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Abstract

Stream networks, a unique class of spatiotemporal graphs, exhibit complex direc-
tional flow constraints and evolving dependencies, making uncertainty quantifi-
cation a critical yet challenging task. Traditional conformal prediction methods
struggle in this setting due to the need for joint predictions across multiple interde-
pendent locations and the intricate spatio-temporal dependencies inherent in stream
networks. Existing approaches either neglect dependencies, leading to overly con-
servative predictions, or rely solely on data-driven estimations, failing to capture the
rich topological structure of the network. To address these challenges, we propose
Spatio-Temporal Adaptive Conformal Inference (STACI), a novel framework that
integrates network topology and temporal dynamics into the conformal prediction
framework. STACI introduces a topology-aware nonconformity score that respects
directional flow constraints and dynamically adjusts prediction sets to account for
temporal distributional shifts. We provide theoretical guarantees on the validity
of our approach and demonstrate its superior performance on both synthetic and
real-world datasets. Our results show that STACI effectively balances prediction
efficiency and coverage, outperforming existing conformal prediction methods for
stream networks.

1 Introduction
Stream networks represent a distinctive class of spatiotemporal graphs where data observations follow
directional pathways and evolve dynamically over both space and time [21]. These networks are
prevalent in various domains such as hydrology, transportation, and environmental monitoring, where
data exhibit strong flow constraints [9, 18, 33, 57, 36]. For example, in hydrology, river networks
dictate the movement of water flow and pollutant dispersion [32], while in transportation, road and
rail networks determine congestion and travel times [57, 56]. Understanding and modeling these
networks are crucial for infrastructure planning, disaster response, and ecological conservation.
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A fundamental challenge in stream network analysis is predicting future observations and quantifying
their uncertainty across multiple interconnected locations governed by network topology. Given the
dynamic nature of these systems, accurate and reliable uncertainty quantification (UQ) is essential for
risk assessment, decision-making, and resource allocation. For example, in transportation, estimating
uncertainty in traffic volume forecasts across critical junctions enables optimal routing and congestion
management [57]. However, the hierarchical dependencies, directional flow constraints, and evolving
conditions inherent in stream networks introduce significant complexities.

Recent advances in machine learning and statistical modeling have enhanced predictive accuracy for
spatio-temporal data and enabled effective UQ with statistical guarantees [49, 14, 55]. In particular,
conformal prediction (CP) has emerged as a powerful UQ framework, providing finite-sample
validity guarantees under mild assumptions [35]. By constructing prediction sets with valid coverage
probabilities, CP ensures that future observations fall within specified confidence intervals, enhancing
reliability in decision-support systems [27, 23, 5, 54].

Despite its success in various domains, traditional CP methods face significant limitations when
applied to stream networks due to two key challenges: (i) Multivariate prediction: Unlike standard
time-series predictions that focus on a single target variable, stream networks require joint predictions
at multiple locations, where observations are highly interdependent. Applying CP independently
at each location neglects network-wide dependencies, leading to inefficiencies in prediction set
construction and potential loss of coverage guarantees. (ii) Intricate spatio-temporal flow constraints:
Traditional CP assumes exchangeable data, an assumption that fails in stream networks due to
directional flow constraints. While graph-based and spatial models account for topological relation-
ships, stream networks exhibit unique dependency structures that neither conventional graph-based
approaches nor purely data-driven models fully capture. Existing CP approaches either completely
ignore dependencies without considering the spatio-temporal dynamics [37, 10] or attempt to learn
dependencies solely from data without incorporating topological constraints [51, 40]. The former
results in overly conservative or miscalibrated prediction sets, while the latter risks overfitting to
specific network conditions, reducing generalizability.

To address these challenges, we propose a novel framework, Spatio-Temporal Adaptive Conformal In-
ference (STACI), for constructing uncertainty sets in stream networks. Our method integrates network
topology and temporal dynamics into the conformal prediction framework, yielding more efficient
and reliable UQ. Specifically, we develop a nonconformity score that explicitly incorporates spatial
dependencies across multiple locations on the stream network as determined by their underlying
topology, balancing observational correlations with topology-induced dependencies. To achieve
this balance, we introduce a weighting parameter that regulates the contribution of topology-based
covariance and data-driven estimates. A greater reliance on the topology-induced covariance structure
improves coverage guarantees, assuming it accurately reflects underlying dependencies. Conversely,
prioritizing sample-based estimates mitigates potential misspecifications in the topology-induced
covariance, often leading to better predictive efficiency. Additionally, we consider a dynamic ad-
justment mechanism that accounts for temporal distributional shifts, allowing prediction intervals to
adapt over time and maintain valid coverage in non-stationary environments.

We provide a theoretical analysis of STACI, demonstrating that it maximizes prediction efficiency
by reducing uncertainty set volume while maintaining valid coverage guarantees. To validate its
effectiveness, we evaluate STACI on synthetic data with a stationary covariance matrix and real-world
data with time-varying covariance, comparing its performance against state-of-the-art baseline. 3

Both our theoretical and empirical results underscore the importance of the weighting parameter
that balances data-driven insights with topology-induced knowledge, optimizing performance and
enhancing predictive reliability in stream network applications.

Our contribution can be summarized as follows:

• We propose a novel conformal prediction framework specifically designed for stream networks,
integrating both spatial topology and temporal dynamics to enhance uncertainty quantification.

• We highlight the limitations of purely data-driven dependency estimation in stream networks
and introduce a principled approach that leverages both observational data and inherent network
structure.

3Our code is publicly available at https://github.com/fangxin-wang/STCP.
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• We provide a theoretical analysis establishing STACI’s validity and efficiency, and empirically
demonstrate its superior performance in achieving an optimal balance between coverage and
prediction efficiency on both synthetic and real-world datasets.

2 Related Works
Stream networks, such as hydrology [21, 18, 36], transportation networks [14, 28], and environmental
science networks [25], have been extensively studied due to their critical role in natural and engineered
systems. Forecasting for stream network can be approached from two perspectives: as a graph
prediction problem or as a multivariate time series prediction problem. In this work, we focus on the
latter one, with the aim of predicting future data based on historical network data.

Many approaches to stream network analysis rely on domain-specific statistical and physical models.
[18] introduced spatial stream network models for hydrology, emphasizing the importance of flow-
connected relationships and spatial autocorrelation. The tail-up model [43] generalized spatial
covariance structures to stream networks by weighting observations based on flow connectivity.
Recent advances in machine learning have spurred innovative approaches for modeling stream
networks for point forecasts, particularly through graph-based frameworks that leverage their inherent
spatio-temporal (ST) graph dynamics [20, 11].

While effective and widely adopted, models without uncertainty quantification often lack consid-
erations for reliability, posing limitations particularly in safety-critical scenarios. To address this,
some studies [49, 58, 38, 48, 33] turn to explore interval prediction, which ensures that prediction
intervals cover the ground-truth values with a pre-defined high probability, offering a more reliable
alternative. Among these approaches, the majority of studies employ Bayesian methods to construct
prediction intervals for ST forecasting problems [47]. These methods commonly utilize Monte
Carlo Dropout [49, 33] or Probabilistic Graph Neural Networks [58, 48]. However, the performance
of Bayesian methods has been found to be sensitive to the choice of prediction models and pri-
ors, particularly the type of probabilistic distributions [48]. To address these limitations, classic
Frequentist-based methods have been employed, such as conformal prediction, which generally offer
more robust coverage across data and model variations.

Conformal prediction (CP) [46] has recently gained significant attention across various domains,
including graph-structured data [8, 19, 29] and multi-dimensional time series [40, 30, 50]. Existing
CP methods for graphs [8, 19, 29] have primarily addressed node/edge classification and ranking tasks,
where UQ concerns discrete labels or scores on static graph structures. In contrast, our work focuses
on a fundamentally different problem: UQ for spatio-temporal forecasting on dynamic networks.
Given that spatio-temporal graphs can be naturally formulated as a special case of multivariate time
series, we discuss related CP methodologies developed for the latter setting [40, 30, 50]. [40] assumes
that data samples for each entire time series are drawn independently from the same distribution,
while [30] assumes exchangeability in the data. Both approaches fail to capture the complex temporal
and spatial dependencies inherent in ST graphs, limiting their applicability. [50] construct ellipsoidal
prediction regions for non-exchangeable multi-dimensional time series, but their model neglects the
inherent graph structure embedded within the multi-dimensional time series and overlook scenarios
where the error process (see eq. (1)) is non-stationary, a prevalent feature in real-world data. Section
B in the Appendix provides a taxonomy of existing CP methods, highlighting our unique positioning
within the CP literature. To the best of our knowledge, no previous work has specifically tailored CP
for stream networks or other spatio-temporal graphs, reinforcing the novelty to this domain.

3 Problem
Consider a stream network G with fixed flow direction at time t ∈ {1, . . . , T}, with I observational
sites indexed by I = {1, . . . , I}. Let L ⊂ R2 denote the set of all geolocations on the network, and
let the geographical location of site i ∈ I be represented as ℓi ∈ L. The stream network consists
of segments {rj ⊂ L, j ∈ J }, where J is the index set of all stream segments. Each site i ∈ I
is located within a specific segment rj for some j ∈ J , and a segment may contain multiple or no
observational sites. For any location u ∈ L, we define ∧u as the set of all upstream segments of
location u, and ∨u as the set of all downstream segments of location u. The hydrologic distance
between two locations v, u ∈ L, denoted as d(v, u), is the distance measured along the stream. If v
and u belong to the same segment ri, d(v, u) is simply the Euclidean distance between v and u. See
Figure 1 for an illustration.

Now, consider a multivariate time series observed at the I sites. We denote the dataset as
D := {(Xt, Yt)}t∈[T ]. Here Yt := [Yt(ℓ1), Yt(ℓ2), . . . , Yt(ℓI)]

⊤ ∈ RI , and Yt(ℓi) (or simply
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Y i
t ) represents the observation at location ℓi at time t. The historical observations are given by

Xt ∈ RI×h, defined as Xt := [Yt−1, Yt−2, . . . , Yt−h]
⊤ ∈ RI×h. We assume that Yt follows an

unknown true model f(Xt) with additive noise ϵt, such that:

Yt = f(Xt) + ϵt, (1)

where ϵt ∈ RI has zero mean and a positive definite covariance matrix Σ ≻ 0.
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Figure 1: An example of stream network G. The
network segments {r1, . . . , r5} are denoted by
blue lines, and the observation points {ℓ1, . . . , ℓ10}
are marked with green triangles, pointing to the
flow directions. The upstream of location ℓ2 are
segments accompanied by orange area, and the
downstream of location ℓ6 are blue shaded. The
hydrologic distance between ℓ2 and ℓ6 is calculated
through adding lengths of green shaded segments
in both r1 and r3.

The goal is to construct a prediction set for
YT+1 given the new history XT+1, denoted by
C(XT+1), such that, for a predefined confidence
level α, the following coverage guarantee holds:

P(YT+1 ∈ C(XT+1)) ≥ 1− α.

This objective can be achieved using split confor-
mal prediction (CP) [46], a widely used frame-
work for uncertainty quantification. Split CP
operates by first partitioning the data into a train-
ing set and a calibration set. The prediction
model f̂ is trained exclusively on the training
set. To assess the reliability of predictions, a
nonconformity score is computed, which quan-
tifies the deviation of each calibration sample
from the ground truth. Given a target confidence
level α, the method determines the (1 − α)-th
quantile of the nonconformity scores from the
calibration data. This quantile is then used to
adjust f̂ ’s predictions for test samples, ensuring
the constructed prediction sets maintain valid
coverage. Under the assumption that the calibration and test data are exchangeable, the prediction
sets are guaranteed to achieve a coverage rate of at least 1− α on the test data.

The challenges of performing multivariate time-series prediction over a stream network are twofold:
(i) Multi-dimensionality: The response variable Yt is multivariate and potentially high-dimensional,
significantly increasing the complexity of constructing accurate prediction sets. Standard CP methods,
when applied to multi-dimensional variables without a carefully designed nonconformity score, often
produce overly conservative prediction sets. This leads to inefficiencies, as the prediction set size
|C(Xt)| becomes too large to provide meaningful uncertainty quantification. (ii) Non-exchangeability:
Observational sites exhibit complex spatial and temporal dependencies due to strong correlations
imposed by the network topology. As a result, traditional CP methods, which rely on exchangeability
assumptions, cannot be readily applied.

4 Proposed Framework
This paper proposes a novel framework, referred to as spatio-temporal adaptive conformal inference
(STACI), for constructing uncertainty sets in spatio-temporal stream networks. Our approach consists
of two key components: (i) We develop a nonconformity score that explicitly captures spatial
dependencies induced by the stream network’s topology, leading to more efficient prediction sets. (ii)
We account for temporal distributional shifts to refine prediction sets dynamically, ensuring reliable
coverage over time. We demonstrate that STACI significantly improves prediction efficiency while
maintaining valid coverage guarantees, making it a robust and effective approach for uncertainty
quantification in spatio-temporal settings.

Topology-aware Nonconformity Score We use the most recent n < T data points to construct
the calibration dataset. Specifically, we denote the calibration dataset as Dcal := {(Xt, Yt), t =

T − n+ 1, · · ·T − 1, T}, and define Ŷt := f̂(Xt), where f̂ is the fitted model trained on the rest of
the data D \ Dcal. For each calibration data point (Xt, Yt) ∈ Dcal, we compute its nonconformity
score, denoted by s(Xt, Yt).

To account for the intricate spatio-temporal dependencies, we consider a general class of nonconfor-
mity score functions based on the Mahalanobis distance [22]:

s(Xt, Yt) := ϵ̂⊤t Aϵ̂t, ∀t ∈ Dcal, (2)
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where A is an I×I symmetric positive definite matrix and ϵ̂t := Yt−Ŷt− ϵ̄t is the centered prediction
error, with ϵ̄t denoting the sample average of errors on Dcal.

The core idea of our method is a linearly weighted representation for A, which integrates both
topology-induced and sample-based covariance estimates. Formally,

A := (1− λ)Σ̂−1
n + λΣ̂−1

G . (3)

Here Σ̂n is the sample covariance matrix computed from the residuals {ϵ̂t, t ∈ Dcal}, and Σ̂G
represents the covariance structure induced by the stream network topology. The weighting parameter
λ ∈ [0, 1] balances these two estimates. A higher value of λ places greater reliance on the topology-
driven covariance structure, assuming it accurately captures the underlying dependencies. Conversely,
a lower λ shifts reliance toward the sample-based estimate, mitigating potential misspecifications in
the topology-induced covariance.

Unlike the method proposed by [51], which relies solely on the sample covariance estimate, this
formulation incorporates the underlying topology of the stream network. By balancing data-driven and
structural information, it provides a more robust covariance estimation, leading to better prediction
efficiency without sacrificing coverage validity.

Topology-induced Covariance Estimation We develop a novel method to estimate the topology-
induced covariance Σ̂G used in eq. (3) by assuming the observations on the stream network can be
captured by a tail-up model [18, 43, 17]. The tail-up model is formally defined as follows:
Definition 1 (Tail-up model). Given a stream network G, the observation at any location u on the
network can be modeled as a white-noise random process, which is constructed by integrating a
moving average function over the upstream process, i.e.,

Y (u) = µ(u) +

∫
∧u

m(v − u)

√
w(v)

w(u)
dB(v), (4)

where ∧u denotes all the segments that are the upstream of u. Here, µ(u) is the deterministic mean
at u, and m(v − u) is a moving average function capturing the influence from upstream location v
to u. Both w(v) and w(u) are weights that satisfy the additivity constraint such that the variance
remains constant across sites.

We note that the tail-up model only requires the assumptions of ergodicity and spatial stationarity
[42], which is highly flexible and can be broadly applied to a wide range of stream network data.
Also, the choice of the moving average function m(∆) remains adaptable, as long as it has a finite
volume, allowing the model to accommodate different spatial structures effectively.

To estimate Σ̂G , we model B(v) using Brownian motion and adopt an exponential moving average
function for m(∆) = β exp(−∆/ϕ). Therefore, the topology-induced covariance between any two
locations u, v can be expressed as follows (See Lemma 5 in Section A of the Appendix):

Σ̂G(u, v) = σ2

√
w(u)

w(v)
exp
(
−d(u, v)/ϕ

)
, if u→ v, (5)

where ϕ and σ2 are estimated scaling parameters of the tail-up model. In practice, weights w can
be obtained by estimating the intensity of the flow through the observational, for instance, using
normalized traffic counts as the weights for traffic stream network data.

Intuitively, the covariance structure reflects how information propagates along the stream network.
The exponential decay in eq. (5) models diminishing influence with increasing hydrologic distance
d(u, v), while the weight term

√
w(u)/w(v) modulates this effect based on flow intensity. This

formulation naturally aligns with real-world stream dynamics, where proximal upstream sites exert
stronger influence than distant or disconnected ones.

Adaptive Uncertainty Set Construction We construct a spatio-temporally adaptive prediction
set for a new observed history XT+1 using our proposed nonconformity score, defined in eq. (2), as
follows:

C(XT+1;α) = {y : s(XT+1, y) ≤ Q̂1−α},
where Q̂1−α is the (1 − α)-th quantile of the empirical cumulative distribution function of
{s(Xt, Yt), t ∈ Dcal}.
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To account for potential temporal distribution shifts in the predictive error of eq. (1), we adopt
the Adaptive Conformal Inference (ACI) framework proposed in [15]. This approach dynamically
updates the confidence level αt over time, ensuring that the prediction set remains responsive to
evolving data distributions. Specifically, we iteratively update αt, and reconstruct the prediction set
C(Xt, αt) accordingly. At the initial test time T + 1, the confidence level is set as αT+1 = α. For
subsequent time steps t > T + 1, αt, we update αt with a step size γ ≥ 0 as follows:

αt+1 = αt + γ(α− 1{Yt /∈ C(Xt;αt)}), ∀t ≥ T + 1. (6)

The rationale behind ACI is that if the prediction set fails to cover the true value at time t, the
effective error level is reduced, leading to a wider prediction interval at time t+ 1, thereby increasing
the likelihood of coverage. A larger step size γ makes the method more responsive to observed
distribution shifts but also introduces greater fluctuations in αt. When γ = 0, the method reduces to
standard conformal prediction with fixed α. The detailed analysis of coverage guarantee of Adaptive
Uncertainty Set construction is discussed in Section C in Appendix.

5 Theoretical Analysis
Our theoretical analysis focuses on establishing two key properties for the proposed STACI:

1. Optimal Efficiency: We establish that STACI maximizes predictive efficiency by reducing the
uncertainty set volume, justifying the need for accurate covariance estimation in spatio-temporal
stream networks (Theorem 2).

2. Validity Guarantees under Stationarity and Adaptation to Distribution Shifts: We prove that STACI
ensures valid conditional coverage under stationary assumptions (Theorem 1) and extend the
framework to handle non-stationary settings via an ACI adjustment, ensuring approximate average
coverage (Proposition 1 in Section C of the Appendix).

Our analysis is based on the Mahalanobis distance framework in eq. (2), which enables the construc-
tion of arbitrary ellipsoidal uncertainty sets, with greater flexibility for nonconformity scores. For
example, standard CP with spherical uncertainty sets arises as a special case when A is an identity
matrix. Another instance is the approach in [51], where A is set as the sample covariance matrix.

We adopt standard asymptotic notation and norm definitions. The big-O notation O(·) characterizes
an upper bound on a function’s growth rate: if f(n) = O(g(n)), then there exists a positive constant
C such that f(n) ≤ Cg(n), for all n ≥ n0. The little-o notation o(·) denotes strictly smaller
asymptotic growth, with f(n) = o(g(n)) implying limn→∞ f(n)/g(n) = 0. Additionally, we use
standard ℓ2 norms for quantifying vector and matrix magnitudes.

5.1 Coverage Validity
We analyze the conditional coverage validity of the proposed method. Consider the additive error
model described in eq. (1) where the errors, ϵt, are i.i.d.. We introduce the following assumption and,
for simplicity, denote the nonconformity score ϵ⊤t Aϵt as st.

Assumption 1 (Estimation quality). There exists a sequence {νn}, n ≥ 1 such that
1
n

∑T
t=T−n+1 ||ϵt − ϵ̂t||2 ≤ ν2n, ||ϵT+1 − ϵ̂T+1|| ≤ νn .

Remark 1. The assumption ensures that the prediction error is bounded by ν2n. For many estimators,
the νn vanishes as n→∞, indicating improved estimation accuracy with larger sample sizes [7].

Assumption 2 (Convergence of An). The sequence {An} associated with the nonconformity score
converges to a fixed matrix A as n increases, with an upper-bounded convergence rate o(g(n)), i.e.
∥An −A∥ = o

(
g(n)

)
. Additionally, there exists a constant r > 0 such that ∥A∥ ≤ r.

Remark 2. When designing nonconformity scores, the matrix A can be chosen to either remain
constant or converge to a fixed matrix. The flexibility in selecting A allows for adaptability across
different scenarios. For example, if the true covariance matrix of the error ϵ is known, A can be set
as its inverse. Alternatively, if only sample estimates are available, A can be chosen as the inverse
of the estimated sample covariance matrix of ϵ, provided it converges under proper tail behavior
conditions [45]. The major difference between choices of An lies in the respective convergence rates.

Assumption 3 (Regularity conditions for st and ϵt). Assume that the cumulative distribution function
(CDF) of the true nonconformity score, Fs(x), is Lipschitz continuous with a constant L > 0. Suppose
there exist constants κ1, κ2 > 0 such that ∥ϵt∥ ≤ κ1I almost surely, and Var[∥ϵt∥2] ≤ κ2I..
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Theorem 1 (Validity). Under the assumptions stated above, the proposed method satisfies the
following conditional coverage guarantee:

|P(YT+1 ∈ CT+1(α)|XT+1 = x)− (1− α)| ≤ (4L+ 2L
√
ω + 2)

√
ω + 6

√
log(16n)

n
+

log(16n)

n
,

where
ω = ν2nr + 2rνn

√
(κ1 +

√
κ2)I + o(g(n))(κ1 +

√
κ2)I.

Remark 3. The finite-sample bound on the coverage gap is directly influenced by the estimation
quality and the convergence rate of An, which is given by max(O( logn

n ),O(νn),O(
√
g(n))). In

general, reducing the coverage gap requires high-accuracy estimations (i.e., a rapidly vanishing νn)
and a well-chosen nonconformity score matrix An that converges quickly.

Theorem 1 highlights the importance of incorporating topology-based estimators in STACI. Relying
solely on the sample covariance matrix often leads to coverage gaps in finite samples, undermining
validity. In contrast, the topology-based matrix acts as a covariance estimator with topology-informed
regularization, generally achieving faster convergence than the sample covariance estimator. A hybrid
approach that combines both estimators provides an optimal trade-off between validity and efficiency.

5.2 Prediction Efficiency
We evaluate the efficiency of STACI via the volume of the prediction set in I-dimensional space,
defined as V (A, r) = πI/2

Γ( I
2+1)

· rI/2 · det(A)−1/2. The radius of the prediction set is determined

by the (1 − α)-th quantile of the empirical CDF, computed from n data points in the calibration
dataset. This radius is denoted as Q̂1−α({ϵ̂⊤t Aϵ̂t, t ∈ Dcal}). In the ideal case where f̂(Xt) = f(Xt)

and ϵ̂t = ϵt, minimizing inefficiency reduces to: minA≻0 V (A, Q̂1−α({ϵ⊤t Aϵt, t ∈ [n]})). To
simplify computation, we approximate the empirical quantile with the true quantile, justified by
the Glivenko-Cantelli Theorem [41], which ensures the convergence limn→∞ Q̂1−α({ϵ⊤t Aϵt, t ∈
[n]}) = Q1−α(ϵ

⊤Aϵ), where Q1−α(·), the 1− α quantile of ϵ⊤Aϵ is assumed to be continuous.

In the limiting case, we formulate the following minimization problem, presented in Theorem 2, and
use its solution as the guiding criterion for selecting the matrix A:
Theorem 2 (Efficiency). There exists 0 < α0 < 1, such that when α < α0, the optimal solution to
the minimization problem is given by:

A∗ := argmin
A≻0

V (A,Q1−α(ϵ
⊤Aϵ)), (7)

where ϵ ∼ N (0, A−1
∗ ).

Remark 4. The optimization problem is invariant to scalar rescaling (i.e., A and any positive scalar
multiple cA, where c > 0, yield the same mathematical solution). Empirically, we find α0 > 0.2 for
Gaussian noises when I ≤ 30, ensuring that the result is applicable to conformal prediction settings
with typical coverage levels of 90% or 95% in the focused setting. The analysis can go beyond the
Gaussian noise assumption for ϵ and be extended to broader distributions that satisfy appropriate
tail-bound conditions.
Theorem 2 underscores the importance of selecting A optimally in eq. (2) and highlights that
accurately estimating the inverse of the error covariance matrix is key to minimizing inefficiency
in CP. In practice, designing an optimal A∗ is often challenging due to empirical limitations. For
example, the estimated residuals ϵ̂t may deviate significantly from the true errors ϵt. Additionally,
when the sample size n is small, the empirical CDF may differ considerably from the true CDF.
Despite these challenges, constructing A based on an estimate of the inverse covariance matrix offers
substantial improvements in high-dimensional settings compared to CP methods that ignore variable
dependencies, such as those that set A as the identity matrix.

6 Experiments
To demonstrate the suitability of STACI, we evaluate its performance on both synthetic data with a
stationary covariance matrix and real-world data with time-varying covariance. By default, the first
60% of observations are used for training, the calibration set consists of the most recent n = 500
observations, and the test contains the sequentially revealed observations n′ = 5000 in simulation
and n′ = 5000 in real study. The desired confidence rate α is fixed at 0.95. Our method is compared
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(a) Comparison of STACI with baselines. (b) Impact of λ on STACI.

Figure 2: Experiment results of synthetic data: (a) Comparison of methods on synthetic datasets with
different tail-up parameters Θ over coverage (x-axis) and efficiency (y-axis). (b) Trade-off between
coverage and efficiency on synthetic data, where the higher the better performance.

against the following conformal prediction and learning-based uncertainty quantification baselines: (i)
Sphere: Spherical confidence set, where the covariance matrix is an identity matrix. In other words,
the prediction error at different locations are not considered to have correlations. (ii) Sphere-ACI
(γ = 0.01): Spherical confidence set with adaptive conformal inference (ACI). (iii) Square: Square
confidence set. This equals to computing different nonconformity scores for each dimension, and
then calibrate accordingly. (iv) GT: Ellipsoidal confidence set using the ground-truth covariance
matrix. (v) MultiDimSPCI: Ellipsoidal confidence set using the sample covariance matrix [50],
alongside its localized variant using the most recent observations, MultiDimSPCI (local). (vi)
CopulaCPTS: Prediction region based on modeling the joint distribution of forecast errors with a
copula function [39]. (vii) DeepSTUQ: A Bayesian deep learning model that quantifies uncertainty
in spatio-temporal graphs by using graph convolutions and Monte Carlo dropout [33].

We consider both validity and efficiency to evaluate the uncertainty quantification performance: (i)
Coverage quantifies the likelihood that the prediction set includes the true target, i.e., Coverage :=∑

t∈Dtest
1{Yt /∈ C(Xt;αt)}

/
n′; (ii) Efficiency is evaluated based on the size (or volume) of the

prediction set, with smaller sets indicating higher efficiency. The volume of the prediction set,
Vol(C(Xt;αt)), is measured by the size of the ellipsoid determined by A. Formally, Efficiency :=∑

t∈Dtest

(
Vol(C(Xt;αt))

)1/I/
n′. An optimal method should achieve the predefined coverage with

high efficiency/low inefficiency.

6.1 Simulation
In this section, we conduct simulation experiments on synthetic data generated by a tail-up model.
Specifically, we follow [31] and construct the stream network as shown in Figure 1. The details of
synthetic network is provided in Section D.1 of the Appendix. We generate the observation of site u
at time point t by simulating stochastic integration from all upstream points r ∈ ∧u to downstream
point u according to eq. (4), where we set µt(u) =

∑w
i=1 θiYt−i(u) following the AR(w) structure

and m(∆) = exp(−∆) as the exponential moving average function. The process is repeated until
5000 time steps. This experiment simulates the stream network data without any misspecification.

Experiment Configuration In synthetic data, the prediction model f is simply a linear regression
model. We first estimate parameters of in AR(w) structure, i.e., Θ = (θi)i∈[w], through linear
regression and then parameters in eq. (29), ϕ and σ2 through ℓ1-loss. Parameters of Θ = (0, 0) and
Θ = (0.7, 0.3) are selected for data generation. When Θ = (0, 0), the observations consist of pure
noise, thus stationary; when Θ = (0.7, 0.3), the process resembles a second-order autoregressive
model. The weighting factor λ is set to 0.6.

Results Our numerical results demonstrate that our method enhance the predictive efficiency
significantly without sacrificing the coverage guarantee, by considering both sample-based and
topology-based covariance. From Figure 2(a), we observe that CP methods employing ellipsoidal
uncertainty sets tend to cluster towards the upper region of the plot, indicating higher efficiency
compared to CP methods based on spherical or square uncertainty sets. Although MultiDimSPCI
achieves the lowest efficiency, its coverage drops significantly below the required threshold, high-
lighting its instability when relying solely on the sample covariance matrix. This issue persists even
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Table 1: Comparison of Different CP Methods over Different GNN Models for two PeMS Datasets.
Coverage below 94.5% is italicized. Inefficiency is reported as mean ± standard deviation, with the
lowest value in bold.

Dataset Backbone Models AGCRN ASTGCN STGODE

CP Methods Coverage Efficiency ↓ Coverage Efficiency ↓ Coverage Efficiency ↓

PeMS-G1

Sphere 97.76 133.60± 12.79 96.64 128.23± 14.2 96.09 145.40± 7.79
Sphere-ACI (γ = 0.01) 95.26 108.93± 15.96 95.24 114.64± 19.54 95.03 136.36± 19.47

Square 95.98 155.84± 23.92 96.41 155.62± 23.74 96.38 172.30± 23.51
MultiDimSPCI 92.92 73.82± 8.16 93.19 74.68± 7.67 92.70 88.48± 4.26

MultiDimSPCI (local) 93.04 74.23± 8.27 93.57 75.18± 7.69 92.98 88.99± 4.26
STACI (γ = 0) 97.12 88.27± 21.73 96.76 88.1± 19.07 95.31 77.34± 7.09

STACI (γ = 0.01) 95.75 67.54 ± 10.94 95.54 67.92 ± 10.22 95.14 73.62 ± 9.83

PeMS-G2

Sphere 96.26 144.55± 14.22 95.64 130.69± 11.55 95.83 147.13± 14.68
Sphere-ACI (γ = 0.01) 95.03 133.63± 14.18 95.07 122.72± 16.67 95.14 122.34± 19.72

Square 95.26 172.18± 19.43 95.37 160.60± 19.95 95.12 138.97± 17.78
MultiDimSPCI 91.14 101.42± 7.71 90.93 92.12± 6.67 90.74 107.23± 7.34

MultiDimSPCI (local) 91.44 102.25± 7.90 91.12 92.84± 6.95 91.10 107.96± 7.58
STACI(γ = 0) 95.39 73.36± 10.35 95.18 60.45± 9.22 95.33 77.14± 8.65

STACI(γ = 0.01) 95.01 69.62 ± 12.85 95.05 58.07 ± 9.83 95.20 74.86 ± 9.63

in simulated data designed to align with its error process assumptions. Its local variant, designed to
capture temporal correlations, provides only a marginal improvement and similarly fails to achieve
the required coverage. In contrast, with λ fixed at 0.6, our method STACI is positioned near the
upper-right corner alongside GT, which leverages the ground-truth covariance matrix. This suggests
that our method achieves performance comparable to GT, balancing low efficiency (smaller volume)
while maintaining the necessary coverage guarantees. Among all methods that surpass the coverage
threshold, our method, STACI(γ = 0.01), demonstrates the best efficiency with the smallest variance,
further reinforcing its robustness and effectiveness.

Figure 2(b) reveals a clear trade-off trend between coverage and efficiency: the higher λ, the
confidence level rises, but efficiency is worse. This suggests that λ should be carefully chosen: if
too large, our method over-relies on topology and fails to adapt to covariance shift; if too small, it
depends more on sample covariance matrices, which are purely data-driven and thus unstable, leading
to a coverage drop. Nonetheless, no matter whether adapting confidence level, setting a larger λ in
STACI can efficiently increase coverage and maintain it near the pre-determined level, while only
slightly increasing volume, which remains comparable to GT.
6.2 Real Data Study
We further conduct experiments on a real-world traffic dataset, Performance Measurement System
(PeMS) [6], which contains the data collected from the California highway network, providing
5-minute interval traffic flow counts by multiple sensors, along with flow directions and distances
between sensors. To model it into stream network, we also rely on [4] to check accurate road
connection information. We select two highway forks, each equipped with 12 sensors, named
PeMS-G1 and PeMS-G2, and plot their locations and corresponding road segments in Figure 5 in the
Appendix.

Experiment Configuration We adopt Adaptive Graph Convolutional Recurrent Network
(AGCRN) [2] as the default backbone model f . To demonstrate STACI’s generality under post-hoc
conformal prediction framework, we evaluate over alternative GNN backbones, including attention-
based ASTGCN [16] and continuous-time STGODE [13]. We set our default λ = 0.6. For simplicity,
we only use fixed weights with all equal values, without requiring any additional information. Multi-
ple hyperparameter and ablation study are also provided over the key parameters in our framework:
(i) λ from 0 to 1 with step of 0.02; (ii) n = 100, 200, 300, 400, 500; (iii) γ = 0 or 0.01.

Result Table 1 clearly demonstrates that our method consistently outperforms all baseline CP
techniques across diverse backbone models and road topologies, achieving significantly higher
coverage and superior efficiency. Further comparisons against CopulaTSCP and DeepSTUQ are
detailed in Appendix D.5, as those methods are less fitted for our problem setting.

Our method exhibits robustness to the choice of the hyperparameter λ. In the first two subplots of
Figure 3, setting λ = 0 reduces our algorithm to sole usage of sample covariance matrix, equivalent
to our strongest baseline, MultiDimSPCI. Our coverage is greater than MultiDimSPCI with arbitrary
hyperparameter λ. Further, across all calibration sample sizes n, selecting any λ ∈ [0.3, 0.9]
consistently yields both higher coverage and greater(lower) efficiency. This underscores the critical
contribution of topological information and demonstrates STACI’s insensitivity to λ.
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Figure 3: Comparison of Coverage and Efficiency for PeMS data with different belief weight λ and
calibration set size n, with adaptive step size γ = 0.01 (upper) and 0 (lower). The pre-determined
coverage threshold of 95% is shown by a horizontal gray dotted line.

The incorporation of topology-induced covariance matrix is pivotal even without ACI (γ = 0), as
shown in the last two subplots in Figure 3. STACI can obviously lift coverage from under 87% to
surpass the desired 95% level with only a marginal efficiency cost. This indicates that under inherent
temporal covariance shifts, utilizing topological information offers a robust remedy to under-coverage
problem while maintaining highly informative predictions. Moreover, as demonstrated in Section D.4
in the Appendix, STACI can also outperform in an offline setting, where the covariance matrix is
estimated once and then held fixed at the beginning of test time. We discuss the scalability of STACI
in term of time length and graph size in Section 7 and in Appendix D.7, respectively.

In conclusion, the estimate of the covariance matrix can benefit from both topology and samples,
compared with relying on any single resource. On one hand, with limited finite calibration sample
n, the topology-based estimator offers a more stable structure as it possess fewer parameters. It can
alleviate the temporal distribution shift and the resulting under-cover problem, consistent with our
theoretical analysis. The sample covariance, on the other hand, captures the actual spatial patterns
from samples in the calibration data and gives higher efficiency, but it can lose coverage guarantee if
the distribution changes. By blending these two estimates and adaptively adjusting the significance
level, STACI can effectively maintain desired coverage and smaller volumes.

7 Limitation
STACI targets joint uncertainty quantification on moderate-size subgraphs (2 ∼ 30D). This choice is
deliberate: performing UQ in very high-dimensional output spaces (hundreds of coordinates or more)
is statistically ill-posed. Directly constructing geometric prediction sets in the full output space is
vulnerable to the curse of dimensionality [44]. In particular, hyper-rectangles formed by marginal
intervals can inflate to near-vacuous volumes even at low dimensions as in Table 1.

In high-dimensional regimes, common practice is to avoid explicit geometric sets and instead use
generative or sampling-based UQ [26, 3]. For instance, image UQ, a prototypical high-dimensional
setting, typically samples plausible outcomes from a learned posterior [12] rather than delineating a
set in pixel space. In the same spirit, STACI focuses on subgraphs of manageable joint dimensionality
so that (i) the resulting joint sets remain informative, (ii) the coverage–efficiency trade-off is non-
degenerate. This design also matches how practitioners assess risk: traffic engineers often analyze
corridors with 10–30 sensors rather than entire city-wide networks, and hydrologists frequently study
clusters of ∼20 gauges when evaluating localized flood risk.

8 Conclusion
We proposed STACI, an adaptive conformal prediction framework for stream networks. Theoretically,
we established coverage guarantees and demonstrated the model’s ability to minimize inefficiency
under mild conditions. Empirically, STACI produced smaller prediction sets while maintaining valid
coverage across both (stationary) simulated data and (non-stationary) real-world traffic data.

Future work includes three potential directions. (i) STACI can be extended to general spatio-temporal
graphs by replacing ΣG with alternative network parameterizations, enabling the development of
novel methods that effectively exploit topological structures in broader spatio-temporal settings; (ii)
stronger theoretical guarantees such as finite-sample coverage bounds when adaptively calibrating
the significance level, could be developed by imposing assumptions on error distribution shifts
(e.g., first-order differencing stationarity); and (iii) the present formulation does not aim to provide
full-graph joint sets over hundreds of nodes. One might build corridor-level joint sets and composing
them with rigorous controls on cross-correlation to scale coverage beyond the subgraph level.
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A Theoretical proofs

A.1 Proof of Theorem 1

Theorem 1(validity). Under the assumptions stated above, the proposed method satisfies the following
conditional coverage guarantee:

|P(YT+1 ∈ CT+1(α)|XT+1 = x)− (1− α)| ≤ (4L+ 2L
√
ω + 2)

√
ω + 6

√
log(16n)

n
+

log(16n)

n
,

where

ω = ν2nr + 2rνn

√
(κ1 +

√
κ2)I + o(g(n))(κ1 +

√
κ2)I.

For easy notation, denote Â = An,∆t = ϵ̂t − ϵt and sometimes we drop subscript t.

Lemma 1. For any test conformity score ŝt = ϵ̂t
T Âϵ̂t and the true conformity score st = ϵTt Aϵt,

with probability at least 1− δ,
T∑

t=T−n+1

|ŝt − st| ≤ ωn, (8)

where

ω = ν2nr + 2rνn

√
(κ1 +

√
κ2)I + o(g(n))(κ1 +

√
κ2)I.

Proof. We have:

|ŝt − st| = |ϵ⊤t Aϵt − ϵ̂t
⊤Âϵ̂t| ≤ |ϵ⊤t Aϵt − ϵ⊤t Âϵt|+ |ϵ⊤t Âϵt − ϵ̂t

⊤Âϵ̂t|
≤|∆⊤Â∆|+ 2|∆⊤Âϵt|+ |ϵ⊤t (A− Â)ϵt|
≤∥Â∥∥∆∥2 + 2∥Â∥∥∆∥∥ϵ∥+ ∥ϵ∥2∥A− Â∥ (i)

≤r∥∆∥2 + 2r∥∆∥∥ϵ∥+ o(g(n))∥ϵ∥2. (9)

The inequality (i) exists because of the Cauchy-schwartz inequality and Assumption 2. Hence, by
Assumption 1, we have

T∑
t=T−n+1

|ŝt − st| ≤ rnν2n + 2r

T∑
t=T−n+1

∥∆t∥∥ϵt∥+ o(g(n))

T∑
t=T−n+1

∥ϵt∥2

≤rnν2n + 2r

√√√√(

T∑
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∥∆t∥2)(
T∑

t=T−n+1

∥ϵt∥2) + o(g(n))

T∑
t=T−n+1

∥ϵt∥2

≤rnν2n + 2r

√√√√nν2n(

T∑
t=T−n+1

∥ϵt∥2) + o(g(n))

T∑
t=T−n+1

∥ϵt∥2. (10)

From Assumption 3, we have

E

[
1

n

T∑
t=T−n+1

∥ϵt∥2
]
=

1

n

T∑
t=T−n+1

E[∥ϵt∥2] ≤ κ1I. (11)

Using Chebyshev’s inequality, we have

P

(
1

n

T∑
t=T−n+1

∥ϵt∥2 − E[∥ϵt∥2] ≥
√

Var[∥ϵt∥2]
nδ

)
≤ Var[∥ϵt∥2]

n · Var[∥ϵt∥2]
nδ

= δ, (12)
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which means that with probability higher than 1− δ,

1

n

T∑
t=T−n+1

∥ϵt∥2 ≤ E[∥ϵt∥2] +
√

Var[∥ϵt∥2]
nδ

≤ κ1I +

√
κ2I

nδ

≤ (κ1 +

√
κ2

nδI
)I ≤ (κ1 +

√
κ2)I. (13)

The last inequality is because we can set δ such that δnI < 1. Plug into eq. (10), we have with
probability higher than 1− δ, we obtain eq. (8) and the lemma follows.

Denote the empirical CDF: F̂n+1(x) =
1
n

∑T
i=T−n+1 1ŝi≤x, F̃n+1(x) =

1
n

∑T
i=T−n+1 1si≤x and

true CDF of score function Fs(x) = P (s ≤ x).

Lemma 2. Under Assumption 3, for any n, there exists an event An which occurs with probability at

least 1−
√

log(16n)
n , such that, conditioning on An,

sup
x

∣∣∣F̃n+1(x)− F (x)
∣∣∣ ≤√ log(16n)

n
.

Proof. The proof follows Lemma 1 in [51] that utilizes Dvoretzky-Kiefer-Wolfowitz inequality in
[24].

Lemma 3. Under Assumption 1, Assumption 3,with high probability,

sup
x

∣∣∣F̂n+1(x)− F̃n+1(x)
∣∣∣ ≤ (2L+ 1)

√
ω + 2 sup

x

∣∣∣F̃n+1(x)− Fe(x)
∣∣∣ .

Proof. The proof is similar to Lemma B.6 in [50], and is written here for completeness.

Using Lemma 1 we have that with probability 1− δ,

T∑
t=T−n+1

|st − ŝt| ≤ nω. (14)

Let S = {t : |st − ŝt| ≥
√
ω}. Then,

|S|
√
ω ≤

T∑
t=T−n+1

|st − ŝt| ≤ nω. (15)
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So |S| ≤ n
√
ω. Then,

|F̂n+1(x)− F̃n+1(x)| ≤
1

n

T∑
t=T−n+1

|1{ŝt ≤ x} − 1{st ≤ x}|

≤ 1

n
|S|+

∑
t ̸∈S

|1{ŝt ≤ x} − 1{st ≤ x}|

≤ 1

n
|S|+ 1

n

T∑
t=T−n+1

1{|st − x| ≤
√
ω} (i)

≤
√
ω + P (|sT+1 − x| ≤

√
ω)

+ sup
x

∣∣∣∣∣ 1n
T∑

t=T−n+1

1{|st − x| ≤
√
ω} − P (|sT+1 − x| ≤

√
ω)

∣∣∣∣∣
=
√
ω + [Fs(x+

√
ω)− Fs(x−

√
ω)]

+ sup
x

[
F̃n+1(x+

√
ω)− Fn+1(x−

√
ω) −

(
Fs(x+

√
ω)− Fs(x−

√
ω)
)]

(ii)

≤ (2L+ 1)
√
ω + 2 sup

x

∣∣∣F̃n+1(x)− Fs(x)
∣∣∣ , (16)

where (i) is because |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b− x| ≤ |a− b|} for a, b ∈ R, and (ii) is due to
the Lipschitz continuity of Fs(x).

Proof of Theorem 1

Proof. Look at the conditional coverage of YT+1 given XT+1:∣∣P (YT+1 ∈ CαT+1 | XT+1 = xT+1

)
− (1− α)

∣∣ (17)

=
∣∣∣P(ŝT+1 ≤ 1− α quantile of F̂n+1 | XT+1 = x

)
− (1− α)

∣∣∣
=
∣∣∣P(F̂n+1(ŝT+1) ≤ 1− α

)
− P (Fs(sT+1) ≤ 1− α)

∣∣∣
=
∣∣∣E[1{F̂n+1(ŝT+1) ≤ 1− α} − 1{Fs(sT+1) ≤ 1− α}]

∣∣∣
≤P
(
|Fs(sT+1)− (1− α)| ≤ |F̂n+1(ŝT+1)− Fs(sT+1)|

)
. (18)

Based on Lemma 2, we can define the event An,P(An) ≥ 1− log(16n)
n , conditional on An, we have:

sup
x

∣∣∣F̃n+1(x)− Fs(x)
∣∣∣ ≤√ log(16n)

n
, (19)

Hence, we can write eq. (18) as

P(|Fs(sT+1)− (1− α)| ≤ |F̂n+1(ŝT+1)− Fs(sT+1)|)
≤P(|Fs(sT+1)− (1− α)| ≤ |F̂n+1(ŝT+1)− Fs(sT+1)||An) + P(Ac

n)

≤P(|Fs(sT+1)− (1− α)| ≤ |F̂n+1(ŝT+1)− Fs(ŝT+1)|+ |Fs(ŝT+1)− Fs(sT+1)||An) +
log(16n)

n
.

(20)

Conditional on An:

|F̂n+1(ŝT+1)− Fs(ŝT+1)|+ |Fs(ŝT+1)− Fs(sT+1)|
≤ sup

x
|F̂n+1(x)− Fs(x)|+ L|ŝT+1 − sT+1|

≤(2L+ 1)
√
ω + 3

√
log(16n)

n
+ Lω. (21)
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The last equation exists because of Lemma 3 1 and eq. (19).

Note that Fs(sT+1) ∼ Unif(0, 1), we have

P(|Fs(sT+1)− (1− α)| ≤ |F̂n+1(ŝT+1)− Fs(ŝT+1)|+ |Fs(ŝT+1)− Fs(sT+1)||An)

≤(4L+ 2)
√
ω + 6

√
log(16n)

n
+ 2Lω. (22)

Plug into eq. (18), we have∣∣∣P(YT+1 ∈ Ĉα
T+1 | XT+1 = xT+1

)
− (1− α)

∣∣∣
≤(4L+ 2)

√
ω + 6

√
log(16n)

n
+ 2Lω +

log(16n)

n
. (23)

A.2 Proof of Theorem 2

Theorem 2 (Efficiency). There exists 0 < α0 < 1, such that when α < α0, the optimal solution to
the minimization problem is given by:

A∗ := argmin
A≻0

V (A,Q1−α(ϵ
⊤Aϵ)), (24)

where ϵ ∼ N (0, A−1
∗ ).

Lemma 4 (Uniform tail threshold via Dirichlet–Jensen). Let Sλ =
∑I

i=1 λiZ
2
i with Zi

i.i.d∼ N (0, 1)

and λ ∈ ∆I−1. Then Sλ
d
= T Uλ with T ∼ χ2

I independent of Uλ =
∑

i λiVi, where V ∼
Dirichlet( 12 , . . . ,

1
2 ). For all λ we have 0 < Uλ ≤ 1 and E[Uλ] = 1/I . Moreover, for s ≥ I + 2, the

map u 7→ F̄I(s/u) is convex on (0, 1] (where F̄I is the χ2
I survival function). Consequently,

P(Sλ ≥ s) = E
[
F̄I(s/Uλ)

]
≥ F̄I

(
s/E[Uλ]

)
= F̄I(Is) = P(Sλ⋆ ≥ s).

Equivalently, with p∗(I) := Fχ2
I

(
I(I + 2)

)
∈ (0, 1), we have

Qp(Sλ⋆) ≤ Qp(Sλ), ∀λ ∈ ∆I−1, ∀ p > p∗(I).

Proof. The Dirichlet–χ2 factorization and E[Uλ] = 1/I are standard. Write gs(u) := F̄I(s/u).
Using χ2

I density fI(x) ∝ xI/2−1e−x/2, one computes g′′s (u) ≥ 0 iff f ′
I(x) ≤ − 2

xfI(x) at x = s/u.
Since f ′

I/fI = ( I2 − 1) 1x −
1
2 , the inequality holds whenever x ≥ I + 2. If s ≥ I + 2 then

x = s/u ≥ s ≥ I + 2 for all u ∈ (0, 1], hence gs is convex on (0, 1]. Apply Jensen and note
Sλ⋆

d
= 1

Iχ
2
I to conclude.

Proof of Theorem 2

Proof. By the definition of ellipsoid volume, we have

V (A,Q1−α(ϵ
⊤Aϵ)) = Constant×Q1−α(ϵ

⊤Aϵ)I/2[det(A)]−1/2 (25)

Since the optimization problem is invariant to the rescaling of the scalar (that is, A and any positive
scalar multiple cA, where c > 0, produce the same mathematical solution), additional constraints,
such as the bounding of the matrix norm A ≤ 1, can be imposed without loss of generality. Note
that ϵ ∼ N(0, A−1

∗ ) and A ≻ 0 by Cholesky decomposition, we can write A−1
∗ = LL⊤ where L is a

lower triangular matrix. Define the matrix B = L⊤AL, we can rewrite the eq. (25) as

min
B≻0

Q
I/2
1−α(x

⊤Bx) det(L)[det(B)]−1/2, (26)

where x ∼ N(0, Id)and det(L) is a constant independent of B.
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To further solve the optimization problem, we look at the eigenvalue of B, suppose B =
Odiag(λ1, λ2, · · · , λI)O

⊤ and O is an orthogonal matrix. Since the optimization value is invariant
to different scaling of B, we are imposing additional constrains on λi.

min
λi≥0,

∑I
i=1 λi=1

Q
I/2
1−α

(
I∑

i=1

λix
2
i

)
I∏

i=1

λ
− 1

2
i , (27)

and {xi}1≤i≤I are i.i.d. random variables xi ∼ N(0, 1).

Now we would like to prove that the above optimization problem is solved when λ∗ = ( 1I , · · · ,
1
I ).

Note that by Cauchy-Schwartz Inequality
∏I

i=1 λ
− 1

2
i is minimized when λ1 = λ2 · · · = λd = 1

I ,
by Lemma 4, Q1−α(

∑
λix

2
i ) is minimized in λ∗, for α < α0 and α0 is decided according to I .

Theorem 2 follows.

A.3 Tail-up model

Lemma 5. The spatial covariance Σ of any node pair (u, v) is:

Σ(u, v) =

∫
∧u∩∧v

m(r − u)m(r − v)
w(r)√

w(u)w(v)
dr. (28)

Proof. Note that

Σ(u, v) = Cov(
∫
∧u

m(s− u)

√
w(s)

w(u)
dB(s),

∫
∧v

m(r − v)

√
w(r)

w(v)
dB(r))

Due to the independence of increments for Brownian motion, only when r = s ∈ ∧u ∩ ∧v, the
covariance is non-zero. Note that for Brownian motion, we have Cov(dB(r), dB(s)) = 1r=sdrds.
Hence Lemma 5 follows.

Lemma 6. If we set the moving function m(r − u) = β exp
(
−d(r,u)

ϕ

)
, with parameters β > 0

(a scale factor) and ϕ > 0 (a range or decay parameter), then the covariance matrix between two
locations u, v can be expressed as:

Σ(u, v) = σ2

√
w(u)

w(v)
exp
(
−d(u, v)/ϕ

)
1{u→v}. (29)

Proof. By Lemma 5 and substitute m(r− u) = β e−d(r,u)/ϕ and m(r− v) = β e−d(r,v)/ϕ, we have

Σ(u, v) =

∫
∧u∩∧v

β2 exp
(
−d(r,u)

ϕ

)
exp
(
−d(r,v)

ϕ

) w(r)√
w(u)w(v)

dr.

The set ∧u ∩ ∧v are the segments of networks that flow into both u and v. Consider the following
cases:

• If u and v are not flow-connected, then ∧u ∩ ∧v = ∅ and hence Σ(u, v) = 0.

• If u and v are flow-connected, without loss of generality assume v is downstream of u. Then
∧u ∩ ∧v = ∧u, and for each r in ∧u, d(r, v) = d(r, u) + d(u, v). Hence we have

exp
(
−d(r, u) + d(r, v)

ϕ

)
= exp

(
−d(u, v)

ϕ

)
exp
(
−2 d(r, u)

ϕ

)
.

leads to a remaining integral over r ∈ ∧u. We can write

Σ(u, v) = β2

√
w(u)

w(v)
exp
(
−d(u, v)

ϕ

)∫
∧u

exp
(
− 2d(r,u)

ϕ

) w(r)

w(u)
dr,
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1. [46] 3. [10] 4. [30]
5. [15, 53, 51, 1, 52]
6. [50] 7. Our method, STACI

Figure 4: Taxonomy of works in conformal prediction. Among studies that account for both spatial
dependency and temporal shift—without assuming spatial and temporal exchangeability—our work
is the first to incorporate topology information.

Note that
∫
∧u

exp
(
− 2d(r,u)

ϕ

)
w(r)
w(u) dr = Σ(u, u) is a constant, since the additivity constraint on

w(u) assures the constant variance of site u. Thus, the tail-up exponential model yields a covariance
of the form

Σ(u, v) =


(

constant factors
)
exp
(
−d(u,v)

ϕ

)
, if u and v are flow-connected,

0, otherwise.

B Taxonomy for Related Works

Figure 4 provides an overview of the conformal prediction (CP) literature, complementing the
discussion in the related work section. The Venn diagram categorizes existing CP methods based
on the type of data they are designed for—time series, multivariate data, or both—and the nature of
the assumptions they make, particularly regarding exchangeability, temporal stationarity, and spatial
independence.

Traditional CP methods, such as split conformal prediction for i.i.d. regression[46], assume full
exchangeability, and thus cannot be directly applied to time series or spatially structured data
without modification. In the time series domain, recent works such as [1, 53, 15, 52] relax the
exchangeability assumption via online calibration, sliding window methods, scorecasters or dynamic
programming. These methods handle distribution shift over time but typically operate in univariate or
low-dimensional settings. In contrast, CP methods for multivariate or high-dimensional data [30, 10]
often focus on constructing prediction sets that exploit geometry or sparsity, but generally assume no
temporal structure.

Our proposed method, STACI, is positioned at the intersection of these axes in the Venn diagram.
It is designed for high-dimensional time-indexed multivariate data arising from spatio-temporal
stream networks. Our method explicitly accounts for both spatial dependencies and temporal shifts,
leveraging the underlying topological structure of the network to enhance predictive performance.

C Adaptive Uncertainty Set Construction

We present the analysis of the average coverage guarantee of STACI without any assumption about ϵt.
The proof follows from Proposition 4.1 in [15].
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Algorithm 1 STACI
Input: Data D; Network topology G; Model f(·); Hyper-parameters λ; Confidence level α.
Output: Prediction set C(XT+1;α).

1: // Training
2: f̂ ← Fit f using D \ Dcal;
3: // Calibration

4: E ← {ϵ̂t = Yt − f̂(Xt)−
∑

t∈Dcal
(Yt−f̂(Xt))

|Dcal| }t∈Dcal ;

5: Σ̂n ←
∑

t∈Dcal
ϵ̂tϵ̂

⊤
t /(n− 1) given E ;

6: Σ̂G ← Compute (29) for (ℓi, ℓi′),∀i, i′ ∈ I given G;
7: A← λΣ̂−1

G + (1− λ)Σ̂−1
n ;

8: S ← {ϵ̂⊤t Aϵ̂t}t∈Dcal given E ;
9: Q̂1−α ← Compute ⌈(1−α)(n+1)⌉

n -th largest element of S;
10: // Testing
11: C(XT+1;α)← {y : s(XT+1, y) ≤ Q̂1−α};

Proposition 1. Consider n′ test data points as the n′ realizations of (XT+1, YT+1), denoted by
Dtest. We have the asymptotic coverage guarantee:

lim
n′→∞

∑
t∈Dtest

1{Yt /∈ C(Xt;αt)}
/
n′ = 1− α.

While Proposition 1 provides a weaker coverage guarantee compared to Theorem 1, it offers broader
applicability, remaining valid even in adversarial online settings. Empirical results suggest that when
the error process exhibits minimal distribution shift and the assumptions of Theorems 2 and 1 are only
slightly violated, STACI maintains the predefined coverage level (γ = 0.01) while achieving efficient
prediction sets. However, when γ > 0, Proposition 1 does not ensure a finite-sample coverage gap.
Understanding this limitation and developing methods to control the finite-sample coverage gap
presents an interesting direction for future research.

D Additional Experiment Details and Results

D.1 Computational Resource

Experiments were conducted on a single NVIDIA GeForce RTX 4080 Super GPU, an AMD Ryzen 9
7950X 16-Core Processor CPU, 64GB Memory and 2TB SSD.

D.2 Datasets and Codes

The PeMS03 dataset used in this paper is collectd by California Transportation Agencies (CalTrans)
Performance Measurement System (PeMS). It contains three months of statistics on traffic flow every
5 minutes ranging from Sept. 1st 2018 to Nov. 30th 2018, including 358 sensors. The datasets are
from https://github.com/guoshnBJTU/ASTGNN/tree/main without available license.

The first backbone ST-Graph model is AGCRN [2], which we adapted the official implemen-
tation from https://github.com/LeiBAI/AGCRN under MIT license. ASTGCN [16] was
implemented with PyTorch Geometric Temporal package [34] from https://github.com/
benedekrozemberczki/pytorch_geometric_temporal under MIT license. STGODE [13] was
adapted from the official implementation https://github.com/square-coder/STGODE under
Apache-2.0 license.

D.3 Simulation Data Generation Details

Segment r1 and r2 starts with (0, 1) and (0.5, 0.8), respectively, and both end with (0.3, 0.5). The
next segment r3 also starts with (0.3, 0.5), and end with (0.2, 0.1). Segment r4 start from (0.6, 0.6),
and ends at the same location as r3. Starting from this location, r5 ends at (0.4, 0). The weights for
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segment 1− 5 are set as 0.35, 0.5, 0.85, 0.15 and 1, respectively. Each segment has two observation
locations – one at the start point, another at the middle point.

To approximate the integral, each segment is uniformly divided into 300 smaller sub-intervals. For
segments without parent nodes (r1, r2 and r4 in our example), the source nodes are treated as
infinitely distant. In implementation, the source node of each segment is extended 10 times in the
same direction to simulate infinity.

D.4 Real-world Data Details

As shown in Figure 5, we construct two subgraphs from PeMS03 dataset. We construct PEMS03-G1
and PEMS03-G2 with temporal distribution shift shown in Table 2. Note that road network structure
are required in stream networks. Among all PeMS datasets, PeMS03 is the only one that contains a
mapping to real sensor identification number in PeMS. Therefore, other datasets are not available for
our setting.

Table 2: Temporal distribution shift of constructed datasets

Dataset Intra-Period Variance Inter-Period Flow Shift
PEMS03-G1 117.4614 21.5453
PEMS03-G2 106.2113 17.4750

D.5 Main Experiment Continued

We evaluated two additional baselines, CopulaTSCP and DeepSTUQ, on the PeMS-G1 dataset, with
the results summarized in the Table 3. Using the same backbone model AGCRN, CopulaTSCP
significantly underperforms our method and even general CP methods. This is because that learning
the joint cumulative distribution function, a requirement for CopulaTSCP, is highly unstable and
unreliable in high-dimensional settings like our 12-dimensional joint prediction task. DeepSTUQ,
a Bayesian GNN method, provided better efficiency but still failed to outperform STACI. Since
DeepSTUQ produces marginal intervals, we aggregated them into a hyper-rectangle for a joint
comparison. However, this aggregation lacks a formal guarantee of joint coverage, and applying a
formal correction like Bonferroni would result in overly conservative and inefficient prediction sets.
These results underscore the limitations of existing methods in high-dimensional joint prediction and
highlight the need for specialized approaches.

Table 3: Comparison over additional baselines on the PeMS-G1 dataset.

Method Coverage Efficiency

CopulaCPTS(AGCRN) 70.60 668.00
DeepSTUQ 93.82 66.51
STACI(AGCRN) 95.75 67.54

D.6 Robustness under imperfect topological information

To evaluate our model’s robustness against graph structure noise, we conducted an experiment by
perturbing the graphs of the PeMS dataset. A "noisy" graph was constructed by adding 12 spurious
edges: for each of the 12 nodes in the original graph, we randomly selected another node and added an
edge between them. As shown in the Table 4, the performance of all GNN-based methods degraded
when using the noisy graph. Notably, our method, STACI, demonstrated the strongest robustness to
these perturbations. It experienced the least performance degradation among all models, showcasing
its resilience to imperfect graph structures.

D.7 Running Time

On a single Nvidia Geforce 4080S, the training time of AGCRN with PEMS-G1 is 1419s. In
table 5, we show the computation time of our and baseline CP methods on AGCRN model and
PEMS-G1 dataset. Our method STACI has comparable running time with other methods. Here we
provide a detailed complexity analysis. Compare to MultiDimSPCI, for each test time point we
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(a) PEMS-G1
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Figure 5: Real-world road network structures and their abstraction for PEMS-G1 and PEMS-G2. In
each sub-figure, the left map displays the road network, where freeways are bold gray lines in blue
shade, and ramps off the freeway are represented by blue squares. Based on these ramps and road
junctions, the network is divided into different segments. Traffic flow monitoring sensors from ℓ1 to
ℓ12 are placed exclusively on those northbound freeways, marked with green transparent triangles.
The right map provides an abstract representation of the road network and sensor locations, using the
same symbols for consistency.

Table 4: Robustness of STACI to noisy sensor locations on the PeMS-G1 and PeMS-G2 datasets
across various GNN backbones. Noise Scale represents the standard deviation of the Gaussian noise
added to location coordinates. The bolded rows indicate performance on the original, clean data.

Dataset Noise Scale AGCRN ASTGCN STGODE
Coverage Efficiency Coverage Efficiency Coverage Efficiency

G1

0.0 95.75 67.54 ± 10.94 95.54 67.92 ± 10.22 95.14 73.62 ± 9.83
0.5 95.83 71.94 ± 11.39 95.05 85.24 ± 14.68 95.09 91.73 ± 25.11
1.0 95.81 64.12 ± 10.25 95.05 85.24 ± 14.68 95.12 99.33 ± 22.42
2.0 95.58 81.82 ± 12.73 94.92 90.38 ± 17.29 95.12 107.26 ± 24.30
3.0 95.26 119.40 ± 15.65 95.12 97.44 ± 14.67 95.12 105.80 ± 21.06

G2

0.0 95.01 69.62 ± 12.85 95.05 58.07 ± 9.83 95.20 74.86 ± 9.63
0.5 95.01 68.04 ± 11.06 95.12 69.34 ± 13.67 95.16 79.08 ± 10.81
1.0 94.97 69.45 ± 11.37 95.12 69.34 ± 13.67 95.14 80.04 ± 11.29
2.0 95.01 92.31 ± 13.12 95.03 68.97 ± 13.18 95.09 79.68 ± 11.27
3.0 95.09 117.99 ± 25.89 95.12 69.56 ± 11.77 95.12 80.06 ± 11.31

need: 1) additional estimation of tail-up parameters ϕ, σ2 and using historical covariance matrix
weighted addition of spatial covariance and empirical covariance. Consider the node size is n
and the optimization methods (e.g., least square in our implementation) iteration round N . The
former estimation takes O(Nn2), and the latter addition takes O(n3) , as pseudo-inverse of matrix is
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involved. However, MultiDimSPCI also needs matrix inverse for Mahalanobis distance calculation.
Additionally, estimation of only two parameters can converge fast. Therefore, our method does not
need significantly more time than the baseline method, consistent to the Table 5. STACI provides fast,
reliable, and interpretable joint UQ over localized subgraphs across long time horizons.

Table 5: Computation Time (seconds) for Different CP Methods with Different Calibration Set Size n

Calibration
Set Size n

Sphere Sphere-ACI
(γ = 0.01) Square MultiDimSPCI STACI

(γ = 0)
STACI

(γ = 0.01)

100 142 144 24 24 25 25
200 152 153 24 24 26 25
300 135 129 24 24 25 26
400 132 135 25 24 24 25
500 135 136 23 24 23 24

D.8 Method Details

We provide pseudo-codes for our proposed method in 1. This applies all experiments in this paper,
excluding offline setting detailed in Section D.10.

D.9 Hyperparameter Study

The studies for hyperparameter are presented in Figure 6.

D.10 Additional Ablation Study: Offline Experiment

In both synthetic and real-world data, MultiDimSPCI achieves the closest to our proposed method,
STACI, in efficiency. Therefore, we focus our comparison on four specific variants: vanilla
MultiDimSPCI(γ = 0), MultiDimSPCI(γ = 0.01), STACI(γ = 0), and STACI(γ = 0.01). In
the offline setting, STACI does not update the covariance matrix estimation. To ensure a fair compari-
son, we similarly fix the covariance matrix for MultiDimSPCI methods at the beginning of the test
phase.

The results are illustrated in Figure 7. As seen in the left figure, fixing the covariance matrix
significantly improves the coverage rates of all methods, bringing them close to the desired 95% level.
However, despite having the same γ, STACI consistently outperforms MultiDimSPCI in efficiency.
Notably, when ACI is not applied (γ = 0), both methods tend to be overly conservative, resulting
in coverage rates well above the desired 95%. Therefore, since STACI (γ = 0) achieves a higher
coverage rate, MultiDimSPCI (γ = 0.01) and STACI(γ = 0) exhibit similar efficiency.

In conclusion, regardless of whether the covariance matrix is fixed or not, STACI consistently
surpasses MultiDimSPCI in both coverage and efficiency. Furthermore, to achieve an exact coverage
rate, incorporating ACI (γ = 0.01) is recommended.
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(1a)-(1d): AGCRN on PeMS-G1

(2a)-(2d): ASTGCN on PeMS-G1

(3a)-(3d): STGODE on PeMS-G1

(4a)-(4d): AGCRN on PeMS-G2

(5a)-(5d): ASTGCN on PeMS-G2

(6a)-(6d): STGODE on PeMS-G2

Figure 6: Comparison of Coverage and Efficiency for all PeMS experiments with different backbone
GNN models and datasets. Each figure show results for different belief weight λ and calibration set
size n, with adaptive step size γ = 0 (a&b) and 0.01 (c&d). Pre-determined coverage threshold of
95% is shown by horizontal gray dotted lines. 26



Figure 7: Coverage and efficiency of different methods with different calibration set size n. Multi-
DimSPCI methods are in blue, and our methods are in red. Methods with γ = 0 are in darker colors;
while those with adaptive coverage, γ = 0.01, are shown in shallow colors.
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