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R4D-planes: Remapping Planes For Novel View Synthesis and
Self-Supervised Decoupling of Monocular Videos

Anonymous Authors

ABSTRACT
The tasks of view synthesis and decoupling dynamic objects from
the static environment for monocular scenes are both long-standing
challenges in CV and CG.Most of the previous NeRF-basedmethods
rely on implicit representation, which require additional supervi-
sion and training time. Later, various explicit representations like
multi-planes or 3D gaussian splatting have been extended and ap-
plied to the task of novel view synthesis for dynamic scenes. They
introduce an additional time dimension or a deformation field into
the original representation to encode dynamics. Due to the effec-
tive explicit representations, these methods greatly reduce the time
consumption, but still fail to achieve high rendering quality in some
scenes, especially for some real scenes. For the latter decoupling
problem, previous neural radiation field methods require frequent
tuning of the relevant parameters for different scenes, which is
very inconvenient for practical use. We consider above problems
and propose a new representation of dynamic scenes based on
tensor decomposition, which we call R4D-planes. The key to our
method is remapping, which compensates for the shortcomings of
the plane structure by fusing space-time information and remap-
ping to new indexes. Furthermore, we implement a new decoupling
structure, which can efficiently decouple dynamic and static scenes
in a self-supervised manner. Experimental results show our method
achieves better rendering quality and training efficiency in both
view synthesis and decoupling tasks for monocular scenes.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Com-
puter vision.

KEYWORDS
Neural Radiance Field, View Synthesis, Self-supervised Decoupling,
Monocular Video

1 INTRODUCTION
How to accurately reconstruct and render a 3D scene is a long-
standing and important issue in computer vision and computer
graphics, related technologies can be widely applied in fields such
as augmented reality/virtual reality (AR/VR), movies, games, and
others. Recently, with the development of neural rendering, many
methods based on Neural Radiance Field(NeRF)[16] have emerged,
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demonstrating impressive performance in both reconstruction ac-
curacy and rendering quality with only multi-view images and
corresponding camera position information. However, it cannot be
ignored that data in the form of dynamic monocular video is the
most common and easily accessible form for a variety of real-life
situations with practical capture conditions.

Many current approaches for dynamic scenarios extend on the
basis of static implicit representations. However, implicit represen-
tations rely on large MLPs[13, 14, 18, 19, 21, 29, 33], which typically
incur significant training and inference time. At the same time, the
nature of MLP causes the radiance field to be unable to effectively
capture the high frequency signals in the scene.

In order to improve the rendering efficiency of NeRF, researchers
have proposed various improvement strategies, such as improved
sampling strategies or pre-computation . Later, a number of differ-
ent explicit representations have been explored, including voxels[2,
17, 25], low-rank tensor decomposition[4, 10], 3D Gaussians[12],
etc. These representations lead to breakthroughs in rendering effi-
ciency, some even enabling real-time rendering. In terms of quality
improvement, Mip-NeRF effectively reduces aliasing artifacts and
dramatically improves the ability to express fine details, its core idea
has subsequently been applied in related explicit representations,
including voxels[2], tri-planes[10], and 3D Gaussians.

These representations are quickly extended to dynamic scenes,
unlike implicit representations, explicit structures usually greatly
reduce time consumption, but increase memory overhead. Most
of them use hybrid methods[3, 5, 6, 9], which typically extract
features using explicit structures and decode them using a small
MLP. Representations in these methods are usually in the form of
voxel mesh or its decomposition, which still presents some incon-
veniences when dealing with dynamic scenes. For example, simply
extending the voxel grid to four dimensions will lead unafford-
able memory consumption, while this problem can be alleviated
by employing decomposed representations, tensor decomposition
structures need to be low-rank, which are often difficult to optimize
due to lack of constraints in dynamic monocular scenes. Another
methods follow the pipeline of 3D Gaussian Splatting(3DGS), using
4D gaussians[31] or deformable 3D gaussians[27, 30] to represent
the dynamics, but cases show they fail to modeling large motions
and rapid scene changes. Therefore, there are still some problems
in monocular scenes. Using additional supervision, such as optical
flow[14, 15], depth[1, 14, 15], etc. would be of great help, but in
practical situations those are often not easily obtained.

We consider the above problems andmake further improvements
to the multi-plane representation based on tensor decomposition. In
general, the tensor decomposition structure is sparse and low-rank.
However, optimizing such a low-rank grid is not straightforward,
studies[8, 32] have shown that optimization can be stable only
when the frame of representation aligns with the scene or signal
structure. On the other hand, for data in the form of monocular

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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videos, there must be an information interaction mechanism be-
tween the video frames to maintain the consistency of geometry.
Previous multi-plane methods[3, 6] ignored above factors, resulting
in poor rendering quality and geometry in monocular scenes.

In this paper, we propose a new representation of dynamic scenes
based on tensor decomposition. We focus on exploiting spatial lo-
cation and temporal information by remapping the 4D coordinates
through the remapping net, which allows for a better fusion of the
spatio-temporal information with the explicit planes. By remap-
ping, we achieve a separation of the scene from the explicit rep-
resentation (position of sampling point in the scene is not same
as explicit representation), which makes the alignment condition
non-essential and reduces the difficulty of optimization. Except for
the task of view synthesis, we also designed a new structure for
the self-supervised decoupling task, greatly reducing the time cost,
and achieving promising performance in decoupling and synthesis
results.

In summary, the main contributions of this work are as follows:
•A new representation of dynamic scenes, which extracts the fea-

ture by the new 4D coordinates after remapping, can overcome the
shortcomings of previous methods and achieve realistic rendering
results.

• A new explicit structure for dynamic and static self-supervised
decoupling and its optimization strategies, showing better efficiency
and decoupling results.

• Experiments show that our method is simple and effective,
bridges the gap of previous multi-plane methods on monocular
data, and achieves high-quality results on multiple datasets without
additional supervision.

2 RELATEDWORK
2.1 Explicit Representations for Dynamic

Scenes
Explicit representations have beenwidely applied to dynamic scenes,
voxel is an effective way to do this. Tineuvox[5] uses a deformation
net and replaces theMLP for static canonical space with a voxel grid.
NeRFPlayer[24] shows that the time dimension cannot simply be
introduced, which would make the memory consumption of long
videos unaffordable. Temporal interpolation NeRF[20] suggests
modeling different time periods separately and then performing
temporal interpolation to get the results, but this does not seem to
work for all scenarios. The VM decomposition in TensoRF[4] makes
voxel representation much less consuming, and K-planes, Hexplane,
and Tensor4D[3, 6, 23] decompose dynamic scenes based on this
low-rank decomposition with 2D tensors. HumanRF[11] defines
4D feature grids as a decomposition of four 3D and four 1D fea-
ture grids and uses adaptive temporal partitioning to model human
motion. However, without additional supervision, for monocular
video, especially in real-world scenes, although these decomposi-
tion methods can cope with some topology changes and reduce the
time overhead, the results are not comparable to previous methods,
thus they are more likely to be used in multi-view settings. Recently,
due to the excellent performance of 3DGS[12], some recent work
has extended it to dynamic scenes as well. Similar to NeRFs, some
replace the 3D gaussians with 4D gaussians and others introduce a

Figure 1: Overview of the remapping approach for view syn-
thesis task, instead of using (𝑥,𝑦, 𝑧, 𝑡) for feature extraction in
the structure, we remapped the sampled 𝑥𝑦𝑧𝑡 and use the new
coordinate (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝜏) for feature extraction. The features
are then decoded into color 𝑐 and density 𝜎 . See supplemen-
tary material for detailed net structure.

deformation field. However, current works seem to have difficulty
in modeling large motions and rapid scene changes.

2.2 Decoupled 3D Representation
To reduce the complexity of dynamic scenes, there are already
some approaches that tend to model dynamic objects and static
backgrounds separately, but they aim to improve the quality of the
rendering rather than cleanly decoupling the static and dynamic
parts at the same time[14]. STaR[33] proposes a framework for self-
supervised decoupling and reconstruction of moving objects and
scenes, but it is only suitable for a single rigidly moving object and
requires multi-view videos. Using HyperNeRF[19] and NeRF[16] to
model the dynamic foreground and static background respectively,
D2NeRF[28] achieves self-supervised decoupling of dynamic and
static objects and clean rendering results of both through a series
of loss functions and hyperparameters. However, apart from the
time it takes, the noise in static rendering caused by the occlusion
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of dynamic objects cannot be ignored. In addition, frequent tuning
of the hyper-parameters for different scenes definitely makes the
application more difficult. SUDS[26] advantages the method in
D2NeRF and applies it to large-scale scenarios, building a large-
scale dynamic NeRF supervised by signals such as radar, optical flow,
etc., and enabling downstream tasks such as viewpoint synthesis,
3D scene flow estimation, etc. RobustNeRF[22] models distractors
in training data as outliers of an optimization problem, and removes
outliers from the scene to get a clean static rendering result, but
the distractor is the same or different target in frames, rather than
an object moving continuously over time.

3 METHOD
In this section, we first review the general architecture of multi-
plane representations(Sec.3.1). We then describe the implementa-
tion of the remapping method and illustrate the representation for
view synthesis task(Sec.3.2). We show the newly proposed struc-
ture for the dynamic and static decoupling task, which is based on
tensor decomposition(Sec.3.3). Finally, we show the optimization
details in experiments(Sec.3.4).

3.1 Review of Multi-plane Representation
Most of the neural radiation fields based on explicit representations
employ the form of hybrid neural fields i.e., for sampled points in
space, interpolation is performed at the corresponding positions
in the explicit representation to obtain the latent features, then
they will be decoded by a small MLP to obtain the attributes of the
radiance field, color or density. This hybrid structure gives a unique
advantage to the neural radiance field, achieving good performance
in terms of quality and efficiency of rendering.

The multi-plane representation also follows the hybrid structure
described above, with a decomposition of the tensor representing
the latent feature volume in it. The original dense grid is decom-
posed into a series of low-dimensional factors, which greatly re-
duces memory consumption and makes the structure more compact
and efficient. The sampled points in the space are projected into
the corresponding low-dimensional coordinate space, and the la-
tent features are obtained by interpolating over the projected point
positions,then feature aggregation such as concatenation, multi-
plication, or addition will be performed to obtain the actual latent
features 𝐷 . The process can be expressed as:

𝑫 = Aggr
( [
Interp𝑭 1 (Proj1 (𝒑))

]
, . . . ,[

Interp𝑭 𝐹
(Proj𝐹 (𝒑))

] )
.

(1)

where Aggr denotes the aggregation process, Proj denotes projec-
tion, Interp denotes interpolation, 𝑝 is the position of the sampled
points, 𝐹1, ...𝐹𝐹 denotes the corresponding low-dimensional factors.

For the 4D representation of a dynamic scene, it is usually decom-
posed into the form of Hexplane[3]. It uses six learnable parameter
planes to encode temporal and spatial information. For a sampled
point (𝑥,𝑦, 𝑧, 𝑡) in space at a given moment, it will be projected
onto the six planes including XY-ZT, YZ-XT, XZ-YT and the feature

vectors of the point will be computed by the following form:

D =

𝑅1∑︁
𝑟=1

𝑀𝑋𝑌
𝑟 ⊙ 𝑀𝑍𝑇

𝑟 ⊙ 𝑣1𝑟 +
𝑅2∑︁
𝑟=1

𝑀𝑋𝑍
𝑟 ⊙ 𝑀𝑇𝑌

𝑟 ⊙ 𝑣2𝑟

+
𝑅3∑︁
𝑟=1

𝑀𝑌𝑍
𝑟 ⊙ 𝑀𝑋𝑇

𝑟 ⊙ 𝑣3𝑟 ,

(2)

where 𝑀𝐴𝐵
𝑟 ∈ R𝐴𝐵 is the feature in the corresponding plane

after interpolation, 𝐷 is the feature vector that will be decoded.

3.2 R4D-plane Representation for Monocular
data

In this section, we present our framework for dynamic monocular
reconstruction. Previous representation based on tensor decompo-
sition, such as Hexplane[3], have shown limitations in monocular
settings. The structure lacks an information sharing mechanism be-
tween frames, cannot exploit the information in different frames to
constrain the object reconstruction. On the other hand, due to lack
of constraints in monocular dynamic scenes, optimizing the tensor
to be low-rank is hard. In fact, in dynamic scenes, the color and
density can change abruptly in space and time, Total Variational
(TV) loss cannot effectively impose constraints in this case, instead
it makes neighboring feature in the structure similar. Furthermore,
representations like voxel or tri-plane using 𝑥𝑦𝑧𝑡 coordinates are
difficult to capture high-frequency signals due to interpolation at a
limited resolution. Previous work use multi-resolution in space to
alleviate this problem, but our work takes a different approach.

As shown in Fig.1, when a point 𝑝 in a ray with direction (𝜃, 𝜙) is
sampled at (𝑥,𝑦, 𝑧, 𝑡). The time t will be first encoded by a small MLP
F and then concatenated with the position encoding of (𝑥,𝑦, 𝑧) into
the remapping MLP G to obtain the new coordinate (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝜏).
Among them,𝜏 is activated by 𝑡𝑎𝑛ℎ, compressing its range to [-1,1]:

G(𝛾 (𝑥,𝑦, 𝑧), F (𝛾 (𝑡))) = (𝑟𝑥 , 𝑟𝑦, 𝑟𝑧 , 𝜏) (3)

where 𝛾 is the position encoding:

𝛾 (𝑥) = (𝑠𝑖𝑛(20𝑥), 𝑐𝑜𝑠 (20𝑥), ..., 𝑠𝑖𝑛(2𝐿−1𝑥), 𝑐𝑜𝑠 (2𝐿−1𝑥)) (4)

where 𝐿 is a hyperparameter which controls frequency of the en-
coding.

Remapping has two main functions: firstly, it fuses information
from time and space, introducing a mechanism for sharing infor-
mation across frames. Secondly, the interpolation position is also
optimized compared to direct indexing using fixed 𝑥𝑦𝑧𝑡 coordinate,
which means that the original samples are reconfigured and have
different scales in the new dimension.

Then we project it onto these six planes and use linear interpo-
lation to get the density feature:

D =P
𝑅𝑥𝑅𝑦𝐹
𝜎,𝑟𝑥𝑟𝑦 ◦ P𝑅𝑧𝑇𝐹𝜎,𝑟𝑧𝜏 + P𝑅𝑥𝑅𝑧𝐹

𝜎,𝑟𝑥𝑟𝑧 ◦ P𝑅𝑦𝑇𝐹
𝜎,𝑟𝑦𝜏

+ P
𝑅𝑦𝑅𝑧𝐹
𝜎,𝑟𝑦𝑟𝑧 ◦ P𝑅𝑥𝑇𝐹

𝜎,𝑟𝑥𝜏

(5)

and appearance feature A :

(P𝑅𝑥𝑅𝑦𝐹
𝑐,𝑟𝑥𝑟𝑦 ◦ P𝑅𝑧𝑇𝐹𝑐,𝑟𝑧𝜏 , P

𝑅𝑥𝑅𝑧𝐹
𝑐,𝑟𝑥𝑟𝑧 ◦ P𝑅𝑦𝑇𝐹

𝑐,𝑟𝑦𝜏 , P
𝑅𝑦𝑅𝑧𝐹
𝑐,𝑟𝑦𝑟𝑧 ◦ P𝑅𝑥𝑇𝐹

𝑐,𝑟𝑥𝜏 ) (6)

where ◦ is outer product, P𝑅𝑥𝑅𝑦𝐹
𝜎,𝑟𝑥𝑟𝑦 ∈ R𝑅𝑥𝑅𝑦𝐹 is the corresponding

feature in each plane. Feature A and D are eventually decoded
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Figure 2: The structure for decoupling of static and dynamic task. We are the first to decouple the static and dynamic parts
for monocular video in a self-supervised manner using explicit representation. We use the remapping representation as the
dynamic component, and for the static component, we follow the vm decomposition in TensoRF[4] to represent the static
space, since it does not include the time dimension.

into color and density by a direct sum or a tiny MLP.
Is remapping block a deformation field? Although we use an
MLP to output a set of values about coordinates, the idea of remap-
ping has no relation to deformation fields. For the method of recon-
structing dynamic scenes using a deformation field, the key is to
map the sampled point 𝑝 given a moment(𝑝 ∈ R4) into a canonical
space 𝐻 (𝐻 ∈ R3), compressing the originally four-dimensional
space into a three-dimensional canonical space. This assumes that
any point in the originally four-dimensional space must have a
counterpart in the canonical space. But for some cases this assump-
tion is not correct.

In contrast, our method is a remapping of the position, a trans-
formation of the entire domain, a mapping from four dimensions to
four dimensions, with no loss of information in scenes, and experi-
ments have demonstrated that our method is effective in capturing
topological changes, which is difficult for deformation methods.

3.3 Decoupling of Static and Dynamic Objects
In the case of dynamic-static decomposition, we follow the above
structure as our dynamic representation, the structure is shown
in Fig.2. For the static background we use the VM decomposition
in TensoRF[4] and set the dimensions of vector and matrix to the
same as the dynamic one:

D𝑠𝑡 = v𝑋𝐹
𝜎,𝑥 ◦M𝑌𝑍𝐹

𝜎,𝑦𝑧 + v𝑌𝐹𝜎,𝑦 ◦M𝑋𝑍𝐹
𝜎,𝑥𝑧 + v𝑍𝐹𝜎,𝑧 ◦M𝑋𝑌𝐹

𝜎,𝑥𝑦 (7)

and

A𝑠𝑡 = (v𝑋𝐹
𝑐,𝑥 ◦M𝑌𝑍𝐹

𝑐,𝑦𝑧 , v
𝑌𝐹
𝑐,𝑦 ◦M𝑋𝑍𝐹

𝑐,𝑥𝑧 , v𝑍𝐹𝑐,𝑧 ◦M𝑋𝑌𝐹
𝑐,𝑥𝑦 ) (8)

Static and dynamic components have their own decoders S𝑠𝑡

and S𝑑𝑦 :

S𝑠𝑡
𝑑𝑒𝑛𝑠𝑖𝑡𝑦

(D𝑠𝑡 ) = 𝜎𝑠𝑡 ,S𝑠𝑡
𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 (A𝑠𝑡 ) = 𝑐𝑠𝑡 (9)

For dynamic component:

S𝑑𝑦

𝑑𝑒𝑛𝑠𝑖𝑡𝑦
(D) = 𝜎𝑑𝑦,S𝑑𝑦

𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 (A) = 𝑐𝑑𝑦 (10)

then the pixel colour 𝐶 at a given frame is calculated by volume
rendering:

𝐶 (r) =
𝑁∑︁
𝑖=1

T𝑖
(
𝛼𝑠𝑡𝑖 𝑐𝑠𝑡𝑖 + 𝛼

𝑑𝑦

𝑖
𝑐
𝑑𝑦

𝑖

)
(11)

where T𝑖 = exp ©«−
𝑖−1∑︁
𝑗=1

(
𝜎𝑠𝑡𝑗 + 𝜎

𝑑𝑦

𝑗

)
𝛿 𝑗

ª®¬ (12)

𝛼𝑠𝑡𝑖 = 1 − exp
(
−𝜎𝑠𝑡𝑖 𝛿𝑖

)
(13)

and 𝛼𝑑𝑦
𝑖

= 1 − exp
(
−𝜎𝑑𝑦

𝑖
𝛿𝑖

)
(14)

In this setup, dynamic and static scenes can naturally be rendered
individually, following the body rendering equations:

𝐶𝑑𝑦 (r) =
𝑁∑︁
𝑖=1

T𝑑𝑦

𝑖

(
𝛼
𝑑𝑦

𝑖
𝑐
𝑑𝑦

𝑖

)
(15)

where T𝑑𝑦

𝑖
= exp ©«−

𝑖−1∑︁
𝑗=1

(
𝜎
𝑑𝑦

𝑗

)
𝛿 𝑗

ª®¬ (16)

and

𝐶𝑠𝑡 (r) =
𝑁∑︁
𝑖=1

T 𝑠𝑡
𝑖

(
𝛼𝑠𝑡𝑖 𝑐𝑠𝑡𝑖

)
(17)

where T 𝑠𝑡
𝑖 = exp ©«−

𝑖−1∑︁
𝑗=1

(
𝜎𝑠𝑡𝑗

)
𝛿 𝑗

ª®¬ (18)
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Figure 3: Qualitative comparison in synthetic scenes

3.4 Optimization Details
Loss. For monocular view synthesis, the optimization objective is:

L = L𝑐 + 𝜆𝑡𝑣L𝑡𝑣 (19)

L𝑐 (r) = ∥𝐶 (r) −𝐶 (r)∥22 (20)

L𝑡𝑣 (P) =
1

|𝐶 |𝑛2
∑︁
𝑐,𝑖, 𝑗

(P𝑖, 𝑗𝑐 − P𝑖−1, 𝑗𝑐

2
2
+

P𝑖, 𝑗𝑐 − P𝑖, 𝑗−1𝑐

2
2

)
(21)

where r is the sampled ray, 𝑖, 𝑗 are indices on the plane’s resolution.
In the conditions of this task, we only set the MSE loss and the
TV loss without adding any additional regularization in order to
demonstrate the robustness of our method.

For the self-supervised decoupling of static and dynamic, the
loss is:

L = L𝑐 + 𝜆𝑡𝑣 (L𝑠𝑡
𝑡𝑣 + L𝑑𝑦

𝑡𝑣 ) + 𝜆𝑠L𝑠 + 𝜆𝑑L𝑑 (22)

L𝑠 (r) =
1
𝑁

𝑁∑︁
𝑖=1

𝐻
©«

𝜎
𝑑𝑦

𝑖

𝜎
𝑑𝑦

𝑖
+ 𝜎𝑠𝑡

𝑖

𝑘ª®®¬ (23)

where 𝐻 (𝑥) = −(𝑥 · log(𝑥) + (1 − 𝑥) · log(1 − 𝑥))

L𝑑 (r) = max

(
𝜎𝑑𝑦

𝜎𝑠𝑡 + 𝜎𝑑𝑦

)
(24)

L𝑑 and L𝑠 are losses that help decouple scenes in D2NeRF[28]. In
fact, it can be seen in the framework that for the dynamic compo-
nent part of it, the representation of the scene is higher than for the
static part. Indeed, for the decoupling task in neural radiance field,
dynamic components will inevitably have greater expressive power
than static components.This can lead to the fact that during decou-
pling, dynamic components tend to incorrectly decouple the static
in the scene as dynamic. In D2NeRF[28] the authors control the
shift of the extremes ofL𝑠 by adjusting the hyperparameter 𝑘 . Thus,
the dynamic part is suppressed and the density is preferentially
decoupled to static. However, this parameter is not deterministic
and needs to be readjusted for different scenarios to determine an
optimal value, which makes the application of decoupling impracti-
cal.

Our goal is to achieve a more robust decoupling of the radiance
field, so we no longer rely on the hyperparameter 𝑘 . In all the ex-
periments of the scenarios, we set it uniformly to 1.5. Instead we

propose a new optimization strategy, called different low-density
initialization.
Different low-density initialization. For the decoupling settings,
we propose to use different low-density initializations for static and
dynamic components. Specifically, we use the 𝑠𝑜 𝑓 𝑡𝑝𝑙𝑢𝑠 function
to activate the density values, and add an additional offset 𝑏, for
𝜎 = softplus(𝜎 + 𝑏), we set the 𝑏 in the dynamic component much
lower than the static, which can help to better decouple the dynamic
from the static, and alleviate the dependence of self-supervision
method on hyperparameter tuning.
Coarse to fine training. A coarse-to-fine sampling scheme is also
used. Unlike [3, 5, 6], since we use the new four-dimensional coor-
dinates after remapping, we progressively increase the resolution
of all four dimensions. During training, we keep a mask to record
low-density points in spacetime and skip these samples.
Feature decoder. For synthetic scenes, we use MLP as the density
decoder; for real scenes, we directly sum the features to obtain
the density. In both scenes, we use a small MLP as the appearance
decoder.
Windowed positional encoding. We change the position coding
to windowed position coding proposed in [19] in the decoupling
task for real scenes. The window function is:

𝑤 𝑗 (𝛼) =
1 − cos(𝜋 clamp(𝛼 − 𝑗, 0, 1))

2
(25)

where 𝑗 ∈ {0, . . . ,𝑚 − 1} is the index of the frequency band, and
𝛼 ∈ [0,𝑚] is linearly increasing. We use it for encoding the spatial
coordinates before remapping and the appearance feature in the
task of decoupling.

4 EXPERIMENTS
We experimented with our method on view synthesis and decou-
pling tasks in the monocular dataset. All experiments are imple-
mented with PyTorch on an RTX 3090 GPU. The learning rate for
feature planes is 0.02, and the learning rate for neural networks is
0.001 except for remapping net, which is 0.0007. All learning rates
are exponentially decayed and kept in the same settings in all exper-
iments. Please see supplementary material for visual comparisons
of ablation experiments, detailed metrics and renderings.
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Figure 4: Qualitative comparison in real scenes

4.1 Monocular Novel View Synthesis Results
For novel view synthesis, we used the 360° D-NeRF[21] dataset for
synthetic scenes and the HyperNeRF[19] dataset for realistic scenes,
respectively.

D-NeRF dataset is a monocular synthetic 360° dataset contain-
ing eight different dynamic scenes, each under large deformations
and realistic non-Lambertian materials. The training set consists of
50 to 200 frames and the test set consists of 20 frames, each with a
precise timing record.We set 𝐹 = 48 for the appearance plane and
𝐹 = 24 for the density plane,starts with 643 for space resolution
and 0.25 × frames for time resolution and upsamples at 3k, 6k, 9k
to 2003 and 0.5 × frames,which is consistent with [3]. We show
our results in Table 1, the results show that our method achieves
better results in each metric compared to previous SOTA methods
using this dataset including NDVG, V4D, Tineuvox, Hexplane, K-
planes, D-NeRF and Temporal interpolation NeRF[3, 5–7, 9, 20, 21],
and most recent method 4DGS[27], GS4D[31].See Supplementary
Material for more detailed results and settings.

HyperNeRF dataset contains video sequences from mobile
phones. There are four sequences of validation rig scenes that were
recorded using two vertically aligned mobile phones. Unlike the
D-NeRF dataset, the HyperNeRF dataset does not have a precise
time record; it uses the sequential ids of the frames as time infor-
mation. We set 𝐹 = 24 for the appearance plane and 𝐹 = 8 for
the density plane, use summation instead of MLP to compute the
density, and upsample resolution at 2k, 4k, 6k, and 8k. We show our
results in Table 2, and please see Fig.4 for a visual comparison. We
show in detail the relevant metrics and rendering pictures, which
show that we have achieved better results. In addition we show the
limitations of the current dynamic representation methods based
on Gaussian splatting, which include deformable 3DGS[30] as well
as 4DGS[27], these methods are not able to model rapid motions in
the scene, such as the material columns of the printer, while our
method can accurately reconstruct them. Please see more examples
in supplementary material. It is worth mentioning that deformable
3DGS attributes this to the inaccuracy of the camera poses of the
HyperNeRF dataset, this claim is inaccurate, since the static scene is
reconstructed. Note that we do not and cannot use the deformation

Table 1: Quantitative Results on D-NeRF dataset[21]

Method PSNR ↑ SSIM ↑ LPIPS ↓
Tineuvox[5] 32.67 0.97 0.04
NDVG[9] 31.31 0.97 0.046
V4D[7] 33.72 0.98 0.02
Hexplane[3] 31.04 0.97 0.04
K-planes-explicit[6] 30.39 0.96 -
K-planes-hybrid[6] 30.84 0.96 -
D-NeRF[21] 30.50 0.95 0.07
T-interpolation NeRF[20] 32.73 0.97 0.03
4DGS[27] 34.05 0.98 0.02
GS4D[31] 34.09 0.98 -
ours w/o remapping 31.20 0.97 0.04
ours 34.96 0.98 0.02

supervision provided in HyperNeRF[19] in the same way as other
methods based on the deformation field.

4.2 Decoupling of Dynamic and Static Objects
from a Monocular Video

We followed the dataset in D2NeRF[28], including some scenes in
HyperNeRF[19] and new scenes. In keeping with the view synthesis
settings, we test all of the vrig(validation rig) datasets include eight
challenging real scenes. The corresponding experimental settings
are consistent with view synthesis settings in real scenes. Due to the
lack of relevantmetrics tomeasure the effect of decoupling, we show
the metrics for the synthetic result as well as a comparative picture
of decoupling. The results show that our method takes the lead in
both final synthesis metrics and training efficiency. Although we
set the same hyperparameters for all scenes, we achieve comparable
decoupling results,which proves the effectiveness of our strategies.
In addition, the static backgrounds produced by D2NeRF always
have noise in the occluded part of the dynamic object, which is not
present in our method.
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Figure 5: Visual decoupling comparison of ours andD2NeRF. In each part Left:static, Right top:dynamic, Right bottom: composite
rendering. In static renderings, the decoupling region of D2NeRF always contains dense noise, which is not present in our
approach.

Table 2: Quantitative Results on HyperNeRF dataset[19]

V4D[7] HyperNeRF[19] NDVG[9] Tineuvox[5] T-interpolation[20] 4DGS[27] ours
PSNR ↑ 24.8 22.4 23.3 24.3 24.35 25.2 25.28
MS-SSIM ↑ 0.832 0.814 0.823 0.837 0.866 0.845 0.871

Table 3: Synthesis Results in the Decoupling Experiments

PSNR ↑ MS-SSIM ↑ Training Time ↓
ours 26.79 0.94 50 minutes
D2NeRF[28] 24.80 0.88 5∼6 hours

4.3 Ablation Study
We performed ablation experiments on the remapping block on the
D-NeRF dataset[21]. see Table 1, and please see Fig.6 for a visual
comparison. The plane structure without remapping suffers from
serious shortcomings in some monocular scenes.

For the decoupling task, we performed ablation experiments on
the D2NeRF dataset for the initialization strategy proposed in this
paper. Without tuning the hyperparameters in the loss, our pro-
posed initialization strategy significantly improves the effectiveness
of decoupling. In contrast, the radiance field without initialization
cannot be effectively decoupled in a self-supervised manner.

5 LIMITATION
Although our proposed remapping plane achieves good results in
the tasks of novel view synthesis as well as dynamic and static
decoupling, it still has shortcomings. In fact, since our method still
follows volume rendering, compared to the current state-of-the-art
3D Gaussian splatting, for rendering speed, the 3D Gaussian splat-
ting is much faster than the methods based on volume rendering,

Figure 6: Ablation study of the remapping.
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Figure 7: ablations of the initialization in the decoupling task

although in some scenes, our method is able to maintain compa-
rable training speeds to the 3D Gaussian based representations.
The trade-off between quality and efficiency remains an issue for
subsequent researchers to consider.

6 CONCLUSION
We propose R4D-plane, which addresses the shortcomings of the
plane structure by using the new 4D domain and its coordinates
after remapping. In addition to view synthesis task, we extend it
to dynamic-static decoupling. Experimental results of both tasks
show the effectiveness of our approach, it significantly improves the
rendering quality in monocular scenes and achieves faster and bet-
ter dynamic-static decoupling compared to the previous approach.
We hope that R4D-planes can contribute to the subsequent related
work.
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