recently-proposed
projective integral update formulation of variational inference derives model uncer-
tainty from expectations that extract the local loss topography. Thus, we propose
random-affinity sigma-point (RASP) quadratures, which are designed to eliminate
integration errors from basis functions that drive Gaussian mean-field updates.
Using only 3 gradient evaluations, RASP quadratures can extract locally-averaged
gradients and Hessian diagonals from the loss, while eliminating errors from over
half of all quadratic total-degree terms. Alternatively, we can use 6-point RASP
quadratures to obtain 5th-order exactness in all univariate terms as well as 3rd-order
exactness for two-thirds of bivariate terms. This work presents the design of RASP
quadratures, theoretical guarantees on exactness, and analysis of expected errors.
We also provide an open-source PyTorch implementation of RASP quadratures
with quasi-Newton variational Bayes (QNVB), i.e. the projective integral update
algorithm for Gaussian mean fields. Although RASP quadratures are designed to
support QNVB, they are also compatible with other forms of variational inference,
such as stochastic gradient variational Bayes (SGVB). Our experiments compare
alternative integration schemes and training methods using three different learn-
ing tasks and architectures, demonstrating that efficient integration can improve
generalizability for architectures with suitable loss structure.

1 INTRODUCTION

1.1 MOTIVATION

Bayesian inference provides a foundational framework for reconciling new data with plausible
predictive models and Markov-chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings,
1970) is a well-known method to obtain posterior samples for prediction tasks. However, variational
inference (VI) (Mézard et al., 1987; Parisi & Shankar, 1988) provides a needed alternative for large
models and datasets, when the time and storage complexities of MCMC become unacceptable (Bishop
& Nasrabadi, 2006; Jordan et al., 1999; Blei et al., 2017; Zhang et al., 2018).

Mean-field VI (MFVI) (Anderson & Peterson, 1987; Peterson & Hartman, 1989; Hinton & Van Camp,
1993) provides an alternative means to capture model uncertainty in large learning models by
approximating a local component of the full posterior. Mean-field distributions represent uncertainty
as a product of independent distributions in each parameter, reducing storage to a small constant times
the number of parameters. Other forms of VI are possible (Dhaka et al., 2021), Gaussian mean-fields
provide a simple method to calibrate local parameter uncertainty and improve predictions by taking
small model variations into account. Localized uncertainty also supports adaptive rounding schemes
to reduce representational complexity after training (Banner et al., 2019; Choukroun et al., 2019; Cai
et al., 2020; Nagel et al., 2020).

Projective integral updates (Duersch, 2023) provide an efficient framework for updating variational
densities using local integrals to project the posterior onto a corresponding basis of functions. For
Gaussian mean-fields, these updates yield the quasi-Newton variational Bayes (QNVB) algorithm,
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which analytically recovers quasi-Newton steps as locally optimal updates. However, these updates
require the potentially noisy or expensive computation of the expected gradient and Hessian diagonal
of the training loss. To enhance the projective integral update framework, particularly in resource-
constrained settings when each gradient is expensive, we desire more efficient methods to reduce
evaluations and minimizing projection errors for components that dominate the VI update.

1.2 CONTRIBUTIONS

This work proposes random-affinity sigma-point (RASP) quadratures, an efficient integration ap-
proach for mean-field densities that supports projective integral updates by minimizing the error
corresponding to basis functions that dominate variational updates. This framework allows us to
approximate the locally-averaged gradient and Hessian using ordinary backpropagation to support un-
certainty calibration during training. RASP quadratures are also compatible with other VI algorithms,
such as stochastic gradient variational Bayes (Kingma & Welling, 2013).

RASP quadratures can eliminate integration errors from all univariate quadratics and half of all
bivariate quadratic basis functions using only 3 function evaluations. Similarly, we can achieve fifth-
order exactness in univariate polynomials and two-thirds of bivariate quadratic basis functions using
6 function evaluations. These results are further substantiated by our experiments, which show that
different learning architectures benefit from QNVB with RASP quadratures to achieve competitive
test accuracy against multiple baselines. Efficient methods for high-dimensional integration facilitate
training with model uncertainty while using very few function evaluations, making them ideal for
resource-constrained environments.

The main contributions of this work (Section 3) include:

1. the design and error analysis of RASP quadratures (Section 3),
2. comparisons to recent work (Section 4), and
3. an open-source PyTorch implementation of QNVB with RASP quadratures1.

2 BACKGROUND

2.1 VARIATIONAL INFERENCE

Here, we briefly review VI. (Jordan et al., 1999; Blei et al., 2017; Zhang et al., 2018) provide more
thorough overviews. VI addresses the intractability of Bayesian inference in high-dimensional model
classes. A dataset D comprising ordered pairs of features x and labels y informs a distribution over
plausible models. Each model θ ∈ Rd acts on inputs to generate a distribution over label predictions
p(y | θ, x). By taking the product over all data samples, we obtain the likelihood p(D | θ). Given a
prior over models p(θ), Bayes’ theorem yields the posterior p(θ | D) ∝ p(D | θ)p(θ).
Unfortunately, parameter regions that dominate the posterior are difficult to locate and store when the
number of trainable parameters d is high. Thus, we only seek to capture a component of the posterior
using a simpler variational distribution q(θ | φ), where the variational parameters φ describe its
shape.

Mean-field densities are products of independent factor densities in each parameter, q(θ | φ) =∏d
i=1 q(θi | φi), where each φi is a block of shape parameters that describe uncertainty in θi.

This structure makes mean fields an attractive choice for the family of variational densities in high
dimensions, because they support efficient optimization, storage, and integration. These properties
ultimately serve to improve the feasibility of obtaining more robust predictions from the variational-
predictive integral, which is defined as

q(y | x, φ) =
∫

p(y | x, θ) dq(θ | φ). (1)

Optimization minimizes the KL-divergence from the posterior to the variational distribution:

φ∗ = argmin
φ

∫
dq(θ | φ) log

(
q(θ | φ)
p(θ | D)

)
. (2)

1[anonymized URL]
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2.2 PROJECTIVE INTEGRAL UPDATES

Projective integral updates (PIU) (Duersch, 2023) optimize the variational density by computing
expectations over a compatible basis of functions F , provided span(F) contains every log-density in
the variational family, i.e.

logq(θ | φ) =
m∑
ℓ=0

φℓfℓ(θ) where F = {f0(θ)=1 and fℓ(θ) for ℓ ∈ [m]} . (3)

By using the variational density at training step t, i.e. q(θ | φ(t)), to define an inner product on
functions, we can obtain each projection coefficient φ(t+1)

ℓ for ℓ ∈ [m] with the fixed-point iteration

φ
(t+1)
ℓ =

⟨fℓ, logp(D | θ)p(θ)⟩φ(t)

⟨fℓ, fℓ⟩φ(t)

where ⟨f, g⟩φ ≡
∫

f(θ)g(θ) dq(θ | φ) (4)

and normalization determines φ0. The optimum of Equation (2) is a fixed point of Equation (4).

When projective integral updates are applied to Gaussian mean fields, denoted as q(θ | µ, σ2) ≡
N (θ | µ, diag(σ)2), the resulting algorithm is called quasi-Newton variational Bayes (QNVB). In
this case, a suitable orthogonal basis F contains m = 2d+ 1 functions, taking the form

F =
{
f0(θ)=1, f2i−1(θ)=θi − µi, f2i(θ)=(θi − µi)

2 − σ2
i | i ∈ [d]

}
. (5)

In this case, the projection coefficients are equivalent to the expected gradient g and Hessian diagonal
h of the loss (i.e., the unnormalized negative log posterior), which we can write as

L(θ | D) ≡ − logp(D | θ)p(θ) ≈ Lµ + (θ − µ)T
[
g +

1

2
h ∗ (θ − µ)

]
. (6)

The constant Lµ approximates the loss at µ, the gradient g ∈ Rd captures linear perturbations, and
the Hessian diagonal h ∈ Rd captures quadratic effects. Note that ∗ is the Hadamard (elementwise)
product and powers are also elementwise, e.g. h−1 ∗ g = diag(h)−1g. This local quadratic
approximation of the loss topography updates the variational density with a quasi-Newton step,
i.e. µ← µ− h−1 ∗ g and σ ← h−1/2. Since both g and h can be computed from simple integrals:

g =

∫
∇θL(θ | D) dq(θ | µ, σ2) and (7)

h = σ−2 ∗
∫
(θ − µ) ∗ ∇θL(θ | D) dq(θ | µ, σ2) , (8)

efficient integration for high-dimensional mean-fields may enhance PIU optimization.

2.3 QUADRATURES AND SIGMA POINTS

Numerical quadratures approximate weighted integrals by taking linear combinations of specific
function evaluations. In this work, we consider functions f : Rd → R over the model parameter
domain and seek to approximate integrals against q(θ | µ, σ2). In this setting, quadrature formulas
take the form

Q[f ] =

n∑
k=1

wkf
(
θ(k)

)
≈

∫
f(θ) dq(θ | µ, σ2). (9)

Each evaluation index k ∈ [n] has a weight wk ∈ R and an evaluation node θ(k) ∈ Rd. These
weights and nodes are solved to exactly integrate some basis Fε, so that

Q[fℓ] =

∫
fℓ(θ) dq(θ | µ, σ2) for all fℓ ∈ Fε. (10)

Since both the weighted integral and the quadrature are linear functionals, it follows that the quadrature
is exact for all f ∈ span(Fε). Thus, it is beneficial to construct a quadrature for which F ⊂ Fε from
Equation (5). This will suppress errors in g and h by collecting a set of gradient evaluations from
standard backpropagation, i.e.

g ≈ Q[∇θL(θ | D)] and h ≈ σ−2 ∗Q[(θ − µ) ∗ ∇θL(θ | D)]. (11)
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For quadrature formulas that obtain second-order exactness over multivariate Gaussians, the evaluation
nodes are called sigma points in the non-linear filtering literature. These formulas are used to
propagate uncertainty in unscented Kalman filters (Uhlmann, 1995). The symmetric set used by
Uhlmann, see (McNamee & Stenger, 1967), comprises 2d+ 1 nodes. Unfortunately, even minimal
sigma-point quadratures require d+ 1 nodes (Wan-Chun et al., 2007), which is infeasible for large d.

3 RANDOM-AFFINITY SIGMA-POINT (RASP) QUADRATURES

3.1 COMPOSITION

RASP quadratures Q[·] are generated by first forming a reference quadrature R[·] that acts on
functions in a reference domain with r dimensions. The exactness of R[·] impacts that of Q[·] and
Section 3.2 provides a detailed analysis of this relationship.

Using weights wk and nodes ρ(k) ∈ Rr for each evaluation k ∈ [n], we have the reference quadrature

R[f ] =

n∑
k=1

wkf(ρ
(k)) ≈

∫
f(ρ) dN (ρ | 0, I). (12)

In principle, R[·] could be any quadrature formula (also called cubature in multiple dimensions), but
the number of evaluations n will determine the number of gradients computed from backpropagation
per training step. Thus, sigma points are preferred because they achieve second-order exactness with
few evaluations, but higher-order quadratures exist (McNamee & Stenger, 1967; Smolyak, 1963;
Novak & Ritter, 1999; Dick et al., 2013; Menegaz et al., 2015). Algorithms 1 and 2 (see Appendix A.1)
generate reference quadratures from the simplex- and cross-polytope vertices, respectively.

We can then generate a RASP quadrature Q[·] by randomly mapping each parameter dimension to
a signed reference dimension. For each i ∈ [d], select a reference dimension ji ∈ [r] uniformly
at random (with replacement) along with a random sign si ∈ {−1, 1}. These random parameter
affinities with reference dimensions yield the RASP quadrature

Q[f ] =

n∑
k=1

wkf(µ+ σ ∗ x(k)) ≈
∫
f(θ) dq(θ | µ, σ2) where x

(k)
i = siρ

(k)
ji

. (13)

Memory management A memory-efficient implementation tracks random signs by doubling the
number of reference dimensions. Each reference node is concatenated with its negative, i.e. ρ̂(k)T =[
ρ(k)T −ρ(k)T

]
, so that both the sign and reference index can be constructed from a single array of

integers in [2r]d. Algorithm 3 shows how this technique is implemented. For large architectures, this
approach avoids excessive memory by generating each evaluation node only when it is needed. In
contrast, the quasi Monte Carlo methods tested in Section 4 match sample moments to the distribution
(Caflisch, 1998), which requires sampling, storing, and modifying n × d floating-point numbers
simultaneously, rather than one node at a time.

3.2 EXACTNESS

To analyze the exactness properties of Q[·], we distinguish degrees of exactness ε1 and ε2 for
univariate and bivariate polynomials, respectively. That is, ε1 is the maximum polynomial degree for

functions that depend only on a single coordinate, f(ρ) ≡ p(ρj), that satisfies

R[f ] =

∫
f(ρ) dN (ρ | 0, I). (14)

Likewise, for functions that are polynomial in two coordinates, i.e f(ρ) ≡ p(ρj1 , ρj2), let ε2 be the
maximum total degree of p for which Equation (14) holds.

For example, Algorithm 1 uses n = r + 1 nodes to obtain degrees of exactness ε1 = ε2 = 2.
Alternatively, Algorithm 2 generates n = 2r symmetric nodes. Here, symmetry means that for each
k ∈ [n], there exists k′ ∈ [n] for which ρ(k′) = −ρ(k) and wk′ = wk. This property increases the
degree of exactness to ε1 = ε2 = 3. It is also worth noting that when r = 3, we obtain univariate
exactness ε1 = 5.
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Figure 1: Fraction of quadratic basis functions that
integrate exactly with different methods. RASP-
simplex quadratures attain the largest exact fraction
for a fixed number of nodes.

Theorems 3.1 and 3.2 explain how the exactness
of R[·] influences the exactness of Q[·]. Figure 1
shows the fraction of quadratic basis functions
that are exactly integrated for different quadra-
ture methods, including some proposed by Duer-
sch (2023).

Although Theorem 3.2 implies that a fraction of
bivariate terms will not be exact, Theorem 3.3
shows that even in such cases, the expected error
is zero. Further, when the reference quadrature
is symmetric, Theorem 3.4 shows that every odd
total-degree term (centered at µ) becomes exact.

Theorem 3.1 Let R[·] be a reference quadra-
ture, as in Equation (12), with univariate ex-
actness ε1. Every RASP quadrature Q[·], from
Equation (13), also has univariate exactness ε1.

Theorem 3.2 Let R[·] be a reference quadra-
ture with bivariate exactness ε2. The probability

that a RASP quadrature Q[·] has the same bivariate exactness in two parameters θi1 and θi2 is r−1
r .

Theorem 3.3 For bivariate quadratics of the form f(θ) = (θi1 − µi1)(θi2 − µi2), the expected
error of Q[f ] is zero.

Theorem 3.4 If R[·] is a symmetric reference quadrature then every RASP quadrature Q[·] exactly
integrates all odd total-degree basis functions of the form

f(θ) =

d∏
i=1

(θi − µi)
mi where

d∑
i=1

mi is odd. (15)

3.3 ERROR COMPARISONS

To gain insight into the errors associated with different integration methods, we examine a third-order
expansion of the loss topography (simplified by setting µ = 0) and the corresponding gradient, i.e.

L(θ) ≈ Lµ +

d∑
i=1

θi

gi +

d∑
j=1

θj

2

[
Hij +

d∑
k=1

θk

3
Tijk

] ,

which gives ∂iL(θ) ≈ gi +

d∑
j=1

θj

[
Hij +

d∑
k=1

θk

2
Tijk

]
. (16)

This expansion gives the exact expected gradient and Hessian diagonal in element i,

Eq(θ|0,σ2) [∂iL(θ)] = gi +

d∑
j=1 j ̸=i

Tijjσ2
j and Eq(θ|0,σ2)

[
θi∂iL(θ)

σ2
i

]
= Hii. (17)

Although RASP quadratures recover univariate contributions, e.g. Q[Tijjθ2
j ] = Tijjσ2

j , they also
encounter errors from some cross terms. For gradient and Hessian expectations, these errors are

Q[Tijkθjθk] = ±Tijkσjσk and Q

[
Hij

θiθj

σ2
i

]
= ±Hij

σj

σi
for some i, j, k ∈ [d]. (18)

By accounting for the probability that bivariate quadratic terms are not exact, we obtain the variances
shown in Appendix A.2. Since n ≥ r+1, we see that Monte Carlo integration yields lower variance for
cross terms. Thus, different choices of integration strategy may be superior for different architectures,
depending on the relative weight of univariate terms to bivariate terms. See Appendix A.2 in
Appendix A.2 for a table of error comparisons.
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RASP quadratures aim to reduce errors on basis function integrals that dominate QNVB updates,
but also incur persistent errors on higher-order basis functions. While the resulting estimator is not
unbiased, our experiments show that RASP quadratures produce competitive results.

4 EXPERIMENTS

These experiments compare RASP quadratures with Monte Carlo (MC) and Variance-Reduced Monte
Carlo (VRMC) integration for two VI optimization algorithms: stochastic gradient variational Bayes
(SGVB) (Kingma & Welling, 2013; Ranganath et al., 2014; Titsias & Lázaro-Gredilla, 2014) and
QNVB (Duersch, 2023). VRMC-1 translates Monte Carlo samples to match the sample mean to µ
(first-order exactness). Likewise, VRMC-2 also scales the samples to match the variance diag(σ)2

(univariate second-order exactness). See related work in Section 5.

We measure performance across a number of learning tasks and architectures: 1. ResNet18 (He
et al., 2016) with CIFAR-10 (Krizhevsky & Hinton, 2009) for image classification, 2. Deep Learning
Recommendation Model (DLRM) (Naumov et al., 2019) with the Criteo Ad Kaggle dataset for ad
recommendation, and 3. Tensorized Transformer (Ma et al., 2019) with the Penn Treebank (PTB)
(Marcus et al., 1993) dataset for text completion.

While our experiments use flat priors, many other priors would be equivalent to regularization terms
in the negative log posterior. Notably, Fortuin et al. (2021) shows that wide-tailed distributions (e.g.,
L1 regularization) are usual more effective for neural networks than Gaussian priors (i.e., L2). Both
SGVB and QNVB are compatible with regularization by simply adding the desired terms to the
loss. In the context of Bayesian inference, a cross-validation search for optimal hyperparameters
can be understood as a hierarchical model for which the hyperparameters are chosen by finding the
maximum likelihood estimator.

MC, VRMC, and RASP quadratures are tested with 3, 4, and 6 evaluations each, excluding cases
where the quadrature does not exist for the given number of evaluations. Each trial begins by setting a
random seed for reproducibility. Therefore, the only source of variation across each set of experiments
comes from the training method. For each set of seeds, we present the optimal validation run (bolded
line) and full range of outcomes (shaded area). See Appendix A.3 for prediction quality comparisons
with other ML training algorithms. These experiments show that the quadratures we compare have a
more significant impact on QNVB than SGVB.

ResNet18 / CIFAR-10 Figure 2 and Figure 3 show that the choice of integration method has a
marked effect on the optimization trajectory. SGVB does not appear to benefit from RASP quadratures,
but the range of outcomes is worse than those for QNVB. For QNVB, the range of accuracy outcomes
is significantly higher for all first-moment matched methods (VRMC and RASP) than MC. Notably,
the RASP-simplex outperforms VRMC-1 and uses less memory than both VRMC-1 and VRMC-2.

DLRM / Criteo Ad Kaggle The DLRM architecture we tested contains approximately 540 million
parameters, causing VRMC methods exceed GPU memory limits. Thus, we only compare Monte
Carlo, RASP-simplex, and RASP-cross quadratures. Figures 4 and 5 shows that the Monte Carlo
quadrature outperforms the RASP quadratures for this architecture. This may be due to the weight of
bivariate error terms in the gradient, which exhibit larger variance with RASP quadratures than MC
(see Appendix A.2).

Tensorized Transformer / PTB The 3-evaluation quadrature comparisons in Figure 7 show that the
RASP-simplex reduces the validation loss much earlier, and to a lower minimum, than alternatives.
The other quadratures can achieve comparable validation loss, but require more gradient evaluations.
We also compare QNVB (using RASP-simplex 3) to other training algorithms in Figure 10 and find
that it achieves better validation perplexity. In particular, it achieves a significantly lower perplexity
of 9.45, whereas the next lowest perplexity is 45.67 with SGVB.

5 RELATED WORK

A large body of work focuses on reducing integration errors using Quasi Monte Carlo (QMC) methods.
For overviews, see Morokoff & Caflisch (1994); Caflisch (1998); Dick et al. (2013); Leobacher &
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Figure 2: We compare quadratures on ResNet18 trained with SGVB for 3, 4, and 6 evaluations.
RASP quadratures do not appear to offer any benefit for this architecture and training algorithm.
Validation optima are achieved with MC and VRMC-2.

Figure 3: We compare quadratures on ResNet18 trained with QNVB for 3, 4, and 6 evaluations.
QNVB offers a clear improvement in the range of outcomes. There is clear separation between Monte
Carlo and first-moment matched methods. RASP quadratures frequently achieve peak performance
and use less memory than VRMC.

Figure 4: We compare computationally-feasible quadratures on the DLRM architecture trained with
SGVB. Technically, the validation-optimum is achieved by RASP simplex 3, but only very slightly.
RASP quadratures do not appear to offer any notable benefit for this training algorithm.

Pillichshammer (2014). QMC improves expectation approximations by generating samples from the
unit hypercube [0, 1]d that are roughly evenly distributed. Randomized variants (RQMC) further
protect against the worst-case errors that QMC can encounter (L’Ecuyer, 2018; Dick et al., 2022;
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Figure 5: Here we compare the same quadratures on the DLRM architecture trained with QNVB.
The loss characteristics of DLRM drive the Monte Carlo quadratures to achieve better performance.

Figure 6: We compare quadratures using 3, 4, and 6 evaluations on the Tensorized Transformer with
SGVB. RASP quadratures offer no significant benefit for SGVB.

Figure 7: We compare the same quadratures on the Tensorized Transformer trained with QNVB.
RASP-Simplex 3 reduces the loss early on and achieves a lower minimum at 3 evaluations.

Owen, 2023). Efforts to incorporate RQMC into VI (Buchholz et al., 2018; Liu & Owen, 2021) seek
to improve training by improving the convergence of general integrals and Lin et al. (2022) provide
explicit convergence guarantees.

The success of (R)QMC methods for many high-dimensional integration problems is somewhat
unexpected. As Trefethen (2017) explains, integrals that are dominated by terms with complexity that
depends on only a few important directions should perform well, but rotating such functions produces
problems due to the anisotropy of the hypercube. In contrast, this work aims to minimize function
evaluations by incorporating low-dimensional symmetry into high-dimensional integration. Our
experiments demonstrate competitive results with only 3 RASP-simplex evaluations. In comparison,
tests by Buchholz et al. (2018) use 10 samples and Liu & Owen (2021) performs convergence
experiments from 8 to 2048 samples.

Our approach leverages the fact the integrals comprising projective integral updates (Duersch, 2023)
are dominated by specific basis functions. Rather than enhancing convergence of arbitrary integrals,
we only seek to reduce errors associated with the basis functions needed for QNVB updates. Since
VRMC methods (Caflisch, 1998) also yield 1st-order and univariate 2nd-order exactness, they provide
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a useful comparison against RASP quadratures for Gaussian MFVI. Nevertheless, it may be beneficial
to examine modified RQMC methods that target exactness on second-order basis functions, while
also retaining guarantees on convergence.

To the best of our knowledge, the RASP method of generating high-dimensional quadratures from
sigma points has not been previously proposed. Sigma points take advantage of isotropy and are
specifically designed for Gaussian integration. Menegaz et al. (2015) surveys sigma-point methods,
which have not focused on applications where n = d + 1, the minimal sigma-point rule (Wan-
Chun et al., 2007), is prohibitive. Since then, Radhakrishnan et al. (2018) have proposed a new
sigma-point method using 4r + 1 evaluations that reduces high-order sensitivity by increasing the
evaluation weights near the center of the density. The recent book by Dick et al. (2022) also covers
high-dimensional numerical integration with lattices and QMC methods on the unit hypercube. If a
method similar to ours has been proposed before, it is not commonly discussed.

6 CONCLUSION

RASP quadratures provide an evaluation-efficient method for high-dimensional Gaussian mean-field
integration that can improve model uncertainty calibration. Specifically, RASP quadratures minimize
the error corresponding to basis functions that dominate variational updates for Gaussian mean fields.
We presented the design of RASP quadratures and memory-efficient implementations, with a link to
our PyTorch implementation. We also proved theoretical guarantees of exactness and expected errors,
showing how RASP quadratures are more efficient than Monte Carlo for univariate basis functions.
Our results demonstrate that RASP quadratures can eliminate integration error from all univariate
quadratics and half of all bivariate quadratic basis functions using only 3 evaluations. Further, we
experimentally demonstrated the efficacy of RASP quadratures. In tests on ResNet18 and Tensorized
Transformer architectures, RASP quadratures frequently achieved peak performance while using less
memory than VRMC methods. QNVB with select RASP quadratures achieved higher accuracy and
lower perplexity than several state-of-the-art training algorithms.

RASP quadratures offer a reliable numerical approximation of the local loss topography at a manage-
able cost, enabling superior error control with only a few model evaluations and standard backpropa-
gation. RASP quadratures may support more advanced training methodologies by informing the effect
that potential parameter perturbations have on prediction quality. Similarly, computationally-limited
learning tasks and in situ data processing, including power-limited control systems, may benefit from
reducing the number of model evaluations needed to propagate uncertainty.
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A APPENDIX

A.1 ALGORITHMS

Algorithm 1 Simplex vertices, invariant under coordinate permutations
Input: r ∈ Z≥1 is the number of reference dimensions.
Output: R is an r × (r + 1) matrix (each column is an evaluation point). w gives weights.

1: function (R, w) = simplex(r)
2: α =

√
r + 1

3: β = (1 + α)−1

4: R = [αIr×r − [β]r×r [−1]r×1]

5: w =
[

1
r+1

]
r×1

6: end function

Algorithm 2 Cross-polytope vertices, symmetric reference quadrature
Input: r ∈ Z≥1 is the number of reference dimensions.
Output: R is an r × 2r matrix (each column is an evaluation point). w gives weights.

1: function (R, w) = cross(r)
2: R =

√
r [Ir×r − Ir×r]

3: w =
[

1
2r

]
2r

4: end function

Algorithm 3 Random-affinity sigma points
Input: d is the number of parameter dimensions and r is the number of reference dimensions.
Output: X is a d× n matrix (each column contains an evaluation point). w gives weights so that

R[f ] =

n∑
k=1

wkf
(
x(k)

)
≈

∫
f(x) dN (x | 0, I). (19)

1: function (X, w) = rasp(d, r)
2: (R, w) = ref_quad(r) ▷ Get reference quadrature.

3: ST ←
[
RT −RT

]T
▷ Concatenate with negative coordinates.

4: j = ⌊2r randd×1⌋+ 1 ▷ Randomize mapping to signed reference dimensions.
5: Xik = Sjik for i ∈ [d] and k ∈ [n]. ▷ Compose each evaluation point k.
6: end function

A.2 EXACTNESS PROOFS AND VARIANCE COMPARISONS

Proof of Theorem 3.1 Consider a function that is polynomial in a single parameter, i.e f(θ) ≡
p(θi), of degree less than or equal to ε1. From Equation (13), the RASP quadrature evaluates to

Q[f ] =

n∑
k=1

wkf(µ+ σ ∗ x(k)) =

n∑
k=1

wkp(µi + σix
(k)
i ) =

n∑
k=1

wkp(µi + σisiρ
(k)
ji

).

Since R[·] has univariate exactness ε1, applying Equations (12) and (14) gives

Q[f ] =

∫
p(µi + σisiρji)dN (ρ | 0, I).

The affine transformation x = µi + σisiρji yields the matching density N (x | µi, σ
2
i ). Thus

Q[f ] =

∫
p(x)dN (x | µi, σ

2
i ) =

∫
f(θ)dq(θ | µ, σ2) □
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Proof of Theorem 3.2 Consider a function that is polynomial in the two parameter dimensions,
i.e. f(θ) ≡ p(θi1 , θi2), of total degree less than or equal to ε2. From Equation (13), the RASP
quadrature evaluates to

Q[f ] =

n∑
k=1

wkf(µ+ σ ∗ x(k)) =

n∑
k=1

wkp(µi1 + σi1x
(k)
i1

, µi2 + σi2x
(k)
i2

)

=

n∑
k=1

wkp(µi1 + σi1si1ρ
(k)
ji1

, µi2 + σi2si2ρ
(k)
ji2

)

The reference quadrature will be exact if the corresponding reference dimensions are distinct. Taking
j1 = ji1 and j2 = ji2 , we have p(j1 = j2) = 1

r , since they are assigned uniformly at random
over r outcomes. Thus, the probability that we obtain the same exactness is r−1

r . In this case, the
polynomial remains bivariate in the reference space. Since total degree does not change, we can apply
the bivariate exactness ε2 so that Equation (14) gives

Q[f ] =

∫
p(µi1 + σi1si1ρj1 , µi2 + σi2si2ρj2)dN (ρ | 0, I).

As before, the affine transformations x1 = µi1 +σi1si1ρj1 and x2 = µi2 +σi2si2ρj2 give densities
N (x1 | µi1 , σ

2
i1
) and N (x2 | µi2 , σ

2
i2
). Thus

Q[f ] =

∫
p(x1, x2) dN (x1 | µi1 , σ

2
i1) dN (x2 | µi2 , σ

2
i2) =

∫
f(θ)dq(θ | µ, σ2) □

Proof of Theorem 3.3 The bivariate polynomial terms that are not correctly integrated by Q[·]
occur when both parameters map to the same reference dimension, i.e. when both i1 and i2 are
assigned to the same index, ji1 = ji2 = j. In this case, Equation (13) gives

Q[f ] =

n∑
k=1

wkf(µ+ σ ∗ x(k)) =

n∑
k=1

wk(σi1x
(k)
i1

)(σi2x
(k)
i2

)

=

n∑
k=1

wksi1si2σi1σi2ρ
(k)2
j = si1si2σi1σi2 .

Since E[si1si2 ] = 0, it follows E [Q[f ]] =
∫
f(θ)dq(θ | µ, σ2) = 0 □

Proof of Theorem 3.4 From Equation (13), the RASP quadrature evaluates to

Q[f ] =

n∑
k=1

wkf(µ+ σ ∗ x(k)) =

n∑
k=1

wk

d∏
i=1

(
σix

(k)
i

)mi

=

n∑
k=1

wk

d∏
i=1

(
σisiρ

(k)
ji

)mi

We can sum each term twice and halve the result. Then, applying symmetry gives

Q[f ] =
1

2

[
n∑

k=1

wk

d∏
i=1

(
σisiρ

(k)
ji

)mi

+

n∑
k′=1

wk′

d∏
i=1

(
σisiρ

(k′)
ji

)mi

]

=
1

2

[
n∑

k=1

wk

d∏
i=1

(
σisiρ

(k)
ji

)mi

+

n∑
k=1

wk

d∏
i=1

(−1)mi

(
σisiρ

(k)
ji

)mi

]
.

Since
∑d

i=1 mi is odd, we have
∏d

i=1(−1)mi = −1 and every term cancels, thus recovering

Q[f ] =

∫ d∏
i=1

(θi − µi)
midq(θ | µ, σ2) = 0 □ (20)
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Error Variance θi−µi

σi

(θi−µi)
2

σ2
i

(θi−µi)(θj−µj)

σiσj

Monte Carlo 1
n

2
n

1
n

RASP 0 0 1
r

Table 1: Variance of errors for quadratic basis functions. RASP quadratures are more efficient for
univariate basis functions, but have higher variance than Monte Carlo for bivariate basis functions.

A.3 TRAINING METHODS COMPARISONS

Figures 8 to 10 compare the optimal validation quadratures for SGVB and QNVB against standard
training algorithms, including: stochastic gradient descent with momentum (SGD-M) (Qian, 1999),
Adam (Kingma & Ba, 2014), AdaHessian (Yao et al., 2021), and AdaGrad (Duchi et al., 2011). These
experiments show that QNVB using RASP quadratures provides a competitive training algorithm.

Figure 8: We compare QNVB with RASP-simplex against other training algorithms. QNVB with
RASP-simplex integration achieves better generalizability on the test data.

Figure 9: We examine the performance of QNVB with Monte Carlo integration in comparison to
alternative training methods. QNVB still achieves better generalizability on validation data.
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Figure 10: We present a comparison of training algorithms on the Tensorized Transformer. QNVB
with RASP-simplex achieves much lower perplexity than the alternatives.

A.4 EXPERIMENT DETAILS

The hyperparameter settings for QNVB and SGVB follow those used by Duersch (2023), for all
experiments. Other settings for SGD-M (Qian, 1999), Adam (Kingma & Ba, 2014), AdaHessian (Yao
et al., 2021), and AdaGrad (Duchi et al., 2011) follow the setup used by Yao et al. (2021), except we
extended the training duration for the Tensorized Transformer to 200, 000 steps. These experiments
do not use regularization, which is equivalent to an improper flat prior.

ResNet18 / CIFAR-10 The version of ResNet18 we tested is from PyTorch TorchVision 0.15.1
library. Training data were split into 40, 000 training cases and 10, 000 validation cases. SGD-M uses
the learning rate λ = 0.1 and gradient momentum coefficient of β1 = 0.9; Adam uses the standard
learning rate λ = 10−3 and betas, β1 = 0.9 and β2 = 0.999, and the denominator coefficient
ε = 10−8. AdaHessian uses the same hyperparameters as Adam, except with the standard learning
rate for AdaHessian of λ = 0.15. Both SGVB and QNVB use the same learning schedule from
Duersch (2023). Namely, QNVB uses λ = 5× 10−3, the same beta and epsilon parameters as Adam,
and a learning rate reduction schedule of 1.05 per epoch. SGVB uses the same hyperparameters as
Adam and the same standard deviation limits as QNVB. QNVB uses the standard deviation limits
σmin = 10−3 and σmax = 5 × 10−2, and the likelihood weight w = 40, 000. Each training run
consisted of 80 epochs.

DLRM / Criteo Ad Kaggle For these experiments, SGD-M, AdaGrad, SGVB, and QNVB were
compared. AdaHessian was not tested because this architecture relies on sparse gradients during
training, which are not compatible with secondary backpropagation, and the requisite modifications
used by Yao et al. (2021) were not available. Both SGD-M and AdaGrad use standard DLRM
hyperparameters. SGVB uses standard Adam hyperparameters, as well as σmin = 10−5 and σmax =
10−3. QNVB uses λ = 2 × 10−3, w = 5 × 10−4, and likelihood annealing. In particular, the
likelihood weight is increased by a factor of 1.0000248 per step to arrive at a final weight of w = 108.
Both SGD-M and AdaGrad require far less training time due to their usage of sparse gradients to
avoid updating all parameters in each step. Training consists of 1 epoch, approximately 300,000
steps, as this architecture immediately exhibits over training at the start of the second epoch.

Tensorized Transformer / PTB The learning rates are λ = 5× 10−4 (SGD-M), λ = 2.5× 10−4

(Adam), and λ = 1 (AdaHessian). SGD-M has the gradient moment coefficient set to 0.9, while both
SGD-M and Adam use a cosine learning rate schedule. Training consists of 200,000 steps.
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