
What do Learning Dynamics Reveal about
Generalization in LLM Reasoning?

Anonymous Author(s)
Affiliation
Address
email

Abstract

When large language models (LLMs) are finetuned on reasoning tasks, they can1

either reduce their training loss by developing problem-solving abilities, or by2

simply memorizing target traces in the training data. Our work aims to better3

understand how this learning process shapes a model’s ability to generalize. We4

observe that, while LLMs often perfectly memorize most target solution traces5

by the end of training, their predictions at intermediate checkpoints can provide6

valuable insights into their behavior at test time. Concretely, we introduce the7

concept of pre-memorization train accuracy: the accuracy of model samples8

for training queries prior to exactly reproducing reasoning traces in the training9

data. We find that the average pre-memorization train accuracy of the model10

is strongly predictive of its test performance, with coefficients of determination11

around or exceeding 0.9 across various models (Llama3-8B, Gemma2-9B), datasets12

(GSM8k, MATH), and training setups. Beyond this aggregate statistic, we find13

that the pre-memorization train accuracy of individual examples can predict the14

model’s sensitivity to input perturbations for those examples, allowing us to identify15

examples for which the model fails to learn robust solutions. Our findings can offer16

guidance for training workflows, such as data curation, to improve generalization.17

1 Introduction18

Despite the remarkable capabilities of modern large language models (LLMs), the mechanisms behind19

their problem-solving abilities remain elusive. While some evidence suggest that models memorize20

vast amounts of data and reproduce similar patterns at test-time [Carlini et al., 2022, Bender et al.,21

2021], others find that LLMs develop complex problem-solving algorithms [Wang et al., 2022, Todd22

et al., 2023]. As an example, consider several LLMs finetuned on identical datasets and pretrained23

models, as illustrated in Fig. 1. While several models achieve near-perfect accuracy on the training24

data, their test performances differ significantly. This raises a crucial question: What is the interplay25

between a model’s learning dynamics and its ability to generalize to new problems?26

To investigate this question, we focus on mathematical reasoning tasks, where models are trained to27

generate both a final answer and intermediate reasoning steps. Although each problem has a single28

correct answer, the reasoning steps in a target solution trace represent just one of many valid ways to29

solve a problem. Therefore, a model that has memorized the training data is likely to replicate the30

exact reasoning steps from the solution trace for a problem in the training data, while a model with31

general problem-solving skills may produce the correct final answer but follow a different reasoning32

path. By analyzing model responses on training queries, focusing on both the accuracy of the final33

answer and the similarity of the response to the target solution trace, we can gain insights into whether34

the model is memorizing training data or developing problem-solving abilities.35
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Figure 1: Relationship between train accuracy (left), pre-memorization train accuracy (right), and
test accuracy for models finetuned on GSM8k using Llama3 8B. Each line represents a training run,
and each point represents an intermediate checkpoint. Pre-memorization train accuracy strongly
correlates with test accuracy, while train accuracy does not.

Our investigation reveals that analyzing model samples for training prompts at different stages of36

training can provide insight into the model’s generalization behavior. While LLMs can often perfectly37

recall the entire finetuning dataset by the end of training, achieving perfect accuracy and exactly38

matching target solution traces, we observe distinct behaviors across training examples before full39

memorization occurs. For certain training examples, models only produce incorrect responses before40

memorizing the target response. For other examples, models first learn to generate diverse solution41

traces (distinct from the target solution trace) that all lead to the correct final answer, before later42

memorizing the target solution trace. Based on these observations, we introduce the concept of43

pre-memorization train accuracy, which refers to the highest accuracy a model achieves on a training44

example through the course of training before exactly memorizing the target solution trace. We45

find that a model’s average pre-memorization train accuracy is highly predictive of the model’s46

test accuracy, as illustrated in Fig. 1. Our experiments show that this phenomenon holds across47

different models (e.g., Llama3 8B [Dubey et al., 2024], Gemma2 9B [Team et al., 2024]), tasks (e.g.,48

GSM8k [Cobbe et al., 2021], MATH [Hendrycks et al., 2021]), dataset sizes, and hyperparameter49

settings, with coefficients of determination around or exceeding 0.9.50

Beyond predicting test accuracy, the pre-memorization accuracy of individual examples can provide51

insight into the robustness of model predictions for each example. To investigate the robustness of a52

model’s prediction, we present the model with training queries accompanied by a short preamble,53

phrases like “First” or “We know that”, that deviate from the target solution trace. While the model54

often performs nearly perfectly on unaltered training prompts, its accuracy tends to drop considerably55

for certain examples when faced with these modified prompts. We find that examples with low56

pre-memorization train accuracy are much more likely to show reduced performance. Thus, pre-57

memorization accuracy can help us to identify examples for which a model fails to learn robust58

solutions. This more granular view of model behavior not only allows us to ascertain how good we59

expect a model to be, but also determines the value of individual datapoints, providing actionable60

implications in training workflows, such as providing guidane for data curation.61

2 Related Works62

A number of works have studied the phenomenon of memorization during training, but consider63

different definitions of memorization. One definition quantifies memorization with “leave-one-out”64

performance, i.e., does the prediction of an example change significantly if we were to remove it from65

the training data? [Feldman and Zhang, 2020, Arpit et al., 2017, Zhang et al., 2021]. While we do66

not use this definition due to its computational cost, the notion of pre-memorization accuracy in our67

work captures a similar concept, allowing us to identify examples that a model fails to robustly learn68

without conducting expensive leave-one-out evaluations. In the context of language models, others69

have defined memorized examples as those where the model’s output closely matches examples in70

the training data [Carlini et al., 2021, Tirumala et al., 2022, Inan et al., 2021, Hans et al., 2024],71

which has important privacy and copyright implications. Prior work has shown that this type of72

memorization is more likely to appear with duplicated data, larger model capacities, and longer73

context lengths [Carlini et al., 2022, Tirumala et al., 2022].74

2



The relationship between the learning process and generalization has also been studied in a number75

of prior works. In particular, many works in this category focus on bounding the “generalization gap”:76

the difference between training and test accuracies, using metrics related to model complexity, such as77

VC dimension or parameter norms [Neyshabur et al., 2015, Bartlett et al., 2019]. Other works focus78

on empirically motivated measures, such as gradient noise [Jiang et al., 2019] or distance of trained79

weights from initialization [Nagarajan and Kolter, 2019], to predict generalization. Jiang et al. [2019]80

conducted a comprehensive comparison of these methods and found that none consistently predicted81

generalization, though their work primarily focused on image classification. Other approaches have82

used unlabeled, held-out data to predict generalization, leveraging metrics such as the entropy of83

model predictions or the disagreement between different training runs [Garg et al., 2022, Platanios84

et al., 2016, Jiang et al., 2021]. Our findings suggest that pre-memorization accuracy can be a much85

stronger predictor of generalization in reasoning tasks with LLMs.86

3 Preliminaries87

In this work, we focus on training LLMs to perform reasoning tasks via finetuning. We are provided88

with a training dataset Dtrain = {(xi, yi)}, where queries xi are drawn from P (x) and solution traces89

yi are drawn from P (y|x). We assume the test dataset, Dtest, is generated similarly to the training90

data. The model is finetuned by minimizing next-token prediction loss. We denote the finetuned91

model as fθ(y|x), and model predictions as ŷ ∼ fθ(y|x).92

In reasoning tasks, solution traces consist of both intermediate reasoning steps and a final answer,93

denoted as Ans(y). The goal of reasoning tasks is for the model to generate solution traces with the94

correct final answer when faced with previously unseen queries. We measure the accuracy of model95

samples for a given query xi using Acc(fθ(y|xi), yi) = Eŷi∼fθ(y|x)[1(Ans(ŷi) = Ans(yi))]. In our96

experiments, we approximate this accuracy by sampling from the model with a temperature of 0.897

and averaging the correctness attained by the samples.98

While different solution traces drawn from P (y|x) should all have the same final answer, they may99

contain different reasoning steps. Thus the target solution trace yi of an example represents only100

one of many valid solution traces for solving xi. We call an example memorized if the distance101

between the model’s prediction and the target solution trace is low. Specifically, we consider102

(xi, yi) ∈ Dtrain to be memorized by fθ(y|x) if Perp(fθ(y|xi), yi) < p, where Perp(fθ(y|xi), yi) =103

exp(−1
ni

log(fθ(yi|xi))), ni is the number of tokens in yi, and p is a threshold.104

4 Characterizing the Learning Dynamics of LLM Reasoning Finetuning105

In this section, we investigate the relationship between a model’s learning progression during106

finetuning and its capacity for generalization. We begin by more precisely characterizing an LLM’s107

learning process when finetuning on reasoning tasks. We focus on two key aspects of the model’s108

behavior when presented with train queries: 1) whether the model’s samples arrive at the correct final109

answer, and 2) the distance between the model’s prediction and the target solution trace, measured by110

perplexity. These two metrics offer different perspectives on the model’s behavior, because while111

there is only one correct final answer for each query, there may exist many different valid reasoning112

traces. Tracking both metrics through the course of training allows us to measure how effectively the113

model is able to solve training queries, and the extent to which this is accomplish by memorizing the114

target solution trace.115

In Fig. 2, we visualize the learning progression, as characterized by the two metric described above,116

for three models finetuned on GSM8K. Each model is trained for three epochs, with a distinct peak117

learning rate that decays to zero by the end of training. As expected, training accuracy improves over118

time as the model minimizes the loss (color gradient from dark to light), and the distance between119

predictions and target solution traces decrease (from pink to yellow). For some learning rate settings,120

models approach near-perfect accuracy by the end of training, and their predictions closely match121

the target reasoning traces (mostly yellow in bottom row). However, during early stages of training,122

we observe significant differences in model behavior. For some examples, models initially produce123

incorrect predictions (black), and later replicate the target trace (yellow). For other examples, models124

first learn to generate correct answers with solution traces that differ from the target trace (pink),125

transitioning later to fully replicating the target trace (yellow).126
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Train Example

Solution Trace: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 
48+24 = <<48+24=72>>72 clips altogether in April and May. #### 72

Prompt: Natalia sold clips to 48 of her friends in April, and then she sold half as 
many clips in May. How many clips did Natalia sell altogether in April and May?

Model Samples
A: In May, Natalia sold half as many clips as in April, so she sold 48 / 2 = 
<<48/2=24>>24 clips. She sold altogether 48 + 24 = <<48+24=72>>72 clips in 
April and May. #### 72

B: In April, Natalia sold 48 * 2 = <<48*2=96>>96 clips. In May, Natalia sold 96 / 2 
= <<96/2=48>>48 clips. Natalia sold 96 + 48 = <<96+48=144>>144 clips 
altogether in April and May. #### 144

C: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24 = 
<<48+24=72>>72 clips altogether in April and May. #### 72

A

B

C

Figure 2: Visualizations of different learning progressions, as measured by the accuracy of model
samples and the perplexity of target solution traces under model predictions. Top left presents a
conceptual visualization, which represents accuracy with brightness and perplexity with color. Top
right presents examples of model samples. Bottom plots visualize the predictions of 3 different
models through the course of training. The x-axis represents individual training examples, the y-axis
represents the epoch of training, and the color represents model predictions for each example in terms
of accuracy and perplexity (legend in top left visualization).

We can see that with different training parameters, different models exhibit different capacities for127

generating accurate samples before memorizing target solution traces (amount of pink). This behavior128

suggests that the model has learned a problem-solving solution for the example, rather than a mapping129

to the exact target solution trace. We will more precisely study the connection between this behavior130

to test generalization in the next section, but first we introduce a new metric called pre-memorization131

accuracy to better quantify the accuracy of model samples before memorization.132

We will use fθm to denote the model at epoch m of training, with M as the total number of epochs.
We first define a modified measure of accuracy as follows:

Masked-Acc(fθm(y|xi), yi, p) = Acc(fθm(y|xi), yi) · 1[Perp(fθm(y|xi), yi) < p],

whose value is masked to zero if the model’s prediction for that example is considered memorized
(i.e., perplexity below p). We define the pre-memorization accuracy as follows:

P-M Acc(fθ1:m(y|xi), yi, p) = min

{
max

1≤m′≤m
Masked-Acc(fθm′ (y|xi), yi, p),Acc(fθm(y|xi), yi)

}
Unlike standard accuracy or masked accuracy, which evaluate performance at specific training133

checkpoints, pre-memorization accuracy evaluates the entire training process up to epoch m. We134

find that the average pre-memorization accuracy over the train data has a close relationship with the135

model’s test accuracy. We will further elaborate on this relationship in the subsequent section.136
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Figure 3: Evaluating the relationship between pre-memorization train accuracy and test accuracy.
Each line corresponds to a training run, with each marker representing a specific checkpoint.

5 Pre-Memorization Train Accuracy Strongly Predicts Test Accuracy137

As discussed in the previous section, pre-memorization train accuracy reflects the quality of the138

model’s predictions before it begins to memorize the training data. Similarly, test accuracy captures139

the model’s performance on unseen test examples that are never memorized (by construction, since140

they are never trained on). If the training and test distributions of problems match, then one may141

expect a model’s pre-memorization accuracy to roughly reflect its test accuracy, since both quantities142

are evaluated on data from the same distribution and neither capture inflated accuracies due to143

memorization. Indeed, our experiments confirm this intuition. We find that a model’s average pre-144

memorization train accuracy is highly predictive of its test accuracy across a variety of training145

runs and checkpoints. More concretely, we find that there exists a value of p for which a model’s146

average pre-memorization train accuracy, EDtrain [P-M Acc(fθ1:m(y|xi), yi, p)], closely approximates147

the model’s test accuracy, EDtest [Acc(fθm(y|xi), yi)]. The value of p is dependent on the task and148

pretrained model, but not dependent on training parameters.149

We illustrate this relationship in Fig. 3, where we plot the pre-memorization training accuracy and150

test accuracy across different training runs. We used Llama3 8B and Gemma2 9B as base models151

and GSM8K and MATH as the reasoning tasks. To evaluate different generalization behaviors, we152

finetuned the models by adjusting the peak learning rate (ranging from 5e-7 to 5e-4), the number of153

training epochs (1, 3, 6), and the dataset size (full, half, or quarter of the original dataset). We use the154

same value for p within each plot, and we find p by sweeping across a range of values. A full list of155

the training runs in our experiments and their training details can be found in Appendix C. We observe156

a strong linear relationship between pre-memorization training accuracy and test accuracy, with the157

results closely following the y = x line across different models, tasks, and hyperparameter settings.158

More quantitatively, the coefficients of determination associated with each plot are 0.94 (GSM8k159

Llama), 0.95 (MATH Llama), 0.97 (GSM8k Gemma), and 0.88 (MATH Gemma). Our results show160

that pre-memorization training accuracy is a reliable predictor of test accuracy. We further compare161

pre-memorization train accuracy to several existing metrics for prediction generalization in Appendix162

A, and show our metric vastly outperforms prior metrics.163
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Train
Prompt ####72

Natalia …

First, …

We know that …

Robust Solution Non-Robust Solution

####72
Natalia …

First, …

We know that …

####105

####63

Train
Prompt

Train Solution Trace

Figure 4: Accuracies of model samples (y-axis) when faced with the original prompt (left) and
prompts with perturbations (middle, right). The x-axis represents the per-example pre-memorization
train accuracy associated with each prompt. While the accuracy of model samples is almost perfect
when faced with original prompts, it significantly degrades when faced with prompts with perturba-
tions. Furthermore, the degradation of accuracy is much more significant for train examples with low
pre-memorization accuracy than those with high pre-memorization accuracy.

6 Per-Example Pre-Memorization Accuracy Predicts Model Robustness164

In the previous section, we demonstrated that a model’s average pre-memorization accuracy provides165

insight into the model’s overall generalization capability. In this section, we go beyond aggregate test166

accuracy and show that tracking per-example pre-memorization accuracy offers a window into the167

model’s behavior at the level of individual training examples. We find that model predictions tend168

to be less robust for train examples with low pre-memorization accuracy.169

To investigate the robustness of model predictions, we present the model with both the original170

training queries, as well as ones appended with short preambles to the solution trace, e.g. “First” or171

“We know that”, which deviate from the target solution trace. In Fig. 4, we illustrate the prediction172

behavior of two models, both trained for six epochs with a learning rate of 2e-5, on the GSM8K173

and MATH datasets. We can see that while model performance is near-perfect for unaltered training174

prompts, certain examples exhibit a significant degradation in accuracy when presented with perturbed175

prompts. Furthermore, we can see that the accuracy of train examples with low pre-memorization176

train accuracy tend to degrate much more than those with high pre-memorization train accuracy.177

Ideally, if the model has learned a robust problem-solving strategy, it should still be able to produce a178

valid reasoning trace, even with minor prompt deviations. Our findings suggest that pre-memorization179

train accuracy is a reliable indicator of the model’s ability to generalize beyond memorization. This180

insight can be used to identify fragile examples where the model may have learned overly specific or181

non-generalizable patterns, which offers practical applications for improving model generalization. In182

Appendix B, we discuss how per-example pre-memorization accuracy can be used for data curation.183

Our experiments demonstrate that this approach leads to a 1.5-2x improvement in sample efficiency184

compared to i.i.d. data collection and outperforms other standard data curation techniques.185

7 Conclusion186

Our work introduces the concept of pre-memorization train accuracy, and shows that this metric is187

predictive of both test accuracy and per-element model robustness. These findings offer a deeper188

understanding of the relationship between a model’s training dynamics and its ability to generalize.189
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Figure 5: Evaluating different generalization metrics vs. the ground truth generalization gap for
models finetuned on GSM8k using Llama3 8B (legend in Fig. 3). Our metric (left-most) is a much
stronger predictor of the generalization gap than the other prior metrics.

A Comparison to Previous Generalization Metrics292

As we discuss in Section 2, various metrics have been proposed in previous studies to predict the293

generalization gap, the difference between train and test accuracy. In Fig. 5, we compare several294

of these existing metrics, including gradient variance [Jiang et al., 2019], distance between current295

model weights and initialization [Nagarajan and Kolter, 2019], and an estimate of test accuracy via296

Average Thresholded Confidence (ATC) [Garg et al., 2022]. We discuss our implementation of these297

metrics in Appendix D. The correlation coefficients associated with each metric (left to right) are298

0.98, -0.72, 0.59, -0.04, which shows that the prior metrics do not correlate as strongly with test299

accuracy as our proposed metric. A key advantage of our approach is that it leverages the assumption300

that model outputs include both reasoning steps and a final answer, enabling us to separate a model301

prediction’s accuracy from its distance to the target solution trace. This distinction unveils the extent302

to which model’s learn problem-solving solutions to training queries, which provides for a much303

more reliable estimate of a model’s generalization abilities.304

B Curating Data with Pre-Memorization Train Accuracy305

We now present data curation as a practical application of the per-example understanding of gen-306

eralization provided by pre-memorization train accuracy. While previous works have shown that307

prioritizing “hard” examples over “easy” ones during data collection can lead to more efficient scaling308

using heuristic measures of difficulty, the ideal metric for determining difficulty remains unclear.309

Our findings demonstrate that pre-memorization accuracy can serve as a principled and more310

effective metric of example difficulty in data curation.311

Related Works A number of prior works have studied approaches for improving data curation.312

Active learning methods seek to optimally select data in an online learning setting for general313

machine learning models [Zhan et al., 2022, Gal et al., 2017, Tamkin et al., 2022]. Specific to LLM314

finetuning, prior approaches largely fall into three categories: optimization-based, model-based, and315

heuristic-based approaches. Optimization-based methods frame data selection as an optimization316

problem, where the objective is model performance, and the search space consists of the training317

data distribution [Engstrom et al., 2024, Grosse et al., 2023]. Model-based approaches, on the other318

hand, leverage characteristics of the learning process [Mekala et al., 2024, Liu et al., 2024], such319

as comparing the perplexity of examples [Li et al., 2023]. Lastly, heuristic-based methods rely on320

simpler criteria, such as difficulty scores generated by GPT, to classify desirable training data [Chen321

et al., 2023, Lu et al., 2023, Zhao et al., 2023]. Our data curation approach aligns most closely with322

model-based strategies, as we use the model’s pre-memorization accuracy, a characteristic of the323

learning process, to inform the selection of training examples.324

Problem setup. We will now more precisely define our data curation problem. Given an existing set325

of N training examples with queries distributed as P (x), we aim to collect N ′ examples, denoted as326

D′
train, to augment the dataset. The goal is to specify a new distribution P ′(x) that maximizes the327

test performance of a model trained on both the original and the newly collected examples. While328

defining the true distribution of queries can be challenging, we assume that by approximating it with329

an empirical distribution from the current dataset, we can collect new data with similar properties. In330

our experiments, we take Dtrain to be the original dataset, and collect new examples by using GPT to331
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Algorithm 1 Our Data Collection Process
1: Input: N ′ = N ′

1 + · · ·+N ′
n, t

2: Output: Updated dataset D′
train

3: Initialize D′
train = {}

4: for i = 1 to n do
5: Train model on Dtrain +D′

train
6: Evaluate model on Dtrain and compute pre-memorization accuracy for each example
7: Set P ′

i (x) as the distribution of examples with pre-memorization accuracy below t
8: Collect N ′

i new examples from P ′
i (x) and add them to D′

train
9: end for

Figure 6: Comparison of different approaches for data curation. Each line represents a different data
curation approach at varying scales of training dataset size, and each point represents a different
training run. Our approach acheived the best sample efficiency compared to the other approaches.

rephrase examples in the original dataset, similar to the procedure in Setlur et al. [2024]. By only332

collecting new examples that derive from the specified empirical distribution, we can ensure the new333

dataset approximates P ′(x). This setup can also be used when collecting new human-generated data,334

by providing the specified empirical distribution of examples as references for human labelers.335

Our approach. We propose a data collection strategy that focuses on examples with low pre-336

memorization accuracy in the existing dataset. First, we calculate the pre-memorization accuracy337

for each example in the current dataset and then define P ′(x) as the distribution of examples whose338

pre-memorization accuracy falls below a certain threshold t. We then collect new data according339

to this distribution. If N ′ is large, we can split the data collection process into multiple iterations340

(N ′
1 + ...+N ′

n = N ′). In each iteration, we collect N ′
i new examples according to P ′

i (x), retrain a341

model on the combined dataset, calculate the pre-memorization accuracy with the model, and update342

P ′
i+1(x) for the next round of data collection. This process is summarized in Algorithm 1.343

Comparisons. We compare our strategy to IID sampling and two existing approaches commonly344

used in data curation. Both of these approaches propose a metric of example difficulty and prioritize345

difficult examples during data collection. The first metric, called Instruction-Following Difficulty346

(IFD) [Li et al., 2023], computes the ratio between the perplexity of training labels given inputs and347

the perplexity of only labels using a model finetuned for the task. The second metric uses external348

sources, such humans or more capable models such as GPT, to assign a heuristic notion of difficulty349

to each example [Chen et al., 2023, Lu et al., 2023, Zhao et al., 2023]. For the GSM8K dataset, we350

use the number of lines in the target solution traces as a heuristic for difficulty, while for the MATH351

dataset, we use the difficulty levels provided in the dataset itself.352
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Results. In our experiments, we finetune Llama3 8B on GSM8K and DeepSeekMath 7B [Shao et al.,353

2024] on MATH levels 1-3 to evaluate the impact of our data collection approach on test accuracy.354

More details about the implementation of the different approaches can be found in Appendix E.355

As shown in Fig. 6, our approach outperforms all three prior approaches, achieving more than 2x356

the sample efficiency in reaching the same test accuracy compared to IID scaling in GSM8k, and357

more than 1.5x sample efficiency in MATH levels 1-3. These results highlight the effectiveness of358

using pre-memorization accuracy as a criterion for targeted data collection, leading to enhanced359

generalization with fewer data points.360

C Section 5 Training Runs Details361

In this section, we will enumerate all training runs shown in Fig. 3 and their training details. For our362

half and quarter training runs, we fix the total number of training steps to be equivalent to training for363

3 epochs on the full dataset.364

C.1 GSM8k LLama3 8B365

For all training runs with GSM8k and Llama3 8B, we use the AdamW optimizer, with a linear decay366

learning rate scheduler with 20 warmup steps, a batch size of 128, and a max gradient norm of 2.367

Learning Rate Epochs Dataset Size
5e-5 6 full
2e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
2e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

368

C.2 MATH LLama3 8B369

For all training runs with MATH and Llama3 8B, we use the AdamW optimizer, with a linear decay370

learning rate scheduler with 20 warmup steps, a batch size of 24, and a max gradient norm of 2.371

Learning Rate Epochs Dataset Size
5e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

372

C.3 GSM8k Gemma2 9B373

For all training runs with GSM8k and Gemma2 9B, we use the Adam optimizer, with a cosine decay374

learning rate scheduler with (0.1*total steps) warmup steps, a batch size of 32, and a max gradient375

norm of 1.376
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Learning Rate Epochs Dataset Size
5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter

377

C.4 MATH Gemma2 9B378

For all training runs with MATH and Gemma2 9B, we use the Adam optimizer, with a cosine decay379

learning rate scheduler with (0.1*total steps) warmup steps, a batch size of 32, and a max gradient380

norm of 1.381

Learning Rate Epochs Dataset Size
5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter

382

D Appendix A Implementation Details383

In this section we will more precisely describe each generalization metric.384

D.1 Gradient Variance385

We calculate the gradient of the model for 5 different minibatches, take the variance across the 5386

samples for each element of each weight matrix, and take the average over each element of the model387

weights.388

D.2 Distance from Initialization389

We calculate the squared difference between each element of the model weights at initialization and390

after finetuning, and take the sun across all elements.391

D.3 Average Thresholded Confidence (ATC)392

ATC computes a threshold on a score computed on model confidence such that the fraction of393

examples above the threshold matches the test accuracy. For the score, we use the likelihood of394

greedily sampled responses under the model. We calculate the the score over the training data using395

13



a model trained for 3 epochs using learning rate 2e-5, and calculate the threshold over the score396

using the test dataset. We then predict the test accuracies over different models in our experiment by397

calculating the score associated with the training data using each model, and measuring the percentage398

of examples whose score surpass the threshold that we previously calculated.399

E Appendix B Implementation Details400

For our approach for data curation, we implemented the process described in Algorithm 1, with 5401

iterations (n) and using threshold (t) 0.75 for both GSM8k and MATH.402

For the IFD approach for data curation, we calculated the IFD score using a model that was train403

on the test set associated each dataset for 2 epochs. This is because, in order to calculated the IFD404

score, we need a model which has been briefly trained for the task of interest, but which has not been405

exposed to the dataset for which we want to calculate the IFD score over. Note that this model is only406

used for calculating for the IFD score, and not used for evaluations in our experiments, so there is no407

data leakage.408

For both the IFD approach and the heuristic approach, we take P ′(x) to be top 50 percentile of409

examples for GSM8k, and top 75 percentile of examples for MATH. We designed these percentiles to410

roughly match the percentile of examples that our approach selects from.411

For all training runs, we use the AdamW optimizer, with a linear decay learning rate scheduler with412

20 warmup steps, a batch size of 128, a max gradient norm of 2, a learning rate of 2e-5, and 3 epochs413

of training.414
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