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Figure 1: We present UNIGP, a Diffusion Transformer-based framework that simultaneously models
RGB and dense distributions within a single framework, supporting: (a) Text to Image, Depth, and
Surface-Normal joint generation; (b) Joint depth and surface-normal estimation; (¢) Multi-condition

(c) Multi-Condition Text-to-Image Generation

text-to-image generation; and (d) Image restoration.

1

In recent years, large-scale Text-to-Image (T2I) Diffusion models (Rombach et al. 2022; [Esser]

ABSTRACT

Recent advances in diffusion models have shown impressive performance in con-
trollable image generation and dense prediction tasks (e.g., depth and normal esti-
mation). However, existing approaches typically treat diffusion-based controllable
generation and dense prediction as separate tasks, overlooking the potential benefits
of jointly modeling the different distributions. In this work, we introduce UNIGP,
a framework built upon MMDIT, which unifies controllable generation and dense
prediction through simple joint training, without the need for complex task-specific
designs or losses, while preserving the backbone’s versatile priors. By learning
controllable generation and prediction under different conditions, our model effec-
tively captures the joint distribution of image-geometry pairs. UNIGP is capable of
versatile controllable generation (as ControlNet), dense prediction (as Marigold)
and joint generation (as JointNet). Specifically, the proposed UNIGP consists of
DUGP and a unified dataset training strategy. The former, following the principle
of Occam’s razor, uses only a copied image branch of MMDIiT to model dense
distributions beyond RGB, while the latter integrates different types of datasets
into a unified training framework to jointly model generation and perception tasks.
Extensive experiments demonstrate that our unified model surpasses prior unified
approaches and comparable with specialized methods. Furthermore, we show that
through multi-task joint training, the performance of controllable generation and
dense prediction can mutually enhance each other.

INTRODUCTION

et al.] 2024; [Midjourney|, [2024; [Huang et al., [2025) have attracted significant attention for their
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exceptional performance in high-quality image generation. With advancements in generation quality,
the community has increasingly focused on exploring more downstream tasks based on pretrained
T2I models. These downstream tasks can be divided into two major categories: 1) Diffusion-based
controllable generation: ControlNet (Zhang et al.,|2023) introduced the use of external conditions
(e.g., depth, normal, and canny) to control the T2I model’s generation. 2) Diffusion-based dense
prediction: Marigold (Ke et al., 2024) adapted T2I models to dense prediction tasks, such as
monocular depth estimation, with later works extending this paradigm to normal estimation (Ye et al.,
2024)) or joint depth-normal estimation tasks (Garcia et al., 2024} [Fu et al., [2025)).

Although these methods have achieved remarkable results independently, they only model the
transition within single distribution, limiting them to simple, single-task scenarios. Previous work,
JointNet (Zhang et al., 2024), aimed to model multiple distributions simultaneously through intricate
architectural design. While this approach resulted in a significant increase in parameter count, it
achieved results that were not as optimal as intended. Recent works including UniCon (Li et al.,
2024), OneDiffusion (Le et al.,[2025) and JoDi (Xu et al., 2025) explored how to model the joint
distribution but ignored the potential connection between perception and generation tasks, resulting
in suboptimal performance compared to diffusion-based expert models.

In this paper, we propose UNIGP, a unified diffusion transformer (DiT) model that learns the global
joint distribution of different modalities of an image with a flexible architecture. First, we adopt
the Multi Modal DiT (MMDIiT) framework (Esser et al.,|2024) and introduce an effective weight
initialization strategy. Following the principle of Occam’s razor, we introduce disentangled unified
generation and perception branch (DUGP), which only copies the image branch from MMDiT to
model distributions beyond RGB. Second, we propose a unified dataset and training strategy that
combines datasets for both generation and perception tasks. By employing a binary loss weighting
strategy, the model learns generation and perception tasks simultaneously without requiring task-
specific model designs or losses. Third, we demonstrate through ablation studies that joint training of
perception and generation tasks within a single framework leads to mutual improvement. Compared
to representative controllable generation methods, our approach attains higher-quality controllability
with less data. Unlike mainstream dense prediction methods, it preserves the backbone’s generative
capacity, mitigating catastrophic forgetting and enabling more accurate detail perception. As shown
in Fig.|1} UNIGP supports various tasks within a single model: 1) text-to-image, depth and surface-
normal joint generation; 2) joint depth and surface-normal estimation; 3) multi-conditon to image
generation; and 4) image restoration.

To summarize, our main contributions are three-fold:

* We present UNIGP, an MMDiT-based framework that unifies generation and perception by
jointly modeling multiple distributions. Following Occam’s razor, UNIGP reuses only the
image modeling components and parameters from the backbone for initialization, achieving
stronger performance with fewer parameters.

* We propose a unified dataset and training strategy that seamlessly integrates the generation
and perception datasets into a single training process, enabling UNIGP to efficiently learn
both tasks.

» Extensive experiments demonstrate the superiority of UNIGP, surpassing existing unified
models and performing on par with task-specific expert models. Moreover, we have shown
that joint training of perception and generation yields mutual performance gains.

2 RELATED WORK

Controllable Diffusion Models. Controllable diffusion models are an important research direction
aimed at using external conditions to control diffusion model generation. Representative works (Zhang
et al.,|2023; Mou et al.,[2024; Mo et al.,[2024) propose general frameworks for processing various
spatial conditions. ControlNet (Zhang et al., |2023) and its subsequent models (Qin et al., 2024}
Zhao et al.,[2024; |Sun et al.,|[2024b) extend T2I generation by encoding condition signals into latent
representations using a trainable UNet encoder, injected into the backbone via zero convolution.
However, these methods are limited to generation tasks and require large datasets for precise control.
In contrast, our method jointly trains controllable generation and dense prediction tasks, enabling
faster convergence with significantly less data. We propose a novel control design for MMDIT,
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Figure 2: Framework of UNIGP. 1) Our inputs include: a) RGB images; b) Depth and Normal
images; and ¢) Randomly selected condition as described in Sec.[3.1. d) Prompts (omitted for brevity).
2) After VAE encoding and adding noise, the noisy RGB, depth and normal latents are fed into the
backbone’s patcher, while the clean condition latents are passed to the Condition Patcher of DUGP.
Then, the tokens of noisy depth/normal and condition are concated in token-wise and passing through
the Stacked Control Layers and Stacked Perception Layers. 3) Finally, the backbone generates
RGB images, while DUGP generates depth and normal maps.

enhancing control capabilities within the current SOTA diffusion framework and offering new
insights to the community.

Diffusion Models in Perception Tasks. Currently, a notable trend involves adopting pretrained T2I
diffusion models into dense prediction tasks [Vandenhende et al.| (2021); [ Xu et al. (2018), such as
monocular depth estimation and surface normal estimation. Marigold (Ke et al.,|2024) fine-tuned
Stable Diffusion (SD) (Rombach et al.,[2022) to generate precise depth maps conditioned on images,
leveraging SD’s strong geometric and semantic priors. Its success stems from training on high-
quality synthetic datasets with perfect ground truth and smoothly transitioning from text-conditioned
image generation to image-conditioned depth generation, preserving SD’s generalization. Follow-up
works (Gui et al., 2024} |Garcia et al.| 2024} He et al.| 2024} |Ye & Xul [2024; [Fu et al.| 2025} Xu et al.|
2024) on Marigold improve its performance and efficiency. StableNormal 2024) extends
Marigold’s paradigm to surface normal estimation through a two-stage training. GeoWizard
2025) jointly predicts depth and normal using two parallel UNet branches and cross-domain attention.
The above models fine-tune diffusion for perception tasks, quickly losing versatile generative priors
and reducing perception accuracy. Unlike prior works that compromise generation when adapted to
perception, our method bridges generative and perception distributions, preserving generative priors
while learning accurate perception.

Unified Diffusion Models. While less common than controllability or estimation, some works have
pursued unified diffusion to enable a single model to model multiple modalities. LDM3D
2023) jointly generates images and corresponding depth within an RGBD space. JointNet
etal.| adopts a symmetric Unet structure to generate both images and depth, using an inpainting
approach to support both generation and perception tasks. UniCon (L1 et al.,2024) improves upon
JointNet by using fewer additional parameters and an optimized training strategy, providing more ver-
satile capabilities across different scenarios. Moreover, recent works such as OneDiffusion (Le et al.,
2025) and JoDi coarsely model different distributions using attention mechanism in
Transformer and then fine-tune the entire model. However, previous methods treat generation and
perception tasks merely as naive conditional image generation, overlooking the potential synergy
between the two tasks and their differing training needs , resulting in suboptimal results. We demon-
strate that under a tailored training strategy, jointly learning generation and perception distribution
yields mutual gains, achieving optimal results in both tasks.

3 METHOD

To achieve unified generation and perception, we present UNIGP. We outline the preliminaries
and problem setting in Sec. [3.1] and then introduce UNIGP in Sec.[3.2] Built upon the MMDIT
framework, UNIGP jointly models generation and perception while enhancing both.
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Figure 3: Demonstration of representative design paradigms. UNIGP copies only the image branch
from MMDiT to model additional visual distributions while explicitly preserving the backbone’s
versatile priors. JointNet-style duplicates the entire backbone, incurring heavy computation; Marigold-
style fine-tunes the backbone itself, quickly forgetting generative priors.

3.1 PRELIMINARIES AND PROBLEM SETTING

Diffusion Transformer (Peebles & Xiel [2023) replaces the commonly used U-Net backbone in
diffusion models with Transformer (Vaswani et al.,2017). DiT first converts spatial inputs into a
sequence of tokens and then performs denoising through a series of transformer blocks. DiT has
achieved remarkable results in visual synthesis (Esser et al., [2024; [Labs| [2024) . Among these,
MMDIT is a powerful variant of DiT that has been widely adopted in recent SOTA DiT-based visual
generation models (Esser et al., 2024;|Labs| 2024). Specifically, as shown in the dashed box of Fig.
MMDIT models text and image features in two separate branches, applying full attention only once
in each transformer block. We denote the text and image branches as F; and J;, respectively.

Problem Setting. Our model is designed to jointly produce three outputs: an RGB image x and
corresponding depth map d, surface normal map n based on the input text prompt c; and condition c.
We investigate three primary settings for this condition: i) Controllable Generation. The condition
c is a spatial map, such as Depth, Normal and Sketch. The model synthesizes x while inferring its
geometric properties (d, n); ii) Perception. The condition c is an RGB image. In this setting, the
model’s goal is to predict its geometric pairs (d, n); iii) Joint Generation. The condition consists
solely of a text prompt, allowing for joint generation of the image and its geometry from c;. More
formally, our objective is to learn a diffusion model F(c;, c¢) conditioned on the text prompt ¢, and
condition c to generate the corresponding image x, depth d, and surface-normal n.

3.2 UNIGP: UNIFIED GENERATION AND PERCEPTION

UNIGP consists of two parts, with the overall framework illustrated in Fig.[2. In Sec. we
introduce DUGP, which enables our framework to model joint distributions of RGB and its geometry
pairs in a plug-and-play manner. In Sec.[3.2.2, we present the unified dataset and training strategy
designed to facilitate joint training for generation and perception tasks.

3.2.1 DUGP: DISENTANGLED UNIFIED GENERATION AND PERCEPTION BRANCH
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We revisit the MMDIT architecture, as described  Figure 4: The MMDIT block and initialization of
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in design. Although the text branch JF; accounts for half the parameters of F, it cannot model the
visual distribution. Therefore, when modeling additional visual distributions, only the image branch
F; is the necessary entirety in the principle of Occam’s razor. Thus, we only copy a trainable image
branch 7/ based on F; as an additional branch to model the visual distribution related to perception.
As shown in Fig. [ right, the new branch initialized by copying the image branch is referred to as
DUGP. As illustrated in Fig. Ql, We divide DUGP into condition patcher, stacked control layers,
and stacked perception layers, where the control and perception layers consist of m and n blocks
respectively, which sum to the backbone’s [ total layers.

Condition Patcher. To seamlessly integrate the condition c, we introduce a parallel processing path
at the DUGP’s input section. First, we copy the patcher (i.e., the patchify layer) of the original
model, F;. This new layer is then zero-initialized and serves as a dedicated module to process the
control signal c. This design is intended to prevent the control signal from affecting the model during
the early stages of training and learn how to use condition gradually. Concurrently, the original
pre-trained patcher is used to process the noisy depth and normal latents. Finally, the output tokens
of noisy depth and normal latents and condition c are concatenated along the sequence dimension
and fed into F.

Stacked Control Layers. To control the backbone, we enable DUGP to modulate it. First,
DUGP employs the attention mechanism with backbone and shares the backbone’s text branch
Ft. The following describes the attention calculation between DUGP and backbone:

. T
(Au, Au] = Softmax ( [@a, On %Kd’ Kol ) ViV Vil ()
k
. . T
A.c = Softmax (QC [Ki}%’“ KC] > : [W? ‘/tl'y VC]? (2)

In Egs. (E) and @), [+, -] denotes sequence concatenation. (A, Qm, K, Vin) denote the attention
output, query, key, and value projections for modality m respectively.

At the end of each block in the stacked control layers, we obtain the output I of the backbone’s
image branch F;. Additionally, we obtain the condition’s outputs of F/, denoted as C. Following
ControlNet (Zhang et al.,|2023), we add C to I through a zero-initialized linear layer:

I =1+ Zero_Linear(C) 3)

Stacked Perception Layers. In the stacked perception layers, our goal is to extract features from
the input condition ¢ and the backbone to output the corresponding depth and normal. In addition to
utilizing the information from c provided by the condition patcher in F;, we also query features from
the backbone. Specifically, we modify the computation in the stacked perception layers as follows:

[Qd7 Qn} . [Kd7 Kna Kt; Ki7 KC]T)
Vi

[Ag, A,] = Softmax ( @

: [Vda V'ru‘/ta‘/ia ‘/6]7

Notably, the feature addition from Eq. (3) is bypassed in the perception layers, although the conditional
attention for A, (Eq. ) is retained.

Through the process described above, the parameters and computations of the original backbone are
not altered. All modifications required for unified generation and perception are achieved within F.
We rely merely on the powerful modeling capability inherent in the attention mechanism to achieve
joint modeling of multiple distributions.

3.2.2 UNIFIED DATASET TRAINING STRATEGY

Unified Dataset. Diffusion-based generation and perception tasks have traditionally relied on entirely
different datasets. Generation tasks typically employ datasets such as LAION (Schuhmann et al.|
2022), JourneyDB (Sun et al.,|2024a), or proprietary high-quality collections (Chen et al., 2024}
Esser et al., |2024), which emphasize large-scale image quantity and aesthetic quality. In contrast,
perception tasks often use synthetic datasets such as Hypersim (Roberts et al.l [2021) and Virtual
KITTI (Cabon et al., 2020), which provide precise geometric annotations but suffer from lower
visual quality and limited realism compared to natural images. To unify generation and perception,
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Figure 5: Qualitative comparison and results on (a). controllable generation, (b). dense prediction,
(c¢). joint-generation and (d). multi-conditions-based joint generation tasks between UNIGP and
representative diffusion-based methods. UNIGP outperforms previous diffusion-based experts and
unified models across all tasks.

we integrate these two categories of data. Specifically, our dataset combines the filtered MultiGen-

20M (Qin et al.} 2024} [Schuhmann et al., 2022)), primarily supporting generation tasks, with filtered
synthetic datasets (Roberts et al.,[2021} Cabon et al.,2020)), which are tailored for perception tasks.

Training Strategy and Objective. We mix generation and perception datasets together for training
and randomly construct batches on the fly. Then, we adjust the loss weight adaptively based on the
dataset from which each sample in the batch originates. Specifically, we learn a network vy that
predicts the velocity field (Esser et al.,[2024; [Lipman et al.| [2022)) u; given the image condition ¢ and
text prompt c;. We minimize the training objective as follows:

£ =By anene [N l00(@0strer,0) = w (o, t | )
2 lloa(drst 1, ) = e (dost | )] )

+)‘p ||v9(ntatvctvc) — Ut (nt7t | n1)||2

Specifically, x1, d1, and n; represent the RGB’s latent and the corresponding latent for depth and
normal, respectively. x;, d;, and n; are the versions after adding noise at timestep t. Ay, \, €
RPateh-size For the -th data sample, if it comes from the generation dataset, we set \,[i] = 1 and
Ap[i] = 0; if it comes from the perception dataset, we set Aq[i] = 0 and \,[i] = 1. This strategy
allows us to jointly optimize the generation and perception tasks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. We 1mplement UNIGP on SD3-medium (Esser et al.|[2024), a commonly
used MMDIT model, and optimize using Adam optimizer with a learning rate of 1 x 10~*. The
backbone is frozen, training only DUGP. All experiments are conducted on 16 NVIDIA A800 GPUs
with a batch size of 64, over 40,000 steps.
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Method: Training Text to Image Depth to Image Normal to Image |Canny to Image

ethods Data |FID | CLIP{ GD | GN ||FID | CLIP 1 RMSE ||FID | CLIP { RMSE ||FID | CLIP {
Base T2I Models
SD1.5 (Rombach et al.|[2022) - 23.60 30.89 - - - - - - - -
SD3-medium (Esser et al.;|2024) 20.09 31.77 - - - - - - -
Single-Control Methods
ControlNet (Zhang et al.|[2023)} - - - - - |19.80 2530 13.86 [22.18 25.10 18.15 |16.16 25.34
T2I-Adapter (Mou et al..|2024) - - - - - [20.08 25.67 15.62 - - - 18.76  25.25
SD3-ControlNet (Team,|2024) - = - - - |18.00 27.09 12.50 1792  26.88
Multi-Control Methods
UniControlNet (Zhao et al./[2024)| 10M - - - - 120.09 2525 15.93 \ - - - 1779  25.39
UniControl (Qin et al.|[2024) 2.8M - - - - 120.67 2551 14.07 20.04 2578 17.81 [16.69 25.15
ControlNetPlus (Github][2024) 10M - - - - 1927 27.99 1320 |20.11 26.80 16.00 [16.12 27.90
Joint-Generation Methods
LDM3D (Stan et al.}[2023) - 30.19 26.02 18.13 - - - -
JointNet (Zhang et al.][2024) 2.56M (28.02 27.00 16.80 - |25.66 25.09 14.88
UniCon (Li et al.|[2024) 16K - - - - [19.21 2527 1291 - - - - -
UNIGP (Ours) IM |21.05 31.50 6.05 6.41(17.95 2841 689 18.60 2845 7.12 |1591 30.35

Table 1: Comparison of UNIGP with task-specific baselines across four representative tasks.

The best and second best performances are highlighted. The symbol ‘-’ indicates that the results
for the models are not reported, or that the models do not support the corresponding tasks.

Training Datasets. 1) For perception tasks, we use Hypersim (Roberts et al., 2021) and Virtual
KITTT (Cabon et al., 2020) following previous works, covering both indoor and outdoor scenes.
Specifically, we use 59K complete samples filtered from these datasets. 2) For generation tasks, we
use 1M samples from MultiGen-20M (Qin et al.,|2024), annotated with depth, normal, canny, sketch,
human pose, and blur. For comprehensive details on the training datasets, please refer to Sec.|A.1.1.

Evaluation Datasets and Metrics. For perception, generation, and image restoration tasks, we
use commonly adopted benchmarks and metrics. Additionally, we propose the following metrics
to better evaluate our model: 1) GD and GN are computed by passing the generated RGB through
GeoWizard (Fu et al.| [2025) to recalculate depth/normal and then computing RMSE against the
generated depth/normal. 2) For the depth/normal to image task, following Anycontrol (Sun et al.|
2024b), RMSE is calculated between the generated and input depth/normal. For more details on
evaluation, please refer to Sec. 5 i Z

4.2 MAIN RESULTS
4.2.1 QUALITATIVE EVALUATION

In Fig. [5, we show main results generated by UNIGP on different tasks and compare them with
representative methods. Note that our results are generated by a single model. 1) First, in terms
of controllable generation, our method supports more conditions than ControlNet (Zhang et al.|
2023), which requires switching models for different conditions. Compared to UniControlNet (Zhao
et al.,|2024), our approach achieves better generation quality and improved image-text consistency.
Additionally, we outperform both ControlNet (Zhang et al.,[2023) and UniControlNet (Zhao et al.
2024) in control accuracy. 2) Second, in perception tasks, UNIGP outperforms previous generative-
based dense prediction methods on both real-world samples and benchmark samples, providing
fine-grained details and accurate depth and surface normal estimations while effectively handling
complex geometries and diverse environments. Compared to the unified model JointNet (Zhang et al.,
2024), UNIGP not only estimates depth and normal simultaneously but also achieves significantly
higher depth estimation accuracy. 3) Third, in terms of joint-generation, JointNet can only generate
RGB and depth simultaneously, whereas UNIGP is capable of generating RGB, depth, and normal
simultaneously. Moreover, UNIGP produces better consistency and richer details compared to
JointNet. We demonstrate more results and more perception tasks in Sec.[A.3.2]

4.2.2 QUANTITATIVE EVALUATION

Generation Results. We show quantitative generation results in Tab.|L, from our experiments, we
observe the following: 1) In terms of controllable generation, UNIGP outperforms most previous
methods. Thanks to the joint training of generation and perception tasks, our model achieves the
lowest RMSE between the generated images and the given conditions in depth/normal to image,
Thanks to the joint training of generation and perception tasks, our model achieves the lowest
RMSE between generated images and the given conditions in depth/normal-to-image, demonstrating
strong geometric input-output consistency. 2) In terms of joint-generation (Text to Image column),
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Training
Data

NYUv2 (Indoor) KITTI (Outdoor) ETH3D (Various) ScanNet (Indoor) | Avg.

Method AbsRel| 517 621 |AbsRell 817 621 |AbsRell 517 621 | AbsRell 517 621 |Rank

Discriminative Methods

DiverseDepth (Yin et al.,|2021a) 320K 11.7 875 - 190 704 - 228 694 - 109 882 - |1238
MiDa$ (Ranftl et al.|2020) 2M 1.1 8.5 - 236 630 - 184 752 - 121 846 - |129
LeRes (Yin et al.,[2021b) 354K 9.0 916 - 149 784 - 7.1 777 - 91 917 - |93
Omnidata (Eftekhar et al. [2021) 12.2M 74 945 - 149 835 - 166 778 - 75 936 - |74
DPT (Ranftl et al.||2021) 1.4M 98 903 - 10.0 90.1 - 78 946 - 82 934 - |74
HDN (Zhang et al.,|2022) 300K 69 948 - 1.5 86.7 - 121 833 - 80 939 - | 6.1
DepthAnything (Yang et al.,[2024a) 62.6M 43 981 996 7.6 947 99.2| 12.7 882 - 43 98.1 99.6| 2.1
DepthAnything V2 (Yang et al.,2024b) | 62.6M 45 979 993| 74 946 98.6| 13.1 865 - 42 978 993 25
Generative Methods

GeoWizard (Fu et al. [2025) 280K 56 963 99.1| 144 820 96.6] 6.6 958 98.4| 64 950 984| 49
Marigold (Ke et al.,|2024) 74K 55 964 99.1 99 91.6 987| 65 959 99.0| 64 952 98.8| 42
JointNet (Zhang et al.,|2024) 2.56M 13.6 841 86.0] 299 59.6 62.3| 192 787 802| 119 84.8 86.7| 148
UniCon (Li et al.,|2024) 16K 79 939 - - - - - - - 92 919 - | 83
OneDiffusion (Le et al. [2025) 75M 89  92.0 982 - - - - - - 9.7  90.7 98.0| 9.0
JoDi (Xu et al.,[2025) 290K 83 92,0 982 - - - - - - 9.7  90.7 98.0| 8.7
UNIGP (Ours) 59K 52 96.6 994| 83 933 989| 6.0 963 99.1 55 979 993| 28

Table 2: Quantitative comparison on zero-shot affine-invariant depth estimation between
UNIGP and SOTA methods. UNIGP outperforms all other generative methods on average,
however, it lags behind the DepthAnything series on most metrics, which is trained on 62.6M images
while UNIGP is only trained on 0.059M images for perception capacity.

Training
Data

NYUv2 (Indoor) ScanNet (Indoor) iBims-1 (Indoor) Sintel (Outdoor) Avg.

Method md 11.25°¢ 30°1|m.l 11.25°% 30°4|m.} 11.25°1 30°%|m.} 11.25°1 30°1 |Rank

Discriminative Methods

OASIS (Chen et al.,[2020) 110K [29.2 238 60.7 [32.8 154 52.6 [326 235 57.4 |43.1 7.0 357 ] 9.8
Omnidata (Eftekhar et al.;[2021) | 12.2M |23.1  45.8 73.6 |229 474 732 1190 62.1 80.1 [41.5 114 420 | 7.2
EESNU (Bae et al.,2021) 25M 162 586 83.5 200 585 782 |42.1 11.5 412 | 6.1

Omnidata V2 (Kar et al.,2022) | 12.2M |17.2 555 83.0 [16.2  60.2 84.7 | 182 639 81.1 [40.5 147 435 | 45
DSINE (Bae & Davison,[2024) 160K [16.4  59.6 835|162 61.0 844 |17.1 674 823|349 215 52.7 | 1.9

Generative Methods

Marigold (Ke et al.,[2024) 74K 1209 505 - 213 456 - 185 647 - - - - 6.7
GeoWizard (Fu et al.,[2025) 280K [18.9  50.7 815|174 538 83.5 193  63.0 80.3 (403 123 435 | 6.0
StableNormal (Ye et al.,2024) 250K |18.6 535 81.7 [17.1 574 84.1 [182 650 824 136.7 14.1 50.7 | 4.1
JoDi (Xu et al.,[2025) 290K |18.6 - - 1203 - - 182 - - - - - 4.4
UNIGP (Ours) 59K |16.4 592 834|149 651 86.0 173  66.5 82.8 |35.0 201 Sl || 17

Table 3: Quantitative comparison on zero-shot surface normal estimation between UNIGP and
SOTA methods. UNIGP outperform all other discriminative and generative methods.

UNIGP outperforms the baseline models across all metrics by a large margin, demonstrating the
superiority of our method in preserving the backbone’s generative capabilities as well as its joint-
generation accuracy and effectiveness.

Perception Results. 1) We present depth estimation results in Tab. |2, where UNIGP achieves the
best performance among all generative baselines. However, it lags behind the SOTA discriminative
DepthAnything series (Yang et al., [2024afb) on indoor and outdoor datasets, but outperforms the
DepthAnything series on diverse datasets (e.g., ETH3D). This is understandable, as UNIGP trains
its depth estimation using only 0.059M images from a single indoor and outdoor dataset—Iess
than one-thousandth of the 62.6M images used by DepthAnything. However, generative models
inherently possess extensive world knowledge. Unlike the DepthAnything series, which are trained
discriminatively from scratch, UNIGP retains the generative priors of the backbone, offering better
generalization across diverse datasets. Notably, JointNet’s depth estimation performance lags far
behind ours, ranking 10th overall. 2) We present surface normal estimation results in Tab. [3,
where UNIGP achieves comparable performance to DSINE (Bae & Davison, |2024), a recent SOTA
discriminative model, and surpasses all other generative and discriminative methods in zero-shot
surface normal estimation.

4.3 ABLATION STUDY

In this section, we conduct ablation studies to evaluate UNIGP. Due to computational constraints, the
ablations are performed on representative benchmarks, with generation evaluated on COCO-5K and
perception on NYUV2.

Relation between Generation and Perception. In Tab. 4| (a), we analyze the impact of removing the
training for either perception or generation, reducing the training data for either task, and omitting
the task-specific training strategy (i.e., Ay, A\¢ = 1) on the model’s performance. The results show
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“A serene portrait of a woman standing in a field, with soft sunlight ...

W/0 Perception Training || W Perception Training ]
N

Condition

_Input

\
R\ A

)

(a). Impact of Perception Training on Generation

(b). Impact of Generation Training on Perception

Figure 6: Ablation study on the relationship between generation and perception. Comparison
areas are highlighted with purple boxes. The average attention map is visualized in the top-right
corner. Adding perception training makes the generation results better align with the conditions, with
clearer features, adding generation training improves the perception results with finer details.

Normal Esti.
m.} 11.25°1

Text to Image Depth to Image Normal to Image Depth Esti.
FID | CLIP 1t GD | GN | |FID | CLIP 1+ RMSE | |FID | CLIP 1 RMSE ||AbsRel| J11

(a) Relation between Generation and Perception

Methods

w/o Perception Training [21.07 31.57 - [17.99 2833 1073 18.85 28.19 11.74 - - - -
Half Perception Data 21.33 31.46 691 7.98|18.10 28.17 7.86 |[18.93 2825 9.37 59 954/19.6 543
w/o Generation Training| - - - - - - - - - - 55 965|17.1 56.0
Half Generation Data  |21.86 31.40 6.97 8.06 [18.97 28.12 840 1991 28.14 9.72 59 95.1|19.7 556
w/o Training Strategy ~ |25.59 29.29 11.14 13.05(23.21 26.61 8.74 |24.45 27.14 10.36 6.9 943|22.6 469
(b) Balance between Stacked Control and Perception Layers

(C.P)=(0,24) - - - - - - - - - - 54 963|172 580
(C,P) =(6,18) 25.11 29.85 9.15 9.87|21.15 28.04 9.21 |23.25 27.41 1025 53 96.0|17.1 576
(C,P) =(18,6) 24.83 29.48 10.38 11.43/20.91 28.33 7.85 |20.09 28.48 9.28 59 954|182 549
(C,P) =(24,0) 21.78 31.37 7.56 7.95|19.63 28.18 10.65 |[18.91 2821 10.49 - - - -
(c) Different Design Choices

JointNet Style 21.71 30.53 7.82 824 |19.65 28.78 8.99 [19.94 28.74 9.37 54 963|175 582
Marigold Style 2571 28.46 12.1512.03|28.35 28.01 10.84 |28.85 27.14 11.61 6.0 95.0/19.7 549
Final Version

UNIGP (Ours) [21.05 31.50 6.05 6.41[17.95 2841 6.89 18.60 2845 7.2 | 52 96.6/164 592

Table 4: Ablation study on UNIGP. Evaluating the impact of key components and design across
representative benchmarks for each task.

that: 1) Reducing either perception or generation training process or data scale negatively impacts
the performance of the other, highlighting their mutual dependency. For example, incorporating
perception training improves generation performance (e.g., GD, GN, and RMSE metrics), while
adding generation training leads to better perception results. This phenomenon shows that when
visual generation and perception share a unified space, their optimization objectives are intrinsically
aligned, both relying on the better understanding of external/internal visual features, thus creating
a cross-task synergy. 2) Our proposed training strategy improves both generative and perceptive
performance. As shown in Fig.|6] (a) perception training helps generation better adhere to conditional
constraints (i.e., better RMSE), while (b) generation training improves perception by capturing finer
details, which is further supported by the averaged attention map (Tumanyan et al.}[2023). .

Balance between Stacked Control and Perception Layers. We denote the number of stacked
control/perception layers as (C, P) with the default setting C=P=12 . As shown in Tab. 4 (b), best
performance is achieved when C and P are balanced.

Different Design Choices. As shown in Tab.[4|(c) and Fig.[3| we explored designs similar to JointNet
(copying the entire backbone) and Marigold-style (fine-tuning backbone itself) on SD3 backbone.
Both methods yielded significantly inferior performance compared to the proposed design.

5 CONCLUSION

In this work, we present UNIGP, an MMDiT-based framework for unified plug-and-play generation
and perception tasks. UNIGP comprises DUGP and a unified dataset training strategy. The former,
following the principle of Occam’s razor, uses only a copied image branch of MMDIT to model
dense distributions beyond RGB, while the latter combines various datasets into a unified training
framework to jointly model generation and perception tasks. UNIGP demonstrates outstanding
performance in both qualitative and quantitative evaluations, surpassing existing unified models and
performing on par with SOTA expert models. Furthermore, our experiments reveal that perception
and generation tasks mutually enhance each other within the diffusion framework.
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6 THE USE OF LARGE LANGUAGE MODELS

We clarify that Large Language Models were solely used to refine the writing of this paper. They
were not employed to generate, verify, or retrieve any factual content.
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