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ABSTRACT

Existing abstractive summarization models lack explicit control mechanisms that
would allow users to influence the stylistic features of the model outputs. This
results in generating generic summaries that do not cater to the users needs or
preferences. To address this issue we introduce HYDRASUM, a new summa-
rization architecture that extends the single decoder framework of current mod-
els, e.g. BART, to a mixture-of-experts version consisting of multiple decoders.
Our proposed model encourages each expert, i.e. decoder, to learn and gen-
erate stylistically-distinct summaries along dimensions such as abstractiveness,
length, specificity, and others. At each time step, HYDRASUM employs a gating
mechanism that decides the contribution of each individual decoder to the next
token’s output probability distribution. Through experiments on three summa-
rization datasets (CNN, NEWSROOM, XSUM), we demonstrate that this gating
mechanism automatically learns to assign contrasting summary styles to different
HYDRASUM decoders under the standard training objective without the need for
additional supervision. We further show that a guided version of the training pro-
cess can explicitly govern which summary style is partitioned between decoders,
e.g. high abstractiveness vs. low abstractiveness or high specificity vs. low speci-
ficity, and also increase the stylistic-difference between individual decoders. Fi-
nally, our experiments demonstrate that our decoder framework is highly flexible:
during inference, we can sample from individual decoders or mixtures of different
subsets of the decoders to yield a diverse set of summaries and enforce single- and
multi-style control over summary generation.1

1 INTRODUCTION

Abstractive summarization (Rush et al., 2015; See et al., 2017) involves a combination series of gen-
eration decisions, such as what content to directly copy from the input document and what content
to paraphrase, the level of specificity vs generality, length, readability, etc. of generated summaries.
Current summarization systems (Lewis et al., 2020; Zhang et al., 2020) implicitly encode these deci-
sions in their parameters, but provide no mechanism for end users to control generation along these
different axes, or to obtain a diverse set of summaries for a given input. Commonly used sampling
methods such as beam search, top-k decoding (Fan et al., 2018b) or diverse decoding (Vijayaku-
mar et al., 2018) tend to output stylistically similar summaries, and cannot be queried for multiple
diverse summaries satisfying a target set of features or styles.

In this paper, we propose a new summarization architecture - HYDRASUM that disentangles these
different stylistic decisions made by abstractive summarization models from the models weights
into an explicit model component. Our model contains a single transformer-based encoder to en-
code the input document and a mixture-of-experts framework with multiple decoders for summary
generation. At each time step of the generation phase, the next token’s probability distribution is
computed by combining the output probabilities obtained from each individual decoder. This allows
the model to distribute the diverse stylistic and lexical features encountered in the training data,
even those within the same reference summary, across the parameters of separate decoders. As an
example, consider a 2-decoder scenario in which one decoder learns to only copy phrases or words

1We will share all relevant code, data and model checkpoints to support further research.
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Input Article: Insights into the workings 
of the human body that Leonardo da Vinci 
could only obtain by dissecting scores of 

corpses and recording the results in 
exquisite drawings will be displayed for 

the first time beside modern 3D films, CT 
and MRI scans, which show how close the 
Renaissance genius got to the truth of what 

lies under the skin. […] the Edinburgh 
show will be the first to compare 

Leonardo's results with scalpel and pen 
with the best results of modern technology. 

[…] The exhibition will show how close 
Leonardo got in some of his last medical 
experiments to discovering the role of the 

beating heart in the circulation of the 
blood, a century before William Harvey 

worked it out. […]

Reference Summary: Royal Collection 
exhibition in Edinburgh will show how 

accurate Renaissance polymath's sketches 
were.

Edinburgh show will be first to compare Leonardo's 
results with best results of modern technology.

Modern imaging techniques will be displayed 
alongside Leonardo da Vinci's anatomical 
drawings in Edinburgh exhibition.
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Edinburgh show will be first to compare Renaissance genius's results 
with best results of modern technology
Edinburgh show will be first to compare Renaissance genius's results 
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Figure 1: Examples of generated summaries for a NEWSROOM article using both BART and a 2-decoder
HYDRASUM model. Longer copied sequences (denoting extractive behavior) are underlined. For HYDRASUM,
summaries from different mixtures of decoders differ in degree of abstractiveness, specificity, and length.
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Figure 2: HYDRASUM’s training and generation workflow for a 2-decoder version. We consider two training
settings, namely guided and unguided, which differ in how the gate weights used to combine different decoders
are obtained. During generation, summaries can be sampled from individual decoders or their mixture.

from the input document, while the second decoder only learns paraphrasing and syntactic trans-
formations. While individual decoders cannot cover the range of stylistic variations in the dataset,
a weighted combination or mixture of the two decoders can be used to model the summarization
dataset. In Figure 1, we show an example of the actual style partitioning by a 2-decoder version of
HYDRASUM across individual decoders. Compared to the baseline, HYDRASUM generates a more
stylistically distinct set of summaries by varying the degree of abstractiveness and summary length,
or including details such as 3D films, CT and MRI scans to vary specificity.

We train and evaluate our proposed model under two settings (see Figure 2): the unguided setting in
which we do not explicitly control this partitioning of the summary features and the guided setting
where different decoders are trained to learn contrasting summary styles along one specific feature,
e.g. low abstractiveness vs high abstractiveness. Our experiments on three summarization datasets
(CNN, NEWSROOM, XSUM) shows that the proposed model exhibits significantly better stylistic-
diversity and improvement in Top-K quality compared to baseline models. Moreover, we demon-
strate that the flexibility of HYDRASUM’s model architecture allows us reliably enforce single-style
control by sampling from any combination of available decoders. In fact, these decoders can even
correspond to separate HYDRASUM models and orthogonal features to provide multi-style control
over summary generation.

2 METHODOLOGY

Current state-of-the-art summarization models (e.g. BART, PEGASUS) leverage transformer-based
encoder-decoder architectures. Similarly to those models, HYDRASUM consists of an encoder net-
work that accepts the document x as input. The decoder network, however, is modified to incorpo-
rate k(> 1) decoders, φ1, φ2, ...φk, as depicted in Figure3. At time step i, each decoder outputs a
probability distribution Pφk

(yi|x, y<i) over the vocabulary, corresponding to the next-token prob-
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Figure 3: Our proposed HYDRASUM architecture. The decoder network incorporates multiple decoders and a
gating mechanism is used to combine their output probabilities in a mixture-of-experts formulation.

abilities. The final output probability P (yi|x, y<i) is computed as a mixture of these k probability
distributions, with the mixing coefficients predicted by a gating mechanism G.

Multi-Decoder Architecture: Let M be the total number of decoder blocks in a single decoder:
e.g. M = 12 for the commonly used BART-LARGE. In our model, the parameters of the m(< M)
bottom layers are shared between the k decoders. This reduces the number of extra parameters
introduced into the model architecture. The top M −m layers of the different decoders are indepen-
dently trained. The right block of Figure 3 shows a detailed view of the multi-decoder architecture
at a single time step i.

Gating Mechanism: A gating mechanism G is used to combine the output distributions from the k
different decoders. Let hmi be the hidden state output of the mth decoder layer at time step i, i.e. the
output of the last shared layer. We use this hidden state representation to obtain the coefficients for
our mixture of experts. The representation hmi is fed into a feed forward layer W (size = (|hmi |, k)),
followed by a softmax layer. This outputs a probability distribution gi which is used to compute the
overall next-token output probability as follows: P (yi|x, y<i) =

∑
j=1:k g

j
i ∗ Pφj

(yi|x, y<i). Here,
gji is the probability of selecting the jth decoder at time step i.

2.1 TRAINING

The HYDRASUM architecture is trained to minimize the cross entropy loss of the reference sum-
maries, conditioned on the input document: loss = −

∑
i logP (yi|x, y<i). This is same as the

training objective of standard summarization models. We consider two different variants within this
framework which differ in how the gates g are derived (see Figure 2):

Under the unguided training setting, no additional supervision is provided to the gating mecha-
nism. The model implicitly decides the contribution of each decoder to the final output probability,
i.e. gji for decoder j at time step i, using the gating mechanism G outlined above. This mixture-
based formulation allows the HYDRASUM model to assign contrasting summary styles to different
decoders as well as learn from infrequent examples in the dataset. Experiments under the unguided
setting are outlined in Section 3.1.

Under the guided training setting, we explicitly guide which summary feature is partitioned be-
tween the multiple decoders (we only evaluate the 2-decoder version of HYDRASUM under this
setting). Given a target stylistic feature, say specificity, our goal is to ensure that the two decoders
generate summaries that vary substantially along this style. More concretely, we want decoder 0 and
decoder 1 to generate summaries with low and high levels of specificity respectively. To achieve
this, we first derive multiple partitions of the training data based on the specificity of the reference
summary (or sentence); let g ∈ [0, 1] denote specificity. Next, instead of using the gating mechanism
G during training, we use this oracle label g to derive the mixture coefficients [1− g, g]. In this way,
the oracle label g is used to decide the contribution of each decoder to the final output probability
and loss computation, which is modified as follows:

loss = −
∑

i
log [(1− g) ∗ Pφ0

(yi|x, y<i) + g ∗ Pφ1
(yi|x, y<i)]

Here, if g = 0, it dictates that only decoder 0 is used, if g = 1, only decoder 1 is used. By setting
g ∈ (0, 1), we can train the models using a mixture of decoders to denote mid-level specificity. More
details about the training procedure and experiments under this setting are outlined in Section 3.2.

3



Under review as a conference paper at ICLR 2022

2.2 INFERENCE

The multi-decoder framework of HYDRASUM provides several options of output probability distri-
butions which differ in how the mixture weights are obtained (see Figure 2). During inference, we
can sample from these different options, or inference strategies, to generate diverse summaries:

(Inference Strategy 1) Individual Decoders: To generate summaries using only the jth decoder,
the output of the gating mechanism is overridden with [0, 0..., 1, ..., 0] where gj = 1 and gi6=j = 0
for all time steps.

(Inference Strategy 2) Mixture using G: The mixture weights are decided by the model, i.e. gji =
(WThmi )j for decoder φj at time step i. Note that this inference strategy can only be used for
HYDRASUM models trained using the unguided setting.

(Inference Strategy 3) Mixture using manually-specified g: Consider a 2-decoder HYDRA-
SUM model, where decoder 0 learns abstractive features and decoder 1 learns extractive features.
The user can control the degree of abstraction in the generated summaries by sampling the model
using different values of [1 − g, g]. For e.g., the user-specified distribution [0.3, 0.7] gives the fol-
lowing output probability: P (yi|·) = 0.3 ∗ Pφ0

(yi|·) + 0.7 ∗ Pφ1
(yi|·).

3 EXPERIMENTS

We perform experiments on three news summarization datasets: CNN (Hermann et al., 2015; Nal-
lapati et al., 2016), NEWSROOM2 (Grusky et al., 2018) and XSUM (Narayan et al., 2018). For all
experiments, BART-LARGE (Lewis et al., 2020) is used as the model initialization: in a k-decoder
variant of HYDRASUM, all k decoders are initialized with the weights of the BART-LARGE de-
coder. The weights of the gating mechanism G are randomly initialized from a normal distribution
N (0, 0.02). All our experiments are conducted using the 2-decoder version of HYDRASUM, setting
the number of shared layers, i.e. m to 8. Our model architecture is implemented using the Hug-
gingface Library (Wolf et al., 2020). Further details about the training data and hyperparameters are
included in Appendix A.

We consider the standard BART-based summarization model as our baseline model. For XSUM,
we use the publicly available BART-LARGE-XSUM checkpoint. For CNN and NEWSROOM, we
fine-tune the BART-LARGE checkpoint on their corresponding training datasets ourselves.3 Beam
decoding is used to generate summaries for both the baseline and proposed models.

In the following subsections we describe experiments conducted in the Unguided and Guided train-
ing settings as outlined in Section 2.1.

3.1 UNGUIDED TRAINING

STYLE PARTITIONING AND EVALUATION First, we aim to answer the following question: Do
individual HYDRASUM decoders learn different summary styles when trained using the standard
training objective, i.e. the unguided training setting outlined in Section 2.1? If yes, which stylistic
features vary across multiple decoders?
To answer this, we measure the differences between generated summaries along the following stylis-
tic features: 1) Abstractiveness: We follow Grusky et al. (2018) and report two metrics for abstrac-
tiveness, coverage which denotes the fraction of words in the summary that are present in the input
article, and density which denotes the average length of text spans in a summary that are copied from
the input article. Details about these metrics can be found in the original paper. Additionally, we
also report the 2-gram overlap between the generated summary and the input article. 2) Specificity,
quantified using the Speciteller tool (Li & Nenkova, 2015), to measure the degree of specificity vs
generality of the summaries. To align with the specifications of the tool, we segment summaries
into sentences and report the macro-average of the sentence-level specificity across all summaries.
3) Length metrics: We report two metrics for this, absolute length (number of words) of generated
summaries, and compression ratio, computed as the ratio of the number of words in the summary

2We conduct experiments on the mixed subset of NEWSROOM to limit the dataset size. We found that sum-
maries in this subset were less noisy and more diverse than the abstractive and extractive subsets respectively.

3We found that publicly available BART-LARGE-CNN (Lewis et al., 2020) and PEGASUS-NEWSROOM
(Zhang et al., 2020) models trained on the entire CNNDM and NEWSROOM datasets performed poorly on the
CNN only and NEWSROOM-MIXED only test sets used in our paper. Therefore, we re-train these.
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Abstractiveness Specificity Length-metrics Readability Quality
Coverage Density 2G Overlap Abs. Len Comp. Ratio FRE R1/R2/RL

CNN

Ref 0.85 3.14 0.43 0.44 37.33 0.07 52.51 -
Baseline 0.97 10.33 0.80 0.44 50.71 0.10 54.03 34.87/14.88/31.82

D0 0.93 5.69 0.64 0.48 46.07 0.09 58.00 34.58/13.64/31.43
D1 0.97 11.69 0.82 0.40 59.47 0.11 50.92 31.44/11.72/28.58

Mix 0.97 11.1 0.81 0.46 54.66 0.10 53.7 34.91/14.36/31.93

NEWSROOM

Ref 0.83 3.40 0.46 0.57 23.67 0.07 50.8 -
Baseline 0.96 14.34 0.80 0.63 34.11 0.10 48.64 36.38/19.54/31.20

D0 0.90 6.15 0.59 0.65 33.95 0.10 49.58 34.64/16.59/28.94
D1 0.96 16.45 0.84 0.58 34.66 0.10 49.41 33.73/17.27/28.90

Mix 0.96 17.13 0.81 0.63 38.34 0.11 48.38 35.32/18.69/30.31

XSUM

Ref 0.66 1.05 0.16 0.65 21.1 0.09 59.6 -
Baseline 0.75 1.61 0.27 0.56 19.20 0.09 66.70 45.14/22.27/37.25

D0 0.72 1.37 0.23 0.66 19.72 0.09 60.45 42.82/19.16/34.15
D1 0.72 1.44 0.23 0.53 19.96 0.09 62.70 42.33/18.56/33.98

Mix 0.73 1.51 0.25 0.59 19.60 0.10 62.07 44.72/21.47/36.36

Table 1: Comparison of HYDRASUM’s generated summaries using individual decoders (D0 and D1) and their
model-derived mixture (Mix). Results show significant differences along multiple dimensions (highlighted in
gray), most notably abstractiveness and specificity for CNN and NEWSROOM, and specificity for XSUM.

and the input article. 4) Readability: Finally, we report the readability scores of the summaries,
measured using the Flesch readability ease test (Flesch, 1948). In addition to these style-based met-
rics, we report Quality, measured by ROUGE (Lin, 2004) scores of the generated summaries with
respect to the reference summaries. For analysis, we generate 3 summaries for each input: using
individual decoders D0 and D1 (Inference Strategy 1, see Section 2.2), and the mixture model (Mix)
where the mixture weights are obtained using the gating mechanism G (Inference Strategy 2). The
latter strategy corresponds to sampling from the HYDRASUM model’s actual output distribution.
Results of the study are shown in Table 1.

Style differences between decoders: We study the difference in stylistic features between D0 and
D1. Features for which this difference is significant, i.e. p < 0.05 according to the bootstrap
re-sampling test, are highlighted in gray. For both CNN and NEWSROOM, significant differences
are observed along the abstractiveness and specificity metrics. Moreover, summaries for CNN also
differ along other metrics such as length and readability. Interestingly, for both these datasets, we
observed that the baseline model fails to cover the entire range of abstractive behavior seen in the
reference summaries. Figure 4 demonstrates this; the top graphs plot the 2-gram overlap of the refer-
ence summaries and the generated summaries for the baseline model, showing substantial mismatch.
This phenomenon has been discussed in prior work (See et al., 2017); summarization models tend
to overfit on the easier extractive examples, and do not learn from the abstractive examples. HY-
DRASUM addresses this limitation by encouraging the two decoders to learn contrasting levels of
abstractiveness. Figure 4 shows D0 decoders for both datasets learn to generate abstractive sum-
maries that more closely resembles the reference distribution. Meanwhile, D1 generates abstractive
summaries, collectively providing better coverage over the abstractiveness space.

The results also indicate that the least amount of style difference is observed for the XSUM-based
HYDRASUM model. Here, significant variance is observed only along specificity: D0 generates
more specific and D1 generates more general summaries. However, the observed difference in
specificity for XSUM (approx. .13) is greater than that of the other two datasets. We hypothesize
that the similarity in abstractiveness levels between D0 and D1 is due to the low diversity along
this feature in XSUM’s reference summaries. The results in Table 1 indicate that although the
HYDRASUM model’s training encourages the two decoders to learn distinct stylistic features, the
combination of features along which they differ is heavily dependant on the datasets themselves. In
Section 3.2, we evaluate a more controlled version of our model by explicitly guiding which single
style feature differs between D0 and D1 and encouraging higher diversity along that target feature.

Quality: The ROUGE scores of the generated summaries using the entire HYDRASUM model, i.e.
Mix, are comparable to the baseline BART models, even outperforming the baseline for CNN. This
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a) CNN b) Newsroom

Figure 4: Graphs plot the 2gram overlap of the baseline and HYDRASUM decoders. Compared to the baseline,
D0 decoder samples summaries from a distribution that more closely resembles the reference distribution.

Model CNN NEWSROOM XSUM

TopK-ROUGE σ(ov.) σ(sp.) TopK-ROUGE σ(ov.) σ(sp.) TopK-ROUGE σ(ov.) σ(sp.)

Base + Beam 39.10/17.76/35.65 .03 .07 43.00/24.73/36.98 .06 .10 50.19/25.74/40.86 .04 .07
+ Top-k 40.29/15.37/36.14 .12 .13 43.58/22.25/36.27 .16 .21 48.16/21.68/37.98 .07 .16
+ DBS 40.62/18.65/37.04 .05 .08 43.59/24.72/37.27 .07 .12 50.52/25.72/41.06 .04 .08

HS + Beam 42.07/19.19/38.32 .11 .11 45.03/25.59/38.46 .14 .15 51.03/25.46/41.18 .06 .13

Table 2: Diversity performance of the baseline BART models (Base) and HYDRASUM (HS).

demonstrates that the inclusion of additional decoders in HYDRASUM’s architecture does not hurt
the quality of generated summaries. On the other hand, the quality of summaries generated from
individual decoders is roughly 2 ROUGE points lower than both the Mix strategy and the baseline
model. This is expected; individual decoders generate summaries that exhibit “extreme” or con-
trasting behaviors along different style features (shown above). Therefore, they under perform when
evaluated on the entire test set containing a diverse set of styles.
DIVERSITY EVALUATION Next, we quantitatively evaluate whether the mixture-of-experts for-
mulation of HYDRASUM leads to higher diversity in multiple (> 2) summary generation scenarios
compared to the baseline models.
We report 2 metrics to evaluate diversity: 1) TopK ROUGE: The maximum ROUGE (R1/R2/RL)
score over a list of K generated summaries for a given input document. This gives an upper bound on
the benefit from diverse summarization by measuring the closeness of the best generated summary
to the reference summary. 2) Stylistic Diversity: The standard deviation within the K generated
summaries of a given example, along each style metric independently. This metric indicates the
average variety in summary choices available to the user for each input. Results are reported for
abstractiveness (2 gram overlap, ov.) and specificity (sp.). We set K= 5 for our experiments. For
HYDRASUM, multiple summaries are generated by varying the summary-level gating probability g
as outlined in Section 2.2: Strategy 3. We use g = {0, 0.25, 0.5, 0.75, 1}. Here g = 0 and g = 1
correspond to summaries generated using decoder 1 and decoder 0 independently. We compare
these to K summaries of the baseline BART model generated using three different decoding strate-
gies: beam search, top-k sampling, and diverse beam search (Vijayakumar et al., 2018). Decoding
hyperparameters for both baseline and HYDRASUM models are included in Appendix A.

Table 2 outlines the diversity performance of the baseline model and HYDRASUM. The results
show that HYDRASUM substantially outperforms the baseline’s TopK-ROUGE performance, across
different decoding strategies considered. In fact, the gain is roughly proportional to the degree of
stylistic difference observed in Table 1; the highest gain (roughly +3 ROUGE points) is reported
for CNN, followed by an improvement of +2 ROUGE points for the NEWSROOM dataset. In terms
of stylistic diversity, our results show that the HYDRASUM model outperforms the baseline model
when decoded using the same decoding strategy, i.e. beam search, for all three datasets. On the other
hand, we see that top-k decoding leads to more style diversity within baseline summaries. However,
this is not accompanied by a corresponding increase in quality, which indicates that this additional
diversity is achieved by sampling low quality summaries.

QUALITATIVE ANALYSIS Finally, we qualitatively evaluate the style difference between sum-
maries generated using individual decoders. Figure 5 provides examples of generated summaries
using HYDRASUM trained on the NEWSROOM dataset. For the first example, consistent with the
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Forget gold and oil. Copper prices is the real winner this year. The red metal is up 
more than 20 percent from its late January low — and that's given one stock a big 
boost: Freeport-McMoRan. The mining giant is up 40 percent in the same period, 
but one trader who relies heavily on the technicals and options market, is cautious 
on the stock, and he warned that the rally could be over. ``I think we're about to 
see some serious selling pressure in Freeport'' said technical analyst Andrew 
Keene on CNBC's `` Trading Nation'' on Thursday. [...]

Copper prices are up 
20 percent this year, 
and one miner is up 
40 percent. But one 
trader warns that the 
rally could be over.

Copper prices is the real 
winner this year. The red 
metal is up more than 20 
percent from its late 
January low — and that 's 
given one stock a big 
boost.

Input Article D0 Summary D1 Summary

Jenson Button and his wife Jessica have been robbed at a holiday home in Saint-
Tropez. (AAP) - British Formula One star Jenson Button and his model wife 
Jessica Michibata are believed to have been knocked out with gas during a brazen 
robbery in which thieves made off with more than A$ 630,000 worth of their 
possessions. The couple were in a rented villa in the glitzy French coastal resort of 
Saint-Tropez with friends when the bandits struck. […]

British Formula One 
driver Jenson Button 
and his wife Jessica 
Michibata have been 
robbed at their holiday 
home in Saint-Tropez.

Jenson Button and his 
model wife have been 
robbed at their holiday 
home in Saint-Tropez .

Figure 5: Examples of generated summaries using the unguided setting for NEWSROOM dataset. Long extrac-
tive sequences are underlined, additional details that increase the specificity of summaries are in bold.

observation from Table 1, D1 generates a highly extractive summary whereas D0 generates an ab-
stractive summary with less copying. In the second example, we observe a difference in specificity
of the generated summaries. D0 summary includes additional details like Jenson Button’s profession
and his wife’s name, compared to the more less specific summary generated by D0.
Note that additional experiments with analysis of the 3-decoder HYDRASUM model is included in
Appendix B. Also, experiments with other values of m(= 6, 10) are in Appendix C. We found that
the choice of m does not significantly alter our analysis.

3.2 GUIDED TRAINING

Here, we train HYDRASUM models such that given a target style, decoders D0 and D1 learnt con-
trasting or “extreme” behaviors for that style, e.g. very extractive vs very abstractive summaries.
We consider two features for our experiments in this section: abstractiveness (measured by 2-gram
overlap) and specificity. Let f denote the target feature. To ensure D0 learns low-f and D1 learns
high-f , we carefully control the subset of the training data used to train each decoder. Our exact
methodology is as follows: 1) First, we pre-process the training data to derive n(= 5) percentile
splits based on the f -value of reference summaries. For e.g., if f refers to abstractiveness, we split
the training data based on 2-gram overlap. 2) Next, we modify the loss computation for each exam-
ple during training to incorporate information about the percentile split it belongs (refer to Section
2.1 for the modified loss function). In our experiments, we set g ∈ {0, 0.25, 0.5, 0.75, 1}. Effec-
tively, this controls the contribution of each decoder in a training example’s final loss. For e.g., the
bottom 20 percentile split of the data (low f ) are trained by setting g = 0, i.e. using only D0. This
ensures that D0 learns to generate low-f summaries. Note that the oracle gate g can be defined at
the token-, sentence- or summary-level in the above equation. Since the specificity metric is defined
at the sentence-level, we use oracle gates gt that denotes the gate for sentence st.

SINGLE-FEATURE CONTROL First, we evaluate if HYDRASUM can enforce higher stylistic vari-
ation between the individual decoders for a given target feature compared to the unguided setting.

To answer this, we train and evaluate models for 2 target features: abstractiveness (f = abstrac-
tiveness) and specificity (f = specificity), where f refers to the target feature. For each model,
we report the following metrics: (1) f (D0) and f (D1): The average style scores for test summaries
generated using D0 and D1 respectively. This refers to the 2-gram overlap when f = abstractiveness
and specificity when f = specificity. (2) TopK σ(f): Similar to Section 3.1, we generate 5 sum-
maries by varying gate probabilities: g = {0, 0.25, 0.5, 0.75, 1}, and report the standard deviation
of the style score f amongst these 5 summaries.4 Results are outlined in Table 3.

The results show that compared to the the unguided setting (see Table 1), the guided training ap-
proach enforces a substantially higher difference in target style f between D0 and D1. For e.g.,
consider the specificity-controlled model for CNN. Under the guided setting, the specificity differ-
ence between D0 and D1 is roughly .40 points, compared to .08 for the unguided models. Similar
improvements are observed across all models and style combinations. Guided training even succeed
in enforcing abstractive style variance for XSUM models; this was not possible under the unguided
setting. Finally, the results show significant improvement in the stylistic diversity within the top

4The entire set of results, including ROUGE, TopK-ROUGE, and other style scores are in Appendix D.
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Metric f =Abstractiveness f =Specificity

CNN NEWSROOM XSUM CNN NEWSROOM XSUM

f (D0) / f (D1) .48 / .82 .44 / .85 .16 / .29 .22 / .62 .36 / .81 .44 / .80
TopK σ(f) .14 .17 .07 .16 .21 .16

Table 3: Performance of HYDRASUM models in the guided setting. Compared to the unguided set-
ting, we observe higher variation in style between D0 and D1 as well as better TopK style diversity.

Low Specificity Decoder (D0) High Specificity Decoder (D1)

Two Florida boys are being hailed as local heroes
after saving children from a burning mobile home

Isiah Francis, 10, and Jeremiah Grimes, 11, saved
two babies from a burning mobile home in Florida.

French prosecutor says he is not aware of any video
footage from on board the plane.

French prosecutor says he’s not aware of any video
footage from on board Germanwings Flight 9525.

Table 4: Example summaries generated using low and high specificity decoders in the specificity-
guided setting. The underlined text highlights additional details in the more specific summaries.

5 summaries over the unguided setting (compare with results from Table 2). Most notably, the
specificity-controlled NEWSROOM model exhibits σ(sp.) of .21 within generated summaries com-
pared to .15 in the unguided setting. Table 4 gives examples of high and low-specificity summaries.

Next, we study the stylistic properties of the 5 summaries generated by varying g, used in the above
experiments. Ideally, we want these summaries to exhibit stylistic behavior (value of average style
score f ) between that of D0 and D1. Concretely, since D0 generates low-f summaries and D1
generates high-f summaries, we want summaries generated by setting g = 0.5 to result in mid-level
f scores. To study this, we plot the 2gram overlap of CNN summaries for the 5 gate values (g =
{0, 0.25, 0.5, 0.75, 1}) for the abstractiveness-controlled model (top row of Figure 6). Similarly, we
plot specificity distributions for specificity-controlled model corresponding to these different gate
probabilities (bottom row of Figure 6). Due to space constraints, graphs for the NEWSROOM and
XSUM are in Appendix D. For both these stylistic features, we observe that the HYDRASUM model
shows a gradual increase in average feature scores as the contribution of D1 (high-f decoder) is
increased, from 0 contribution in the left-most graphs to 1 in the rightmost graphs. This shows that
HYDRASUM can be used by end users to generate summaries corresponding to their desired degree
of abstractiveness or specificity, by selecting and appropriate value of the gate probability g.

Pe
rc

en
ta

g
e 

of
 S

u
m

m
ar

ie
s
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Specificity

CNN

Model trained with control feature = Abstractiveness

Model trained with control feature = Specificity

Figure 6: 2gram overlap and specificity of CNN summaries generated using different values of g in the guided
setting. The top graphs are obtained by mixtures of decoders from the abstractiveness-controlled model; the
bottom graphs are from the specificity-controlled model. These graphs provide evidence that properties like
abstractiveness and specificity can be varied by varying the gate probabilities in the guided setting.

MULTI-FEATURE CONTROL Next, we investigate the multi-feature control capabilities of HY-
DRASUM. We study whether the decoders from separate single-feature controlled models, cor-
responding to orthogonal features such as abstractiveness and specificity, be combined to exhibit
multi-feature control over generation.
Due to the low abstractive variance in XSUM, we only perform these experiments on CNN and
NEWSROOM datasets. For these, we use a combination of the abstractive/extractive and spe-
cific/general decoders to obtain 4 different summaries, setting gate probability g = 0.5. We plot
the marginal distributions for each feature f for both datasets in Figure 9. The graphs show that the
HYDRASUM model ensures that summaries generated using the high specificity decoder have higher
average specificity than those that include contribution from the low specificity decoders. Similar
trends are observed with respect to abstractiveness. Note that the models used in this experiment, i.e.
the abstractiveness and specificity controlled models for the two datasets were trained independently.
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Figure 7: 2gram overlap and specificity of CNN and NEWSROOM summaries generated using a combination
of specificity-controlled and abstractiveness-controlled decoders.

CNN NEWSROOM XSUM

f = Abs. f = Spec. f = Abs. f = Spec. f = Abs. f = Spec.

HYDRASUM D0 4.4/4.5/4.3/.93 4.4/4.3/4.2/.85 4.3/4.4/4.1/.9 4.1/4.2/3.5/.80 4.2/4.3/4.1/.89 4.3/4.4/4.1/.81
HYDRASUM D1 4.3/4.5/4.3/.89 4.4/4.3/4.1/.87 4.2/4.2/4.0/.9 4.2/4.4/4.1/.85 4.3/4.5/4.0/.87 4.4/4.4/4.2/.89

Baseline BART 4.3/4.4/4.2/.83 4.2/4.3/4.0/.85 4.3/4.4/4.2/0.85

Table 5: Comparison of human-rated Relevance/Coherence/Grammaticality/Factuality scores for
Abstractiveness- and Specificity-controlled HYDRASUM models and the baseline BART model.

This demonstrates the high flexibility of HYDRASUM’s architecture: it allows mixing decoders from
independently trained models at inference time and generates summaries corresponding to multiple
control features.

HUMAN EVALUATION Following prior work (Hashimoto et al., 2019), we rely on automated
metrics for diversity evaluation and conduct human evaluation to measure the quality of generated
summaries. For 50 randomly sampled input articles, we present MTurk workers with 5 different
generated summaries: baseline model summary, D0 and D1 summaries of the Abstractiveness-
Specificity-controlled models. The workers were asked to rate each summary across 4 properties:
relevance, coherence, grammatically and factuality. For the first 3, we ask for a rating on the 5-point
Likert scale. Following prior work (Goyal & Durrett, 2021), we seek binary labels (factual (1) or
non-factual(0)) for factuality annotation. We report the average score across all three annotations.
Table 11 outlines the results. Across all metrics, we see that the humans prefer summaries generated
by the HYDRASUM models more than the baseline models. More details about the human evaluation
task setup as well as results for the unguided setting are in Appendix F.

4 RELATED WORK
Previous work on controllable summarization has focused on single-feature control of length (Fan
et al., 2018a; Saito et al., 2020; Makino et al., 2019), entities or topics (He et al., 2020), or abstrac-
tiveness (Song et al., 2020). However, these methods are over-specialized for their target feature, and
cannot be generalized to other control dimensions or multi-feature control. In our paper, we focus
on style control instead of content control, and propose a generalizable approach that can be adapted
to any style feature. Recently, Song et al. (2021) proposed a new technique for control that involves
over-generation and post-filtering. Our model architecture can automatically identify diverse styles
within the training data, and disentangles them to generate a diverse set of summaries. Finally, style
controlled generation has also been studied for other generation tasks such as paraphrasing, story
generation and machine translation (Wang et al., 2017; Shen et al., 2017; Huang et al., 2019; Yang
& Klein, 2021). These require significant changes to the baseline architecture; we show that style
control can be achieved using minimal changes to either the architecture or the loss function.
Diverse generation research has focused on lexical diversity (Vijayakumar et al., 2018; Kumar et al.,
2019), syntactic diversity (Goyal & Durrett, 2020), or through uninterpretable latent codes (Park
et al., 2019; Shao et al., 2019). In this work, we study a more controlled version of diversity en-
forcement along specific target style features.

5 CONCLUSION
We propose a new summarization architecture HYDRASUM containing multiple decoders in a
mixture-of-experts framework. Through experiments on 3 summarization datasets, we show that the
proposed models can effectively disentangle distinct stylistic features, such as high or low abstrac-
tiveness, different degrees of specificity, etc. during summary generation. Moreover, our framework
is highly flexible: during inference, we can sample from either individual decoders or their mixtures
to generate diverse summaries and enforce both single- and multi-style control over generation.
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A TRAINING DETAILS

Dataset Training Dev Test

CNN 90266 1220 1093
NEWSROOM 329494 35977 36100

XSUM 204045 11332 11334

Table 6: Dataset statistics

We evaluate our models on three datasets:
CNN, NEWSROOM and XSUM. Details about
the training, development and test dataset sizes
for these are outlined in Table 6. Note that our
experiments (both training and testing) are per-
formed on the mixed subset of the NEWSROOM
dataset. All results and analysis in the paper is
reported on the test data.

Table 7 outlines the hyperparameters used for training and inference. For all our experiments, we use
BART-LARGE as the pre-trained initialization. During inference for HYDRASUM, we incorporate
top-k and top-p sampling using values 30 and 0.5 respectively. For top-k decoding for using baseline
BART model in Table 2, we set k = 30. Diverse beam search is run using 2 beam groups and
diversity penalty 0.5.

B EFFECT OF DIFFERENT NUMBER OF DECODERS

Next, we investigate the effect of the number of decoders k on the partitioning of summary styles
by extending our analysis to a 3-decoder variant of HYDRASUM. Table 8 outlines our results. For
simpler analysis, we only report results along 4 metrics: ROUGE score, 2-gram overlap, specificity
and absolute length. Similar to the 2-decoder case, the 3 decoders of HYDRASUM learn a mutually-
distinct combination of of summary styles. In fact, we observe that 3-way partitioning enables the
model to cover a wider variety of summary styles. For example, two XSUM decoders learn to gener-
ate relatively more extractive and longer summaries (D0 and D2). While enforcing extractiveness is
not straightforward for baseline BART models or the XSUM decoders in Table 1, we can now sample
from D0 or D2 to obtain more extractive summaries. Similarly, the range of specificity provided by
CNN (.34 − .55) and NEWSROOM (.42 − .67) models is higher than that of the 2-decoder variant.
Finally, in Figure 4, the graphs show that for both CNN and NEWSROOM, the baseline models fail to
cover the entire spectrum of abstractiveness exhibited in the training set due to overfitting on easier
extractive examples. The results in Table 8 shows that using multiple-decoders allows HYDRA-
SUM models to learn from such minority examples and exhibit the entire breadth of behaviors seen
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For training For Inference
Implementation Huggingface (Wolf et al., 2020) CNN & NEWSROOM

Computing Infrastructure 40 GB NVIDIA A100 GPU Num beams 5
Optimizer Adam Length Penalty 2

Optimizer Params β = (0.9, 0.999), ε = 10−8 No repetition size 3-grams
Learning Rate Decay Linear Min-Length 12

Learning rate 1e-5** Max Length 200
Weight Decay 0 XSUM

Maximum Gradient Norm 1 Num beams 6
Batch size 64 Length Penalty 1

Epochs 3 No repetition size 3-grams
Max Input Length 1024 (512 for NEWSROOM) Min-Length 12

Max Output Length 128 Max Length 60

Table 7: Hyperparameters used from fine-tuning and decoding the BART-based summarization mod-
els. (**For specificity-controlled models in Section 3.2, we employ a learning rate of 2e-5)

Dataset Decoder Rouge (R1/R2/RL) Overlap Spec. Length Characteristics

CNN

D0 32.35/10.90/29.29 .48 .34 39.9 Low Copy, Low Spec.
D1 21.63/8.48/20.18 .82 .38 180.7 High Copy, Low Spec.
D2 33.86/13.23/30.87 .72 .55 56.1 Avg. Copy, High Spec.
Mix 34.30/14.38/31.36 .82 .48 56.2 High Copy, Avg Spec.

NEWSROOM

D0 31.88/14.71/27.12 .32 .42 32.0 Low Copy, Low Spec.
D1 16.05/6.94/14.39 .36 .49 171.9 Avg. Copy, Avg. Spec.
D2 32.43/16.57/27.61 .85 .67 47.9 High Copy, High Spec.
Mix 35.39/18.85/30.37 .82 .64 38.9 High Copy, High Spec.

XSUM

D0 31.63/12.21/24.83 .36 .60 44.6 High Copy, Avg. Spec.
D1 41.86/17.97/33.22 .22 .54 20.1 Low Copy, Low Spec.
D2 32.33/12.63/25.44 .32 .67 44.1 High Copy, High Spec.
Mix 44.61/20.91/36.17 .24 .58 19.5 Low Copy, Avg. Spec.

Table 8: Comparison of generated summaries for a 3-decoder HYDRASUM model. Results show higher
coverage of summary styles by individual decoders compared to the 2-decoder version. For e.g., D0 and D2
of the XSUM model learn to generate relatively more extractive and longer summaries; partitioning along
abstractiveness and length was not observed in the 2-decoder version (see Table 1).

in the training data. Finally, we see that some decoders report very poor quality (ROUGE scores).
This is expected due to two factors: 1) since these decoders learn from minority examples, they ex-
hibit less common summary styles and suffer on dataset-wide evaluation, and 2) factors such as very
longer length directly affects the precision of ROUGE scores. However, note that across all datasets,
mixture-based inference performs best. This shows that although the performance of the individual
decoders is low, their contribution to the mixture is needed for the overall best performance.

C EFFECT OF DIFFERENT NUMBER OF SHARED LAYERS

In order to restrict the number of extra parameters introduced in HYDRASUM, we enforced param-
eter sharing between the m lower layers of the decoders. We performed our experiments in Section
3 by setting m = 8. Here, we investigate if the choice of m effects either the partitioning of stylistic
features between decoders, or the extent of the observed difference between two decoders along any
axis such as abstractiveness, specificity, etc. Experiments are performed using the 2-decoder version
of HYDRASUM. We train models using the unguided setting (same as Section 3.1) for m = 6, 10
for all 3 datasets. For simpler analysis, we only report on a subset of the metrics: ROUGE scores
(quality), 2 gram overlap (abstractiveness), specificity, absolute length, and self-ROUGE between
the summaries generated using individual decoders (diversity).
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m ROUGE Overlap Specificity Length

D0 D1 D0 D1 D0 D1 D0 D1

CNN

6 33.21/13.3/30.21 34.26/13.3/31.21 .79 .63 .35 .41 44.9 54.5
10 32.04/12.37/29.13 35.2/14.11/32.19 .80 .68 .36 .44 53.8 45.9

NEWSROOM

6 32.32/16.17/27.5 34.92/17.05/29.55 .82 .61 .53 .60 39.5 30.0
10 33.14/16.56/28.16 34.73/17.1/29.37 .79 .64 .52 .57 33.9 34.6

XSUM

6 42.2/18.7/33.6 42.3/18.7/33.9 .22 .23 .56 .43 20.2 19.8
10 42.56/19.14/34.1 42.83/19.15/34.24 23.8 23.1 54.5 45.8 19.0 20.5

Table 9: Effect of varying the number of shared layers between the 2 decoders of HYDRASUM.
Results show that the choice of m does not substantially alter our analysis.

Table 9 outlined the results. Compared to the HYDRASUM model variants with m = 8, we notice
small differences in style partitioning as well as the absolute difference in style scores between
decoders D0 and D1. Most notable, the CNN model with 6 shared parameters does not learn to
partition across the specificity metric whereas the NEWSROOM model with m = 6 does learn to
partition along length. These observations are different that those seen for m = 8, 10. However, in
general, we observe that across all datasets, HYDRASUM decoders behave quite similarly in terms
of which features are partitioned, irrespective of the number of shared layers m. This demonstrates
that the proposed model architecture is useful for generating diverse summary options, even in cases
where a smaller number of extra parameters are allowed.

D GUIDED SETTING

In Section 3.2, we evaluated the diverse generation performance of HYDRASUM models under the
guided setting. Table 3 outlined a brief summary of results for models trained on the three datasets.
Here, we provide the entire set of results, see Table 10. In addition to the metrics reported in
the main paper, we include ROUGE scores of individual decoders D0 and D1 for all f -controlled
models. Moreover, multiple style metrics are included for each model and dataset pair (2-gram
overlap, specificity and length), as well as the TopK-ROUGE scores for 5 summaries generated
using Inference Strategy 3 (refer to experiment design in 3.2).

Table 10 outlines the results. In general, we observe that HYDRASUM models are able to enforce
diverse generation along the target feature f , while limiting the stylistic variance along other features
between D0 and D1. Moreover, we see that apart from XSUM, all other models report a TopK-
ROUGE improvement over the baseline model performance (compare with results from Table 2).

Finally, in Figure 8, we include graphs that show the distributions of 2 gram overlap and specificity
for the abstractiveness- (top row) and specificity-controlled (bottom row) models respectively. This
figure includes plots for NEWSROOM and XSUM models. The corresponding graphs for CNN are
included in the main body of the paper (section 3.2).

E MULTI-FEATURE CONTROL

Figure 8 shows an example of multi-attribute control exhibited by HYDRASUM on the NEWSROOM
dataset. We 4 generate summaries by using a distinct combination of extractive/abstractive and gen-
eral/specific decoders from different single-feature controlled models. The figure shows the input
article and these generated summaries: we see that these summary follow the style specifications
of the two decoders used to construct them. Interestingly, for the High Copy, Low specificity sum-
mary, we see that the model replaces Lyft with ride-sharing company and VanderSaden with former
executive from an exact copied sentence from the input, to both follow high copy and low specificity
targets as faithfully as possible. In general, we found summary generation including a low specificity
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Control feature f Dec. Quality Summary Styles Diversity-metrics

ROUGE Ov. Sp. Len Top5 ROUGE σ(ov.) σ(sp.)

CNN

Abstractiveness
D0 35.00/12.93/31.84 .48† .42 48.8

42.50/19.10/38.69 .14† .10D1 34.66/14.45/31.78 .82† .42 46.2

Specificity
D0 33.64/12.74/30.70 .72 .22† 48.9

42.05/18.84/38.23 .09 .16†
D1 34.40/13.35/31.18 .69 .62† 49.7

NEWSROOM

Abstractiveness
D0 32.56/13.98/26.68 .44† .65 35.8

44.30/24.56/37.60 .17† .16D1 35.04/18.53/30.17 .85† .59 33.9

Specificity
D0 31.62/14.80/27.11 .67 .36† 27.0

43.49/24.19/37.09 .11 .21†
D1 34.20/17.26/28.74 .73 .81† 38.4

XSUM

Abstractiveness
D0 42.45/19.00/34.35 .16† .58 19.2

50.11/24.78/40.49 .07† .11D1 43.52/19.79/35.05 .29† .57 19.5

Specificity
D0 41.84/18.55/33.86 .22 .44† 18.2

49.72/24.35/39.96 .06 .16†
D1 41.72/18.14/33.11 .22 .80† 21.8

Table 10: Performance of style-controlled HYDRASUM models. Compared to the unguided setting,
we observe higher variation in style between D0 and D1 along the control dimension (indicated with
†). Similarly, higher style diversity is observed among top 5 summaries along the control dimension.
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Figure 8: 2gram overlap and specificity of NEWSROOM and XSUM summaries generated using different
values of g in the guided setting. The graphs show that properties like abstractiveness and specificity can be
controlled by sampling from a mixture of the 2 decoders corresponding to the chosen style.

decoder tougher to control (here, the Low copy, Low Specificity summary follows similar strategy
to the High Copy, Low Specificity summary). This is also evidenced by specificity distributions in
Figures 8 which show much higher variation for D0 (i.e. low specificity decoder) for the specificity
controlled model. Similar trends are seen in Figure 9.
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Input	Ar)cle:	The	ba'le	between	Ly.	and	Uber	is	hea4ng	up	--	and	this	4me	they've	taken	it	off	the	road	and	into	the	
courtroom.	Ly.,	which	has	been	trying	to	expand	oversees,	brought	a	lawsuit	against	a	former	execu4ve	who	allegedly	took	
proprietary	informa4on	on	Ly.'s	interna4onal	plans	with	him	to	his	new	job	at	Uber	,	according	to	documents	filed	with	the	
California	courts	Wednesday.	Travis	VanderZanden	previously	served	as	chief	opera4ng	officer	at	Ly.	and	le.	the	ride-sharing	
company	in	August.	He	joined	Uber	last	month	as	the	vice	president	of	interna4onal	growth.	Ly0	is	suing	VanderZaden	for	
breach	of	contract	and	said	he	carried	``	Ly.	's	most	sensi4ve	documents	''	with	him	,	which	allegedly	includes	financial	

informa4on	,	strategic	planning	,	customer	lists	and	interna4onal	growth	plans.	[…]

Figure 9: Example of multi-feature control by HYDRASUM

Baseline BART HYDRASUM D0 HYDRASUM D1 HYDRASUM Mix

CNN 4.4/4.4/4.2/.88 4.3/4.4/4.2/.86 4.3/4.3/4.0/.89 4.4/4.3/4.2/.87
NEWSROOM 4.3/4.4/4.2/.9 4.4/4.4/4.2/.92 4.2/4.4/4.1/.91 4.4/4.5/4.3/.90

XSUM 4.3/4.4/4.2/.77 4.3/4.3/4.2/.81 4.1/4.4/4.2/.81 4.2/4.5/4.3/.80

Table 11: Comparison of human-rated Relevance/Coherence/Grammaticality/Factuality scores
of HYDRASUM models under the unguided setting and the baseline BART model.

F HUMAN EVALUATION

In section 3.2, we reported human evaluation study results under the guided setting. Here, we
expand on the details of the Mechanical Turk task. Figure 10 shows task interface. For each source
article, we asked 3 workers to evaluate 5 different model-generated summaries. For the unguided
setting, these 5 summaries were obtained from (1) Baseline model, (2, 3) D0 and D1 decoders of
the abstractiveness-controlled model, and (4,5) D0 and D1 of the specificity-controlled model. For
each article-summary pair, workers were asked to rate the summaries across 4 metrics: relevance,
coherence, grammaticality, and factuality. We follow prior work (Karpinska et al., 2021) and seek
annotation for the first 3 on a 5-point Likert scale, with 5 corresponding to highest quality. For
factuality, we ask for a binary annotation: 1 for factuality and 0 for non-factual summaries. We
report the average scores of the 3 annotators across all 50 articles.

Next, we conducted an analogous study for the unguided setting. For this, we asked workers to rate
the quality of 4 different summaries per article (1) baseline model, (2, 3) D0 and D1 of HYDRA-
SUM model, and (4) Mix strategy of HYDRASUM model. Again, we ask ratings for 50 randomly
sampled articles (note that these articles are different from the ones annotated in the baseline setting,
and therefore, baseline model results may differ). Table xx outlines the results for the unguided set-
ting. The results show that the HYDRASUM model performs on par with the baseline model along
all quality dimensions measured, even outperforming it in terms of factuality for both NEWSROOM
and XSUM. This agrees with our results from 1 which similarly shows that both the baseline and
HYDRASUM model summaries have similar quality.

G RELATED WORK - EXTENDED

Prior work in controllable text generation can be broadly divided into two categories: ’content’
control and ’style’ control. The former body of work aims to influence the content-selection of the
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Figure 10: Interface of the Mechanical Turk Task

summarization model, using control variables like keywords (He et al., 2020), queries (Abacha et al.,
2021), or even explicit fine-grained content plans e.g. entity-chains (Narayan et al., 2021; Elsahar
et al., 2021). These approaches primarily provide ’content-plans’ as additional textual inputs to the
model, and hence there task formulation differs significantly from our paper. Instead, we focus on a
different subset of surface-level summary properties, like length, specificity, readability, etc. that do
not target content selection per se. Recently, GeDi (Krause et al., 2021) proposed using small LMs
as generative discriminators for specific attributes (e.g. toxicity) to guide the generation of larger
models. Similar class-conditional language models approaches (CC-LMs) have been previously
proposed (Keskar et al., 2019; Ficler & Goldberg, 2017) to fine-tune models on specific attributes.
HYDRASUM models can disentangle styles within the task-specific dataset without explicit style
annotations (unguided setting), as well as cover the generation space between two ‘extreme’ styles
(e.g. intermediate abstractiveness level by controlling gate values).

Prior work on ’style’ control of text summarization models is discussed in the main body of the
paper (see 4). These usually focus on attributes like length (Fan et al., 2018a; Song et al., 2021),
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abstractiveness (Song et al., 2020), etc. However, approaches proposed in these works are over-
specialized towards the target style and cannot be generalized to more control attributes, or adapted
to the multi-control setting. Our HYDRASUM approach, on the other hand, is easily generalizable.
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