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ABSTRACT

The real-world deployment of clinical machine learning models requires adaptabil-
ity to distributional shifts caused by variations in the patient population and data
acquisition mechanisms. However, distributional shifts are known to significantly
affect the raw probability scores output by deep learning models and thus com-
promise performance on clinically important metrics when a threshold must be
chosen to generate the final output. We propose a generative learning-based method
for threshold setting that utilises unlabelled samples from the target distribution
to learn shared feature representation, reduce the distance between domains and
improve cross-domain alignment of output probabilities. We demonstrate that the
proposed method improves the alignment of decision thresholds for several clinical
tasks on real-world electronic health record (EHR) data and derive theoretical
bounds on calibration error. Our approach doesn’t require ground-truth labels for
target data, facilitating its use in EHR-based applications.

1 INTRODUCTION

Machine Learning (ML) models are increasingly used in healthcare, in particular for the analysis
of Electronic Health Care Records (EHRs). The availability of large volumes of EHR data offers
promising potential for applying ML as a tool for clinical decision support. The incorporation of such
models into clinical workflows holds the promise of making a major positive impact by reducing
clinical mistakes and alleviating workforce shortages.

However, robustness under domain shift remains a fundamental challenge for successful integration
of such models into clinical practice. Domain shift occurs when the “source” data samples used
for training and the “target” data samples follow different distributions. In healthcare applications
this can be caused by changes in patient population, disease management protocols and medical
technology over time, as well as the requirement for the ML models to be portable between different
hospital sites with the associated changes in disease prevalence and treatment patterns, such as e.g.
procedures, tests and medication ordering habits and site policies (Nestor et al., 2019; Zhang et al.,
2022; Kompa et al., 2021). Despite the practical importance of ML models for EHR data, behavior
of such models under distributional shift is relatively understudied compared to e.g. imaging data
(Avati et al., 2021). In this work we aim to partially address this gap by studying the problem of
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Figure 1: Transformation G reduces the distance between the distributions of source and target
samples. The transformed validation subset can now be used for training the classifier C, calibrating
the output probabilities and setting thresholds on the target domain.

decision threshold setting and calibration for these models and proposing a practical approach based
on generative learning to improve performance in the presence of domain shift.

Although AUC ROC is considered a “gold standard” evaluation criterion and is often used exclusively
for evaluating and ranking performance of clinical machine learning models, deployment of models,
such as neural networks, in practice requires setting of an operating point or a threshold. The optimal
threshold is decided by taking into account the requirements of the specific problem, and can be
dictated by class imbalance, required sensitivity level and feasibility and cost considerations. For
example, Youden Index threshold (Youden, 1950) that optimizes the balance between sensitivity and
specificity while giving same weight to both metrics is often used in the literature.

When source and target data are drawn from the same distribution, the threshold can be found
using labelled validation subset of the source data, however, in the presence of distributional shift,
optimization using the subset of the source data will not provide optimal operating point for the
target. Using labelled data samples from the target domain is the straightforward alternative, but
obtaining such samples in clinical practice is time-consuming, costly and associated with ethical and
compliance issues such as the need for informed consent and privacy. As a consequence in some
cases such labelled samples might not be available at all, or not be available in the quantity sufficient
to represent a true distribution of the target data.

In many situations where collection of labelled data samples is unfeasible, unlabelled samples might
be available. The intuition behind the use of unlabelled samples to improve performance in the
presence of domain shift is that they contain information that can be used to compare the source
and target distribution, and hence such information can be used to "adjust" the classification. To
implement this idea in practice, we propose to use a generative modeling based approach to learn a
transformation of source and target data features that reduces the distance between distributions. The
transformed validation subset is used to set thresholds for the target domain (Figure1).

The situation is similar for model calibration. The model is said to be calibrated if the predicted
probabilities coincide with empirical frequency of the labels. Model calibration was empirically
shown to be affected by distributional shift (Ovadia et al., 2019). Our analysis in Section 4 using the
theoretical framework introduced in (Ben-David et al., 2006; 2010) shows that the target calibration
error of the model is bounded by the distance between source and target domains. This provides
a formal theoretical foundation to our approach of reducing this distance by learning a shared
representation of source and target data features for better calibration and threshold setting on the
target domain.

We conduct experiments on two large real-world Electronic Health Records (EHR) datasets: The
eICU Collaborative Research Database (Pollard et al., 2019) containing records from ICU stays in
208 US hospitals and the dataset containing emergency admission records from several UK hospitals
during the COVID-19 pandemic that was used in the development of the CURIAL model (Soltan
et al., 2022) - a clinical model for early identification of COVID-19 cases among patients presenting to
hospitals emergency departments. Our experimental results show strong improvement in performance
when the operating point is chosen using the transformed validation data.
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2 PREVIOUS WORK

The work of Ben-David et al. (2006; 2010) introduces the framework of empirical estimation of
distance ("divergence") between distributions using finite samples. In the present work we use this
notion to show that estimated calibration error (ECE) (Naeini et al., 2015) is bounded by the distance
between domains, providing theoretical foundations for our approach.

We utilize adversarial domain adaptation approach proposed in (Ganin et al., 2016) for finding
distance decreasing transformation of source and target data in practice. This approach is based on the
generative adversarial network (GAN) approach of Goodfellow et al. (2014). It uses a discriminator
network to measure the divergence between feature representations of source and target distributions.
While adversarial domain adaptation has been previously leveraged for machine learning applied to
EHR data to ameliorate the drop in performance due to distributional shift as measured by ROC AUC
(Purushotham et al., 2016), its effect on the calibration of the probabilities output by the model and
on decision threshold setting was not previously studied. Our work is the first to investigate the use
of these methods for threshold setting in the presence of distributional shift.

The challenge of threshold setting is of substantial practical significance, however the approaches in
the literature are often dataset specific and the research on general approaches is scarce (Hernández-
Orallo et al., 2012; Zou et al., 2016; Johnson & Khoshgoftaar, 2021), especially for distributional
shift. Of note is the recent work of Roschewitz et al. (2023) that proposes an unsupervised prediction
alignment (UPA) method for threshold setting in medical imaging data under acquisition domain shift.
UPA applies ‘histogram matching’ to the models probability outputs on source and target domains.
The main limitation of this method is that it requires similar prevalence of positive and negative cases
across domains. We apply UPA in the EHR setting and compare it to our approach for threshold
setting in our experimental evaluation in Figures 3 and 6.

While a variety of calibration methods exist in the literature, including Bayesian approaches (Kingma
et al., 2015; Blundell et al., 2015; Gal & Ghahramani, 2016; Kendall & Gal, 2017) and bootstraping
and ensembling methods (Osband et al., 2016; Lakshminarayanan et al., 2017) the post-hoc calibration
methods involving re-calibration of probabilities on a held-out validation set are more prevalent in
healthcare models, due to transparency and simplicity of implementation. Several previous works
proposed to combine adversarial domain adaptation with temperature scaling calibration method
of Guo et al. (2017) to improve performance in the presence of covariate shift (Wang et al., 2020;
Park et al., 2020; Pampari & Ermon, 2020). In the binary classification setting that we consider
in this paper the histogram calibration method of Zadrozny & Elkan (2001) is often superior to
temperature scaling (which in this setting is equivalent to the Platt method (Platt et al., 1999) without
the bias term). Our work is the first to evaluate the performance of this method when combined with
adversarial domain adaptation. Moreover the above works do not provide theoretical analysis or
bounds, whereas the explicit behavior of the histogram calibration method with respect to the source
and target datasets allows us to provide theoretical analysis and guarantees in Section 4.

3 PRELIMINARIES

Formal Setup Let X denote the input space. We will consider the task of binary classification,
i.e. label space Y = {0, 1}. Denote by D,D′ the distribution from which we sample the source and
the target datasets respectively and let fD, fD′ : X → Y be the corresponding labelling functions.
We are provided with a labelled sample S drawn i.i.d according to D that is used for training of
a probabilistic classifier C. We want to analyse threshold optimisation and calibration of C for a
sample T drawn according to D′.

For an input x the classification procedure has the two following stages:

• C produces classification probability p(x) as an output of its penultimate layer.

• The binary classification outcome y ∈ {0, 1} is computed according to the rule p(x) ≤, > A,
where A ∈ [0, 1] is the chosen threshold.

Calibration error The classifier C is well-calibrated when the prevalence of positively labelled
instances among the datapoints x in the test set with predicted probabilities p(x) is (approximately)
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Figure 2: Distribution of predicted probabilities on the target domain after calibration on original
and transformed validation sets. The width of the bins was determined on the respectively original
and transformed validation set so that points were distributed uniformly across bins. The classifier
calibrated on the original validation dataset places an excessive amount of target samples into the
bins with lowest probabilities, while after calibration on transformed dataset the distribution of
probabilities remains close to uniform distribution (indicated by dotted line). In this example the
probabilities are output by a classifier trained on the eICU Mortality task and deployed on a new
hospital site.

equal to p(x), i.e.
P (y = 1|p(x) = p) ≈ p

To quantify calibration the following notion of binary expected calibration error (Binary-ECE)(Naeini
et al., 2015; Roelofs et al., 2022) is commonly used in the literature:

Definition 3.1. Estimated calibration error is an average gap across all bins in a reliability diagram
relative to an ideal reliability diagram weighted by the size of each bin:

ECE =

M∑
i=1

|Bi|
N

|y(Bi)− s(Bi)| (1)

where y(Bi) is the proportion of positives in the bin Bi and s(Bi) is the average predicted probability,
N,M are the total numbers of instances and bins respectively.

The post-hoc calibration methods adjust the probabilities of a trained classifier using a labelled
validation subset of the training set S . One of the simplest methods is histogram binning proposed in
Zadrozny & Elkan (2001). It is often used in practical applications due to its relative simplicity and
competitive performance (Gupta & Ramdas, 2021). In this method the validation dataset is used to
divide the interval [0, 1] into a number of bins {Bi}Mi=0. Each point in the training dataset is assigned
to a bin according to its predicted probability p(x). The sizes of the bins are chosen so that they
contain approximately equal number of data points. Computing actual number of positives in each
bin allows to learn calibration coefficients for the classifier and minimize the ECE (Naeini et al.,
2015).

As in the case of threshold optimisation, classifiers calibrated in such a way can be expected to
stay well-calibrated on the target T if both the validation and the target are sampled from the same
distribution, but not otherwise. In particular, in the presence of distributional shift between the source
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Figure 3: We calibrate threshold to maximise Youden index on the validation dataset with ("Ours")
and without("Baseline") transforming the validation dataset, as well as using UPA approach from
(Roschewitz et al., 2023) ("UPA"). The plot shows resulting Youden index distributions across
several target hospital sites on the eICU datasets for Mortality within 48 hours and Shock within 4
hours prediction tasks and on the CURIAL dataset. Each box shows the quartiles summarizing the
results across all target sites and the error bars indicate the minimal and maximal values across the
experiments. We observe that calibration on transformed validation dataset significantly outperforms
the other approaches on all datasets.

and the target domain we can no longer expect that the bins found using the validation subset of the
source domain will contain similar numbers of points of the target domain, since the distribution of
the probabilities predicted by the classifier can change due to covariate shift. The actual number of
positives in each bin can change as well due to label shift. See Figure 2 for an example of distribution
of predicted probabilities on the target domain for the case of classifier trained to predict adverse
events from electronic health records of hospital patients that is deployed on a previously unseen
hospital site.

We analyse how the distance between source and target distributions affects ECE in the following
section.

4 THEORETICAL ANALYSIS

4.1 NOTIONS OF DISTANCE BETWEEN DOMAINS

The key notion we will use in our analysis of threshold optimisation and calibration in the presence of
distributional shift is the measure of the difference between D and D′. The concept of H-divergence
based on the L1 distance between the distributions, introduced in (Kifer et al., 2004; Ben-David et al.,
2010) is commonly used in the literature, since it can be estimated from finite samples and allows for
focusing on a certain relevant class of hypothesis functions H := {h : X → Y }.
Definition 4.1. H-divergence between D,D′ for the class of hypothesis functions H is given by the
following formula:

dH(D,D′) := 2 sup
h∈H

∣∣∣Pr
D

I(h)− Pr
D′

I(h)
∣∣∣

where I(h) is the set for which h ∈ H is the characteristic function, i.e. x ∈ I(h) ⇐⇒ h(x) = 1.

Ben-David et al. (2010) show that H-divergence can be approximated by the empirical H-divergence
between (series) of samples S and T from D,D′:

d̂H(S, T ) := 2 sup
h∈H

∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− 1

|T |
∑
x∈T

h(x)

∣∣∣∣∣
The following observation based on Ben-David et al. (2010) allows to compute empirical H-
divergence using machine learning methods in practice:
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Remark 4.2. For a symmetric hypothesis class H, i.e. one for which h ∈ H =⇒ 1 − h ∈ H
the bound on H-divergence can be estimated from the accuracy of the classifier solving the binary
classification problem of distinguishing source and target instances. The divergence which is close to
0 corresponds to the accuracy close to 0.5 and the divergence close to 2 corresponds to the accuracy
close to 1, as intuitively expected.

In the following section we will show that smaller d̂H leads to smaller change in estimated calibration
error when passing from S to T , i.e. for the close enough samples T and S the calibration error does
not increase significantly on the target.

4.2 BOUNDS ON ESTIMATED CALIBRATION ERROR WITH DISTRIBUTIONAL SHIFT

Consider a classifier C (and a corresponding hypothesis hC) with given estimated calibration error
(ECE, Definition 1) on a sample S. We would like to analyze ECE on the sample from the target
domain T in terms of empirical H-divergence between the samples S and T . To compute ECE on T
we need to divide it into the same number of equally sized bins as the source. The factors affecting
ECE are the resulting number of datapoints in each bin and the actual proportion of positives in each
bin.

The following result provides an upper bound for absolute difference in the amount of data points
placed in the bins predicted by any classifier C in terms of divergence between S, T .
Theorem 1. For any classifier C the absolute difference in the proportion of points contained in
bins with same predicted probability range on S and T is bounded by the empirical H-divergence
between samples S and T for big enough hypothesis class H.

The actual proportion of positives in bins with corresponding probability ranges on S and T is
affected not just by the distance between the domains but also by the difference between labelling
functions fD, fD′ : X → Y . To quantify this difference via the functions in the hyphothesis class
H Ben-David et al. (2010) propose the notion of the ideal joint hyphothesis.
Definition 4.3. The risk of a hyphothesis h for D is

ϵD(h, fD) = Ex∼D |h(x)− f(x)|
Definition 4.4. The empirical risk of a hypothesis h on a sample S is

ϵ̂S(h, fD) =
1

|S|
∑
x∈S

|h(x)− f(x)|

Definition 4.5. The ideal joint hypothesis is the hypothesis which minimizes the combined error

h∗ = argmin
h∈H

ϵS(h, fD) + ϵT (h, fD′)

Denote the error of the ideal joint hypothesis h∗ by λ. For any pair of samples from D,D′ we can
also consider empirical error λ̂.

Then we have the following
Theorem 2. Given a classifier C, consider bins Bi and B′

i containing the points with predicted
probabilities in the range [p1, p2] of S and T respectively. The absolute difference between proportion
of positively labelled instances in Bi and B′

i is bounded as follows∑
x∈S

∣∣∣∣ 1

|Bi|
fD(x)−

1

|Bi|
fD′(x)

∣∣∣∣ ≤ d̂H + λ̂

where d̂H is the empirical H-divergence between samples S and T and λ̂ is the empirical combined
error.

The intuition behind this result is that for “similar” source and target domains, the labelling for
any two probability bins chosen with arbitrary classifier is related to similarity of labelling for the
domains overall.

For proofs see Appendix.
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5 PROPOSED METHOD

The theoretical analysis of the previous section suggests the following method for calibration and
threshold setting: given samples S, T , find a feature transformation G : X → Z that reduces the
empirical divergence d̂H between G(S), G(T ), and use the transformed samples G(S), G(T ) for
training and calibrating the classifier. If the empirical divergence between G(S), G(T ) is small the
classifier calibrated on a subset of G(S) will stay well-calibrated on G(T ) (Figure 1).

In practice the labelled source sample S and the target sample T from the distributions D,D′ on the
input space X are given and empirical H-divergence between them can be estimated using Remark
4.2. We need to find a transformation G that makes the two distributions similar while preserving the
information needed to approximate the pullbacks of labelling functions fD, fD′ with respect to G.
More concretely, we want to find G : X → Z and a hypothesis h on Z, such that both the empirical
divergence d̂H between G(S), G(T ) and the empirical hypothesis risk are small. Formally we have

Definition 5.1. Let G : X → Z. We can define the distribution DG and the labelling function f̃ by

Pr
DG

[B] = Pr
D

[
G−1(B)

]
f̃ = ED [f(x)|G(x) = z]

Definition 5.2. Let G : X → Z. The hypothesis risk for the transformed source distribution DG and
a hypothesis h over Z is given by

ϵDG
(h) = Ez∼DG

∣∣∣h(z)− f̃(x)
∣∣∣

The empirical hypothesis risk for a sample is defined similar to Definition 4.4.

To learn the distance reducing transformation G we use adversarial domain adaptation. Adversarial
domain adaptation is a group of approaches that utilizes a GAN methodology for finding transfor-
mation G and hypothesis h that minimize the distance between distributions and the empirical risk
by approximating them with neural networks Gθ (a “generator”) and Cψ (a “a classifier”). These
networks are trained on the labelled source and the unlabelled target samples. A third neural network
Dϕ (a discriminator) empirically approximates the distance between the transformed source and
target samples (see Remark 4.2). These networks are trained using a shared training objective to
simultaneously maximize classification accuracy while minimizing distance between transformed
distributions.

After learning G the transformed validation set G(V ) is used for calibration and thresholds setting.

6 EXPERIMENTS

We compare performance of the baseline classifier trained on the original source data by minimising
standard cross entropy loss with the performance of the classifier trained on the transformed source
data using the training objective 3. We also compare to the UPA method. We consider performance
at the threshold maximising the Youden’s index Youden (1950)

J = Sensitivity + Specificity − 1

We find an optimal threshold on an unseen validation subset of S and compare performance on the
target domain T (Figure 3).

We conduct 5 experiments with random sampling of training and validation datasets for each target
site and verify significance of the results by computing t-values for each site.

We report results for additional thresholds and results on calibration in the Appendix.

eICU is a multi-site database comprising de-identified health data for patients admitted to ICUs across
different sites in the US (Pollard et al., 2018), (Pollard et al., 2019) that is a part of PhysioNet (Gold-
berger et al., 2000). The feature representation used in the experiments was created using the feature
extraction method FIDDLE (FlexIble Data-Driven pipeLinE), an open-source preprocessing pipeline
for structured clinical data (Tang et al., 2020), (Tang et al., 2021). For our experimental evaluation we

7



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

considered the “Mortality within 48 hours” and Shock within 4 hours binary prediction tasks. Each
task corresponds to a time series dataset.

Outcome distributions, population characteristics and data collection methods vary widely across
different clinical sites leading to domain shifts between different sites (Zhang et al., 2022). To
increase robustness and transferability a model is often trained on a diverse dataset collected from
multiple hospitals rather than training and applying individual models. In keeping with this approach,
our source dataset was comprised of labelled data pooled across a subset of several hospitals. We
considered 3 target datasets for each of the tasks, containing data from hospitals not belonging to
the above subset. This setup mimics the plausible real-world scenario where a diagnostic system is
trained on a body of data across several sites and deployed on a new unseen site. Class imbalance
is present in both source and target datasets. Positive class comprised 20% of the source data for
Mortality and Shock tasks. For target sites the percentage of positives varied between 5% and 16%.

The dataset used for the creation of the CURIAL model Soltan et al. (2022) contains EHR data from
several UK National Healthcare Service trusts. In our experiments we have used the data from the
Oxford University Hospitals (OUH) trust collected during the first wave of the Covid pandemic as
described in Soltan et al. (2022) as the source training data for the creation of our baseline model.
The source dataset contains approximately 5% positive cases. The data from OUH second wave,
as well as the data from the University Hospitals Birmingham (UHB) NHS Foundation Trust was
used as target data. The target sites contain 10% and 6% positive cases respectively. 1 For details on
models and training see Appendix.

7 LIMITATIONS AND FURTHER DIRECTIONS

Our theoretical analysis is necessarily restricted to the case of covariant shift, since we assume no
knowledge of labels for the target domain. However it can be modified by combining adversarial
domain adaptation with methods that tackle label shift (Garg et al., 2023).

The literature on domain adaptation for time series is relatively scarce (Purushotham et al., 2016;
He et al., 2023). In the present work we opted to use a classical approach of DANN Ganin et al.
(2016) combined with an LSTM network as feature extractor as in Purushotham et al. (2016). Newer
variations of this algorithm have potential to improve performance even further.

Our experiments were limited to EHR datasets. The choice of modality was motivated by the fact
that EHR models behavior in the setting of distributional shift is understudied compared to other data
modalities (Avati et al., 2021). We believe that applications of our method to calibration on other
types of datasets, such as e.g. medical imaging data, merits separate investigation.

Finally we note that we did not discuss potential privacy concerns related to the use of unlabelled
target data. Various federated learning approaches exist to overcome this constraint, and we note that
adversarial domain adaptation methods can be performed in federated learning mode (Peng et al.,
2019), therefore it should be possible to learn distance -reducing transformation G without direct
access to target data. We postpone detailed work up of this exciting direction to future work.

Robustness to distributional shifts is one of the key challenges for successful deployment of machine
learning models based on electronic health record (EHR) data. To our knowledge our work is the first
to propose a systematic approach to threshold setting on the EHR data in the presence of distributional
shift. Our method requires only unlabelled target samples, thus avoiding the ethical concerns and
significant costs associated with obtaining labelled healthcare data. As such it has potential to improve
performance of machine learning models and facilitate their incorporation into clinical practice.
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Figure 4: The comparison of ECE↓ distributions for the Temperature scaling, CPCS, TransCal and
Histogram post-hoc calibration methods for the adapted model. Blue bar corresponds to the results
with no calibration applied. We plot distributions across several target hospital sites on the eICU
datasets for Mortality and Shock prediction tasks and on the CURIAL dataset. Histogram calibration
method significantly outperforms other calibration methods in the setting of adversarial domain
adaptation.

A CALIBRATION

It is natural to utilize the transformed validation set Gθ(V ) for calibration of the bins using the
histogram binning procedure from Zadrozny & Elkan (2001). We compare the performance of
this method to the three benchmark calibration methods that use domain adaptation: Temperature
scaling (Guo et al., 2017), CPCS (Park et al., 2020) and TransCal (Wang et al., 2010), and also
consider ablation case (performance on target domain without calibration). Figure 4 summarises
ECE equation 1 distributions on T across all experiments and target domains. ECE is calculated by
dividing the domain into 15 equal length bins as in Guo et al. (2017); Wang et al. (2020). We also
compare Histogram binning with and without calibration in 5

We find that Histogram calibration method has the lowest ECE by a large margin. Interestingly
the two benchmark methods developed specifically for the domain adaptation setting, CPCS and
TransCal, perform on par or worse than Temperature scaling method in our experiments. A likely
reason is that our datasets are highly imbalanced, which impacts both CPCS, which optimizes Brier
score (Brier, 1950), known to perform poorly for minority classes, and TransCal, which uses accuracy
as one of components of its method on top of Temperature scaling.

B THRESHOLDS WITH GIVEN SENSITIVITY VALUE

Clinical tests are sometimes required to have a certain sensitivity value. For ML models required
performance can be achieved by calibrating the threshold on the validation subset, but in the presence
of distributional shift the sensitivity on the target domain can drop. We compare performance of
baseline model and the models trained using shared feature representation and UPA approach for
models trained and deployed on domains with distributional shift in Figure 6.

C PROOFS

Theorem 3. For any classifier C the absolute difference in the proportion of points contained in
bins with same predicted probability range on S and T is bounded by the empirical H-divergence
between samples S and T for big enough hypothesis class H.

Proof. Given a classifier C, consider bins Bi and B′
i containing the points with predicted probabilities

in the range [p1, p2] of S and T respectively. Then clearly there exists a hypothesis ĥ which maps the
points belonging to Bi, B

′
i to 1 and the points outside these to 0 on the samples S and T respectively.

Hence for any H containing ĥ we have

12



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

Figure 5: The comparison of ECE↓ distributions after application of histogram binning calibration
method using transformed and original validation subset

∣∣∣∣ |Bi||S|
− |B′

i|
|T |

∣∣∣∣ =
∣∣∣∣∣ 1

|S|
∑
x∈S

ĥ(x)− 1

|T |
∑
x∈T

ĥ(x)

∣∣∣∣∣ ≤
sup
h∈H

∣∣∣∣∣ 1

|S|
∑
x∈S

h(x)− 1

|T |
∑
x∈T

h(x)

∣∣∣∣∣ = 1

2
d̂H(S, T )

Theorem 4. Given a classifier C, consider bins Bi and B′
i containing the points with predicted

probabilities in the range [p1, p2] of S and T respectively. The absolute difference between proportion
of positively labelled instances in Bi and B′

i is bounded as follows∑
x∈S

∣∣∣∣ 1

|Bi|
fD(x)−

1

|Bi|
fD′(x)

∣∣∣∣ ≤ d̂H + λ̂

where d̂H is the empirical H-divergence between samples S and T and λ̂ is the empirical combined
error.
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Figure 6: We calibrate the thresholds to achieve respectively 80% and 90% sensitivity on the validation
subset of the source dataset. We plot distributions of the sensitivity values across several target
hospital sites on the eICU datasets for Mortality within 48 hours and Shock within 4 hours prediction
tasks as well as the distributions on the CURIAL dataset. Each box shows the quartiles summarizing
the results across all target sites and the error bars indicate the minimal and maximal values across
the experiments. Note that while the mean sensitivity of the models calibrated on the transformed
validation subset for the Shock task is less than required, it is significantly improved compared to the
sensitivity of the baseline and UPA models.

Proof. First note that the empirical H-divergence d̂H(Bi, B
′
i) between the bins Bi ⊂ S and B′

i ⊂ T
is less or equal to the empirical H-divergence between the whole source and target samples, d̂H(S, T ).
This follows by considering the hypothesis ĥ that returns 0 for points outside of Bi, B′

i and 1 otherwise.
Then for any h ∈ H ∣∣∣∣∣∣ 1
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ĥ ◦ h(x)− 1

|T |
∑
x∈T
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and the claim follows. Then we have for the ideal joint hypothesis h∗:∣∣∣∣∣ 1

|S|
∑
x∈S
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The equations( 2a) and ( 2b) imply∣∣∣∣∣∣ 1
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Algorithm 1 DANN

Input: Labelled batch {(x(i)
L , y

(i)
L ) : i ∈ (1, . . . , nL)}, unlabelled batch {(x(i)

U , y
(i)
U ) : i ∈

1, . . . , nU}, penalty λ ∈ R, learning rates ηG, ηC , ηD.
Compute loss for Discriminator D

L(D) =
1

nL

nL∑
i=1

l(D ◦G(x
(i)
L ), 1) +

1

nU

nU∑
i=1

l(D ◦G(x
(i)
U ), 0)

Compute loss for Classifier C

L(C) =
1

nL

nL∑
i=1

l(C ◦G(x
(i)
L ), y

(i)
L )

Compute combined loss
L = L(C)− λL(D)

Update C,D,G using learning rates ηG, ηC , ηD

D MODELS AND TRAINING

We use adversarial domain adaptation to learn the representation G that reduces the distance between
distributions.

Adversarial domain adaptation is a group of approaches for training a triple of neural networks Gθ

(a “generator”), Cψ (a “a classifier”) and Dϕ (a discriminator). The training objective is given by
minθminψmaxϕ Lθ,ψ,ϕ, where

Lθ,ψ,ϕ := E
x∈T

log(Dϕ(Gθ(x))

+ E
x∈S

log(1−Dϕ(Gθ(x)))

+ LCx∈S(Cψ(Gθ(x)), y(x))

(3)

In the present work we opted to use a classical approach of DANN Ganin et al. (2016). For the
eICU dataset Gθ is an LSTM network acting as a feature extractor Purushotham et al. (2016). On the
CURIAL Dataset Gθis a DNN model with two hidden layers (see Algorithm 1).

We use weighted loss to address class imbalance and imbalance in the sizes of the source and target
datasets for the adversarial training.

All experiments were run on Apple M2 Max CPU with 32 GB Memory. We used 5 different random
data splits for each hospital site to obtain t-values and std. We used Adam optimizer for training and
used hyperparameter tuning to find optimal penalty λ. Following the scheme of Ganin et al (2016)
we tried 5 different values of lambda equally spaced on logarithmic scale between 10−2 and 1. We
note that in terms of the impact of hyperparameters on model performance in our experiments there
was no statistically significant differences between Youden values for all values of λ tested.

E EFFICIENCY ANALYSIS

From wall-to-wall times analysis training with adversarial component took 1.5 longer per epoch than
training baseline model. Explicitly, on eICU we had (in seconds)

• Mortality task: 9.3± 0.2 vs 6.2± 0.2

• Shock task: 1.34± 0.15 vs 0.9± 0.05

We note that retraining the models is expected to be needed relatively infrequently (e.g. at deployment
and to account for time-related drift), which lowers the significance of the difference in training times
in practice.
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