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Conventional multiply-accumulate (MAC) operations have long dominated computation time for deep neural networks (DNNs),
espcially convolutional neural networks (CNNs). Recently, product quantization (PQ) has been applied to these workloads, replacing
MACs with memory lookups to pre-computed dot products. To better understand the efficiency tradeoffs of product-quantized DNNs
(PQ-DNNs), we create a custom hardware accelerator to parallelize and accelerate nearest-neighbor search and dot-product lookups.
Additionally, we perform an empirical study to investigate the efficiency—-accuracy tradeoffs of different PQ parameterizations and
training methods. We identify PQ configurations that improve performance-per-area for ResNet20 by up to 3.1x, even when compared
to a highly optimized conventional DNN accelerator, with similar improvements on two additional compact DNNs. When comparing
to recent PQ solutions, we outperform prior work by 4 in terms of performance-per-area with a 0.6% accuracy degradation. Finally,
we reduce the bitwidth of PQ operations to investigate the impact on both hardware efficiency and accuracy. With only 2-6-bit

precision on three compact DNNs, we were able to maintain DNN accuracy eliminating the need for DSPs.
CCS Concepts: « Computing methodologies — Artificial intelligence; - Hardware;

Additional Key Words and Phrases: deep neural network (DNN), product quantization, FPGA acceleration, low arithmetic precision

1 INTRODUCTION

Deep Neural Networks (DNNs) have become an essential computing technique and is finding its way to many computing
form factors. Edge computing is especially challenging because of the constrained computing environment and limited
power budget. To address this, DNN model optimization has taken many forms, including pruning [7], quantization [23,
41, 47], lightweight architectural designs [37, 42, 44], and faster algorithms [10, 33, 45]. Each of these techniques
offers different trade-offs in terms of inference acceleration, model compression, hardware acceleration suitability,
and accuracy degradation. Some methods focus solely on decreasing the number of computations while not affecting
model size (e.g. Winograd [33]). Other methods such as linear quantization and pruning tend to generally decrease
both computation and memory footprint. Alternatively, methods such as some forms of non-linear quantization [43]
only decrease model size, and leave the number of computations unaffected. On this spectrum of compute and memory
tradeoffs, a new compression methodology, product quantization (PQ), sits on one extreme. Specifically, PQ can eliminate
all multiplications from the matrix multiplication operation [8], making it an interesting new compression method for
approximating DNNs worth further investigation. Our work thoroughly investigates this emerging methodology and
determines its practicality and hardware acceleration potential.

PQ emerges from the research area of information retrieval. Specifically, approximate nearest neighbours for

information retrieval involves extracting a compact representation of high-dimensional features, for sample images [25,
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50] in order to fetch similar ones from a data source or database. These input features can be encoded using PQ [29]. More
recently, PQ has been repurposed for DNN inference acceleration—specifically, by accelerating matrix multiplication [8]—
by encoding layer inputs into a set of learnable prototypes that replace inputs during inference according to the closest
prototype. The set of prototypes is knowns as the prototype table. This allows a pre-computed dot product between
inputs and parameters to be fetched from a lookup table instead of performing the conventional multiply-accumulate
operations. However, existing works offer a limited evaluation of this new compression paradigm. For example, by
exclusively applying PQ to the final layer of the DNN [8], through extremely simple networks [35], or by ignoring
the efficiency implications associated with PQ. This is the case of PECAN [39], which uses short codes to lessen the
accuracy degradation that PQ introduces at the cost of a 20x increase in memory footprint, resulting in an overall
slowdown in DNN execution despite the elimination of multiply-accumulate operations.

Product quantization accelerates DNN inference by replacing convolutions (and in general any type of layer doing
matrix-matrix multiplication) by a series of memory look-ups of pre-computed partial dot-products. Compute speedup
is therefore achieved by reducing the computational footprint of compute intensive layers (for example, convolutions),
sometimes in exchange of a higher memory footprint (depending on PQ parameters as we show in this work). As shown
in previous works [8, 39], PQ has a big potential but it remains unclear how to effectively use this technique to accelerate
DNNs without incurring severe accuracy degradation or a large memory footprint. Previous work (PECAN [39]) focused
on demonstrating the potential of PQ but disregarded its efficiency trade-offs. For example, prior work did not evaluate
whether PQ can actually result in compute speedups, and the resulting model sizes were many times larger than
the original (non-PQ) model [39]. As we demonstrate in our work, accounting for FLOPs only is not a guarantee for
speedup. This is because PQ replaces compute with memory accesses, and these are not captured when reporting FLOPs.
Our work is the first to provide a more holistic efficiency analysis, which is fundamental for future work proposing
alternative PQ implementations, for example, with new encoding functions, lightweight distance metrics, or new
training methodologies.

Our work also proposes the first custom hardware architecture for DNN acceleration with product quantization—the
Product Quantization Accelerator (PQA). We quickly realized that running PQ-DNNs on commodity CPUs or GPUs
does not adequately reflect its hardware speedup potential, simply because these hardware options operate in very
different ways to PQ-DNNSs. Instead, we create a custom PQA on Intel Agilex FPGAs, taking advantage of a custom
on-chip memory hierarchy and leveraging parallelism in PQ processing during nearest-neighbour computation, partial
product look-up, and accumulation. Furthermore, we explore the use of low numerical bitwidth in these PQ operations.
This fundamentally differs from traditional DNN quantization work that uses low bitwidths to approximate matrix
multiplication where quantization here is used in components used for distance calculation and in stored results in
LUTpg unlocking some new options explored in Section 2.5.

Motivated by the potential of PQ for inference acceleration, our work performs a holistic study of PQ in DNNs
by exploring both its algorithmic efficiency, training dynamics, and hardware implementation. More concretely, our

contributions are enumerated below:

(1) Present the first Product Quantization Accelerator (PQA) for lightweight CNNs, demonstrating that unlike
GPUs and CPUs, custom hardware can indeed accelerate PQ by up to 3.1X compared to conventional DNNs.
(2) Evaluate opportunities for low numerical bitwidth, with hardware configurations that maintain accuracy with

only 2-bit distance calculation operations on a Keyword Spotting task.



PQA: Product Quantization DNN Hardware Accelerator 3

W Cout X Cin XK x K w
Ciw )————
v Prototypes for the Look up partial pre-computed dot products
«Cog—> 0-th subspace ° with output channel, subspace and index
Ciy * H | | g Cuxw N, . of closest prototype as LUT indexing
KI ZLUTPQ [Co(\lll,n, i,i= argmin,d(X, j,b™)
bO = L il
K im2col
Tensor [am2co1 ) Y 0
Unrolling X . 1
W inference [ Tttt
Compute distances between :
] input column and prototypes « WH N
in subspace 52
= \
Cout X (n) _ X . p(n)
dj - d(x"’]’ b ) training [ & "ccctoteoeoees * C
1 Cout
K2Cy K2Cy Partial dot-products between encoded i softmax(r PO By . W
sy T Wn

4 g B — input (as a linear combination of
prototypes) and layer weights.

n

Fig. 1. Transforming a convolutional layer into its PQ equivalent. First, both input and weights tensors need to be unrolled, resulting
in X and W. The input matrix X is subdivided into N subspaces (three in this diagram), and the sub-columns in each one will be
encoded using their respective bank of of prototypes B;=[b(®), b(1), b(?)]. Given a distance metric d(-), the input is encoded in a
soft manner during training but replaced with a hard one-hot encoding during inference. For deployment, all the pre-computed dot
products are stored in LUTpq.

(3) Evaluate PQ comprehensively for three CNNs (ResNet-20crrar10, DWEMNIST, MicroNetgyys) to identify
configurations that achieve 4-6x higher throughput compared to the most recent PQ literature, with minor
accuracy loss (~0.6-0.9%).

(4) Provide a systematic study on the parameterization and training of PQ and its impact on compute and memory

footprint and encoding degradation, including the proposal of a "corrector” DNN to improve PQ-DNN accuracy.

2 PRODUCT QUANTIZATION FOR DNNS

This section explains the process of training and inference for Product-Quantized DNNSs to eliminate multiplications
from the dot product operations prevalent in DNNs. As illustrated in Figure 1, we explain how convolutional or

fully-connected layers can be approximated with PQ during training, and how to deploy a PQ-DNN after it’s trained.

2.1 Product Quantization Fundamentals

Almost all layers found in modern ML architectures, including those in CNNs [20, 42, 44] or transformers [36, 46], can
be expressed as a matrix-matrix multiplication. This is evident for standard fully connected layers where an input
X eRA*Cin s transformed by weights W e RCou*4 to obtain output Y e R4*Cout| where Cj, and Coyt are the number
of input and output features or, more generically, channels. In the case of convolutions, both input X € RCinxWxH
and weights W € RCouXCinXKwXKh tensors first need to be unrolled. This unrolling can be done following the im2col
algorithm [18, 27], resulting in unrolled matrices of size (K.Kp,Cin/g) X (WH/s%) and Cout X (KwKnCin/g) for input
and weights tensors respectively with s and g representing stride and groups respectively. This is illustrated in Figure 1
(left).

We now introduce PQ-specific terms and assume a matrix of weights W e RCout*4 and of inputs X € R4¥Cin exist,
whether they are from a linear layer or are the result of a tensor unrolling. With PQ, we aim to aggressively quantize the

input matrix on-the-fly so that the multiplication with W can be reduced to a series of lookups to a table of pre-computed
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dot-products of size LUTpg € RCouxNsXNp The input X can be split into Ny disjoint groups along the rows dimension.
We call each of these groups subspaces as shown in Figure 1. Each subspace gets assigned a bank of prototypes b of
size Ls X Np, where N}, and L represent the number and the length of the prototypes respectively. This list of prototypes
banks B;= (b pD,  bWNs=1] are learnable parameters of PQ layers, with subscript I denoting the layer index. PQ
involves getting the index of the closest prototype via distance d(-) to each sub-column of the input matrix (i.e. vectors
of length L). In addition, all dot products between the weights and the prototypes are precomputed and stored in a
look-up table LUTpg. Therefore, during inference, a dot product is looked up from LUTpg depending on the closest
prototype matched by an input vector, eliminating multiplication operations altogether.

Training PQ layers involves learning two sets of parameters: the standard layer weights W; and prototypes B;. Then,
prior to deployment, the table of pre-computed dot products LUTpg is obtained by performing a Cartesian product
between W; and B;. Only LUTpg and B; are deployed to perform perform inference, with no need for the actual model
parameters W;. This is because LUTpg explicitly contains all model parameters and their dot products with the input

prototypes B;. Figure 1 (right) illustrates training and inference for PQ-DNNS, explained further below.

2.2 Choosing a distance metric

For both training and inference, a distance d(-) needs to be defined to encode the input using the layer prototypes B;. A
reasonable choice would be the Euclidean distance. For PQ, the relative ranking of distances between input column
Xn, j and the prototypes of that subspace b(") is far more important than the actual distance value. This therefore
leaves room for more lightweight distance metrics such as the L; Manhattan distance as well. Recent work [8] has also
proposed using locality-sensitive hashing to match inputs with prototypes thereby performing comparisons between
inputs and prototypes more quickly but placing further constraints on the nature of the learned prototypes B;. In our
case, we explore Euclidean distance (L2 norm). While this introduces multiplication to compute the squared distance,
performance is still dominated by memory access. We also explore Manhattan distance (L1 norm) but that often led to

higher accuracy degradation.

2.3 Input encoding

During training the encoding of the input is done explicitly, i.e., the unrolled input X is actually transformed into a new

matrix of the same dimensions that is later multiplied with the unrolled layer weights W. Given the j-th column of X
(n)
J

portion of the input Xfln]? is obtained by a weighed linear combination of b(™) with normalized distances ¢(z, d

=d(Xn,j, b(™) to each of the prototypes are computed. The encoded
(n)
)

along the n-th subspace, X, j» the distances d

Np b;,n)exp(ol](.n"fJ ) /7)
N;
7 T exp(d)" /o)

where b;,n) stands for the p-th prototype in the n-th subspace, dj(."’p ) is the distance to the p-th prototype, and 7 is a

X = ¢ (7,4} ) b = (1)

temperature factor. As 7 — 0, the temperatured-softmax ¢(z, -) outputs a sharper distribution over d](.n), transitioning
in this way from soft linear combination of prototypes where all prototypes are considered with different weights
into a hard, one-hot encoding where only the prototype closest to the input is considered. During inference PQ is

implemented with one-hot assignments to match a single prototype to each input vector.
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2.4 Constructing LUTpq

At inference, )A(flf"jc is not materialised since only the index of the closest prototype is needed to retrieve the partial
dot product from LUTpg. After training, the unrolled weights W are partitioned into subspaces along the column
dimension (as shown in Figure 1). Then, the dot product between a 1 x Ls sub-row in W and a prototype in such
subspace, corresponds to one entry in LUTpg. Repeating this for all Ny, Cout and N, completes the table. This allows us

to fetch a precomputed dot product between any prototype B; and its corresponding layer weights.

2.5 Exploring Low Numerical Bitwidth for PQ-DNNs

Although PQ is fundamentally a vector quantization method, it offers scope for applying additional quantization to its
constituent operations. Specifically, lower bitwidth can be used within the prototype table and the LUTpg, thereby
offering significant efficiency and area advantages. We apply post-training asymmetric linear quantization for both
of these operations. For the prototype table, we abstain from dequantizing the stored quantized values. Instead, the
incoming input is quantized using identical parameters, and the distance calculation is performed within the quantized
domain. As we see in the results, this approach yields satisfactory results. In contrast, for the LUTpg, we employ
dequantization of stored quantized values to perform wide accumulation in 16-bit precision. Determining the scale
and offset for quantization entails various possibilities, each bringing its unique cost and benefit trade-off. The most
cost-effective option is to have a single scale and offset value for the entire model. Per-layer and per-channel quantization
parameters are also prevalent in conventional quantization to improve accuracy. Furthermore, we introduce a novel
per-subspace quantization parameters—uniquely-suited to PQ-based matrix multiplication, and as we show in the results,

achieve the highest accuracy.

2.6 The Potential for Compute Speedups on CPU, GPU, and PQA

Commodity hardware such as CPUs and GPUs are inherently unsuitable for PQ-DNNs but are increasingly better
suited to conventional DNNs, making a comparison on those platforms somewhat skewed. A key reason for creating
PQA is to be able to fairly assess the efficiency of PQ-DNNs compared to conventional DNNs. PQA has the potential
to attain high efficiency because of the high levels of parallelism and memory banking that is possible as described
in Section 3. To quantify this, we measure the speedup of executing PQ layers of ResNet20 [39] on a CPU, GPU, and
PQA. Our baseline custom hardware is DLA [1] for native convolutions. Figure 2 shows the speedup percentage for
the unique layers of the network, obtained by running PQ and conventional convolution on different hardware and
comparing the latencies. We sweep different values of Ls while N, is kept at 16. It is clear that there is a consistent
slowdown when running PQ on a CPU or a GPU as there is no speedup for different values of L and the same trend
appears when trying different values of Nj,. Measuring the effect of PQ on commodity hardware like CPUs or GPUs
is therefore a poor way of assessing its acceleration potential. However, using a custom hardware that is specifically
designed for PQ achieves improvements in latency for certain configurations over DLA [1, 3]. While this is not the case

in all layers, the speedup reaches up to 150% in the last layer of the network at a large value of Ls.

3 PRODUCT QUANTIZATION ACCELERATOR (PQA) ARCHITECTURE

In this section we detail the design of a custom PQ inference Accelerator (PQA) on an FPGA. We also benchmark

PQ-DNNs on CPUs and GPUs, and we argue with empirical results that these devices are not suitable for assessing the
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Fig. 2. Speedup of PQ vs conventional convolutions on different hardware when run on all unique layers of ResNet20. CPU is 13th
Gen Intel(R) Core(TM) i9-13900K and GPU is NVIDIA GeForce RTX 4090.

efficiency potential of PQ. This motivates the design of PQA which we show to indeed result in faster DNN execution

for some PQ parameters.

3.1 PQA Overview

Rather than relying on multiply-accumulate operations to calculate the result of a matrix-matrix multiplication, PQ
performs memory lookups of precomputed results. This requires designing hardware that can perform these lookups
efficiently. Luckily, PQ has many hardware-friendly properties that can make a custom hardware design efficient. (1)
Subspaces are completely independent, allowing us to partition the large dot product table (LUTpg) memory across
multiple small on-chip memories to allow parallel memory accesses. (2) The compute-heavy distance computation—to
find the closest prototype—needs to be done only once regardless of the number of output channels. (3) With the
exception of distance calculation, all other operations do not require heavy computations as they are either memory
lookups or accumulations.

Figure 3 shows the architecture of PQA: our novel compute engine that can be used to perform PQ inference. The
engine consists of 3 main modules: A distance calculation module is responsible for determining the indices of the
prototypes that are closest to the corresponding inputs. Next, the product lookup module consists of a partitioned
memory array that is responsible for looking up the product of the closest prototype and the current weight for each
subspace. Finally, the accumulator is responsible for adding results from different subspaces and producing the final
outputs. Note that we implement PQA on an Intel Agilex DE10 board with DDR4 external memory with 36 GB/s transfer
speeds, but we extrapolate our results to high-bandwidth memory (HBM) that can reach up to 460 GB/s using our
hardware-verified cycle-accurate simulator that we develop based on performance model explained in Section 3.4. We

provide more analysis of HBM in Section 6.

3.2 PQA Hardware Components

PQA is organized into processing lanes, replicated NZ*¢ times to process subspaces in parallel. It is also able to produce
NZEF outputs at a time by further breaking down the large LUTpg into smaller memories as shown in Figure 3. This
allows producing multiple outputs at the same time. As for inputs, the distance calculation module compares the input
with N prototypes at a time where it compares Ly elements of the prototype each cycle. The Compute Engine

receives L2¢ portions of the input every cycle to be compared to all prototypes in each subspace, and to find the closest
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Fig. 3. Block diagram of PQA, the proposed custom hardware implementation for PQ.

one depending on the distance function d(-). We implement both the L1 and L2 distance functions in PQA. The index of
the closest prototype is then sent to the product lookup portion that iterates over all weights, looks up the precomputed
partial dot products, and accumulates these to compute each output. In addition to the vectorization parameters L7,
NG©€, Ng¢¢, Nour - PQA contains maximum parameters that are primarily used for sizing the input and LUTpg buffers
that hold layer values on-chip to enable single-cycle memory fetches during that layer’s execution: Lg"®*, NJ*®*, Ng"®*,

max max
NI ,and Nin .

3.2.1 Distance Calculators. This module consists of many processing lanes, one per Ny*“. The lane contains N,
difference calculators. Each difference calculator corresponds to a certain prototype. The lane receives an input which
is L% elements wide, passes it to all difference calculators, each producing the difference between this input and its
corresponding prototype. These differences go to a comparator which is responsible for outputting the index of the

prototype with the minimum distance from the input vector. The comparator needs to cache the minimum distance so
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far to compare it with upcoming comparisons in the next clock cycle with the next set of prototypes since the hardware
is vectorized over N to only perform some of the comparisons in each cycle.

Each difference calculator contains one group of prototypes Nj, and is responsible for calculating the distance
between the input and these specific prototypes. It does that by passing each of the input elements along with its
corresponding element in the prototype into the difference module then the output of all difference modules is added to

an accumulator to produce the total distance after processing all L?¢¢ portions of the input.

3.2.2  Product Lookup and Accumulators. The product table memory is partitioned into N2¢¢ different banks to allow
parallel lookups for each subspace. Furthermore, each subspace’s LUT is partitioned into N25¢ different memories—each
handles a different set of output channels—to further parallelize product lookup and to produce multiple outputs
simultaneously. PQA is therefore able to perform N25¢ x N LUTpg lookups in parallel. This custom on-chip memory
hierarchy is key to PQA’s acceleration, and is not achievable with commodity hardware. Finally, results are accumulated
across subspaces using a set of parallel accumulators repeated NJ2¢ times. The accumulator is needed (and not a simpler
adder tree) because of the vectorization along N2°¢ which means that the difference calculated at each cycle might only

be a partial dot product until all subspaces are processed.

3.3 Numerical Bitwidths for PQA Components

To further improve efficiency, lower numerical bitwidth can be used for PQ operations as explained in Section 2.5. We
parameterize our hardware so that it can operate with any bitwidth in both the distance calculation and product lookup
portions—each of those parts can use a different bitwidth since they are only connected with the index of the closest
prototype, used to form the address for the LUTpg memories. The output of LUTpg is dequantized to 16 bits before
accumulation, then subsequently, the output of the accumulators is quantized again before storing in the input buffer.

This ensures that that all buffers benefit from the smaller bitwidths, while using a wider bitwidth for accumulation.

3.4 Performance Modeling

Because of the vectorization along the LY, N}fec, N¢¢, and N2 dimensions, a simple estimate of the total number of

compute cycles per layer can be computed using Equation 2.

L Cout Ng WH
X[Lvec}’{Nvec})x{Nvecwxs_z @
S S

out

&
p]vec
p

Cyclescompute = max ( [

There are 2 compute stages: Distance calculation, taking [%-I X [LIS;%-‘ cycles, and product lookup, taking [ ISE,:%-I
cycles, the maximum of those 2 determines the total compute taken to process the subspace. Since N?¢¢ subspaces
are processed in parallel, we multiply that maximum by [%w Finally, this process is repeated for each of the %
columns of the input. In parallel to the compute cycles, memory loading of prototypes and LUTpg occurs in parallel.

The number of cycles needed for that can be computed using Equation 3.

CoutXNp XNS“ "|Bl| +|LUTPQ|“) (3)

vec vec
Nyii X Ng

Cyclesjoqq = max ( [ Mempry

where |B;| and [LUTp| are the size in bits of all prototypes and LUTpg for each layer. Mempyy is the external memory
bandwidth in bits/s. Equation 3 takes a maximum between the memory loading cycles from the external memory bus,

and the internal memory bandwidth of LUTpg. In most cases the internal memory bandwidth is much higher than
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external, but for some configurations of PQA with HBM memory where the value of Mempyy is much higher, the
situation may be flipped, where the internal memory bandwidth becomes the bottleneck, thus necessitating the max

operator in our analytical model.

4 EXPERIMENTAL SETUP

Here we provide a detailed description of the hardware environments, models, dataset, hyperparameters and training
schemes used in our per-layer study and full-model results. We also explain our enhancements to training PQ-DNNs to

minimize accuracy degradation.

4.1 HW-Setup
We designed PQA using Intel’s OpenCL SDK 21.2, targeting the DE10-Agilex FPGA board with the AGFB014R24B2E2V

FPGA. Throughout our results, we compare PQA to a canonical systolic array-based deep learning accelerator (DLA)
for native convolutions [1, 3]. One of the important considerations when designing a custom hardware is the area it
requires. Area and Fmax shown in the study are based on a real hardware accelerator running on the FPGA using the
Intel OpenCL runtime. We express the area in terms of the number of equivalent Adaptive Logic Modules (eALMs) by
following prior work that quantified the area of one DSP to be equivalent to 30 ALMs, and one BRAM is equivalent to
40 ALMs [40]". For number of cycles, we verified that the numbers resulting from our analytical model described in
Section 3.4 with the measured hardware performance measured by running on the DE-10 Agilex board. We used the
analytical performance model in some of our results, especially to simulate HBM memory instead of the DDR4 that is
available on the DE-10 board. We compare PQA to a canonical systolic array-based deep learning accelerator (DLA) for
native convolutions [3] running on an Arria 10 FPGA (20 nm technology node). For a fair comparison with our 8-nm
Agilex PQA, we scale the reported DLA frequency by 1.6X to account for the newer process technology. We get this
scaling factor by comparing the frequency of a finite impulse response (FIR) filter design (1.60x frequency scale factor),
and a Fast Fourier Transform (FFT) design (1.47x frequency scale factor) when implemented on the Arria 10 versus the

Agilex FPGA, and we opted to use the higher scaling factor to favor the baseline DLA.

4.2 Models & Training

4.2.1 Datasets. We make use of two image classification datasets: CIFAR-10 [32] and EMNIST [12]. The former is
comprised of 50K 32x32 RGB images for training and 10K for testing, with both sets evenly split along ten image
classes. The EMNIST dataset on the other hand is much larger totaling 112,800 and 18,800 images for training and
testing respectively. We use the balanced partitioning of EMNIST which contains 28x 28 greyscale images of digits and
letters resulting in 47 classes with, as the name suggests, the same number of examples. The current best performing
architecture on this dataset reaches 91.06% [26] in this partition. For both training sets we randomly leave 10% out for
validation. For keyword spotting we rely on the SpeechCommands [48] data which is comprised of 105,829, 16-KHz
1-second long audio clips of a spoken word (e.g. "yes", "up"”, "stop") and the task is to classify these correctly into 12
possible classes. Similar to previous works [4, 6, 53] we pre-process each audio clip and extract 10 MFCC [13] features

using a 40ms window with a 20ms stride resulting in 10X49 input matrices.

!While prior work uses a different family of FPGAs, it is the best available public estimate to the best of our knowledge and we believe it is sufficient for
our evaluation.
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Table 1. Hyperparameters used in our experiments. Due to the large space of PQ configurations and 7 values considered, there is not
a single golden config for each model. Here we report the ranges of hyperparemters that we found to deliver good quality models
across PQ settings. Column Early Stop 7 indicate the epoch from which temperature 7 is kept fixed for the remaining of the training.

Model Epochs Batch LR (params) LR (proto) Start 7 End © Early Stop © Scheduler
ResNet20 120 64 [0.005,...,0.05]  [0.025,...,0.075] 1.0 0.0005 10 StepLR [40,60,90]
MicroNet-PQ 30 96 [0.001,.,0.01] [0.001,..,0.025] 1.0  [0.0005,0.001] 10 ExponentialLR [0.25,...,2.0]
DWEgMNIST 90 96 [0.000....,0.001]  [0.005....,0.05] 1.0 0.0005 10 StepLR [30,50,70]

4.2.2  Training Infrastructure. We implement our training infrastructure with PyTorch [38]. We analyze 3 models:
ResNet-20[21] on CIFAR10, MicroNet[4] on KWS and a custom CNN with 10 depth-wise separable layers called DW
on EMNIST. Full details of the model architectures is in Appendix A. Training PQ models is difficult and is currently
only proven to work on smaller models like the ones we consider. This is similar to other work in the literature[39].
We use two optimizers: one for the bank of prototypes in each layer B;; and another for the rest of the parameters in
the model (e.g. the layer weights, and non-PQ layers.). Both instantiate an Adam optimizer [30] albeit with different
learning rate. There are also two learning rate schedulers, each with its own decaying coefficient and scheduling. The
hyperparameters for each model are presented in Table 1. We found learning rates and scheduling parameters to have

large impact, not only in final model quality, but also in terms of training stability.

4.2.3 PQ Training Enhancements. A number of training techniques and tricks were considered and introduced to our
training pipeline. We found gradient clipping to be crucial when training deeper models (i.e. ResNet20 and DWgmNisT)-
Value-based gradient clipping [51] with small thresholds (e.g. 0.25, 0.5) alleviated exploding gradients in some cases.
During the first epochs of training, the encoded input is obtained with 7 values that are gradually decreased. As it
becomes smaller, the construction of the prototyped input gets close to one-hot, impacting the flow of gradients. We
implemented two mechanisms to counteract this while still ensuring the performance of one-hot encoding is not
affected: formulating the prototype selection via a Gumbel-Softmax [24]. This, however didn’t seem to have a clear
impact on the quality of our training. What did have a small positive impact was to introduce a stochastic masking to
the final encoded input )A(flnjc prior to multiplying it with the layer weights. This masking, applied at the subspace level
and individually to input column, allowed a fraction p of vectors to remain unencoded. We found that small p=0.1 lead
to higher final one-hot PQ accuracy. Higher values would prevent layer weights and prototypes to adequately operate
in one-hot scenarios, as it is the case during inference. Furthermore, we add a new term to our Cross Entropy training
loss that encourages prototypes within a subspace to be orthogonal to each other [9]. We only found this regularization

term to be useful to lessen the impact of sub-optimal training hyperparameters.

5 PRODUCT-QUANTIZABILITY: STUDY & TRADE-OFFS

This section investigates PQ parameterizations and training enhancements, and the corresponding tradeoffs in PQ-DNN

accuracy, compute, and memory footprint.

5.1 PQ Implementation Trade-Offs

Different parameterizations of PQ (i.e. choice of {Np,Ls}), will lead to dramatically different levels of model acceleration,

memory footprint, and accuracy degradation. Understanding these trade-offs is fundamental to the design of PQ-DNNs.
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Table 2. The best performing models in PECAN-D require a high number of prototypes (N}) of short length (Ls). As a result, look-up
tables are many times larger than the original non-PQ model.

Model Params Np L [LUTpg| Mem. Footprint
LetNet 61K 64 9&8 489K 8.0X
ResNet20 269K 128 & 64 3 &4 5.7M 21.3%X

5.1.1 Compute footprint. The number of FLOPs to perform an im2col-equivalent convolution (as in Figure 1) is
given by FLOPS;pacol = 2K?Cin WHCoyt, assuming groups and stride equal to one and squared kernels. The same
layer but implemented with PQ would result in FLOPspg =FLOPs®"*¢ +FLOPs244 The first term is given by FLOPs®"® =
Nsd(-)rLopsWH, with d(-)rLops representing the FLOPs to compute the distances dj(."). Assuming Euclidean distance,
d(-)rLops = 3NpLs. Term FLOPs?d4 = (Ny — 1)WHCoyt accounts for the cost of performing the addition of partial
dot-products needed to complete a full row-column dot-product X-W. The FLOPs savings ratio is given by

FLOPSsim2col _ 2chin‘/‘/Hcout _ 2CoutLs
FLOPSPQ NsWH (d(-)rLops +Cout) 3NpLs+Cout

4)

with Ns = K?Cy,/Ls and simplifying (Ns—1) as just Ns. This expression suggests that reducing the number of
prototypes has a larger impact than increasing their length. This can also be seen in Figure 5 where the grey-shaded
squares indicating the FLOPs increase heavily as you increase N, but they do not increase as much when you use larger
L.

5.1.2 Memory footprint. The number of parameters in a convolutional layer is given by CoutCinK?, assuming squared
kernels and groups=1. When transformed into PQ, this number becomes paramspg = |B;|+|LUTpg|=NsNp (Ls+Cout)-
In this way, and assuming that Coyt > Lg, savings in parameter count is possible when Cj, K’ 2/ NsNp=Ls/Np>1,ie,as

it was the case when assessing the compute footprint of PQ, longer prototypes and few of them are also preferred.

5.1.3  Accuracy degradation. Previous attempts of applying PQ to the entire network required using a larger number of
short prototypes to maximise model accuracy. In PECAN-D [39], this translated into a very large increase in memory
footprint, see Table 2. While intuitively lower Ls should always be preferred when prioritising accuracy degradation, it

is unclear what the underlying trade-offs between N}, and Ls are at different layers of a network.

5.2 PQ Layer-wise Parameter Sweeps

In this section we assess the impact of different {Nj,Ls} in terms of memory and compute footprint as well as accuracy
degradation. We design a per-layer analysis where the task for each PQ layer is to generate an output Ypg that is
as close as possible to Y, the output of an equivalent layer from a standard, non-PQ, pretrained model. Framing this
empirical study in such way enables us to isolate individual layers from the impact of other elements in the model,
training hyperparameters, and dynamics. This study uses DWgyn1sT @ CNN containing 10 depth-wise separable
convolutional layers designed for image classification on the EMNIST [12] dataset as discussed in Section 4.2.

Given a PQ layer with randomly initialised B; and weights from its non-PQ counterpart, a two-phases study is
conducted. First, the prototypes are trained to minimise MSE®"¢ (XenC,X); then, the divergence of Ypg wort. Y is
measured in four different scenarios, namely when every other element in the layer is kept frozen (blue dots) in top

plot of Figure 4, when prototypes are further finetuned to minimise MSE®"t =MSE(Ypg, Y) (green dots), when only
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Fig. 4. As the temperature 7 decreases, the error in the output of a PQ layer increases rapidly. Even when prototypes and layer
parameters are finetuned to minimise MSE(Ypq,Y), most of the {N,,,Ls} configurations (each configuration is a dot) leads to much
larger error (see rightmost subplot).
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Fig. 5. Analysis of a layer with a 366 x4 x4 input. When spatial dimensions of the input are small relative to their channel dimension,
fewer prototypes lead to similar error to other configurations that result in larger LUTpq and a higher FLOPs®"¢ (area of grey-shaded
squares) as in Eq. 4. The red line indicates the size in the equivalent non-PQ layer.

the layer weights are finetuned (orange dots), and when both prototypes and layer weights are jointly finetuned (red
dots). All settings involving finetuning start from the same state of trained prototypes (blue dots). These two phases are
repeated for a broad {Np, Ls, 7} range and across all layers. We make the following observations.

1. Learning one-hot encodings is hard. As temperature parameter 7 decreases, there is a shift in the distribution
over {Np, Ls} settings that lead similar MSE®™® and MSE®"" trends (blue, green orange dots in Figure 4). More evidently
(red dots and violin plot) is the impact on MSE®" when both layer weights and prototypes are finetuned. These results
suggest that at least certain {N}, Ls} can perform well at lower 7 values but most cannot.

2. Reasons for larger N, decrease with depth. Accuracy decreases faster by lowering Ls than increasing N, as
can be observed in Figure 5. However, this dimension brings a large increase in memory footprint since the size of
LUTpq is inversely proportional to Ls (i.e. shorter prototypes lead to more subspaces, which in turn leads to more

pre-computed dot products). In comparison, larger Nj, has a lesser impact on MSE® overall but affects both LUTpg
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Error reduction with the Corrector(h=[8, 16, 32])
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Fig. 6. Maximum observed error reduction with corrector: a 2-layer MLP with hidden dimension h. Longer and fewer prototypes
benefit more on average.

size and FLOPs® linearly. Because of this reason, trading N, for Ls is desirable even at the cost of some accuracy
degradation (e.g. {Np=4,Ls =4} vs {Np, =32,Ls =8}, the latter resulting in just a 1.13X lower error.).

3. Amortizing and reducing encoding costs. Computing the distances d(™ between input columns and prototypes
in the n-th subspace might come at a too high cost given that PQ only makes use of the index of the closest prototype
to each column and not its actual value. A less computationally demanding distance could be used. Alternatively, we
could further leverage d(™ and better amortise FLOPs®™. To this end, we design a lightweight MLP corrector that,
given these distances, it learns a transformation that helps further reducing MSE©°ut, Intuitively, the corrector has a
higher potential for correction with longer and fewer prototypes. This is the pattern in Figure 6 where we show the
maximum observed reduction in MSE®" across all layers in the study. Even though a well tuned corrector can still
benefit PQ layers with short prototypes, its computational footprint for a given hidden dimension h, dominated by
N;sNpXh, does not justify its use. Therefore, we do not use the concept of a correct MLP in this work and we defer to

future work to build on this idea.

5.3 Numerical Bitwidth Analysis

After training PQ-DNNs, we perform post-training quantization as described in Section 2.5. Figure 7 illustrates the
impact of decreasing the bitwidth from 16 bits down to 2 bits for the distance calculator, product lookup, and when
reducing the bitwidth for both. A validation set was used to identify the minimum and maximum values to dynamically
compute the scale and offset values for quantization. We achieved better accuracy when using the 30th and 70th
percentile values instead of the full range for computing the scale and offset values for our integer quantization—this
enhanced version has been applied to MicroNetkws in Figure 7. As Figure 7 shows, PQ operations can tolerate very low
bitwidths (2-5 bits, depending on the DNN), especially when per-subspace quantization is used. Prototypes are easier
to quantize than LUTpg. In the following evaluations, we tailor these bitwidths to each PQ-DNN, in addition to finding

the ideal hardware vectorization parameters to maximize efficiency.

6 EXPERIMENTAL EVALUATION

This section investigates the performance and efficiency of PQA through both layerwise and end-to-end DNN execution.

To guage the efficiency of PQA, we compare to an optimized deep learning accelerator (DLA) from prior work [1, 3]. In
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Fig. 7. Drop in accuracy due to quantization using different techniques for multiple models. Global means that a single scale and
offset are used for whole model. Per Layer and Per Subspace mean that the scale and offset are different for each layer and each
subspace respectively.

addition, we compare to the latest PQ work, PECAN [39]. Our results demonstrate both performance and efficiency
improvements compared to both PECAN and DLA, paving the way for further work to establish the utility of PQ for
DNN efficiency.

6.1 PQA Layerwise Performance Analysis

Figure 8 shows the speedup of running a convolution layer using PQ on a custom PQA compared to running its non-PQ
equivalent on a custom DLA. In this study, all PQA vectorization parameters are set to 16. The convolution has a kernel

of size 3X3 and the number of input channels is assumed to be the same as the number of output channels.



PQA: Product Quantization DNN Hardware Accelerator 15

Np = 16 Np = 32 Np=64 Np=128 Np =256 100X Np = 16 Np = 32 Np=64 Np=128 Np=256 100x
1024 MM M Ry ™ W 1024 4 M I ™ ™
512MM MM MMM MMM MM 512 M ™ M M M
256 M M MM MMM MMM MM © 256 M ™ M M M ©
128 MM MM MMM MMM M I 128 M ™M M M M I
64 MM MM MMM MMM M " 64 M ™M M M "
32 MM MM MM MM — 32 M ™M M M 4
16 M M M M 16 1
8 M ™M ™M ™M 8 1
1024 MM fy) Ry MMM MMM M 1024 { M B MM ™
512 MM MM MMM MMM MMM M 512 M ™M M M MM
256 M M MM MMM MMM MMM M © 256 M M M M MM ©
128 MM MM MMM MMM MMM 128 M ™ MM MM
64 MM MM MMM MMM MMM I 10X 64 M M M M I 10X
32M MM MM MM MM 4 32 M ™M M M 4
16 MM MM MM MM M M 16 1 1
1024 MM Ry Ry MMM MMM M 1024 4 M B MM M ™
512MM MM MMM MMM MMM M 512 M ™M MM M M
256 MM MM MMM MMM MM M o~ 256 M ™M MM M M o
128 MM MM MMM MMM MMM " 128 M ™M M M m
64 M MM MM MM MM I 64 M M M M I
2 324MMm MM MM MM MM ] o 32 1 4
S 164M M ™M ™M M S 16 4
= 8 4 4 4 c 8 4
© T T T T T L S B T T T T T T T T T © T T T T T T T T T T T T T T L
5 F1x 5 F1x
o 1024 MM Sy MMM MMM MM MM o 1024 M Bl MM M ™
S 512{MM MM MMM MMM MMM S 512 M ™M MM M M
@ 256{MM MM MMM MMM MMM < T 2564 M 4™ M M <
S 128M MM MM MM MM © S 128 M M M M ©
E  eafMm MM MM MM MM I E o4y ] I
2 3x2dm 1M v v M 9 2 324 1 i}
16 1 1 1 16 1
84 1 1 # 8 1 H
Lo.1x Lo.1x
1024 4 By M MWW MMM 1024 ] M M MM [
512 MM MM MMM MMM MMM © 512 M M M M ©
256 M MM MM M M MM X 256 M M M M S
128 MM MM MM M M MM ~ 1284 —
64 M ™ ™M M M I 64 I
32 1 1 9 32 9
84 1 8
0.01X 0.01X
MMM MMM MMM 1024 I M M
mm mm mm © 512 M M M ©
Iy 256 n
M M M N 128 ~
I 64 I
0 32 «
- ke - -
0.001X 8 0.001X
TEONT® TEONT®D TOONTR TOONTD TEONT® TEONT®D TOONTO TOONTO TOONT®
S83ER SRER SR8 SR3ER S83ER SRER SR8 S8R SRER
= B B a8 = B B a8 B
Input Dimensions Input Dimensions
(a) DDR4 (b) HBM

Fig. 8. Speedup of different {Np, L}, input size and channels given a 3x3 kernel on PQA relative to DLA at 16 bits, when using (a)
DDR4 and (b) HBM. M = Memory Bound.

As expected, smaller N}, leads to faster PQ execution as the cycles needed to compare prototypes are fewer. Larger
Np increases the LUTpg size and the time needed to load it from external memory, causing more points to become
memory-bound. When using a High Bandwidth Memory (HBM) in Figure 8b, many memory bound configurations
are no longer memory bound, for example Nj, = 16 has no memory bound cells in HBM while more than half of the
cells with input dimensions 4 and 8 are memory bound in DDR4. We can also see some of the cells that didn’t result
in a speedup in DDR4, resulting in a speedup in HBM because they are no longer memory bound. For example, in
Ls = 32, the speedup area in all values of N, > 32 in HBM includes smaller dimensions that didn’t show a speedup
in case of DDR4. When increasing Ls, the number of subspaces (Ns) decreases and speeds up overall execution—we
observe speedups starting from Ls =32. We can see a single row in Ly=16 showing speedup which is the row that has
the number of channels and N}, set to 16 as well. This is because our vectorization parameters are all set to 16 making
these dimensions utilize the hardware very efficiently unlike the surrounding cells that do not match the vectorization
parameters perfectly. Finally, we can see that larger layers benefit more from PQ with speedups up to 100X at small Nj,.
In general, more aggressive PQ quantization leads to less computation and memory and therefore a better speedup. It is
clear that running PQ on custom hardware is not always advantageous, especially when compared to an optimized

DLA. However, we have shown that unlike CPUs and GPUs, we are able to find layer sizes and PQ parameterizations
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Fig. 9. MicroNet-PQ reaches 95.0% accuracy with {N,, =16,Ls = 4} leading to a 2.4x reduction in the number of inference FLOPs.
However, fewer FLOPs does not always translate to faster inference (cycles). When increasing memory footprint is not possible
({Np =8, Ls=8}), Micronet-PQstill reaches over 93.5% while resulting in nearly 3x lower computational footprint. With the corrector
(displayed as ‘w/C‘), models with longer prototypes can reach that threshold accuracy too, at a small increase in memory footprint
and FLOPs.

for which PQ can indeed outperform conventional convolutions. We have also shown that HBM alleviates memory

bottlenecks and often favors PQA over DLA because of the reliance of PQ on relatively larger memory bandwidth.

6.2 MicroNet Case Study

Figure 9 sheds light on the accuracy, compute, memory, and latency implications of PQ with different parameterizations
of Ls and Np. The line plot in Figure 9 (left) shows the performance of MicroNet-PQ under varying configurations
with just a 0.3% gap compared to the non-PQ baseline when {N,, =16, Ls=4}. The accompanying heatmaps highlight
different trade-offs between MicroNet-PQ and their non-PQ counterpart. When the accuracy requirement is lower,
longer prototypes (higher Ls) can be selected to achieve a better FLOPs speedup ratio. With the corrector introduced
in Section 5.2, some of the accuracy drop introduced by longer prototypes can be recovered by up to 7.3% at a small
memory footprint increase. Figure 9 highlights the theme of our analysis in Section 3: FLOPs and memory footprint are
not a good proxy for hardware latency for PQ as shown in the top 3 heatmaps of the figure. Looking at the top row of
heatmaps, we can see that a decrease in both FLOPs and memory footprint does not always result in a proportional
decrease in hardware execution cycles. However, many PQ configurations, with N22¢ set to 64, eventually lead to a

speedup for PQA, as shown in the top right heatmap in the figure where the cycle reduction factor reaches 1.3.

6.3 Area, Latency and Frequency Trends of PQA

We study the effects of varying the inputs/prototype and LUTpg bitwidths on the two main PQ operations, distance
calculation and product lookup, by sweeping bitwidths on a version of PQA for MicroNet. We used the PQ parameters
{Ls= 4, Np=16} that optimized accuracy and performance on MicroNet, and we used the same values for the hardware
vectorization parameters {L{“= 4, Nj*’=16}. We choose the remaining vectorized parameters for performance consid-

erations and on-chip buffer sizes according to the MicroNetgyy s layer parameters [5]: NY*“= 16, N3¢=16, {L{*** =4
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Fig. 10. Area trends of the distance calculation operation with varying prototype bitwidths and product lookup operation with
varying LUTpg bitwidths. All PQA vectorization parameters are set to 16.

Nx =32, ng"“x:32, NIMa*=256, Ni'r'l’“x:lZS}, In Figure 10, we use 16 bits as a baseline, and we vary the bitwidths of
the distance calculators and product lookup portions of PQA to quantify the impact on FPGA resources utilization.
When quantizing the distance calculators, both the inputs and the prototypes share the same bitwidth.

Frequency remained relatively stable for each network when varying either the prototype or LUT bitwidth, according
to Table 3, and was often limited by the OpenCL shell or board support package (BSP) that contains the infrastructure logic
to connect PQA to PCle and DDR4. Frequency of DWEgpNisT is notably slower due to the its larger area consumption.

Lower bitwidths for both distance calculation and product lookup significantly decrease area usage compared to the
baseline as shown in Figure 10. The distance calculation has a steadily increasing linear trend for ALMs when varying
the prototype bitwidth. The offset in the trend at 9 bits is attributed to the synthesis of the input buffer as BRAM instead
of MLABs as the input size increases. For 2-3 bit wide inputs and prototypes, 0 DSPs are synthesized due to the low
arithmetic complexity.

When analyzing area trends in the product lookup operation, we account for both the lookup and accumulate kernels
in order to capture any savings in the adder tree area when quantizing LUTpg entries. The number of ALMs increases
linearly due to both the increased accumulation size and the larger pipelined “never-stall” load store unit (LSU). The
increase in BRAM is mainly attributed to a larger LUTpg at higher bitwidths. Additionally, some BRAM is also utilized
for storing the accumulator state as well but that does not increase with bitwidth as the accumulators are always fixed
at 16 bits.

As Figure 7 shows, lower bitwidths can be used without substantially impacting accuracy, especially with per-
subspace quantization parameters. Per-subspace scale and offset results in the best accuracy at lower bitwidths while,
at higher bitwidths, both per layer and even global scale and offset values yield comparable accuracy. By carefully
adjusting the scale factors and clipping thresholds during per-subspace quantization, MicroNetgyys can use as little as
2 bits without any discernible effect on accuracy. We use the combined results of Figures 7 and 10 to customize three

PQA variants for our three PQ-DNNs: MicroNetgxws, DWgpmNisT, and ResNet20cipar10-
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Table 3. Results of our PQ on multiple networks. Hardware latency is shown for DLA (baseline)[1] and PQA for two differerent
external memory chips: DDR4 and HBM with 36 GB/s and 460 GB/s bandwidth respectively. PECAN-D[39] is the current state of
the art in PQ. PQA-Q is the quantized version of our accelerator with its parameters as bitwidths of prototypes and product tables
respectively.

Ace  Fmax Area Latency Performance/Area
Model Setting Ls Np Param. (%) (MHz) (keALMs) (us) (input/s/keALM)
(4 € S
DDR4 HBM DDR4 HBM
Baseline - - 269k 92.6 485 290 37 36 94 95
3 64 5.7M 87.9 451 217 448 276 10 17
PECAN-D
9 64 193M 85.0 482 227 143 86 31 51
ResNet20cmaR1o POA 9 16 476k 844 490 225 35 24 127 185
9 8 239k 84.1 471 174 28 25 207 230
9 16 476k 84.1 487 186 24 24 222 222
PQA-Q (6,5) 9 8 239k 83.8 475 138 25 25 291 291
Baseline - - 61k 95.3 485 290 4 4 885 885
POA 4 16 212k 95.0 465 183 11 11 496 509
MicroNetgws 8 8 63k 93.6 428 174 6 6 983 983
4 16 212k 94.7 481 119 10 10 808 808
PQA-Q (2,6
QA-Q (2.0) 8 8 63k 93.3 473 118 5 5 1599 1599
Baseline - - 1.1IM 90.4 485 290 47 13 74 259
POA 4 12 3.1M 87.6 288 746 231 51 6 26
DWemnist 8 8 1IM 858 287 399 82 27 31 93
4 12 3.1M 86.8 274 449 91 53 25 42
PQA-Q (5,5
QA-Q (55) 8 8 1.1M 85.0 306 341 34 25 87 116

6.4 PQA Acceleration Potential

In Table 3, we bring together our improved PQ training, efficient PQ-DNNSs, and hardware PQA accelerator to assess
the current state of product quantization on our three DNNs: ResNet20cirari10, MicroNetgws, and DWgpNisT. We
use DLA [1, 3] with conventional DNN execution as a baseline to which we can compare both the accuracy and
performance of PQ-DNNs on PQA. Furthermore, we are able to compare our ResNet20 PQ-DNN directly to prior work
from PECAN [39]—the closest work on PQ in the literature. To optimize PQA performance, we modified its vectorization
parameters by setting N7 to 32 and by keeping other parameters at the minimum of 16 and the closest power of two
of Ls and N as having a L{® > Ls or N;*° > N is a waste of resources. We additionally present results with the
best quantization parameters discussed from Section 5.3, denoted with PQA-Q in Table 3. Both designs have a higher
Fmax and lower area with almost no accuracy drop, indicating the importance of reduced bitwidths to improve PQA
performance and area. It’s worth noting that the vectorization parameters can be further increased to reach even better
performance in the cases where PQA-Q is compute-bound. For example, changing N?¢ from 16 to 32 in PQA-Q for
MicroNetgws in case of Ls = 4 and Nj, = 16 improves the Performance/Area by around 1.5X showing that further
vectorization parameters tuning can lead to even better gains in PQA.

Significant speedup is possible with PQ at lower accuracy. Focusing on ResNet20cpar19, our largest DNN, we
find that we are able to outperform both the baseline DLA, and PECAN considerably. Specifically, our best PQA-Q
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architectures achieved a 3.1x and 9.4X improvement in overall performance/area compared to the baseline DLA and
PECAN alternatives. While there is still a considerable gap to conventional DNNs in terms of accuracy, our improvements
over PECAN-D comes at only 0.6% accuracy degradation (at 4x performance/area boost) or up to 1.2% degradation
(with 9x performance/area boost). This is achieved due to the smaller N, and larger Ls used and the efficiency of the
optimized PQA-Q in performing the needed computations when compared to the conventional DLA that requires lots
of multiplications. Our proposed efficient PQ-DNNs and PQA design therefore present a compelling accuracy-efficiency
tradeoff for implementation on constrained edge devices. Improvements can be seen in other DNNs as well where
our best PQA-Q architectures achieve 81% and 18% improvement in overall performance/area for MicroNetgws and
DWEeMNIST respectively. Notably, the accuracy drop is lowest with MicroNetgws with as little as 0.3% degradation for
some of our parameterizations.

Lower bitwidth alleviates memory bandwidth bottlenecks. As we have seen in our per-layer analysis, HBM
favours PQA more than DLA because of the higher external memory bandwidth demands of PQ-DNNs. However, when
lower bitwidths were used with PQA, this is not the case anymore and the memory bandwidth bottleneck was alleviated
as shown by the identical performance for both DDR4 and HBM for PQA-Q design points.

All considered, we were able to, for the first time, demonstrate a hardware speedup for PQ-DNNs, even when
comparing against an optimized systolic array-based DLA. Our results have shown that, while there is still an accuracy
gap to conventional DNNs, our choice of PQ parameters, training improvements, and the accuracy corrector can help
decrease the accuracy degradation. Our novel PQA architecture has helped to highlight that significant hardware
speedup may be possible even if CPU and GPU architectures are not a good fit, especially when customizing the

bitwidths for this new DNN computing paradigm as we have shown in our work.

7 RELATED WORK

Product Quantization. Standard quantization approaches perform a scalar-to-scalar mapping while product quantiza-
tion (PQ) operates with higher-dimensionality, mapping vectors to vectors [17, 29]. This has made PQ a good fit for
applications such as image retrieval [25, 31, 50] and compression [14, 43]. Different from those works is [8], where PQ is
used to accelerate matrix-matrix multiplications in a two-step process: columns of the input are mapped to prototypes, a
set of learnable vectors; then these vectors are used to construct a look-up table of pre-computed dot products between
prototypes and the layer weights. At inference time, the pre-computed values can be retrieved by mapping each input
column to its closest prototype, trading numerical degradation for larger speedups in some cases. Follow up work
extends PQ to an entire fully connected network and provides a preliminary analysis on the overheads of accelerating
PQ [35]. A more generalised implementation of PQ is PECAN [39], which not only applies PQ to CNNs but also proposes
a distance metric for input-to-prototype encoding that does not require multiplications. However, this method resulted
in severe memory overheads since minimising accuracy degradation was prioritized. Unlike prior work, we perform a
broader and systematic study of the impact of PQ settings in terms of memory, compute, and accuracy which we then
use to inform our hardware accelerator design. Furthermore, we present the first hardware architecture to accelerate
PQ-DNNs, and we demonstrate significant performance gains compared to prior work and to conventional DNNs.
Hardware Acceleration of DNNs. Many custom hardware accelerators have been recently developed, especially
for DNNs. These accelerators outperform conventional CPUs and GPUs by leveraging DNN-specific properties in their
hardware architectures [11, 15, 16]. For example, Google’s TPU [28] uses a 2D systolic array of multiply-accumulate units
that can more directly and efficiently transfer data between compute units instead of expensive synchronization over

GPU register files. Another example is Groq’s TSP [2], which utilizes spatial compute units to enable the construction
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of custom compute engines for each DNN layer. Many prior works have used field-programmable gate-arrays (FPGAs)
to build accelerators for deep learning, leveraging low precision, sparsity, a custom memory hierarchy, or novel
dataflows [1, 3, 19].

In the literature, other accelerators based on similar quantization techniques like vector quantization have been
proposed [34]. However, this work is fundamentally different than our work. Their vector quantization algorithm is
different from our product quantization algorithm. Specifically, we quantize activations on the fly and leave weights
unquantized, while prior work[34] quantizes weights and does not quantize activations. This significantly changes the
hardware design and has implications on accuracy which are not quantified in the prior work unlike our work which
focuses on finding product quantization parameters and optimizing the training process to achieve good accuracy. Prior
work is also based on STD cell ASIC implementation, and area estimates are only based on post-synthesis results and
without SRAM area included, as shown in the footnote in Table 1. However, the PQ accelerator (both in our work and

n [34]) is heavily-based on SRAM for product lookup. This makes the results in prior work much more difficult to
compare with non-PQ accelerators. In contrast, our work is based on FPGAs and we are able to directly compare to a
widely-used conventional deep learning accelerator to understand the true efficiency gap between the two approaches
(PQA vs DLA).

To the best of our knowledge, none of the existing work has attempted to accelerate PQ using custom hardware?,
nor were there any studies of PQ efficiency using a custom accelerator. Our work aims to fill this gap by presenting the

first product quantization accelerator (PQA).

8 CONCLUSION

In this work we have identified several practical limitations that prevent PQ from being treated like other, more
mature, optimizations techniques for DNN acceleration. As evidenced throughout our study, PQ requires a careful
tuning to avoid incurring large overheads, especially in terms of memory and compute footprint. Unlike CPUs and
GPUs, our custom hardware PQA has demonstrated that PQ can indeed accelerate entire DNNs but not as much as
higher-level proxy metrics such as FLOPs might suggest. PQA is 3.1X more efficient than a conventional DLA in terms
of performance/area on ResNet20. To our knowledge, this is the first time a hardware speedup for PQ was demonstrated
on any hardware platform. Furthermore, by codesigning PQ parameters and hardware, our PQ ResNet20 is 4X better in
performance per area than the most recent PQ work with just 0.6% lower accuracy. We also demonstrated the use of
lower bitwidths through linear quantization on top of PQ to further decrease hardware area with low drop in accuracy.
In the future, we plan to investigate more robust and faster methods for PQ training, and explore more complementary

compression methods such as channel pruning.

9 LIMITATIONS AND FUTURE WORK

In this work we made use of PQ to accelerate relatively small ML models for image classification and keyword spotting.
Their size and complexity allowed us to consider a broad range of experiments, including an extensive per-layer analysis.
An obvious extension of our work would be to apply PQ to much larger models. Even though our evaluation focuses on
relatively small networks and datasets, these networks are not over-parameterised for their respective tasks, meaning
that achieving further compression is challenging without incurring accuracy degradation. This being said, compression
is not the only objective of PQ. Our objective is to speedup inference through PQ without incurring a large increase in

memory footprint due to the large lookup tables. Currently, training PQ models requires much longer training times

2With the exception of a 1-page abstract at FCCM 2018 [52]. However, without a description of the architecture.
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and memory utilization during the input-to-protoype encoding stage that require computing the distances of each input
column of each subspace to each prototype. For example, training the MicroNet with PQ for SpeechCommands takes
approximately 6 hours for one run, already making it challenging to produce most of the results in our paper. Not to
mention, that PQ is highly sensitive to hyperparameter settings, which required us to run hundreds of hyperparameter
search steps for each architecture-dataset pair.

The use of PQ is complementary to other forms of accelerating inference. For example, using quantization (as
discussed in Section 5.3) could be used to reduce the computational footprint of the encoding stage as well as the
overheads of storing and reading from LUTpg and the external memory bandwidth limitations. This opens the door
for exploring designs with higher vectorization parameters which may lead to higher speedups. In addition to that,
Structured pruning, in particular channel pruning [7, 22], can be applied first to a model and then obtain its PQ
representation. With channel pruning, the number of output channels is reduced and so the acceleration potential
of PQ increases. This was shown analytically when analysing the trade-offs of PQ and empirically in our hardware

layer-wise analysis.

ACKNOWLEDGMENTS

This project is supported in part by Intel Corporation funding. We would like to thank Deshanand Singh, Susanne Balle,
Mabhesh Iyer, Nilesh Jain, Aravind Dasu, Gregg Baeckler, and Ilya Ganusov for insightful discussions and feedback. We
would also like to thank the reviewers for their valuable comments and suggestions, which helped us improve the

quality of the manuscript.

REFERENCES

[1] Mohamed S. Abdelfattah, David Han, Andrew Bitar, Roberto Dicecco, Shane O’Connell, Nitika Shanker, Joseph Chu, Ian Prins, Joshua Fender,
Andrew C. Ling, and Gordon R. Chiu. 2018. DLA: Compiler and FPGA Overlay for Neural Network Inference Acceleration. 28th International
Conference on Field Programmable Logic and Applications (FPL) (2018), 411-4117.

[2] Dennis Abts, Jonathan Ross, Jonathan Sparling, Mark Wong-VanHaren, Max Baker, Tom Hawkins, Andrew Bell, John Thompson, Temesghen
Kahsai, Garrin Kimmell, Jennifer Hwang, Rebekah Leslie-Hurd, Michael Bye, E. R. Creswick, Matthew Boyd, Mahitha Venigalla, Evan Laforge, Jon
Purdy, Purushotham Kamath, Dinesh Maheshwari, Michael Beidler, Geert Rosseel, Omar Ahmad, Gleb Gagarin, Richard Czekalski, Ashay Rane,
Sahil Parmar, Jeff Werner, Jim Sproch, Adrian Macias, and Brian Kurtz. 2020. Think Fast: A Tensor Streaming Processor (TSP) for Accelerating Deep
Learning Workloads. In Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer Architecture (Virtual Event) (ISCA °20). IEEE
Press, 145-158. https://doi.org/10.1109/ISCA45697.2020.00023

[3] Utku Aydonat, Shane O’Connell, Davor Capalija, Andrew C Ling, and Gordon R Chiu. 2017. An opencl™ deep learning accelerator on arria 10. In
Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 55-64.

[4] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul
Whatmough. 2021. MicroNets: Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. In Proceedings
of Machine Learning and Systems, A. Smola, A. Dimakis, and L. Stoica (Eds.), Vol. 3. 517-532.

[5] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul
Whatmough. 2021. Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers. (2021), 517-532.

[6] Axel Berg, Mark O’Connor, and Miguel Tairum Cruz. 2021. Keyword Transformer: A Self-Attention Model for Keyword Spotting. In Proc. Interspeech
2021. 4249-4253. https://doi.org/10.21437/Interspeech.2021-1286

[7] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. 2020. What is the State of Neural Network Pruning?. In Proceedings
of Machine Learning and Systems, 1. Dhillon, D. Papailiopoulos, and V. Sze (Eds.), Vol. 2. 129-146. https://proceedings.mlsys.org/paper/2020/file/
d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf

[8] Davis Blalock and John Guttag. 2021. Multiplying Matrices Without Multiplying. In Proceedings of the 38th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang (Eds.). PMLR, 992-1004.

[9] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. 2016. Neural Photo Editing with Introspective Adversarial Networks. https:
//doi.org/10.48550/ARXIV.1609.07093

[10] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian, and Chang Xu. 2020. AdderNet: Do We Really Need Multiplications in
Deep Learning?. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).


https://doi.org/10.1109/ISCA45697.2020.00023
https://doi.org/10.21437/Interspeech.2021-1286
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/d2ddea18f00665ce8623e36bd4e3c7c5-Paper.pdf
https://doi.org/10.48550/ARXIV.1609.07093
https://doi.org/10.48550/ARXIV.1609.07093

22

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]

[29]

[30]
[31]

[32]
[33]

[34]

AbouFlhamayed, Cui, Fernandez-Marques, Lane, and Abdelfattah

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile
Devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019), 292-308. https://doi.org/10.1109/JETCAS.2019.2910232

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017. EMNIST: Extending MNIST to handwritten letters. 2017 International
Joint Conference on Neural Networks (IJCNN) (2017). https://doi.org/10.1109/ijcnn.2017.7966217

S. Davis and P. Mermelstein. 1980. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences.
IEEE Transactions on Acoustics, Speech, and Signal Processing 28, 4 (1980), 357-366. https://doi.org/10.1109/TASSP.1980.1163420

Alaaeldin El-Nouby, Matthew J. Muckley, Karen Ullrich, Ivan Laptev, Jakob Verbeek, and Hervé Jégou. 2022. Image Compression with Product
Quantized Masked Image Modeling. https://doi.org/10.48550/ARXIV.2212.07372

H. Fan, T. Chau, S. L. Venieris, R. Lee, A. Kouris, W. Luk, N. D. Lane, and M. S. Abdelfattah. 2022. Adaptable Butterfly Accelerator for Attention-based
NNs via Hardware and Algorithm Co-design. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE Computer Society,
Los Alamitos, CA, USA, 599-615. https://doi.org/10.1109/MICRO56248.2022.00050

H. Fan, T. Chau, S. I Venieris, R. Lee, A. Kouris, W. Luk, N. D. Lane, and M. S. Abdelfattah. 2022. Adaptable Butterfly Accelerator for Attention-based
NNs via Hardware and Algorithm Co-design. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE Computer Society,
Los Alamitos, CA, USA, 599-615. https://doi.org/10.1109/MICRO56248.2022.00050

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product Quantization. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 4 (2014), 744-755. https://doi.org/10.1109/TPAMI.2013.240

Junli Gu, Yibing Liu, Yuan Gao, and Maohua Zhu. 2016. OpenCL Caffe: Accelerating and Enabling a Cross Platform Machine Learning Framework.
In Proceedings of the 4th International Workshop on OpenCL (Vienna, Austria) (IWOCL ’16). ACM, New York, NY, USA, Article 8, 5 pages. https:
//doi.org/10.1145/2909437.2909443

Mathew Hall and Vaughn Betz. 2020. HPIPE: Heterogeneous Layer-Pipelined and Sparse-Aware CNN Inference for FPGAs. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (Seaside, CA, USA) (FPGA °20). Association for Computing Machinery,
New York, NY, USA, 320. https://doi.org/10.1145/3373087.3375380

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) (Jun 2016). https://doi.org/10.1109/cvpr.2016.90

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

Yihui He, Xiangyu Zhang, and Jian Sun. 2017. Channel Pruning for Accelerating Very Deep Neural Networks. arXiv:1707.06168 [cs.CV]

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018.
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (Jun 2018). https://doi.org/10.1109/cvpr.2018.00286

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical Reparameterization with Gumbel-Softmax. https://doi.org/10.48550/ARXIV.1611.01144

Young Kyun Jang and Nam Ik Cho. 2020. Generalized Product Quantization Network for Semi-Supervised Image Retrieval. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR).

Pranav Jeevan, Kavitha Viswanathan, Anandu A S, and Amit Sethi. 2022. WaveMix: A Resource-efficient Neural Network for Image Analysis.
https://doi.org/10.48550/ARXIV.2205.14375

Yanggqing Jia. 2014. Learning Semantic Image Representations at a Large Scale. Ph.D. Dissertation. EECS Department, University of California,
Berkeley.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers,
Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami,
Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey,
Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu
Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,
Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance
Analysis of a Tensor Processing Unit. SSIGARCH Comput. Archit. News 45, 2 (jun 2017), 1-12. https://doi.org/10.1145/3140659.3080246

Herve Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization for Nearest Neighbor Search. IEEE Transactions on Pattern Analysis
and Machine Intelligence 33, 1 (2011), 117-128. https://doi.org/10.1109/TPAMI.2010.57

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/ARXIV.1412.6980

Benjamin Klein and Lior Wolf. 2019. End-To-End Supervised Product Quantization for Image Search and Retrieval. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features from tiny images. (2009).

Andrew Lavin and Scott Gray. 2016. Fast Algorithms for Convolutional Neural Networks. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Jun 2016). https://doi.org/10.1109/cvpr.2016.435

Heng Lee, Yi-Heng Wu, Yu-Sheng Lin, and Shao-Yi Chien. 2019. Convolutional Neural Network Accelerator with Vector Quantization. In 2019 IEEE
International Symposium on Circuits and Systems (ISCAS). 1-5. https://doi.org/10.1109/ISCAS.2019.8702105


https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1109/ijcnn.2017.7966217
https://doi.org/10.1109/TASSP.1980.1163420
https://doi.org/10.48550/ARXIV.2212.07372
https://doi.org/10.1109/MICRO56248.2022.00050
https://doi.org/10.1109/MICRO56248.2022.00050
https://doi.org/10.1109/TPAMI.2013.240
https://doi.org/10.1145/2909437.2909443
https://doi.org/10.1145/2909437.2909443
https://doi.org/10.1145/3373087.3375380
https://doi.org/10.1109/cvpr.2016.90
https://arxiv.org/abs/1707.06168
https://doi.org/10.1109/cvpr.2018.00286
https://doi.org/10.48550/ARXIV.1611.01144
https://doi.org/10.48550/ARXIV.2205.14375
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1109/cvpr.2016.435
https://doi.org/10.1109/ISCAS.2019.8702105

PQA: Product Quantization DNN Hardware Accelerator 23

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

Calvin McCarter and Nicholas Dronen. 2022. Look-ups are not (yet) all you need for deep learning inference. https://doi.org/10.48550/ARXIV.2207.
05808

Sachin Mehta and Mohammad Rastegari. 2022. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer. In International
Conference on Learning Representations.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais Martinez. 2022. EdgeViTs:
Competing Light-weight CNNs on Mobile Devices with Vision Transformers. In European Conference on Computer Vision.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems (NeurIPS). 8026-8037.

Jie Ran, Rui Lin, Jason Chun Lok Li, Jiajun Zhou, and Ngai Wong. 2022. PECAN: A Product-Quantized Content Addressable Memory Network.
https://doi.org/10.48550/ARXIV.2208.13571

Rafat Rashid, J Gregory Steffan, and Vaughn Betz. 2014. Comparing performance, productivity and scalability of the TILT overlay processor to
OpenCL HLS. In 2014 International Conference on Field-Programmable Technology (FPT). IEEE, 20-27.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional
Neural Networks. CoRR abs/1603.05279 (2016). arXiv:1603.05279

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (Jun 2018). https://doi.org/10.1109/cvpr.2018.00474

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. 2020. And the Bit Goes Down: Revisiting the Quantization of
Neural Networks. In International Conference on Learning Representations (ICLR).

Mingxing Tan and Quoc V. Le. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv:1905.11946

Michael Tschannen, Aran Khanna, and Animashree Anandkumar. 2018. StrassenNets: Deep Learning with a Multiplication Budget. In Proceedings
of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.).
PMLR, Stockholmsméssan, Stockholm Sweden, 4985-4994.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. HAQ: Hardware-Aware Automated Quantization With Mixed Precision. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv preprint arXiv:1804.03209 (2018).

Di Wu, Yu Zhang, Xijie Jia, Lu Tian, Tianping Li, Lingzhi Sui, Dongliang Xie, and Yi Shan. 2019. A High-Performance CNN Processor Based on
FPGA for MobileNets. In 2019 29th International Conference on Field Programmable Logic and Applications (FPL). 136-143. https://doi.org/10.1109/
FPL.2019.00030

Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. 2018. Product Quantization Network for Fast Image Retrieval. In Proceedings of the European
Conference on Computer Vision (ECCV).

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. 2020. Why Gradient Clipping Accelerates Training: A Theoretical Justification for
Adaptivity. In International Conference on Learning Representations. https://openreview.net/forum?id=BJgnXpVYwS

Jialiang Zhang and Jing Li. 2018. PQ-CNN: Accelerating Product Quantized Convolutional Neural Network on FPGA. In 2018 IEEE 26th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM). 207-207. https://doi.org/10.1109/FCCM.2018.00041
Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2018. Hello Edge: Keyword Spotting on Microcontrollers. arXiv:1711.07128 [cs.SD]


https://doi.org/10.48550/ARXIV.2207.05808
https://doi.org/10.48550/ARXIV.2207.05808
https://doi.org/10.48550/ARXIV.2208.13571
https://arxiv.org/abs/1603.05279
https://doi.org/10.1109/cvpr.2018.00474
https://arxiv.org/abs/1905.11946
https://doi.org/10.1109/FPL.2019.00030
https://doi.org/10.1109/FPL.2019.00030
https://openreview.net/forum?id=BJgnXpVYwS
https://doi.org/10.1109/FCCM.2018.00041
https://arxiv.org/abs/1711.07128

24 AbouFlhamayed, Cui, Fernandez-Marques, Lane, and Abdelfattah

Table 4. The DWgmnisT architecture used in the per-layer study designed for EMNIST image classification. Pointwise convolutions
dominate the compute footprint of this model. Because of this, only point-wise convolutions are considered to be replaced with PQ -
for which we show the shapes of unrolled inputs and weights. This model has a total of 1.05M parameters and requires 50.1M FLOPs
per 1x28x%28 input.

Layer Input Shape Unrolled Inputs Unrolled Weights Parameters FLOPs  FLOPs (%)
Conv [1,1, 28, 28] - - 640 1,003,520 2.00
DepthW-1 [1, 64, 28, 28] - - 576 225,792 0.45
PointW-1 [1, 64, 14, 14] (1, 64, 196] [96, 64] 6,144 2,408,448 481
DepthW-2 [1, 96, 14, 14] - - 864 338,688 0.68
PointW-2  [1, 96, 14, 14] [1, 96, 196] [120, 96] 11,520 4,515,840 9.01
DepthW-3 [1, 120, 14, 14] - - 1,080 423,360 0.85
PointW-3 [1, 120, 14, 14] [1, 120, 196] [150, 120] 18,000 7,056,000 14.08
DepthW-4 [1, 150, 14, 14] - - 1,350 132,300 0.26
PointW-4 [1,150,7, 7] [1, 150, 49] [187, 150] 28,050 2,748,900 5.49
DepthW-5 [1,187,7,7] - - 1,683 164,934 0.33
PointW-5 [1,187,7,7] (1,187, 49] [234, 187] 43,758 4,288,284 8.56
DepthW-6  [1,234,7,7] - - 2,106 206,388 0.41
PointW-6 [1,234,7, 7] [1, 234, 49] [292, 234] 68,328 6,696,144 13.37
DepthW-7 [1,292,7,7] - - 2,628 84,096 0.17
PointW-7 [1,292, 4, 4] [1, 292, 16] [366, 292] 106,872 3,419,904 6.83
DepthW-8 [1, 366, 4, 4] - - 3,294 105,408 0.21
PointW-8 [1, 366, 4, 4] [1, 366, 16] [457, 366] 167,262 5,352,384 10.68
DepthW-9 [1, 457, 4, 4] - - 4,113 131,616 0.26
PointW-9 [1, 457, 4, 4] [1, 457, 16] [572, 457] 261,404 8,364,928 16.70
DepthW-10 [1,572, 4, 4] - - 5,148 41,184 0.08
PointW-10 [1,572,2,2] [1,572, 4] [512, 572] 292,864 2,342,912 4.68
Linear [1,512] - - 24,111 48,222 0.10

A MODEL ARCHITECTURES

The per-layer study presented in the main paper made use of a CNN with 10 depth-wise separable layers. We designed
this network, that we name DWgpNisT, to be lightweight but deep enough so we could conduct the study considering
a very large set of PQ-related parameters, {Np, Ls, 7}, and training related hyperparamters (batch sizes, learning rates,
etc). A detailed description of the network is presented in Table 4. This network has a total of 1.05M paramters and
requires 50.1M FLOPs when implemented as im2col. In Section 6 we analyse how a NAS-optimized MicroNet [4]*
for keyword spotting performs under different PQ settings. We refer to this network as MicroNet-PQ and a per-layer
breakdown of parameters and shapes is provided in Table 5. This MicroNet baseline is an INT8 model designed to be
run on microcontrollers. The last model considered in this work is a ResNet20 [21] for CIFAR-10. This is the same model
evaluated in PECAN [39], and Table 6 provides a detailed view of this architecture.

B EXTENDED PQ IMPLEMENTATION TRADE-OFFS

In Fig. 11 we show an extended version of the results. Two main trends become evident in this visualisation. First, at
deeper layers, where the spatial dimensions of the input tend to be smaller (i.e. leading to fewer columns in the unrolled
input) the impact on Output MSE of having more prototypes, higher Nj, is less pronounced. For example, in layer 2 and

short prototypes Ls =4 having N, =64 compared to Nj, =8 offers an Output MSE 2.4X smaller. In layer 8, this difference

3open sourced in: https://github.com/ARM-software/ML-zoo/tree/master/models/keyword_spotting/micronet_small/tflite_int8
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Table 5. The MicroNet-PQ architecture designed for the SpeechCommands dataset. Pointwise convolutions dominate the compute
footprint of this model, accounting for almost 75% of the FLOPs. Because of this, only point-wise convolutions are considered to be
replaced with PQ - for which we show the shapes of unrolled inputs and weights. This model has a total of 60.6K parameters and
requires 17.01M FLOPs per 1Xx10x49 input. This model corresponds with MicroNet-KWS-S [4]. We modified the number of channels
of the second depth-wise block from 112 to 120 so it’s divisible with common Ls choices used throughout this work.

Layer Input Shape Unrolled Inputs Unrolled Weights Parameters FLOPs  FLOPs (%)
Conv [1, 1, 10, 49] - - 3,444 3,375,120 19.75
DepthW-1  [1, 84, 10, 49] - - 756 189,000 111
PointW-1  [1, 84, 5, 25] [1, 84, 125] [120, 84] 10,080 2,520,000 14.75
DepthW-2  [1, 120, 5, 25] - - 1,080 270,000 1.58
PointW-2  [1, 120, 5, 25] [1, 120, 125] [84, 120] 10,080 2,520,000 14.75
DepthW-3  [1, 84, 5, 25] - - 756 189,000 111
PointW-3  [1, 84, 5, 25] [1, 84, 125] [84, 84] 7,056 1,764,000 10.32
DepthW-4  [1, 84, 5, 25] - - 756 189,000 111
PointW-4  [1, 84, 5, 25] [1, 84, 125] [84, 84] 7,056 1,764,000 10.32
DepthW-5  [1, 84, 5, 25] - - 756 189,000 1.11
PointW-5  [1, 84, 5, 25] [1, 84, 125] [196, 84] 16,464 4,116,000 24.08
Linear [1, 196] - - 2,364 4,728 0.03

Table 6. The ResNet20 architecture for CIFAR-10. All layers in the network with the exception of the input convolution and output
linear layer are replaced with their PQ counterparts in our evaluation. For these we show the shapes of unrolled inputs and weights.
This model has a total of 268K parameters and requires 81.1M FLOPs per 3X32X32 input.

Layer Input Shape Unrolled Inputs Unrolled Weights Parameters FLOPs  FLOPs (%)
Conv [1,3,32,32] - - 432 884,736 1.09
Block1-Convl [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block1-Conv2 [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block1-Conv3  [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block1-Conv4  [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block1-Convs  [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block1-Convé  [1, 16, 32, 32] [1, 144, 1024] [16, 144] 2,304 4,718,592 5.82
Block2-Convl [1, 16, 32, 32] [1, 144, 256] [32, 144] 4,608 2,359,296 2.91
Block2-Conv2 [1, 32, 16, 16] [1, 288, 256] [32, 288] 9,216 4,718,592 5.82
Block2-Conv3 [1, 32, 16, 16] [1, 288, 256] [32, 288] 9,216 4,718,592 5.82
Block2-Conv4 [1, 32, 16, 16] [1, 288, 256] [32, 288] 9,216 4,718,592 5.82
Block2-Conv5  [1, 32, 16, 16] [1, 288, 256] [32, 288] 9,216 4,718,592 5.82
Block2-Convé  [1, 32, 16, 16] [1, 288, 256] [32, 288] 9,216 4,718,592 5.82
Block3-Convl [1, 32, 16, 16] [1, 288, 64] [64, 288] 18,432 2,359,296 2.91
Block3-Conv2  [1, 64,8, 8] [1, 576, 64] [64, 576] 36,864 4,718,592 5.82
Block3-Conv3  [1, 64, 8, 8] [1, 576, 64] [64, 576] 36,864 4,718,592 5.82
Block3-Convd  [1, 64, 8, 8] [1, 576, 64] [64, 576] 36,864 4,718,592 5.82
Block3-Convs  [1, 64, 8, 8] [1, 576, 64] [64, 576] 36,864 4,718,592 5.82
Block3-Convé  [1, 64, 8, 8] [1, 576, 64] [64, 576] 36,864 4,718,592 5.82
Linear [1, 64] - - 650 1,300 0.00

is reduced to 1.7X. The second trend has to do with the costs of performing the input-to-prototype indexing, or in other

words, computing the distance of each input column with the bank of prototypes in a given subspace. Due to the larger

spatial dimensions in early layers in the network, the encoding costs FLOPS®" are much larger for a constant {N,, Ls}

configuration than in deeper layers. For example for {N, =64, Ls =8}, FLOPS®"® is 3.2X larger in layer 2 than layer 8.
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Fig. 11. Analysis of the quality of the output generated by a PQ layer compared to the output of a non-PQ layer of a pre-trained
model. The unit in the x-axis is number of parameters and we map to it the size of the resulting look up table, LUTpq, as well as
the number of parameters that the same non-PQ layer has (this is shown as a vertical dashed red line). In addition to different
memory footprints, each {N}, Ls} pair also translates into different compute overheads when performing the input encoding. This is
represented by the grey-shaded squares whose areas are proportional to FLOPS®"¢.

C MEMORY AND COMPUTE FOOTPRINT OF PQ

We presented our study on the PQ trade-offs, we derived an expression for the speedup in terms of FLOPs achievable
by PQ over im2col-equivalent convolution in Section 5.1. In Fig 12 we show how that expression maps to different
speedups when varying Np, Ls, and Cout. Having fewer prototypes (i.e. a smaller Np) has a larger impact than designing

PQ with longer prototypes (i.e. larger L), although this is also desirable. Another important observation is that PQ
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might not always be faster than im2col. This is true for convolutional layers with few output channels (Coyt < 64) and

a moderate number of prototypes per sub-space.

FLOPs reduction factor achieved by PQ compared to im2col
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Fig. 12. Reduction factor in the number of FLOPs when a layer with Coyt is implemented as a PQ layer with {N,, Ls} parameterization.
The speedup grows faster with N, than with L. For layers with very few output channels, there is no reduction in the number of
FLOPs. Note this analysis assumes that looking-up the pre-computed dot product is cost-free.

D MANHATTAN DISTANCE

Figure 13 shows the impact of choosing Manhattan (L1) distance instead of Euclidean distance, which does not require

multiplications. However, the impact on accuracy is not acceptable.

E ACCURACY AND HARDWARE PERFORMANCE

To link our hardware efficiency study with PQ accuracy, Fig 14 plots the the mean square error (MSE) of the output
vs. the number of PQA cycles for different PQ parameters for PointW-9 layer described in Table 4. It can be seen that
increasing N increases the accuracy marginally while it has a clearer effect on the cycle count especially for larger
L. It is worth noting that in this case, the efficiency of the hardware is limited by the external memory bandwidth so

increasing N, increases the size of the lookup table leading to more memory bandwidth requirements.

F  COMPARISON WITH OTHER ACCELERATORS

In the main text, a comparison with a conventional DLA [3] is presented. Here, comparison is extended to include
another DLA [49] in Table 7. It’s clear that PQA with the correct configuration outperforms both which indicates
that PQ running on a customized hardware can indeed have a benefit over conventional convolution running on a
customized hardware. It’s worth mentioning that to be able to do the comparison with the information provided in the
literature about the conventional accelerator [49], some assumptions were done. We're not taking into account the
number of cycles taken by their engine to load data into the memory and we’re assuming it is always compute bound
but we don’t make the same assumption in PQA (i.e. we count those cycles in PQA). One of the paper’s optimizations
is starting the calculation of the depthwise layer before the convolution layer before it is already done, they use the
resultant outputs to kick off the computation in a pipeline manner. Given that there are no depthwise layers in ResNet20,

we’re not overlapping any of the layers calculation with the other layers.
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Fig. 13. When replacing Euclidean distance with the more lightweight Manhattan distance, the error introduced to the output
(represented as a red arrow) is not negligible with longer prototypes. The size of LUTpq is not affected by the choice of distance

AbouFlhamayed, Cui, Fernandez-Marques, Lane, and Abdelfattah

V Np=4--Ls=4 (Ns=30) V¥V Np=8--Ls=4(Ns=30) V¥V Np=16--Ls=4 (Ns=30) V Np=32--Ls=4 (Ns=30) V Np =64 --Ls=4 (Ns=30)
¢ Np=4-Ls=8(Ns=15) ¢ Np=8--Ls=8(Ns=15) ¢ Np=16-Ls=8 (Ns=15) ¢ Np=32--Ls=8(Ns=15) ¢ Np=64- Ls=8 (Ns=15)
] 4 -- Ls=12 (Ns=10) W Np=8-L =10) W Np= =12 (Ns=10) B Np =32--Ls=12 (Ns=10) M Np =64 -- Ls=12 (Ns=10)
® Np=4-1s=16 (Ns=8) @® Np=28-Ls=16 (Ns=8) ® Np=16--Ls=16 (Ns=8) ® Np=32-1s=16 (Ns=8) ©® Np =64--Ls=16 (Ns=8)
4 Np=4--Ls=24 (Ns=5) 4 Np = 8- Ls=24 (Ns=5) % Np =16-- Ls=24 (Ns=5) % Np =32--Ls=24 (Ns=5) % Np =64 -- Ls=24 (Ns=5)
% Np=4--Ls=32(Ns=4) 9% Np=8-Ls=32(Ns=4) % Np=16-- Ls=32 (Ns=4) 3% Np =32--Ls=32 (Ns=4) % Np =64 - Ls=32 (Ns=4)
Analysis for layer ‘net.2.0.pointwise", receiving unrolled input of shape: [64, 120, 196]
_12 4
—1.44
_16 4
_18 4
—2.0 S
i m
_22 4
I !
' 3
—2.4+ v
v
0 50 100 150 200 250 300
Size of LUTpq
Np = 4 -- Ls=4 (Ns=115) v Ls=4 (Ns=115) V Np =16 -- Ls=4 (Ns=115) V  Np =32--Ls=4 (Ns=115) v Np =64 - Ls=4 (Ns=115)
=8 (Ns=58) ¢ Ls=8 (Ns=58) ¢ =8 (Ns=58) ¢ Np=32--Ls=8(Ns=58) ¢ Np=64--Ls=8(Ns=58)
=12 (Ns=39) ] Ls=12 (Ns=39) ] =12 (Ns=39) B Np =32--Ls=12 (Ns=39) M Np =64 -- Ls=12 (Ns=39)
=16 (Ns=29) ) Ls=16 (Ns=29) ) =16 (Ns=29) ® Np=32--Ls=16 (Ns=29) ©® Np =64 - Ls=16 (Ns=29)
o Ls=24 (Ns=20) L) & Np =32 -- Ls=24 (Ns=20) % Np =64 -- Ls=24 (Ns=20)
% Np = 8- Ls=32 (Ns=15) ® % Np =32 --Ls=32 (Ns=15) % Np =64 - Ls=32 (Ns=15)

Analysis for layer “net.8.0.pointwise", receiving unrolled input of shape: [64, 457, 16]

—1.4
s Aemar %
LE S
" +
_1.6‘
a®
¢ ®
n
-1.81 e
¢ [ ]
v 'y .
—2.01 ¢ L
v L4
v
—2.2 %
J
0 1000 2000 3000 4000

metric.

Size of LUTpq

Table 7. Comparison between the proposed accelerator and conventional accelerators from the literature.

Accelerator  Cycles per Image
POA 11776
B3] 17664
[49] 19584
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Fig. 14. MSE in a sample layer output vs number of cycles needed to process the input.
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