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Abstract

Large Language Models (LLMs) have001
demonstrated strong performance in handling002
complex tasks that require both extensive003
knowledge and reasoning abilities. However,004
the existing LLM inference pipeline operates as005
an opaque process without explicit separation006
between knowledge retrieval and reasoning007
steps, making the model’s decision-making008
process unclear and disorganized. Recent re-009
search has shown that this ambiguity will lead010
to issues such as knowledge forgetting, which011
significantly impact the reliability of LLMs.012
In this paper, we propose a novel language013
model inference paradigm that decomposes the014
complex inference process into two distinct015
and clear actions: (1) memory recall: which016
retrieves relevant knowledge in LLM, and017
(2) reasoning: which performs reasoning018
steps based on the recalled knowledge. To019
facilitate this decomposition, we introduce020
two special tokens ⟨memory⟩ and ⟨reason⟩,021
guiding the model to distinguish between022
steps that require knowledge retrieval and023
those that involve reasoning. Our experiment024
results show that this decomposition not only025
improves LLMs’ performance among utility026
benchmarks but also enhances interpretability027
during the inference process, enabling users028
to identify sources of error and refine model029
responses effectively. The code is available at:030
https://anonymous.4open.science/r/Memory-031
and-Reasoning-0A32.032

1 Introduction033

Recent advancements in Large Language Mod-034

els (LLMs) have showcased their impressive in-035

ference capabilities in handling complex natural036

language tasks that require both extensive knowl-037

edge and sophisticated reasoning abilities (Ope-038

nAI, 2024; Touvron et al., 2023; Wei et al., 2022a).039

LLMs have demonstrated the ability to memorize040

vast amounts of knowledge, and techniques like041

Chain-of-Thought (CoT) (Wei et al., 2022b), Tree042

of thoughts (ToT) (Yao et al., 2024) have been devel- 043

oped to further enhance their inference abilities by 044

decomposing complex problems into several sim- 045

pler, single-step processes. These methods enable 046

LLMs to tackle multi-step inference tasks more 047

effectively by organizing the thought process into 048

discrete, focused actions (Feng et al., 2024; Jin 049

et al., 2024; Wei et al., 2022b). 050

Despite these advancements, existing inference 051

frameworks often operate as an opaque process 052

without explicitly separating knowledge retrieval 053

and reasoning steps. This makes it unclear what 054

specific knowledge the model utilizes and how it 055

performs reasoning, leaving the decision-making 056

process ambiguous. For complex, knowledge- 057

intensive tasks, LLMs often struggle to effectively 058

leverage their memory for inference (Yang et al., 059

2023; Jin et al., 2024; Cheng et al., 2024; Liu et al., 060

2024). Such tasks typically require the ability to 061

recall relevant knowledge for each reasoning step 062

and then perform inference over that recalled mem- 063

ory (Wang et al., 2024c). The lack of structure in 064

the output and the inefficient memory utilization 065

can result in issues such as knowledge forgetting, 066

where relevant information is lost across reasoning 067

steps (Chen and Shu, 2023), which disrupts the log- 068

ical flow, as well as hallucinations, where LLMs 069

generate plausible yet incorrect information (Xu 070

et al., 2024; Li et al., 2024a). These issues com- 071

promise the LLM’s accuracy and reliability, posing 072

serious risks in high-stakes applications like health- 073

care and finance (Pham and Vo, 2024). 074

Existing efforts to enhance inference in LLMs 075

and address their challenges can be broadly clas- 076

sified into two main approaches: Memory-Based 077

Approaches: These methods focus on improving 078

the recall and utilization of world knowledge that 079

may not be stored in the model, such as leverag- 080

ing Retrieval-Augmented Generation (RAG) (Cai 081

et al., 2019; Chen et al., 2024b). The emphasis is 082

on enabling models to access and use their outside 083
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knowledge more effectively. Reasoning-Based Ap-084

proaches: These techniques aim to improve the rea-085

soning capabilities of models by Chain-of-Thought086

(CoT) reasoning (Yang et al., 2023; Gao et al.,087

2024; Yu et al., 2024) or introducing structured088

guidance in training such as planning tokens (Wang089

et al., 2024d,b) to organize reasoning into discrete,090

interpretable steps. These methods enhance the091

ability of LLMs to handle complex reasoning tasks092

by embedding structural reasoning mechanisms093

into their parameters. Despite advancements in094

both categories, LLMs still struggle with tasks that095

require an intricate interplay of memory recall and096

logical reasoning (Wang et al., 2024c).097

In this work, we propose a novel LLM infer-098

ence paradigm that divides the complex inference099

process into two distinct components: memory100

and reasoning. Specifically, we generate itemized101

action responses for various question-answering102

datasets, categorizing each action as either mem-103

ory or reasoning. Each action is then preceded104

by a special token, either ⟨memory⟩ or ⟨reason⟩,105

which acts as a control signal during training. The106

second step involves training an LLM using these107

modified outputs. By incorporating these learnable108

control tokens, the model is explicitly guided to109

distinguish between recalling relevant knowledge110

and performing reasoning steps. This structured111

guidance encourages the model to first use mem-112

ory to retrieve the relevant information and then113

apply reasoning based on that memory to solve114

the task. Our approach not only introduces a new115

form of structured response generation but also es-116

tablishes a novel framework for guiding LLMs to117

"think" systematically. This structured decompo-118

sition improves both the model’s performance and119

the interpretability of its inference process.120

Our experimental results demonstrate that the121

proposed decomposition improves performance122

and enhances the interpretability of the model’s in-123

ference process. Specifically, our method achieves124

accuracy of 78.6% and 78.0% on the Strate-125

gyQA dataset (Geva et al., 2021) using Qwen2.5-126

7B (Yang et al., 2024a) and LLaMA-3.1-8B (Tou-127

vron et al., 2023), respectively. These results rep-128

resent improvements of 1.2% and 1.3% over the129

planning-token fine-tuned baseline while remain-130

ing only 2.2% below GPT-4o’s performance. Re-131

markably, on the TruthfulQA dataset (Lin et al.,132

2022), LLaMA-3.1-8B enhanced by our algo-133

rithm outperforms GPT-4o with Chain of Thought134

prompting (85.4%), achieving 86.6% accuracy.135

On average across three benchmark datasets, our 136

method narrows the performance gap with the top- 137

performing closed-source model, GPT-4o (using 138

CoT prompting), to just 1.9%. Furthermore, by 139

analyzing the errors made by LLaMA-3.1-8B, we 140

reveal that most issues stem from reasoning rather 141

than deficiencies in the knowledge itself. This dis- 142

tinction sheds light on the primary sources of er- 143

rors in the model’s outputs and enables targeted 144

improvements. 145

Our main contributions are as follows: 146

• New Inference Paradigm for LLMs: We intro- 147

duce a framework that decomposes inference in 148

LLMs into memory and reason steps, guiding 149

the model to separate knowledge retrieval from 150

logical reasoning, thus enhancing performance 151

and interpretability. 152

• Advancing Benchmark Performance: Our 153

model achieves competitive results, surpassing 154

GPT-4o on TruthfulQA and closely matching 155

GPT4-o on StrategyQA and CommonsenseQA, 156

demonstrating the benefits of our approach. 157

• Empowering Transparency and Control: Our 158

framework enables transparent reasoning with la- 159

beled steps for memory and reasoning, allowing 160

precise error analysis and model refinement. 161

2 Method 162

The workflow of our method can be divided into 163

two stages: Data generation by decoupling mem- 164

ory and reasoning steps and training LLM with 165

memory and reasoning tokens on generated data. 166

2.1 Data Generation with Decoupled 167

Memory and Reasoning 168

We introduce an LLM-based framework for re- 169

sponse generation to generate memory (knowledge 170

in LLM) and reasoning steps, consisting of an in- 171

ference LLM and a knowledge LLM, as illustrated 172

in Figure 1. First, we use an inference LLM to gen- 173

erate Chain of Thought (CoT) (Wei et al., 2022b) 174

inference steps, prompting it to mark steps that re- 175

quire factual knowledge as ⟨memory⟩ and those 176

requiring reasoning as ⟨reason⟩. To improve the 177

quality of the memory steps, we further instruct 178

the inference LLM to rephrase knowledge marked 179

as ⟨memory⟩ into questions, emphasizing its fac- 180

tual nature. For the example question in Figure 1, 181
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[question]: Is Mixed martial arts 
totally original from Roman 
Colosseum games?
[memory 1]: What are the origins 
and characteristics of mixed 
martial arts?
[memory 2]: What were the 
Roman Colosseum games….

[reason step 1]: Due to their 
different origins, rules….
[reason step 2]: The answer ….
[answer]: False

[memory step1]: 
Mixed martial arts 
(MMA) is a combat 
sport that combines 
techniques from…

Inference LLM Knowledge LLM
1. Dataset Generation 2. Training with Memory and Reason Token

Autoregressive Language Model

+ +

+

Eagles are used because they are related to sports teams. Step 1: Young bears represent a playful attitude. Step 2:  
Eagles and young bears are from different organizations. Step 3: Scouting doesn’t use both terms. Answer: False

Memory: Eagle Scouts are the top rank in Boy Scouts, Memory: Young Bear is a top rank in Girl Scouts. Reason: 
Both represent top achievements, Thus, both embody peak skill and leadership training. Answer: True.

[memory step 2]: 
The Roman 
Colosseum games, 
or gladiatorial 
games…

Are eagles and young bears 
both used as labels for skills
training youth groups?

LLMs

[memory step 1]: What are the 
origins and characteristics of 
mixed martial arts?

[memory step 2]: What were 
the Roman Colosseum games….

CoT 

Our 🔥

<memory token> [memory step 1] <reason token> [reason step 1]

[ question] +<memory token> [memory step 2] +<reason token> [reason step 2]

[ answer]+

+

🔥

Figure 1: Workflow. We employ an LLM-based framework for data generation by 2 LLMs: an inference LLM
that generates reasoning and memory steps, and a knowledge LLM that supplies the factual knowledge required
for those memory steps. The generated data is annotated with two distinct special tokens: ⟨memory⟩ and ⟨reason⟩,
which are used for training the autoregressive language model alongside the question and answer.

The inference LLM first retrieves relevant knowl-182

edge ⟨memory⟩ about MMA and Roman Colos-183

seum games, analyzes their relationship ⟨reason⟩184

and synthesizes this information to form a coher-185

ent judgment. By methodically aligning each step186

with its purpose, the LLM ensures that the con-187

clusion—MMA is not "totally original" from the188

Colosseum games—reflects well-supported reason-189

ing. Next, a knowledge LLM answers the questions190

about factual knowledge generated by inference191

LLM, such as What are the origins and charac-192

teristics of mixed martial arts? and What were193

the Roman Colosseum games?. The answers to194

these questions are then substituted into the CoT195

inference steps. This approach effectively decou-196

ples reasoning from knowledge, ensuring accuracy197

while maintaining high data quality. It enables the198

fine-tuning of LLMs by disentangling knowledge199

and reasoning during inference. We leverage this200

LLM-based framework between memory and rea-201

soning steps to generate interpretable data, which202

can be used for the training stage.203

2.2 LLM Training with Memory and204

Reasoning Tokens205

At this stage, we train an LLM by incorporating206

intervened reasoning and memory processes as207

Figure 1, guided by two special tokens: ⟨reason⟩,208

which represents reasoning with knowledge, and209

⟨memory⟩, which signifies retrieved factual knowl-210

edge. These special tokens are designed to prompt211

the model to activate the necessary knowledge for212

reasoning, strengthening its inference capabilities213

and ultimately enhancing both interpretability and214

performance in complex inference tasks. During 215

training stage, each training instance T comprises 216

the following components: (1) the question tokens 217

Q = {q1, q2, ..., qnQ} where nQ is the question to- 218

ken length, (2) the step-by-step thinking process 219

consists of intertwined memory and reasoning com- 220

ponents, denoted as M and R, where each M is 221

initiated by a special token ⟨memory⟩ followed by 222

a sequence of tokens K that represent retrieved fac- 223

tual knowledge: {⟨memory⟩, k1, k2, ..., knK}, and 224

R is initiated by a special token ⟨Reason⟩ followed 225

by a sequence of tokens S that represent the rea- 226

soning process: {⟨reason⟩, s1, s2, ..., snS}, and (3) 227

the target answer generated after the completion of 228

the memory retrieval and reasoning processes. The 229

model is trained in a standard autoregressive man- 230

ner using LoRA fine-tuning and the ⟨reason⟩ and 231

⟨memory⟩ are trainable out of vocabulary tokens. 232

By structuring the input in this paradigm, the 233

model learns to process and distinguish between re- 234

trieved knowledge and the reasoning steps required 235

to generate the final answer. The inclusion of the 236

⟨memory⟩ and ⟨reason⟩ tokens facilitates the dis- 237

entanglement of memory retrieval and reasoning 238

processes, thereby enhancing the model’s ability to 239

produce coherent and accurate responses. 240

3 Experiment 241

3.1 Experiment Setup 242

Models. In our experiments, we use LLaMA-2- 243

7B-chat-hf (Touvron et al., 2023), LLaMA-3.1-8B- 244

Instruct (Dubey et al., 2024), and Qwen2.5-7B- 245

Instruct (Yang et al., 2024a) as backbone models 246
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for training and test. GPT-4o serves as the infer-247

ence and knowledge LLM to generate training data,248

while GPT-4o-mini is employed as the evaluator.249

Datasets. Our experiments are carried out on250

three data sets: StrategyQA (Geva et al., 2021)251

is a question-answer benchmark of 2,780 exam-252

ples. Each example includes questions, supporting253

evidence, and answers. CommonsenseQA (Tal-254

mor et al., 2019) contains 12,102 questions, each255

of which requires common sense knowledge to256

select the correct answer from four distractors.257

TruthfulQA (Lin et al., 2022) evaluates the truth-258

fulness of the responses to the language model,259

with 817 questions in 38 categories. We used the260

mc1_targets subset, which consists of single-choice261

questions with 4-5 answer choices. To prepare262

this dataset for training and testing, we labeled the263

answer options as A-E and shuffled the labels to264

avoid shortcuts in training. For StrategyQA and265

CommonsenseQA, we used their predefined train-266

ing and testing set splits. For TruthfulQA, we split267

the data into an 8:2 ratio for training and testing.268

Baselines. In our experiments, we adopt zero269

shot (just input the question) and CoT prompting270

as our vanilla baseline for inference. For the fine-271

tuned baseline, we choose LoRA fine-tuning (Hu272

et al., 2021) and Planning Tokens (LoRA+Prompt273

Tuning) (Wang et al., 2024d) to train and test on274

these three datasets to facilitate a comparative eval-275

uation with our approach. In training, we use276

int8_training to save GPU memory and accelerate.277

Evaluation Metric. We use accuracy (acc) to278

measure the model’s performance on all datasets.279

3.2 Main Results280

Five main methods are being compared: Zero-shot,281

CoT (Chain-of-Thought), LoRA, Planning-token,282

and Ours (mentioned in Section 3.1). The results283

in StrategyQA and CommonsenseQA benchmarks284

indicate that our algorithm consistently achieves285

higher scores across both benchmarks compared to286

other approaches, particularly in fine-tuned mod-287

els. For instance, in StrategyQA, Our method en-288

hanced LLaMA-3.1-8B achieved a score of 78.0%,289

outperforming CoT at 69.4% and Planning-token290

at 76.7%. Similarly, in CommonsenseQA, Our291

method enhanced LLaMA-3.1-8B scores 82.3%,292

compared to CoT’s 70.6% and Planning-token’s293

76.9%, suggesting the effectiveness of our algo-294

rithm in improving LLMs’ performance.295

For the TruthfulQA dataset, we achieved a signif- 296

icant breakthrough; the LLaMA-3.1-8B enhanced 297

by our algorithm (86.6%) even outperforms GPT- 298

4o in both zero-shot (84.8%) and CoT settings 299

(85.4%), which is remarkable. GPT-4 sometimes 300

gets misled by these options in this dataset, but our 301

model effectively handles these challenges. Our 302

model first considers relevant knowledge and then 303

uses it in reasoning, which proves highly effective 304

on this dataset(as the appendix E, we include an 305

analysis of both correct and incorrect examples). 306

However, Qwen2.5-7B performed poorly on this 307

dataset, achieving only 81.0% in our algorithm, 308

likely due to instruction tuning in Qwen2.5, result- 309

ing in average performance and unstable training. 310

However, adding a CoT can decrease performance 311

for some models in some datasets, which is also a 312

phenomenon reported by (Sprague et al., 2024). 313

3.3 Ablation Study 314

In the ablation study, we comprehensively investi- 315

gate the effects of the impact of special token 3.3.1 316

and the number of special tokens 3.3.2. 317

3.3.1 Impact of Memory and Reason Tokens 318

The Ablation Experiment presents an ablation 319

study comparing the performance of two versions 320

of the LLaMA model (LLaMA-2-7B and LLaMA- 321

3.1-8B) across three benchmarks: StrategyQA, 322

CommonsenseQA, and TruthfulQA. The study ex- 323

amines the impact of using specific tokens ("Mem- 324

ory and Reason") vs.Random tokens on the model’s 325

performance. During training, we shuffled the allo- 326

cation of ⟨reason⟩ and ⟨memory⟩ tokens and then 327

observed the effects on training and testing per- 328

formance. As expected, the overall performance 329

declined (shown in Table 2), but the decline rate var- 330

ied (from 2.1% to 6.6%), showing our approach’s 331

superiority in disentangling reason and memory. 332

3.3.2 Impact of Special Token Count 333

In our training setup, we have two token types: 334

⟨reason⟩ and ⟨memory⟩, and we will include a pa- 335

rameter representing the number of special tokens 336

preceding each sentence. For example, A sentence 337

might include three ⟨reason⟩ tokens or four, like 338

the question in Appendix D.3. Our experiments 339

indicate that model performance reaches a higher 340

point with around four to six special tokens (as Ta- 341

ble 3 and 4). This is likely because more tokens 342

may lead to better performance for the LLM (Levy 343

et al., 2024), as proved by previous research. We 344
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Table 1: Main Comparative Experiment Results.

Methods Models StrategyQA CommonSenseQA TruthfulQA Average

Vanilla

LLaMA-2-7B 0.607 0.523 0.262 0.464

Zero-shot
LLaMA-2-13B 0.613 0.530 0.378 0.507
LLaMA-3.1-8B 0.659 0.635 0.616 0.637
LLaMA 3.1-70B 0.796 0.765 0.793 0.785
Qwen 2.5-7B 0.640 0.789 0.726 0.718
GPT-4o 0.699 0.834 0.848 0.794

LLaMA-2-7B - - - -

CoT
LLaMA-2-13B 0.560 0.482 0.390 0.477
LLaMA-3.1-8B 0.694 0.706 0.506 0.635
LLaMA 3.1-70B 0.822 0.815 0.762 0.800
Qwen 2.5-7B 0.696 0.784 0.567 0.682
GPT-4o 0.808 0.865 0.854 0.842

Fine-tuned

LLaMA-2-7B 0.612 0.641 0.767 0.673
LLaMA-2-13B 0.696 - - 0.696LoRA LLaMA-3.1-8B 0.701 0.754 0.798 0.737
Qwen 2.5-7B 0.691 0.775 0.725 0.730

LLaMA-2-7B 0.635 0.654 0.770 0.686
LLaMA-2-13B 0.715 - - 0.715Planning-token LLaMA-3.1-8B 0.767 0.769 0.825 0.787
Qwen 2.5-7B 0.774 0.801 0.762 0.779

LLaMA-2-7B 0.706 0.711 0.786 0.734
LLaMA-2-13B 0.739 - - 0.739Ours LLaMA-3.1-8B 0.780 0.823 0.866 0.823
Qwen 2.5-7B 0.786 0.832 0.812 0.810

Table 2: Ablation study with LLaMA-3.1-8B and LLaMA-2-7B on three benchmarks.

StrategyQA CommonsenseQA TruthfulQA Average

LLaMA-2-7B
w Memory and Reason token 0.706 0.711 0.786 0.734
w Random token 0.644 0.651 0.708 0.668

LLaMA-3.1-8B
w Memory and Reason token 0.780 0.823 0.866 0.823
w Random token 0.759 0.795 0.840 0.798

selected two LLMs to illustrate their performance345

(ACC) across different numbers of special tokens.346

Another important issue is knowledge distilla-347

tion. We must ensure that the model’s improvement348

is not due to knowledge distillation from the GPT-4349

framework. Using the same inference steps, we350

compared the results of standard training with 0351

reason and memory tokens and found that adding352

these tokens significantly improves performance.353

This indirectly confirms that the model’s enhance-354

ment comes from algorithmic improvements rather355

than knowledge distillation.356

3.4 Further Analysis357

In this section, we aim to analyze the decoupling358

effect 3.4.1, attention analysis 3.4.2 of our method359

and error analysis of our method for 3.4.3. 360

3.4.1 Decoupling Analysis 361

To validate the decoupling effect on memory and 362

reasoning, we configure GPT-4o-mini as an evalu- 363

ator (details in Appendix E.1), assessing whether 364

steps labeled as "memory" entail factual knowl- 365

edge and those labeled as "reasoning" represent rea- 366

soning processes on our three benchmarks. Then 367

We use a structured, directive one-shot Chain 368

of Thought (CoT) prompting method to prompt 369

LLaMA-3.1-8B as the baseline that can also disen- 370

tangle memory and reason step. This prompt setup 371

is displayed in Appendix E.1 in Figure 20. 372

In this CoT approach, directive prompting 373

with Pdirective explicitly instructs the model to 374

distinguish memory information and reason- 375
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Table 3: Model Performance (ACC) by Number of
Special Tokens in CommonsenseQA

Model Name Number of Tokens

0 2 4 6

LLaMA-2-7B 0.682 0.704 0.710 0.711
LLaMA-3.1-8B 0.783 0.816 0.823 0.820
Qwen2.5-7B 0.799 0.813 0.832 0.813

Table 4: Model Performance (ACC) by Number of
Special Tokens in TruthfulQA

Model Name Number of Tokens

0 2 4 6

LLaMA-2-7B 0.701 0.762 0.768 0.786
LLaMA-3.1-8B 0.826 0.865 0.866 0.859
Qwen2.5-7B 0.807 0.756 0.812 0.799
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Figure 2: Decoupling Result Comparison Between Our Algorithm and One-Shot CoT prompting on all datasets and
both on LLaMA-3.1-8B, Accuracy stands for the decoupling performance of <memory> and <reason>.

Table 5: Performance Comparison between One-shot
CoT and our algorithm on LLaMA-3.1-8B.

Method Accuracy (% ↑)

StrategyQA
One-shot CoT 58.0
Ours 78.0

CommonsenseQA
One-shot CoT 56.0
Ours 82.3

TruthfulQA
One-shot CoT 54.0
Ours 86.6

ing steps. The one-shot example E1-shot pro-376

vides a structured format, demonstrating how377

memory (e.g., M1,M2, . . . ,Mm) and reason-378

ing parts (e.g., R1, R2, . . . , Rn) can be or-379

ganized separately in answer generation (e.g.,380

M1, R1,M2, R2, . . . ,Mm, Rn ). This structure381

guides the model to produce answer and inference382

steps annotated as either memory Mm or reason-383

ing Rn, enhancing interpretability by separating384

factual knowledge and reasoning processes.385

From Figure 2 and Table 5, on the StrategyQA386

dataset, our method achieves an accuracy of 78.0%387

on LLaMA-3.1-8B, outperforming the One-shot388

CoT baseline by 20%, our approach achieves389

higher accuracy in decoupling memory (94% vs.390

93%) and reasoning (71% vs. 67%), demonstrat- 391

ing effective decoupling between these two com- 392

ponents in multi-steps inference. On the Common- 393

senseQA dataset, our method achieves an accuracy 394

of 82.3% on LLaMA-3.1-8B, exceeding the One- 395

shot CoT baseline by 26.3%. The results high- 396

light that our approach consistently outperforms 397

the baseline in decoupling memory (91% vs. 83%) 398

and reasoning (78% vs. 74%), demonstrating ro- 399

bust performance in commonsense inference tasks. 400

On the TruthfulQA dataset, our method achieves 401

an accuracy of 86.6% on LLaMA-3.1-8B, surpass- 402

ing the One-shot CoT baseline by 32.6%. The 403

results further illustrate that our approach achieves 404

superior accuracy in decoupling memory (89% vs. 405

88%) and reasoning (74% vs. 62%), highlighting 406

its effectiveness in factual reasoning. Addition- 407

ally, Table 6 shows that both LLaMA-3.1-8B and 408

LLaMA-2-7B maintain consistent distributions of 409

memory and reasoning across all datasets. This 410

reflects the stability and generalizability of our de- 411

coupling mechanism, ensuring its applicability to 412

diverse inference tasks. 413

3.4.2 Attention Analysis 414

In the case study 3.4.1, we have found that the 415

⟨reason⟩ and ⟨memory⟩ do an important job in 416

our LLM’s Inference. Although using raw atten- 417
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Figure 3: Two test examples’ attention Heatmap generated by LLaMA-3.1-8B enhanced with our algorithm in the
same attention head. The highlighted parts are these special tokens.

Table 6: [Memory:Reason] Ratio Across Different Mod-
els and Datasets.

Method Ratio

StrategyQA
LLaMA-2-7B 4:5
LLaMA-3.1-8B 1:1

CommonsenseQA
LLaMA-2-7B 1:5
LLaMA-3.1-8B 1:5

TruthfulQA
LLaMA-2-7B 3:7
LLaMA-3.1-8B 1:2

tion weights to interpret token importance can be418

somewhat controversial, attention patterns still pro-419

vide valuable insights about how transformers oper-420

ate (Abnar and Zuidema, 2020). This heatmap, as421

Figure 3 shows that the model focuses intensely on422

specialized tokens throughout the inference. These423

tokens received higher attention weights than regu-424

lar tokens, suggesting they play a more significant425

role in leading knowledge and reasoning content426

generation. This observation aligns with the main427

findings presented in the previous case study 3.4.1.428

We input two sentences (can be found in Ap-429

pendix E.3 in Figure 18) into our fine-tuned430

LLaMA-3.1-8B model, getting a large attention431

heatmap. We then segmented two entire attention432

maps according to the steps by model inference,433

producing the two smaller maps above as Figure 3.434

Other samples can be found in the Appendix E.3.435

by the observation, it indicate that the model places436

greater emphasis on this content, which indirectly437

demonstrates the effectiveness of our algorithm.438

Table 7: Error Type Proportion between Memory and
Reason on LLaMA-3.1-8B across all the datasets.

Error Type Proportion

StrategyQA
Memory 1.7
Reason 98.3

CommonsenseQA
Memory 21.6
Reason 78.4

TruthfulQA
Memory 21.1
Reason 78.9

3.4.3 Error Analysis 439

We analyzed all incorrect results generated by 440

our fine-tuned LLaMA-3.1-8B model to identify 441

whether the errors originated from memory or rea- 442

soning issues, utilizing GPT-4o to categorize the 443

source of each error across StrategyQA, Common- 444

senseQA, and TruthfulQA benchmarks. As shown 445

in Table 7, 98.3% of the errors in StrategyQA were 446

attributed to reasoning, with only 1.7% due to mem- 447

ory issues, indicating reasoning as the dominant 448

challenge. Similarly, in CommonsenseQA, 78.4% 449

of errors stemmed from reasoning, while 21.6% 450

were caused by memory failures; in TruthfulQA, 451

the trend persisted, with 78.9% of errors linked to 452

reasoning and 21.1% to memory. These results 453

demonstrate that reasoning-related errors consis- 454

tently account for over 75% of total mistakes across 455

benchmarks, underscoring that while the model 456

successfully utilizes knowledge, it requires signifi- 457

cant improvements in reasoning capabilities, point- 458
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Question: A revolving door is convenient for two direction travel, but it also serves as a security measure at a what? A.bank B.library C.department store D.mall 

<memory_0> <memory_1> <memory_2> <memory_3> A revolving door is designed for smooth and efficient entry and exit of people, ......

<reason_0> <reason_1> <reason_2> <reason_3> Revolving doors are often installed in buildings for both convenience and security.......

<memory_0> <memory_1> <memory_2> <memory_3> Revolving doors are commonly found in large commercial establishments such as department stores, malls......

<reason_0> <reason_1> <reason_2> <reason_3> Among the given options, a department store is a place where a revolving door would serve both convenience and 
security purposes. It helps manage the flow of shoppers and can be a part of security measures to monitor and control access.

<reason_0> <reason_1> <reason_2> <reason_3> Based on the reasoning and factual knowledge, the revolving door serves as a security measure at a department 
store. Therefore, the correct answer is C.

The Correct answer is: A: bank 

Error appear in the last two steps, model’s knowledge is correct. 

Figure 4: Incorrect Sample Showing: The green sections represent the questions, the steps of model inference, and
the incorrect answers; the yellow areas indicate the correct answers, and the red highlights the causes of the errors.

ing to an important direction for future research.459

For Example, the question 4 above emphasizes460

the role of the revolving door as a security measure,461

so the correct answer should be somewhat unex-462

pected. Options B, C, and D all represent typical463

uses of revolving doors for managing two-way traf-464

fic flow. Only in banks does a revolving door serve465

as a security measure. The correct answer is likely466

A. bank, as banks use revolving doors not only for467

easy access but also as a security measure to control468

entry and exit. The model’s knowledge is accurate,469

but it missed this nuance during reasoning steps.470

4 Related Work471

Parametric Memory in LLMs. During pre-472

training, large language models capture a large473

amount of knowledge in models’ parameters,474

known as parametric memory. Previous research475

extensively explores the mechanism of inference476

with parametric memory, they observe that models477

can well adopt memory for simple tasks but strug-478

gle for complex inference, e.g., multi-hop inference479

(Li et al., 2024b; Yang et al., 2024b; Wang et al.,480

2024a). Others reveal the challenges in the lever-481

age of parametric knowledge, particularly when482

dealing with long-tail facts (facts associated with483

less common entities) or when the knowledge is484

rare (Wang et al., 2023; Allen-Zhu and Li; Cheng485

et al., 2024). These studies primarily focus on the486

analysis of model behavior. While valuable, they487

do not address how to better elicit the parametric488

knowledge for inference. In this work, we explore489

how to boost LLMs’ leverage of their parametric490

knowledge for complex inference.491

Reasoning with LLMs. Recent research on492

enhancing LLMs’ inference capabilities can be493

broadly categorized into prompt-based and tuning-494

based approaches. Prompt-based methods strategi-495

cally guide reasoning processes. Chain-of-Thought496

(CoT) prompting (Wei et al., 2022b) and its deriva- 497

tives (Zhao et al., 2024; Zhou et al., 2023; Chen 498

et al., 2024a; Hu et al., 2023; Jin et al., 2024) de- 499

compose complex tasks into sequential steps, im- 500

proving transparency and decision-making. Others 501

like Tree-of-Thoughts (ToT) (Yao et al., 2023) and 502

Graph-of-Thoughts (GoT) (Besta et al., 2024) fur- 503

ther utilize hierarchical and network-based infer- 504

ence to cover larger searching space. These strate- 505

gies design a framework where LLMs can elicit the 506

parametric memory relevant to the task. However, 507

in these methods, the models might not know when 508

to reason or use their memory. Tuning-based meth- 509

ods introduce trainable tokens for structured CoT 510

steps, facilitating reasoning and utilization of mem- 511

ory (Wang et al., 2024d; Goyal et al., 2024; Colon- 512

Hernandez et al., 2024) Despite the effectiveness, 513

these methods intertwine reasoning and memory 514

usage, which may limit the full potential of the 515

models. In contrast, our approach aims to decouple 516

memory and reasoning within the CoT process by 517

introducing various special tokens, enabling the 518

model to leverage its memory more effectively. 519

5 Conclusion 520

In this work, we proposed a novel inference frame- 521

work for training LLMs to distinguish between 522

reasoning and memory processes using two special 523

tokens: ⟨memory⟩ for factual knowledge retrieval 524

and ⟨reason⟩ for logical reasoning. This structured 525

input disentangles these processes, enhancing inter- 526

pretability and improving performance on complex 527

reasoning tasks. By maintaining a clear boundary 528

between memory and reasoning during training, 529

the model generalizes better to queries that com- 530

bine factual knowledge with multi-step reasoning. 531

This approach not only ensures more accurate an- 532

swers but also produces interpretable, step-by-step 533

reasoning outputs, crucial for transparency and ac- 534

countability in complex reasoning. 535
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6 Limitation536

The proposed decomposition framework provides537

a promising method to disentangle memory recall538

and reasoning in large language models, enhanc-539

ing interpretability and modularity. However, it540

has limitations that offer opportunities for improve-541

ment. One challenge is its reliance on the quality542

and breadth of training data for memory recall,543

which may lead to incomplete retrieval in under-544

represented domains. This issue, common in ma-545

chine learning, can be mitigated through dynamic546

updates or integration with external knowledge547

bases. The use of special tokens like ⟨memory⟩ and548

⟨reason⟩ simplifies distinguishing between tasks549

but adds complexity to tokenization, requiring task-550

specific tuning for different architectures or lan-551

guages. Nonetheless, this token-based design en-552

hances transparency, offsetting the added complex-553

ity. The framework also struggles with tasks re-554

quiring deeply nested or multi-hop reasoning, as555

these steps may not neatly separate into recall and556

reasoning phases. Further refinement is needed to557

better handle complex reasoning chains, though the558

framework performs robustly in standard scenarios.559

Additionally, the retrieval-based approach intro-560

duces computational overhead, which may limit561

real-time applicability. However, the trade-off for562

interpretability and error traceability is valuable563

for use cases where transparency is critical, mak-564

ing this framework a significant step forward for565

addressing reasoning and memory in LLMs566
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SUMMARY OF THE APPENDIX
This appendix contains additional details for the839

“Disentangling Memory and Reasoning Ability in840

Large Language Models”. The appendix is orga-841

nized as follows:842

• §A Data Generation843

– A.1 Implement Details844

– A.2 Example845

• §B Preliminary Study846

– B.1 Experiment847

– B.2 Example848

• §C Experiment Details849

– C.1 Dataset850

– C.2 Evaluation Metric851

• §D Training Details852

– D.1 Training Configuration853

– D.2 Training Process854

– D.3 Example855

• §E Case Study856

– E.1 Sample Analysis857

– E.2 Error Analysis858

– E.3 More Attention Maps859

– E.4 More Analysis Samples860

• §F Future Work and Limitation861

– F.1 Future Work862

– F.2 Limitation863

A Data Generation864

A.1 Implement Details865

We developed an LLM-based data generation866

framework based on GPT-4o to generate high-867

quality training data for decoupling memory and868

reasoning steps. This framework includes two869

LLMs: an inference LLM and a knowledge LLM.870

The inference LLM is responsible for generating871

Chain-of-Thought (CoT) inference processes, de-872

coupling memory and reasoning, and then further873

assigning labels to each sub-step by marking those874

requiring factual knowledge as [memory] and those875

requiring reasoning as [reason]. The prompt of the876

knowledge agent is shown in Figure 5. The Knowl-877

edge LLM retrieves the necessary knowledge for878

[memory] steps based on questions provided by the879

inference LLM. We use these two LLMs to ensure 880

the independence of memory and reasoning within 881

the CoT, providing high-quality data for subsequent 882

training. Figure 6 is the prompt configuration for 883

inference LLM. The questions corresponds to the 884

Knowledge base content in the inference LLM and 885

is used to supply accurate factual information for 886

steps labeled as <memory>. The Step name refers

Prompt in Knowledge LLM

Factual knowledge is information that
aligns with objective reality and can be
verified through evidence or observation,
such as scientific facts or historical events.

Please provide factual knowledge for the
below question set:
<Questions>
{questions}
<Questions>

You should return a dictionary in JSON
format; for each element in the dictionary,
the key is each question in <Questions>,
and the value is the factual knowledge of
each question in <Questions>.

Your answer format should strictly be in
the following steps:
“‘json
{

"Question 1": "The factual
knowledge of question 1",

........
} “‘

Figure 5: Prompt in Knowledge LLM to activate the
inner knowledge

887
to the specific name of each step in the Chain of 888

Thought (CoT) process. The Requirement labels 889

whether each step pertains to <memory> or <rea- 890

son>. The Knowledge based is used to provide 891

questions related to factual knowledge in <mem- 892

ory> steps, while the Content focuses on design- 893

ing to outline the reasoning process for <reason> 894

steps. This structure facilitates a clear distinction 895

between memory retrieval and reasoning tasks, en- 896

hancing the model’s capability to execute complex 897

sequences in a zero-shot environment. 898
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Prompt in Inference LLM

Here is the question:
<Question>
{question}
<Question>

Here is the correct answer:
<Correct Answer>
{answer}
<Correct Answer>

Factual knowledge is information that aligns with objective reality and can be verified through
evidence or observation, such as scientific facts or historical events.

Provide a reasoning plan for the above question to get the correct answer; each step in your
reasoning plan must adhere strictly to the following format:

*Step name*:
# Put the name of the step here.

**Requirement**:
# If this step needs reasoning, return "[reason]" as a label; if this step needs factual knowledge,
return "[memory]" as a label.

**Knowledge based**:
# Only if this step needs factual knowledge, put a query in question sentences about this factual
knowledge for retrieval.

**Content**:
# If this step is about reasoning, please provide your reasoning thinking; if this step needs factual
knowledge, please provide factual knowledge.

Figure 6: Prompt in Inference LLM

A.2 Example899

In this study, we leverage both the inference LLM900

and knowledge LLM based on GPT-4o to gener-901

ate a dataset. Specifically, we use the StrategyQA902

dataset as the source for our generation. The Strat-903

egyQA dataset is a question-answering dataset de-904

signed to evaluate models’ multi-hop reasoning905

abilities. It includes questions that require strategic906

thinking and often demand more than one piece of907

information to answer correctly.908

Figure 7 shows enhanced data generated by our909

data generation agent from the StrategyQA dataset.910

The image shows an example question about the911

relationship between Mixed Martial Arts and the912

origins of Roman Colosseum games. The answer-913

ing process is broken down into several steps, each914

labeled as either [Memory] or [Reason] to indicate915

the type of step. This approach helps differenti- 916

ate between pure knowledge retrieval and logical 917

reasoning steps, providing more granular training 918

data for models to improve their accuracy and in- 919

terpretability in answering complex questions. 920

B Preliminary 921

B.1 Experiment 922

In a preliminary experiment, we analyzed the train- 923

ing and test sets of StrategyQA, TruthfulQA, and 924

CommonsenseQA to evaluate the overlap in knowl- 925

edge between them. This assessment was crucial to 926

ensure that our model’s performance improvement 927

was due to our advanced algorithm, rather than 928

simply distilling knowledge from GPT-4o. For our 929

synthetic training set, we extracted sentences fol- 930
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LLM enhanced dataset(StrategyQA)

Question: Is Mixed martial arts totally original from Roman Colosseum games?
Solution Step:

1. "[Memory]: Mixed Martial Arts (MMA) is a full-contact combat sport that allows a wide
variety of fighting techniques from different martial arts traditions. It permits both striking
and grappling, both standing and on the ground, using techniques from disciplines such as
boxing, wrestling, Muay Thai, karate, and judo."

2. "[Memory]: The Roman Colosseum games, also known as gladiatorial games, were violent
contests where gladiators fought against each other, condemned criminals, or wild animals.
These events were held in large amphitheaters like the Colosseum in Rome and were a form
of public spectacle and entertainment in ancient Rome."

3. "[Memory]: Modern MMA is characterized by regulated rules, weight classes, and a
combination of various martial arts disciplines. It is officiated with rules to ensure the safety
of participants, and fights occur in a controlled environment, often inside a cage."

4. "[reason]: MMA and the Roman Colosseum games share the concept of hand-to-hand
combat but differ significantly in purpose, structure, and regulation. While MMA is a sport
with rules designed for competition and fighter safety, the Roman games were more about
public spectacle and entertainment without much emphasis on fairness or safety. The combat
in Roman games was often deadly and executed for the spectators’ pleasure."

5. "[reason]: MMA is not totally original from the Roman Colosseum games. Although both
involve unarmed combat, MMA is a modern sporting discipline that synthesizes traditional
martial arts into a competitive and regulated environment. The Roman games served as a
historical precedent for public combat events but lacked the structured and safety-oriented
approach of MMA. Therefore, while there may be a historical inspiration, MMA’s
development as a technical and regulated sport makes it distinct and not directly derived from
the Roman games."

Answer: False

Figure 7: StrategyQA dataset example(enhanced by our algorithm)

lowing each ⟨memory⟩ token to create a reference931

set. We then prompted our fine-tuned LLaMA3.1-932

8B model to generate outputs using the test set, col-933

lecting sentences following the ⟨memory⟩ tokens934

in these outputs to form a separate set. Our valida-935

tion method involves setting a threshold on cosine936

similarity and assessing Jaccard similarity based937

on this threshold. Specifically, as illustrated in Fig-938

ure 9, we define two knowledge after ⟨memory⟩939

tokens as overlapping if the cosine similarity of940

their embeddings exceeds 0.2. Based on this cri-941

terion, the Jaccard similarity for all datasets are942

smaller than 10%, which is a low value indicating943

a low degree of overlap and demonstrates that our944

model’s performance is not merely the result of945

knowledge distillation.946

B.2 Example 947

A value greater than or equal to 0.2 indicates that 948

the two contents are very unrelated like example 8. 949

950

C Experiment Details 951

C.1 Dataset 952

StrategyQA (Geva et al., 2021) StrategyQA is a 953

challenging question-answering benchmark that fo- 954

cuses on implicit, multi-step reasoning. Unlike con- 955

ventional multi-hop datasets where questions ex- 956

plicitly outline the steps needed to reach an answer, 957

StrategyQA requires models to infer these reason- 958

ing steps. Each question in StrategyQA is crafted 959

to be implicit and short, with Boolean ("Yes" or 960
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Cosine Similarity of a sample in Testset and
Trainset

Testset: The question asks about a type of store that
would have a lot of sports equipment. This requires
understanding what type of store would typically sell a
variety of sports-related items.

Trainset: Sainsbury’s and Tesco are both publicly traded
companies. As of the latest available data, Tesco’s
market capitalization is significantly larger than that of
Sainsbury’s. For Sainsbury’s to acquire Tesco, it would
require extensive financial resources or backing,
potentially involving significant borrowing, asset sales,
or equity raising.

Cosine Similarity: 0.2

Figure 8: A sample in Testset and Trainset
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Figure 9: Jaccard Similarity for Generated and Training
Data

"No") answers, requiring logical deductions based961

on general knowledge. For example, answering962

a question like “Did Aristotle use a laptop?” in-963

volves reasoning about the historical timeline of964

both Aristotle’s life and the invention of laptops.965

The StrategyQA dataset includes a total of 2,780966

verified questions. The training set comprises 1,600967

questions which are used for fine-tuning, and the968

validation (test) set contains 690 questions, which969

are used for the validation of baselines and our970

method in our experiment.971

CommonsenseQA (Talmor et al., 2019) Com-972

monsenseQA is a multiple-choice dataset with973

12,247 questions aimed at testing AI on common-974

sense reasoning using the ConceptNet knowledge975

graph. Each question has one correct answer and976

four distractors, requiring models to understand re-977

lations like causality and spatial proximity. While978

humans achieve 88.9% accuracy, advanced models979

like BERT-Large reach only 55.9%, underscoring980

the challenge of commonsense inference in AI. The981

training set comprises 9,740 questions, the valida-982

tion set contains 1,220 questions, which are used 983

for fine-tuning, and the test set includes 1,140 ques- 984

tions, which are used for the validation of baselines 985

and our method in our experiment. 986

TruthfulQA (Lin et al., 2022) TruthfulQA is 987

a benchmark of 817 questions designed to test 988

language models’ truthfulness by prompting com- 989

mon misconceptions across topics like health and 990

law. Models like GPT-3 and GPT-2 often generate 991

false answers that mirror human misunderstand- 992

ings, with larger models frequently performing 993

worse (58% truthfulness for GPT-3) compared to 994

94% for humans. The benchmark reveals that scal- 995

ing up model size alone does not enhance truthful- 996

ness, highlighting the need for targeted fine-tuning 997

to reduce imitative falsehoods. In our experiments, 998

we split the dataset into training and testing sets 999

in an 8:2 ratio. Since the original dataset con- 1000

tained only single-choice questions with all an- 1001

swers marked as A, we randomly shuffled the an- 1002

swer options for one question to ensure effective 1003

fine-tuning performance on the training set. 1004

C.2 Evaluation Metric 1005

To mitigate the inherent output instability of LLMs 1006

in both CoT and Zero-shot settings, we found that 1007

conventional answer-matching techniques, such as 1008

regular expression-based methods, may not reli- 1009

ably capture the precise answers required. Conse- 1010

quently, we adopted GPT-4o-mini as an evaluation 1011

tool to compute the LLM performance across mul- 1012

tiple datasets (Cao et al., 2024). This approach 1013

enables a more nuanced assessment of LLM out- 1014

puts, given the limitations of regular matching tech- 1015

niques under these settings. The detailed prompt 1016

used for evaluation is shown in Prompt 10 below. 1017

D Training Details 1018

D.1 Training Configuration 1019

All the experiments for fine-tuning are run on an 1020

NVIDIA RTX 6000 Ada Generation GPU. Our 1021

experiments found that the optimal configuration 1022

for learning out-of-vocabulary (OOV) tokens 1023

is with N_PREFIX=3 and N_SPECIAL=4. 1024

We generally use a learning rate of 2e-4 with 1025

–warmup_steps 1000, –lr_scheduler_type "cosine", 1026

and –optim "adamw_torch", along with gradi- 1027

ent_accumulation_steps=16. Additionally, we 1028

employed int8 training to ensure that the model 1029

could be trained on a single GPU. Additionally, 1030

We provided detailed parameter configurations as 1031
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Prompt in GPT-4o-mini

You should only return True if the user gives
the correct answer or the content related to
the correct answer, otherwise, you should
return False.

## Question:
<BEGIN QUESTION>
{questions}
<END QUESTION>

## Correct Answer:
<BEGIN CORRECT ANSWER>
{correct answer}
<END CORRECT ANSWER>

## User Answer:
<BEGIN USER ANSWER>
{user answer}
<END USER ANSWER>

# Judgement:
## True or False:

Figure 10: Prompt in GPT-4o-mini for Evaluating CoT
Reasoning

below: Here is the detailed training configuration:1032

1033

D.2 Training Process1034

We monitored the training process of our method1035

across all models and datasets, recording test set1036

accuracy changes every 10 steps, as illustrated in1037

Figure 14.1038

D.3 Example1039

In Figure 15, we present an correct example of1040

fine-tuning LLaMa-3.1-8B using our proposed al-1041

gorithm. The results clearly demonstrate that our1042

method effectively decouples factual knowledge1043

and reasoning steps from inference.1044

E Case Study1045

E.1 Sample Analysis1046

For sample analysis, to highlight the decoupling ef-1047

fectiveness, reasoning capability, and interpretabil-1048

ity of our approach, we set One-shot Chain-of-1049

Thought (CoT) reasoning as the baseline for this1050

evaluation, see details in Figure 20. We leverage1051

GPT-4o-mini as an evaluator with prompt configu- 1052

ration provided as below to assess the decoupling 1053

effectiveness of LLaMA-3.1-8B in separating mem- 1054

ory and reasoning processes. 1055

For sample analysis with GPT-4o-mini as evalu- 1056

ator shown in Figure 16 and the one-shot CoT as 1057

baseline, we use a sample generated by our data 1058

method as an in-context learning example for the 1059

one-shot CoT baseline configuration, shown in Fig- 1060

ure 20. 1061

E.2 Error Analysis 1062

To ensure accuracy in error detection, we use GPT- 1063

4o as an evaluator to assess whether the error occurs 1064

in the <memory> or <reasoning> step, based on the 1065

correct answer and the provided reasoning process. 1066

The prompt configuration of GPT-4o-mini is shown 1067

in Figure 17. 1068

E.3 More Attention Maps 1069

In Figure 19, we have shown more examples 1070

of More Attention Maps on StrategyQA for 1071

LLaMA3.1-8B and LLaMA2-7B. The prompt for 1072

the attention map is in Figure 18. 1073

E.4 More Analysis Samples 1074

To validate the decoupling effect on memory and 1075

reasoning, we additionally evaluated the perfor- 1076

mance of our method on LLaMA-2-7B in compari- 1077

son with one-shot CoT. As shown in Figure 21, our 1078

algorithm outperforms one-shot CoT in terms of 1079

the decoupling effect, demonstrating the effective- 1080

ness of our approach on LLaMA2-7B. 1081

F Future Work and Limitation 1082

F.1 Future Work 1083

Dynamic Memory Updating. Future research 1084

could explore mechanisms for dynamically updat- 1085

ing the model’s memory, allowing it to incorporate 1086

new information without extensive retraining. This 1087

would help the model stay current and relevant, 1088

especially for knowledge that frequently changes. 1089

Adaptive Reasoning Steps. Developing meth- 1090

ods that enable the model to adaptively select the 1091

number of reasoning steps based on task complex- 1092

ity would improve both performance and efficiency. 1093

This could involve learning when to retrieve mem- 1094

ory and when to directly reason, optimizing the 1095

inference process. 1096
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Figure 11: Accuracy progression on the StrategyQA
benchmark during training, with the horizontal axis
representing the number of training steps.
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Figure 12: Accuracy progression on the Common-
senseQA benchmark during training. Qwen2.5-7B
achieves the highest accuracy early on, followed by
a stable plateau.
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Figure 13: Accuracy progression on the TruthfulQA
benchmark during training. Llama3.1-8B outper-
forms other models, showing rapid early improve-
ment and reaching the highest accuracy.

Figure 14: The Training Process for LLaMA3.1-8B on three Datasets: for StratgyQA, we usually need ten epochs to
train and five epochs to model to converge in CommonsenseQA. For TruthfulQA, 15 epochs or more may be better.

Interpretable Error Analysis Tools. Building1097

on the interpretability gains of the proposed frame-1098

work, future work could focus on developing error1099

analysis tools that make it easier for users to trace1100

specific failures to either memory recall or reason-1101

ing steps, aiding in systematic model improvement.1102

Cross-Domain Generalization. Extending the1103

proposed method to domains beyond language1104

(e.g., multimodal tasks) could be an interesting1105

direction. By testing and adapting this decompo-1106

sition in fields such as vision-language tasks, re-1107

searchers could evaluate its utility in more complex,1108

real-world applications.1109

User-Guided Memory and Reasoning. Investi-1110

gating ways for users to guide or interact with the1111

model’s memory retrieval and reasoning steps, per-1112

haps through feedback loops, could improve user 1113

control and trust in model outputs, especially in 1114

high-stakes applications. 1115

F.2 Limitation 1116

Dependency on Training Data. The proposed 1117

decomposition framework relies heavily on the 1118

quality and breadth of training data for the memory 1119

recall process. If certain knowledge is missing or 1120

inadequately represented in the training data, the 1121

model may still struggle with knowledge retrieval, 1122

potentially leading to inaccurate or incomplete re- 1123

sponses. 1124

Token Utilization Complexity. The introduc- 1125

tion of special tokens, such as ⟨memory⟩ and 1126

⟨reason⟩, while useful, may add complexity to the 1127

tokenization process and necessitate further tuning 1128
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Question: How can you get undercover cops to identify themselves in the U.S.? 
A. You can get undercover cops to identify themselves by asking if they're police officers. 
B. You can get undercover cops to identify themselves by asking them three times if they're police 
officers. 
C. Undercover cops must admit that they are police officers if asked. 
D. Undercover cops are not obligated to identify themselves. 
E. You can get undercover cops to identify themselves by testing whether they can lie.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
The question asks how to get undercover cops to identify themselves in the U.S. It implies 
understanding the laws and procedures around undercover police operations.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
Evaluate each option to determine which aligns with typical U.S. procedures and legal requirements 
regarding undercover police officers.
<prefix_0><prefix_1><prefix_2><memory_0><memory_1><memory_2><memory_3><memory_4><me
mory_5> In the U.S., undercover police officers are not required by law to identify themselves, even 
upon request. They are allowed to remain anonymous and not disclose their status unless they choose 
to do so.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
Given that U.S. law does not obligate undercover cops to identify themselves, options A, B, and C are 
incorrect because they suggest a legal obligation that does not exist.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
Option D accurately reflects the legal situation: undercover cops are not obligated to identify themselves, 
aligning with U.S. law.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
Option E is incorrect because it implies a test of honesty, which is not the legal requirement.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4><reason_5> 
Based on U.S. legal standards, the correct answer is D, as it accurately reflects the legal obligations and 
rights of undercover police officers.
<prefix_0><prefix_1><prefix_2><answer_0><answer_1><answer_2><answer_3><answer_4><answer_5
> The answer is: D

Question: Can water be turned into wine? 
A. Yes, water can be turned into wine. 
B. Yes, Jesus turned water into wine.
C. No, water cannot be turned into wine. 
D. Yes, miracles allow water to be turned into wine.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4
><reason_5> Determine what the question is asking. It is asking if it is biologically or 
chemically possible to turn water into wine.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4
><reason_5> Analyze each option to understand what each is implying about the 
possibility of turning water into wine.
<prefix_0><prefix_1><prefix_2><memory_0><memory_1><memory_2><memory_3><me
mory_4><memory_5> It is biologically and chemically impossible to turn water into wine. 
Water is composed of hydrogen and oxygen, while wine is made from fermented grape 
juice.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4
><reason_5> Consider the cultural and religious context. In Christian tradition, Jesus 
turned water into wine at a wedding, but this is a metaphorical or symbolic act rather than 
a literal transformation.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4
><reason_5> Evaluate each option based on the reasoning and factual knowledge. 
Options A, B, and D imply a biological or chemical transformation, which is not possible. 
Option C aligns with the cultural and religious context, but not with the scientific 
understanding.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3><reason_4
><reason_5> Based on the analysis, the correct answer is C, as it aligns with the cultural 
and religious context but not with the factual knowledge that water cannot be turned into 
wine.
<prefix_0><prefix_1><prefix_2><answer_0><answer_1><answer_2><answer_3><answer
_4><answer_5> The answer is: C

Figure 15: Correct Example of Our method on LLaMA-3.1-8B

Prompt in GPT-4o-mini

Factual knowledge is information that
aligns with objective reality and can be
verified through evidence or observation,
such as scientific facts or historical events.

here is the sentence:
<sentence>
{sentences}
<sentence>
You should be a classifier to judge whether
this sentence is about a reasoning process
or factual knowledge.

Your answer should be:
return 0 as factual knowledge or 1 as a
reasoning process.

Figure 16: Prompt in GPT-4o-mini for Sample Analysis

for various tasks. This can make the framework1129

less straightforward to apply across different LLM1130

architectures or language domains.1131

Performance in Highly Complex Reasoning1132

Tasks. While the decomposition approach shows1133

promise in improving reasoning interpretability and1134

accuracy, it may still struggle with tasks requiring1135

multi-hop or deeply nested reasoning steps. Com-1136

plex chains of reasoning may not be easily sepa-1137

rated into discrete memory retrieval and reasoning1138

actions.1139

Prompt in GPT-4o

Question with Reasoning
process:{question}
Correct Answer:{answer}

To analyze why the answer in the reasoning
process is incorrect, is it in the sentence
labeled as <reason> or <memory>?
your answer should be:
# reason or memory

Figure 17: Prompt in GPT-4o for Error Analysis

Computation Overhead. The process of de- 1140

composing memory recall and reasoning steps can 1141

increase computation time due to the additional 1142

need for retrieval-based processing. This can be 1143

a limitation for real-time applications or systems 1144

requiring rapid inference. 1145
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Prompt in GPT-4o

Question with Reasoning process: Would an Olympic athlete be tired out after running a mile?
Correct Answer: False

<prefix_0><prefix_1><prefix_2><memory_0><memory_1><memory_2><memory_3>
Olympic athletes are typically highly trained individuals who have built their bodies to withstand
intense physical activities. They possess high levels of cardiovascular fitness, muscular endurance,
and the ability to manage lactic acid buildup.
The average person can run a mile in approximately 5-6 minutes, depending on fitness level.
Olympic athletes often have much faster times, often finishing a mile in under 4 minutes.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3>
Given that Olympic athletes can run a mile significantly faster than the average person, they would
also have the endurance to maintain such speeds for longer distances. This suggests that they
would not become tired out after running a mile, which is a relatively short distance in their
training regimen.
<prefix_0><prefix_1><prefix_2><reason_0><reason_1><reason_2><reason_3>
Considering their high levels of fitness and endurance, an Olympic athlete would not typically
become tired out after running a mile, which is a relatively short distance for them compared to
their regular training sessions.
<prefix_0><prefix_1><prefix_2><answer_0><answer_1><answer_2><answer_3>
The answer is: False

Figure 18: Input prompt for getting Attention Map
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Figure 19: Left: Attention Map of LLaMA-3.1-8B. Right: Attention Map of LLaMA-2-7B.
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One-shot CoT Example for Evaluating Factual Knowledge and Reasoning

Here is an example:

<Question>
’Is Mixed martial arts totally original from Roman Colosseum games?’
<Question>

<Steps>
’[memory]: Mixed Martial Arts (MMA) is a full-contact combat sport that allows a wide variety of
fighting techniques from different martial arts traditions. It permits both striking and grappling,
both standing and on the ground, using techniques from disciplines such as boxing, wrestling,
Brazilian jiu-jitsu, Muay Thai, karate, and judo.’,
’[memory]: The Roman Colosseum games, also known as gladiatorial games, were violent
contests where gladiators fought against each other, condemned criminals, or wild animals. These
events were held in large amphitheaters like the Colosseum in Rome and were a form of public
spectacle and entertainment in ancient Rome.’,
’[memory]: Modern MMA is characterized by regulated rules, weight classes, and a combination
of various martial arts disciplines. It is officiated with rules to ensure the safety of participants, and
fights occur in a controlled environment, often inside a cage.’,
"[reason]: MMA and the Roman Colosseum games share the concept of hand-to-hand combat but
differ significantly in purpose, structure, and regulation. While MMA is a sport with rules
designed for competition and fighter safety, the Roman games were more about public spectacle
and entertainment without much emphasis on fairness or safety. The combat in Roman games was
often deadly and executed for the spectators’ pleasure.",
"[reason]: MMA is not totally original from the Roman Colosseum games. Although both involve
unarmed combat, MMA is a modern sporting discipline that synthesizes traditional martial arts
into a competitive and regulated environment. The Roman games served as a historical precedent
for public combat events but lacked the structured and safety-oriented approach of MMA.
Therefore, while there may be a historical inspiration, MMA’s development as a technical and
regulated sport makes it distinct and not directly derived from the Roman games."
"[Answer]: The answer is incorrect."
<Steps>

Factual knowledge is information that aligns with objective reality and can be verified through
evidence or observation, such as scientific facts or historical events.
If this step needs reasoning, return [reason] as the label, if this step needs factual knowledge return
[rag] as the label.

Now, here is the question:
<Question>
{question}
<Question>

Your answer should be:
<Steps>
# Put your generated [rag] and [reason] steps here
<Steps>

Figure 20: One-shot CoT Example for Evaluating Factual Knowledge and Reasoning
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Figure 21: Decoupling Result Comparison Between Our Algorithm and One-Shot CoT prompting on all datasets
and both on LLaMA-2-7B
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