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Evaluating Self-Supervised Learned Molecular Graph Representations
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Abstract
Because of data scarcity in real-world scenar-
ios, obtaining pre-trained representations via self-
supervised learning (SSL) has attracted increas-
ing interest. Although various methods have been
proposed, it is still under-explored what knowl-
edge the networks learn from the pre-training
tasks and how it relates to downstream proper-
ties. In this work, with an emphasis on chemical
molecular graphs, we fill in this gap by devis-
ing a range of node-level, pair-level, and graph-
level probe tasks to analyse the representations
from pre-trained graph neural networks (GNNs).
We empirically show that: 1. Pre-trained models
have better downstream performance compared to
randomly-initialised models due to their improved
the capability of capturing global topology and
recognising substructures. 2. However, randomly
initialised models outperform pre-trained models
in terms of retaining local topology. Such infor-
mation gradually disappears from the early layers
to the last layers for pre-trained models.

1. Introduction
Self-Supervised Learning (SSL) pre-training has opened up
the opportunity to effectively utilise vast amount of unla-
belled data to improve downstream tasks where labels are
limited. In natural language processing, language models
like GPT-3 (Brown et al., 2020), Megatron (Shoeybi et al.,
2019), and Gopher (Rae et al., 2021) can automatically re-
discover the classical NLP pipeline in an interpretable and
localisable way (Tenney et al., 2019). They can also achieve
substantial improvements in a wide range of NLP tasks.
In computer vision, self-supervised learning approaches
such as contrastive learning (Chen et al., 2020c; He et al.,
2020), bootstrapping (Grill et al., 2020) and masking (He
et al., 2022) are shown to obtain competitive performance
on widely-used benchmarks like ImageNet. DINO (Caron
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Figure 1. Overview of GraphEval. Given molecular graphs, we
train GNNs to predict SSL proxy objectives. We then extract
embeddings of (possibly unseen) graphs using pre-trained models,
which form the inputs for probe models, trained and evaluated on
the designed metrics.

et al., 2021a) shows that a self-supervised vision transformer
(ViT) automatically learns class-specific features for unsu-
pervised object segmentation.

Motivated by the successful applications of self-supervised
learning, pre-training GNNs on unlabelled structured data
has attracted increasing interest (Liu et al., 2021a; Xie et al.,
2021). However, it is still under-explored what knowledge
the networks learn during the pre-training and how it relates
to downstream properties. In this work, with an empha-
sis on chemical molecules, we fill in this gap by devising:
(1) a range of {node-, pair-, graph-} level metrics; (2) sub-
structure detection; (3) embedding space characterisation,
to analyse the representations from pre-trained GNNs. Our
main insights are summarised as follows:

• Pre-trained representations are better at capturing global
topological structure while losing the local information;

• Pre-trained models can well recognise molecular substruc-
tures that are correlated with properties;

• Pre-trained embedding space alleviates the issue of over-
smoothing while the spectrum does not have obvious
connections with embeddings’ quality.

2. Related Work
Graph SSL. Self-supervised learning methods for graphs
are roughly categorised into contrastive and generative
venues (Liu et al., 2021a;b; Wu et al., 2021; Xie et al., 2021).
Contrastive graph SSL (Hu et al., 2020a; Sun et al., 2020;
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You et al., 2020) applies contrastive learning to maximise
the mutual information between augmented instances con-
structed from the same graph. Generative graph SSL (Hamil-
ton et al., 2017; Hu et al., 2020a;b; Liu et al., 2018) forms
the pretext task by reconstructing original graphs. A more
recent trend in Graph SSL (Liu et al., 2022; Stärk et al.,
2021) is to utilise domain knowledge, e.g., 3D information
of molecular conformations, to help enhance the expres-
siveness of GNN. In this work, we focus on studying the
transferable knowledge stored in the self-supervised learned
molecular graph representations.

Probing Pre-trained Embeddings. Using probe mod-
els to study learned representations is a common practice
to evaluate its quality. Probe models capture the intuition
that good features should perform competitively in trans-
fer tasks even with a shallow architecture. We review the
related work applying probe models for natural language
processing (Conneau & Kiela, 2018; Hendricks et al., 2021;
Hewitt & Manning, 2019; Jawahar et al., 2019; Kassner &
Schütze, 2020; Liu et al., 2019; Tenney et al., 2019; Wang
et al., 2019), computer vision (Alain & Bengio, 2017; Caron
et al., 2021b; Chen et al., 2020b; 2021; He et al., 2022; Li
et al., 2021; Resnick et al., 2019; Wang et al., 2021), and
biomedical science (Dohan et al., 2021; Elnaggar et al.,
2021; Rao et al., 2019; Rives et al., 2021; Villegas-Morcillo
et al., 2021). In natural language processing, pre-trained
embeddings are shown to achieve competitive results on a
wide range of tasks such as token labelling and parsing. In
computer vision, self-supervised learned presentations can
not only improve accuracy on downstream benchmarks such
as ImageNet and CIFAR10, but also contain explicit seman-
tic information (Caron et al., 2021b). In bioinformatics and
biomedical science, self-supervised learning is able to learn
biological structures and functions from massive unlabelled
data. It has been shown that such learned embeddings are
organised at a multi-scale level and can capture the informa-
tion ranging from biochemical properties of amino acids to
remote homological protein structures (Rives et al., 2021).

3. Preliminaries and Settings
We first introduce the basics of graphs and GNNs, then
elaborate on the pre-training and probes.

Graph. A graph G = (V, E) consists of a set of nodes
V and edges E . In molecular graphs, nodes are atoms and
edges are bonds. We use xu and xuv to denote the feature of
node u and of the bond feature between nodes [u, v], respec-
tively. For notation simplicity, we use an adjacency matrix
A ∈ R|V|×|V| to represent the graph, where A[u, v] ̸= 0 if
the nodes (u, v) are connected.

GNN. There has been emerging research interest in ex-
ploring molecular graph representations (Corso et al., 2020;

Duvenaud et al., 2015; Gilmer et al., 2017; Liu et al., 2018;
Yang et al., 2019). Graph neural networks are widely-
adopted for encoding molecular graphs. A prototypical
GNN uses messaging passing (Gilmer et al., 2017), where
it updates atom-level representations based on their neigh-
bourhoods. More specifically, let h0

u = xu be the input
atom feature, we have:

mt+1
u =

∑
v:A[u,v] ̸=0

Mt(h
t
u,h

t
v,xuv), ht+1

u = Ut(h
t
u,m

t+1
u )

(1)
where Mt and Ut are the message functions and vertex up-
date functions, respectively. By repeating message passing
for T steps, we can encode the information of the T -hop
neighbourhood for each atom. We use a readout function
R to pool node-level representations for graph-level predic-
tion: ŷ = R({hT

u |u ∈ V}). In this work, we follow the
research line of SSL on molecular graphs (Hu et al., 2020a;
Liu et al., 2022; You et al., 2020) and adopt the Graph Iso-
morphism Network (GIN) (Xu et al., 2019) as the backbone
model (modified in (Hu et al., 2020a) as to incorporate edge
features during message passing).

Pre-Training. We use ten methods for Graph SSL, includ-
ing EdgePred (Hamilton et al., 2017), InfoGraph (Sun et al.,
2020), GPT-GNN (Hu et al., 2020b), AttrMask (Hu et al.,
2020a), ContextPred (Hu et al., 2020a), G-{Contextual, Mo-
tif} (Rong et al., 2020), GraphCL (You et al., 2020), JOAO-
{·,v2} (You et al., 2021) for pre-training. We follow the
experimental settings and pre-training recipes reported in the
original literature. For a fair comparison, we pre-train the
same GIN model on the same data splits. Specifically, we
randomly select 50k qualified molecules from the GEOM
dataset (Axelrod & Gomez-Bombarelli, 2020). Once the
pre-training finished, we extract the embeddings based on
the saved weights and pass them to the probe tasks.

Probe. We use probe models (Liu et al., 2019) to study
whether self-supervised learned representations encode help-
ful structural information about graphs. Concretely, we use
a graph neural network to extract graph representations and
train a shallow model to make predictions with these fixed
node and graph embeddings. A common choice of the probe
model (Hewitt & Liang, 2019) is either a linear projection
or a multi-layer perceptron (MLP). We choose an MLP with
one hidden layer to enable capturing the non-linear relations.
We set the hidden size to 300 and apply the ReLU activation.
We use scaffold splitting to split data into 80%/10%/10% for
the training/validation/testing set. The training procedure
runs for 100 epochs with a learning rate of 1e−3. We select
the best model based on the validation set. All the results
are averaged across three independent runs.

As follows, we show the effectiveness of SSL methods in
downstream tasks and systematically study the knowledge
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Table 1. Performance on molecular property predictions using probes, with (w/) or without (w/o) fine-tuning (FT). For each set of
random/pre-trained embeddings, we report the ROC-AUC scores over 8 datasets consisting of 678 binary tasks, where the score of each
task is averaged over three independent runs. We bold the best and underline the worst performance of each dataset.

FT Random AttrMask GPT-GNN InfoGraph ContextPred G-Contextual G-Motif GraphCL JOAO JOAOv2

w/o 58.85 62.18 61.43 61.94 59.58 64.63 62.59 63.00 60.99 62.31
w/ 67.21 70.16 68.27 70.10 70.89 69.21 70.14 70.64 69.57 70.21

that the networks learn from the pre-training tasks:

• In Sec. 4, we evaluate SSL learned embeddings on molec-
ular biochemical property, demonstrating that such sub-
stantial improvements with linear models and fine-tuning
are not much relevant.

• In Sec. 5, we probe a wide range of structural and topo-
logical metrics based on the embeddings. We find that
pre-trained embeddings are better at capturing global topo-
logical property, and randomised variants surprisingly
outperform restoring local geometry.

• In Sec. 6, we demonstrate that pre-trained embeddings are
better at predicting the counts of molecular substructures,
e.g.allylic and benzene. We hypothesise that the supe-
rior performance of pre-trained embeddings for molecular
biochemical property prediction comes from the fact that
SSL pre-training help better capture the substructure exis-
tence (Alsentzer et al., 2020; Bouritsas et al., 2020).

• In Sec. 7, we characterise the embedding space of ran-
domly initialised and SSL pre-trained methods. We
analyse the embedding space’s spectrum, how the posi-
tive/negative embedding pairs align and distribute. We
show that pre-training helps alleviate the over-smoothing
issue, while the spectrum does not have obvious clues
with embeddings’ performance.

• In Sec. 8, we dive deep on the randomised GNN models.
By re-initialising parts of the pre-trained GNN models,
analysing embeddings extracted at different stages of net-
works, we observe that different stages tend to capture
different scales of graph structural information.

4. Biochemical Property Measure
We first use probe models to evaluate pre-trained embed-
dings on predicting molecular biochemical properties. Fol-
lowing previous graph SSL work (Hu et al., 2020a; You
et al., 2020), we validate the quality of these embeddings
on eight molecular datasets consisting of 678 binary prop-
erty prediction tasks (Hu et al., 2021; Wu et al., 2018). As
previously described in Sec. 3, for the setting of without
fine-tuning (“w/o FT”), we update the probe models with
fixed embeddings; with fine-tuning (“w FT”), both the pre-
trained GNNs and the randomised probe models will be
updated. We report the results in Table 1 and Table 9.

Results and Findings. As shown in Table 1, most of SSL
pre-trained embeddings outperform the randomised peers
both under fixed and non-fixed settings. Compared with
fixed embeddings, tuning the pre-trained model weights will
bring more substantial performance gains due to introducing
more flexibility. However, in general, better performance at
fixed embeddings does not accompany higher fine-tuning
scores. For instance, embeddings pre-trained with “Con-
textPred” have the second-lowest score with fixed scenarios
while perform the best after end-to-end fine-tuning. The
correlation between the two sets of score rankings is 0.25,
which questions the conventional approach’s rationale for
evaluating the quality of learned embedding with linear
models (He et al., 2022).

5. Topological Property Measure
We evaluate the pre-trained embeddings on metrics em-
phasising topological properties at multiple scales, which
are based on the {node-, pair-, and graph-} level statistics.
Many of these metrics are used as features in traditional
machine learning pipelines on graphs prior to the advent of
deep learning (Hamilton, 2020). We first provide descrip-
tions of these metrics, then present results and findings.

Node-level statistics focus on local topological measures
of a graph, where each node is accompanied with a metric
value. They could be used as features in a node classification
model (Hamilton, 2020).

• Node Degree (du) counts the number of edges incident
to node u: du =

∑
v∈V A[u, v]

• Node Centrality (eu) represents a node’s importance, it
is defined as a recurrence relation that is proportional to
the average centrality of its neighbours:

eu =

(∑
v∈V

A[u, v]ev

)
/λ, ∀u ∈ V (2)

• Clustering Coefficient (cu) measures how tightly clus-
tered a node’s neighbourhood is:

cu = (|(v1, v2) ∈ E : v1, v2 ∈ N (u)|) /d2u (3)

i.e.the proportion of closed triangles in neighbour-
hood (Watts & Strogatz, 1998).



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Evaluating Self-Supervised Learned Molecular Graph Representations

Table 2. Performance on the topological metrics predictions. We report the mean square or the cross entropy loss (i.e., the smaller the
better), over all 8 downstream datasets. We bold the best and underline the worst performance of each metric. We have summarised the
percentage where SSL pre-trained embeddings fail to outperform the random embeddings.

Metrics Node Pair Graph

Pre-training Degree Centrality Clustering Link Jaccord Katz Diameter Connectivity Cycle Assortativity

– 0.001 1.199 0.297 31.05 1.879 2.828 222.6 0.226 6.351 0.158

AttrMask 0.015 1.307 0.424 32.23 2.029 2.634 164.7 0.178 6.075 0.102
GPT-GNN 3.032 1.380 0.505 41.44 2.541 2.374 178.8 0.247 9.222 0.166
InfoGraph 1.298 1.242 0.296 41.15 2.273 2.238 83.24 0.204 6.169 0.159
ContextPred 5.498 1.626 0.316 37.78 2.286 2.413 183.0 0.194 8.691 0.108
G-Motif 3.085 1.372 0.531 51.83 2.363 2.758 98.21 0.268 7.333 0.182
G-Contextual 0.036 1.242 0.403 33.55 1.773 2.660 113.6 0.170 5.330 0.045
GraphCL 0.854 1.110 0.461 34.97 1.863 2.271 89.79 0.226 6.191 0.152
JOAO 0.637 1.268 0.412 33.67 2.084 2.307 89.38 0.214 5.960 0.142
JOAOv2 0.591 1.272 0.463 32.81 2.054 2.340 88.27 0.217 5.964 0.148

SSL Worse 100% 89% 89% 100% 78% 0% 0% 0% 0% 0%

We use all the nodes from eight datasets, report the scores
over eight test splits across multiple runs.

Graph-level statistics summarise global topology infor-
mation and are helpful for tasks like graph classifications.
We briefly describe their meanings and refer the formal
definitions to (Hamilton, 2020).

• Diameter: maximum distance between the pair of nodes
• Cycle Basis: a set of simple cycles that forms a basis of

the graph cycle space. It is a minimal set that allows every
even-degree subgraph to be expressed as a symmetric
difference of basis cycles.

• Connectivity: minimum number of elements (nodes or
edges) that need to be removed to separate the remaining
nodes into two or more isolated subgraphs.

• Assortativity: similarity of connections in the graph w.r.t
the node degree, it is essentially the Pearson correlation
coefficient of degree between pairs of linked nodes.

We use all the graphs from eight datasets, report the scores
over eight test splits across multiple runs.

Pair-level statistics quantify the relationships between
nodes. Since node and graph level statistics are not very
useful for the tasks relied on relation modelling, we are in-
terested in how well the pre-trained embeddings can capture
the following pair-level metrics:

• Link Prediction tests whether two nodes are connected
or not, given their embeddings and inner products. Based
on the principle of homophily, it is expected that embed-
dings of connected nodes are more similar compared to
disconnected pairs: SLink[u, v,x

T
uxv] = 1N (u)(v).

• Jaccard Coefficient seeks to quantify the overlap
between neighbourhoods while minimising the bi-
ases induced by node degrees (Lü & Zhou, 2011):
SJaccard [u, v] = |N (u) ∩N (v)|/|N (u) ∪N (v)|

• Katz Index is a global overlap statistic, defined by the
number of paths of all lengths between a pair of nodes:
SKatz[u, v] =

∑∞
i=1 β

iAi[u, v], where β ∈ R+ is a pre-
defined parameter controlling how much weight is given
to short vs long paths. A small value (β < 1) down-
weights the importance of long paths. Here we set β = 1,
giving the paths of all lengths equal importance.

In experiments, we bootstrapped a fixed number of the node
pairs (10k) from each dataset, report the test scores average
over eight test splits across three runs.

Results and Findings. We report the results in Table 2.
We observe that the randomised embeddings retain the lo-
cal structural information well and outperform all the pre-
trained embeddings. On the other hand, the pre-trained
embeddings perform well when performing metrics related
to the graph’s global topology. For pair-level statistics, ran-
domised embeddings perform better when the metric itself
is more about local structure, e.g.link prediction, and vice
versa. We do not observe that there exists a dominant pre-
training method that perform universally well w.r.t. other
methods. There are some connections between the pre-
training tasks and the performance on different metrics:

• Contextual proxy (i.e., G-Contextual) is particularly help-
ful for Jaccard coefficient prediction because of the sim-
ilarity of the pre-training objective and metric measure
(neighbourhood overlap);
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• Complicated design of augmentations (used in contrastive-
based SSL, i.e.JOAO vs. GraphCL) do not bring sub-
stantial improvements in storing graph-level topological
information.

6. Substructure Awareness Measure
Certain substructures usually reflect some properties at node
and graph levels (Girvan & Newman, 2002). For instance,
molecules containing benzene rings usually have similar
physical (e.g.solvent) and chemical (e.g.aromaticity) proper-
ties (McMurry, 2014). On this basis, prediction (Alsentzer
et al., 2020) and modelling (Bouritsas et al., 2020) of sub-
structures have been proven effective for improving model
expressiveness and downstream performance.

Molecular substructure. Instead of defining in an im-
plicit or handcrafted manner, as in previous studies, a
natural definition of substructure in molecules is the sub-
stituent or moiety that performs certain functions in chem-
ical/biological reactions. Here we investigate 24 substruc-
tures which can be divided into three groups:

• Rings: Benzene, Beta lactams, Epoxdie, Furan, Imida-
zole, Morpholine, Oxazole, Piperdine, Piperdine, Pyri-
dine, Tetrazole, Thiazole, Thiophene

• Functional Groups: Amides, Amidine, Azo, Ether
Guanidine, Halogens, Hydroxylamine, Imide, Oxygens
(including phenoxy), Urea

• Redox Active Sites: Allylic (excluding steroid dienone)

Each substructure might have unique effect on the down-
stream properties. For instance, forming with a simple cycle
of atoms and bonds, a ring might lock particular atoms with
distinct 3D structure therefore some of its stereochemistry
properties such as chirality are determined, and chirality-
aware modelling is proven beneficent in predicting molecu-
lar properties (Adams et al., 2022). We first apply “Cramér’s
V” to measure how significant the substructures affect the
molecular properties.

Cramér’s V quantifies the strength of the association be-
tween the molecular substructure counts (i.e., chemical frag-
ments) and their biochemical properties. It is defined as:

V =
√

χ2/ (n ·min(k − 1, r − 1)) =
√
χ2/n (r ≡ 2)

(4)
where n is the sample size, k and r are the total number
of substructure counts and property categories (binary), re-
spectively. The Chi-squared statistics χ2 is then calculated
as:

χ2 =
∑
i,j

(
n(i,j) − n(i,·) · n(·,j)/n

)2/(
n(i,·) · n(·,j)/n

)
(5)

Table 3. Cramér’s V between molecular substructure counts and bi-
nary properties, averaged over 678 binary property prediction tasks
(i.e., “Avg(Task)”) or eight downstream datasets (i.e., “Avg(Data)”).
We have also calculated the Pearson Rank Correlation (ρ) between
embeddings’ performance on recognising the substructure and
predicting properties.

Name Type Avg (Task) Avg (Data) ρ

allylic Site 0.1144 0.1024 0.709
benzene Ring 0.1630 0.1227 0.576
amide Group 0.0881 0.1336 0.468
ether Group 0.1034 0.1083 0.552
halogen Group 0.1721 0.1086 0.515

Table 4. Performance on substructure detection. We bold the best
and underline the worst performance of each substructure. It is
clear to see that contrastive based method (GraphCL, JOAOv2)
perform quite well in recognising these substructures. We provide
detailed results in Appendix D.

Pre-training allylic amide benzene ether halogen

– 3.516 18.948 3.964 6.071 3.652

AttrMask 3.371 12.932 2.860 4.958 1.192
GPT-GNN 2.808 15.736 2.938 5.932 2.912
InfoGraph 2.577 5.535 1.959 3.657 2.819
ContextPred 4.386 18.251 3.583 7.045 2.908
G-Motif 2.452 4.015 2.116 3.507 1.125
G-Contextual 2.196 5.938 1.926 2.900 0.759
GraphCL 2.088 3.922 1.722 3.766 0.798
JOAO 2.385 4.030 1.746 3.376 0.694
JOAOv2 2.122 3.865 1.773 3.388 0.695

SSL Worse 11% 0 0 11% 0

where n(i,j) is the total occurrence for the pair of (i, j).
Here i is the specific count of a certain substructure, and j
represents the certain outcome of a molecular biochemical
property. Cramér’s V value ranges from 0 to 1, representing
the associated strength between two categorical variables.

Results and Findings. We calculate the Cramér’s V, and
report the five substructures that are mostly correlated with
downstream properties in Table 3. We report the detailed
results in Table 11. We observe that certain molecular sub-
structures are good indicators of their biochemical prop-
erties. Based on such facts, we train the probe models to
predict the counts of substructures for all the molecules from
the eight datasets. We report the test scores in Table 4. As
noticed, all the pre-trained embeddings outperform random
variants in terms of detecting the existence of substructures.

We also calculate the Pearson rank correlation ρ between the
performance on downstream tasks and the performance on
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Figure 2. Spectrum of the SSL Pre-trained Embedding Space on BBBP. Left: Node; Right: Graph.

Table 5. Common classifiers trained based on the substructure
counts for predicting molecular properties (ROC-AOC scores aver-
aged over eight datasets). We utilised the conventional experimen-
tal setup in the sci-kit learn module. “Rand” and “SSL” represent
the probe models trained on the randomised and GraphCL pre-
trained embeddings, respectively.

Linear RF XGBoost Probe (Rand) Probe (SSL)

59.91 61.95 62.31 58.85 63.00

substructure detection of the SSL pre-trained embeddings.
A strong positive correlation indicate that embeddings that
are with better capability of detecting these substructures .
Based on the observations of (1) molecular substructures are
highly related with downstream biochemical properties; (2)
embeddings that perform better in property predictions are
usually with better substructure awareness; we conjecture
that the performance gains from SSL pre-training might be
from their capabilities of identifying graph substructures.

We find that: 1) substructure counts is highly correlated with
the molecular properties; 2) the pre-trained embeddings
are good at counting the substructures and predicting the
properties. Consequently, we would like to measure that
how well we can infer the properties solely based on the
substructure counts.

How powerful are molecular substructure counters?
In question-answering systems, it has been found that the
knowledge-aware graph modules may only carry out some
simple reasoning such as counting (Wang et al., 2022). In
GraphEval, we are interested in how the molecular sub-
structure counters perform on the biochemical property
predictions. We take the substructure counts as molecular
descriptors to feed into classic methods, e.g., linear classi-
fier, random forest (RF), and XGBoost, which have been
found (Jiang et al., 2021; Liu et al., 2018) to be effective in
predicting molecular propderties.

We report the averaged test ROC-AUC scores in Table 5.

Interestingly, these simple models trained on substructure
counts achieve on par performance with SOTA 2D graph
pre-trained embeddings. However, with more flexibility
introduced by the end-to-end fine-tuning, the graph neural
nets still maintain a margin of improvements (∼7.7%). In
retrospect to Table 1, we observe:

• with fixed pre-trained representation, GNN is compara-
tive with substructure count descriptors + simple (linear)
models;

• with fine-tuned representation, GNN perform much better
than substructure counts.

Combining these two, we conjecture that GNN SSL
pre-training strategies, especially contrastive-based,
e.g.GraphCL and JOAO, are conducting something similar
to substructure extraction/counting. However, it is not clear
how fine-tuning pre-trained GNNs bring substantial im-
provements, we conjecture it might due to: (1) fine-tuning
incorporate more information beyond substructure counting,
such as pair/global topology; (2) GNN has larger model
capacity which is born with more expressiveness.

7. Embedding Space Characterisation
Characterising the embedding space distribution helps to
better understand notions of the amount of information pre-
served after being encoded. A prominent example is to
measure the redundancy among embeddings (Wang & Isola,
2020; Zbontar et al., 2021). Here, we consider two related
characterisations.

Spectrum (Dimensional Collapse). Following the similar
protocols (Jing et al., 2022), we conduct the spectrum anal-
ysis of the learned embedding space. We first compute the
covariance matrix C ∈ Rd×d based on all the embeddings
z:

C =
1

N

N∑
i=1

(zi − z) (zi − z)
⊤ (6)
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After singular value decomposition:

C = USV⊤ (7)

where

S = diag
(
σk
)

(8)

we can plot the logarithm of the singular values({
log
(
σk
)}

in a descending order as in Fig. 2.

Dimension collapse, happening in visual contrastive
SSL (Hua et al., 2021; Jing et al., 2022), refers to the prob-
lem of embedding vectors spanning a lower-dimensional
subspace instead of the entire available embedding space.
We observe that the graph pre-training methods that improve
the downstream performance do not suffer from dimensional
collapse. We conjecture the similar trends are due to the us-
age of the same baseline (GIN), therefore, sharing the same
model capacity and expressiveness. We notice that a helpful
pre-training will “lift” the spectrum, while a larger magni-
tude of the singular value (e.g.at the 50th/100th dimension)
is usually with a better downstream performance.

Next we will analyse how the SSL pre-training affect the
over-smoothness issue.

Alignment and Uniformity. Usually, similarities in the
embedding spaces are expected to be conserved in the down-
stream properties. To examine this, we first clarify the
meaning of positive and negative molecule pairs. Molecules
that form positive pairs share completely identical biomed-
ical properties provided by the dataset, while the negative
pairs are the two that are entirely different. For instance, in
Tox21 dataset, each molecule are labelled with 12 different
biochemical properties (binary), only molecule pairs whose
12 properties are all the same are defined as positive.

We randomly select 10k positive and negative pairs from
each dataset, calculate the cosine distance and plot the his-
togram in Fig. 3. We choose “AttrMask” and “GraphCL”
to represent the generative and contrastive graph SSL pre-
training methods.. The pre-trained embeddings formed
two distinguishable distributions for positive/negative pairs,
While the randomised embeddings do not. The posi-
tive/negative pair representations are indistinguishable, a
phenomenon often referred to as over-smoothing (Chen
et al., 2020a). This observation also explains why the
randomised embeddings are less competitive in predicting
downstream biochemical properties (Table 1) and captur-
ing the graph statistics (Table 2). As SSL pre-training help
alleviate the over-smoothing issues,, yet it is still worth in-
vestigating why the random embeddings perform quite well
on capturing local structural information.

3

Random, BBBP Random, Tox21

AttrMask, BBBP AttrMask, Tox21

GraphCL, BBBP GraphCL, Tox21

Figure 3. Cosine similarity between the positive and negative
molecule pairs, sampled from BBBP and Tox21 datasets, respec-
tively. The ‘pos’ and ‘neg’ stand for positive and negative molecule
pairs, respectively

8. Randomised Features

Figure 4. Visualisation on the graph embeddings using t-SNE, col-
ored with the node degree, on the BBBP dataset.

Features extracted from randomly initialised networks are
proved effective in applications such as face detection (Baek
et al., 2021). While in GraphEval, we observe that ran-
domised embeddings outperform all the pre-trained peers
in recovering the node and (some) pair-level structural met-
rics. Such findings are validated by visualising the clusters
using t-SNE in Fig. 4. In this section, we investigate how
the pre-trained embeddings lose the local information. We
re-initialised parts of the pre-trained weights to check how
such perturbations result in the embeddings. We then com-
pare the embeddings extracted from different stage layers
of the network. We finally analyse how different message
aggregation designs affect the extracted embeddings.

Different Module Re-initialisations. We start by ob-
serving how the extracted embeddings perform after re-
initialising parts of the pre-trained GNN weights. The GIN
architecture (Hu et al., 2020a; Xu et al., 2019) used in the
Graph SSL research line consists of a node/edge feature em-
bedding layer, and five subsequent GINConv layers and an
output/readout layer. We use Glorot uniform initialisation
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Table 6. Probe measures after re-initialising parts of weights of the pre-trained GNNs. We bold the best and underline the worst
performance of each (pre-trained) embeddings on each structural metric. The digits in the “Re-Init” row represent the index/location of
re-initialised GIN convolutional layers.

Metrics AttrMask GraphCL

Re-Init None Embed 1 2 3 4 5 None Embed 1 2 3 4 5

Node Degree 0.015 0.263 0.062 0.076 0.021 0.063 0.041 0.854 1.429 1.439 1.086 1.406 1.111 1.399
Graph Diameter 164.7 178.4 188.5 184.6 191.1 225.1 229.7 89.79 90.14 102.6 111.5 136.5 139.5 163.9

Table 7. Performance on the topological metrics predictions, based on the embeddings extracted from different layers. We report the mean
square or the cross entropy loss (i.e., the smaller the better), over test splits of 8 downstream datasets. We bold the best and underline the
worst performance of each (pre-trained) embeddings on each metric.

Metrics Random AttrMask GraphCL

Stage (Layer No.) 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Node Degree 0.031 0.013 0.007 0.001 0.001 0.009 0.024 0.019 0.013 0.015 0.016 0.361 0.426 0.583 0.854
Graph Diameter 184.0 236.2 167.4 184.0 222.5 198.9 181.9 184.6 171.7 164.7 93.34 131.5 97.43 95.19 89.79

for all network modules (Glorot & Bengio, 2010). We re-
initialise the parts of pre-trained GNN weights with Glorot
uniform initialisation (Glorot & Bengio, 2010), and extract
the embeddings from the output layer, train probe models
of these embeddings on the node degree (“ND”) and graph
diameter (“GD”) metrics in Table 6. We observe:

• Re-initialising any layer might bring downside to the
stored local topology info (node degree);

• Perturbing the late-stage (i.e.4/5-th) layers would harm
the learned hierarchical info (diameter).

Compared with random initialised networks, the later stage
of the pre-trained message passing modules can better cap-
ture the global information. The embeddings extracted from
the early stage contain more information on the local neigh-
bourhood. We then study the outputs from different loca-
tions and different message passing schemes.

Different Stage Outputs. In table 7, we extract the em-
beddings from various stages of the random and pre-trained
models and evaluate how they perform on predicting the
structural metrics. We notice:

• Early-stage pre-trained embeddings outperform their ran-
domised peers on local structural metrics, which might be
because of better feature embedding modules;

• Such local information is gradually lost as the message
passing modules stack, with more intention to represent
the global graph signatures.

Different Aggregation Scheme. It has been re-
ported (Dwivedi et al., 2020) that, isotropic aggregations

Table 8. Probe performance with different aggregation choices in
the message passing. The ’Sum’ aggregation is the default setting.

Metric Aggr Random AttrMask GraphCL

Max 31.69 12.87 12.36
Degree Sum 0.002 0.123 0.681

Mean 0.003 0.064 1.381

Max 156.2 181.1 87.93
Diameter Sum 218.7 162.0 88.44

Mean 208.2 287.2 117.2

are consistently better than the anisotropic counterparts on
link predictions. Here we vary the aggregation methods in
the graph convolution and report the performance in Table 8.
We note that message passing designs have different
effects with different pre-training paradigms. For instance,
choosing the maximum messages seems to capture the most
salient features of the entire graph (diameter) for random
embeddings, but will also lose information about local
structures (degree).

9. Discussion
In this work, we conduct a collection of probe tasks and
analysis on evaluating the self-supervised learned graph em-
beddings. We conclude the performance gains introduced
by the SSL pre-training come from a better awareness of
global topology and substructures. The pre-trained message
passing weights, help capture the hierarchical while hur-
dle the local information. A better design on the message
passing module remains an open problem.
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A. Probe Models
On the choice of architectures In principle, we want the probe models to be neither simple nor powerful. If the probe
is too simple, then it won’t be able to capture the information stored in the representations; on the other hand, a powerful
probe itself will directly learn to precisely predict properties of our interests, since randomly initialised networks can already
provide informative representations; therefore the predictive performance won’t be a true reflection on the information
contained in the representations. On such basis, we need to carefully choose the architecture of the probe models.

We first narrow down the search space to linear models (i.e., mono-layer perceptron) and multi-layer perceptrons as they are
widely used in previous studies (Alain & Bengio, 2017; Conneau & Kiela, 2018; Liu et al., 2019; Rao et al., 2019; Tenney
et al., 2019). It then becomes simpler to quantify the capacity of the models based one their depth and width. To testify the
capability of MLPs, we use embeddings pre-trained via AttrMask and GraphCL to predict two metrics, node-degree and
graph diameter, on MLPs with various depth and width. We’ve tried that varying the number of hidden layers from 0 depths
from 3, the dimensions from 100 to 1200. We find that: a linear model is too simple to capture the useful information while
a three layers of MLPs will learn to predict by itself. Neither of them provide gave us much information and insights on the
learned embeddings.

B. Pre-Training Setting
B.1. On the negative transfer of EdgePred

to add descriptions and results

B.2. Detailed results on the downstream property prediction

Table 9. Results for molecular property prediction tasks, with fixed embeddings. For each downstream task, we report the mean (and
standard deviation) ROC-AUC of three seeds with scaffold splitting. The best and second best results are marked bold and bold,
respectively. We have also reported the performance with end-to-end fine tuning. For fair comparison, we also train and report the average
results of fine-tuning (Avg(FT)) downstream tasks.

Pre-training BBBP ↑ Tox21 ↑ ToxCast ↑ Sider ↑ ClinTox ↑ MUV ↑ HIV ↑ Bace ↑ Avg ↑ Avg(FT) ↑
# Molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513 – –
# Tasks 1 12 617 27 2 17 1 1 – –

– 51.9(0.2) 65.6(0.4) 53.3(0.2) 57.6(0.1) 52.2(0.0) 53.7(0.4) 67.6(0.4) 69.1(0.2) 58.85 67.21

EdgePred 57.9(0.1) 53.2(0.6) 52.9(0.0) 48.6(0.4) 51.5(0.0) 53.9(0.2) 69.1(0.0) 67.6(0.3) 56.85 65.64
AttrMask 60.4(0.8) 66.7(0.7) 56.5(0.6) 60.0(0.4) 61.4(0.8) 46.2(0.7) 65.4(0.6) 80.8(0.4) 62.18 70.16
GPT-GNN 64.1(0.0) 62.1(0.1) 53.2(0.8) 58.4(0.1) 64.3(0.0) 46.5(0.1) 69.0(0.3) 73.8(0.3) 61.43 68.27
InfoGraph 66.3(0.6) 68.1(0.6) 58.4(0.6) 57.1(0.8) 66.3(0.6) 44.3(0.6) 70.2(0.6) 64.8(0.8) 61.94 70.10
ContextPred 54.6(0.2) 65.0(0.8) 56.5(0.1) 59.8(0.2) 52.1(0.2) 50.6(0.5) 65.3(0.1) 72.7(0.9) 59.58 70.89
G-Contextual 61.2(0.2) 69.7(2.3) 58.1(0.2) 61.7(1.9) 70.3(0.2) 44.1(1.6) 71.0(0.2) 80.9(1.9) 64.63 69.21
G-Motif 66.1(1.0) 65.6(0.7) 58.7(1.2) 58.7(1.1) 65.0(1.0) 39.2(0.7) 71.4(1.2) 75.9(1.1) 62.59 70.14
GraphCL 61.6(1.1) 67.5(0.8) 58.5(0.9) 57.6(0.8) 74.1(1.1) 44.0(0.8) 67.7(0.9) 73.1(0.8) 63.00 70.64
JOAO 63.8(0.7) 67.6(0.7) 57.1(0.7) 57.1(0.7) 59.2(0.7) 42.9(0.7) 69.4(0.7) 70.8(0.7) 60.99 69.57
JOAOv2 66.4(0.9) 68.2(0.8) 57.0(0.5) 59.1(0.7) 64.5(0.9) 47.4(0.8) 68.4(0.5) 67.4(0.7) 62.31 70.21

SSL Worse 10% 20% 10% 30% 20% 90% 20% 30% 10% 10%

B.3. In-Domain Generalisation

We pre-train on the same datasets that are used in the downstream tasks, it seems that in the local data regime, the in-domain
pre-training does not provide useful performance gains.

Node Degree Scores on the test splits.
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BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg

Random 1 0.001 0.002 0.002 0.004 0.001 0.001 0.003 0.000 0.002
Random 2 0.002 0.001 0.003 0.003 0.001 0.001 0.003 0.000 0.002

Pre-trained in-domain datasets, AttrMask

bbbp 0.240 0.444 0.455 0.162 0.140 1.301 0.987 0.199 0.491
tox21 1.795 2.220 2.815 1.139 1.247 8.288 6.513 1.179 3.149
toxcast 2.337 1.020 1.375 0.728 0.561 1.760 1.669 0.340 1.224
sider 0.162 0.353 0.325 0.124 0.122 0.650 0.663 0.085 0.311
clintox 0.195 0.291 0.298 0.239 0.131 0.180 0.492 0.058 0.235
muv 0.971 2.402 3.128 1.448 0.643 9.894 6.837 0.782 3.263
hiv 0.900 2.363 2.875 1.051 0.571 6.598 3.838 0.688 2.361
bace 0.107 0.268 0.408 0.182 0.116 0.468 0.617 0.100 0.283

Pre-trained in-domain datasets, GraphCL

bbbp 0.267 0.221 0.290 0.542 0.363 0.097 0.088 0.128 0.250
tox21 0.420 0.622 0.456 0.835 0.141 0.190 0.193 1.166 0.503
toxcast 1.190 1.277 0.231 0.260 0.143 4.476 4.406 2.294 1.785
sider 0.138 0.111 0.049 0.058 0.312 0.368 0.225 0.071 0.166
clintox 0.071 0.059 1.669 1.204 1.316 0.084 0.030 6.563 1.374
muv 25.438 23.241 24.361 26.303 5.507 6.575 7.352 95.403 26.773
hiv 86.420 104.899 4.126 4.860 0.272 1.112 1.147 1.288 25.515
bace 0.247 0.212 0.257 0.266 6.807 4.660 4.478 0.199 2.141

B.4. On the Pre-Training Data

add descriptions, update the tables and change the descriptions

Table 10. Performance on the topological metrics predictions. We report the mean square or the cross entropy loss (i.e., the smaller the
better), over all 8 downstream datasets. We vary the amount of pre-training data (i.e., GEOM) from 5k/10k/50k/100k/200k/330k(all)
molecules. We use “↑” to represent the performance increase as the time increases, “↓” to represent the increase of the pre-train data
hurdle the performance, “−” to represent there is no rules observed.

Metrics Node Pair Graph

Pre-training Degree Centrality Clustering Link Jaccord Katz Diameter Connectivity Cycle Assortativity

AttrMask ↑ - ↑ - ↓ ↑ - ↓ - ↓
GPT-GNN ↑ - ↑ - - ↑ - ↑ - ↓
InfoGraph ↓ - ↑ - ↓ ↑ - - - -
ContextPred ↑ ↑ - ↓ - ↑ - ↑ - ↓
G-Motif ↑ - ↑ - ↓ ↑ - - - ↓
G-Contextual ↑ - - - ↓ ↑ ↑ - - -
GraphCL - - ↑ ↓ - ↑ ↑ - ↓ ↑
JOAO ↑ - ↓ - ↓ ↑ - ↑ - ↓
JOAOv2 ↑ - ↓ - ↓ ↑ - ↓ - ↓

C. On the embeddings from random initialised GNNs
We first analyse how the weights in the GNNs are initialised.

Edge Embedding layers ‘xavier uniform’, essentially are samples from uniform distribution

GNN layers essentially only have MLP weights (see here), same initialisation as Linear layers.

Linear layers (MLP) samples from uniform distribution for both weight and bias (default in PyTorch)

https://pytorch.org/docs/stable/_modules/torch/nn/init.html#xavier_uniform_
https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html#torch_geometric.nn.conv.GINConv
https://pytorch.org/docs/stable/generated/torch.nn.Linear.html#torch.nn.Linear
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Table 12. Substructure Detection, MSE Loss, Part I

Pre-training allylic amide amidine Azo benzene epoxide ether furan guanido halogen imidazole imide

– 3.516 18.948 0.370 0.216 3.964 0.146 6.071 0.536 0.217 3.652 0.531 0.417

EdgePred 5.854 25.126 0.417 0.251 9.804 0.154 12.838 0.705 0.249 5.214 0.597 0.578
AttrMask 3.371 12.932 0.364 0.174 2.860 0.123 4.958 0.242 0.213 1.192 0.459 0.319
GPT-GNN 2.808 15.736 0.360 0.156 2.938 0.141 5.932 0.407 0.220 2.912 0.483 0.474
InfoGraph 2.577 5.535 0.327 0.143 1.959 0.116 3.657 0.116 0.207 2.819 0.302 0.326
ContextPred 4.386 18.251 0.356 0.198 3.583 0.137 7.045 0.507 0.203 2.908 0.520 0.488
G-Motif 2.452 4.015 0.194 0.082 2.116 0.134 3.507 0.068 0.115 1.125 0.348 0.150
G-Contextual 2.196 5.938 0.172 0.067 1.926 0.114 2.900 0.084 0.121 0.759 0.249 0.160
GraphCL 2.088 3.922 0.262 0.124 1.722 0.127 3.766 0.074 0.167 0.798 0.274 0.192
JOAO 2.385 4.030 0.280 0.113 1.746 0.115 3.376 0.061 0.168 0.694 0.237 0.192
JOAOv2 2.122 3.865 0.262 0.112 1.773 0.123 3.388 0.068 0.125 0.695 0.244 0.197

SSL Worse 20% 10% 10% 10% 10% 10% 20% 10% 20% 10% 10% 20%

D. Substructure Detection
Descriptions For the descriptions of the chemical subgraphs, please refer to the rdkit.Chem.Fragments.

Table 11. Cramér’s V between molecular substructure counts (categorical) and downstream properties (binary)

Pre-training BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg (Task) Avg (Data)

# Molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513 – –
# Tasks 1 12 617 27 2 17 1 1 – –

allylic 0.1602 0.1345 0.1156 0.1276 0.0935 0.0413 0.0280 0.1186 0.1144 0.1024
amide 0.2692 0.0490 0.0858 0.1841 0.1326 0.0235 0.0689 0.2556 0.0881 0.1336
amidine 0.0360 0.0291 0.0412 0.0323 0.0158 0.0117 0.0396 0.1328 0.0399 0.0423
azo 0.0400 0.0399 0.0393 0.0277 0.0123 0.0007 0.2082 - 0.0384 0.0526
benzene 0.1476 0.1632 0.1691 0.1149 0.1112 0.0289 0.1374 0.1091 0.1630 0.1227
epoxide 0.0273 0.0481 0.0449 0.0300 0.0049 0.0005 0.0086 - 0.0437 0.0235
ether 0.2314 0.0694 0.1060 0.1069 0.1023 0.0185 0.0498 0.1821 0.1034 0.1083
furan 0.0635 0.0257 0.0387 0.0227 0.0061 0.0311 0.0148 0.0135 0.0375 0.0270
guanido 0.0765 0.0201 0.0509 0.0715 0.0286 0.0057 0.0094 0.1088 0.0499 0.0464
halogen 0.1488 0.0849 0.1827 0.0773 0.0908 0.0143 0.0347 0.2353 0.1721 0.1086
imidazole 0.0601 0.0427 0.0492 0.0460 0.1212 0.0102 0.0398 0.1280 0.0483 0.0622
imide 0.0951 0.0246 0.0401 0.0428 0.0518 0.0094 0.0188 - 0.0392 0.0404
lactam 0.4263 0.0184 0.0116 0.0646 0.0543 0.0006 0.0048 - 0.0182 0.0830
morpholine 0.0512 0.0126 0.0343 0.0268 0.0425 0.0068 0.0101 0.0668 0.0329 0.0314
N O 0.0438 0.0195 0.0467 0.0391 0.0709 0.0195 0.0144 0.0537 0.0452 0.0385
oxazole 0.0126 0.0184 0.0321 0.0359 0.0123 0.0079 0.0080 0.0364 0.0312 0.0205
piperdine 0.1450 0.0305 0.0844 0.0575 0.0418 0.0079 0.0226 0.0935 0.0803 0.0604
piperzine 0.0509 0.0214 0.0421 0.0776 0.0648 0.0111 0.0192 0.0063 0.0424 0.0367
pyridine 0.0598 0.0402 0.0549 0.0338 0.0833 0.0129 0.0300 0.1747 0.0529 0.0612
tetrazole 0.1161 0.0158 0.0251 0.0300 0.0286 0.0083 0.0123 0.0334 0.0247 0.0337
thiazole 0.1389 0.0521 0.0345 0.0445 0.0183 0.0118 0.0173 0.0539 0.0348 0.0464
thiophene 0.0356 0.0467 0.0472 0.0315 0.0113 0.0166 0.0081 0.0438 0.0456 0.0301
urea 0.0790 0.0236 0.0506 0.0471 0.0268 0.0079 0.0329 0.0516 0.0489 0.0399

http://rdkit.org/docs/source/rdkit.Chem.Fragments.html
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Table 13. Substructure Detection, MSE Loss, Part II

Pre-training lactam morpholine NO oxazole piperdine piperzine pyridine tetrazole thiazole thiophene urea

– 0.049 0.439 0.214 0.121 1.094 0.410 1.528 0.141 0.402 0.550 0.458

EdgePred 0.055 0.547 0.218 0.126 1.332 0.592 1.674 0.195 0.470 0.782 0.782
AttrMask 0.043 0.196 0.212 0.107 0.917 0.250 1.111 0.089 0.339 0.313 0.222
GPT-GNN 0.041 0.195 0.232 0.098 0.878 0.293 1.416 0.137 0.382 0.515 0.443
InfoGraph 0.041 0.121 0.241 0.054 0.813 0.206 0.655 0.075 0.170 0.180 0.174
ContextPred 0.043 0.298 0.223 0.120 1.097 0.387 1.334 0.146 0.379 0.538 0.538
G-Motif 0.048 0.153 0.212 0.031 0.768 0.219 0.670 0.034 0.081 0.092 0.092
G-Contextual 0.041 0.096 0.126 0.050 0.653 0.149 0.668 0.032 0.129 0.104 0.103
GraphCL 0.042 0.113 0.199 0.048 0.706 0.159 0.460 0.037 0.129 0.088 0.087
JOAO 0.043 0.096 0.194 0.040 0.738 0.149 0.434 0.032 0.121 0.077 0.076
JOAOv2 0.042 0.123 0.204 0.041 0.706 0.146 0.446 0.037 0.136 0.083 0.083

SSL Worse 10% 10% 40% 10% 20% 10% 10% 20% 10% 10% 20%

D.1. Cramer’s V

Table 14. Cramér’s V between molecular substructure counts (binary) and downstream properties (binary)

Pre-training BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg (Task) Avg (Data)

# Molecules 2,039 7,831 8,575 1,427 1,478 93,087 41,127 1,513 – –
# Tasks 1 12 617 27 2 17 1 1 – –

UNIFORM

allylic 0.1602 0.1345 0.1156 0.1276 0.0935 0.0413 0.0280 0.1186 0.1144 0.1024
amide 0.2692 0.0490 0.0858 0.1841 0.1326 0.0235 0.0689 0.2556 0.0881 0.1336
amidine 0.0360 0.0291 0.0412 0.0323 0.0158 0.0117 0.0396 0.1328 0.0399 0.0423
azo 0.0400 0.0399 0.0393 0.0277 0.0123 0.0007 0.2082 - 0.0384 0.0526
benzene 0.1476 0.1632 0.1691 0.1149 0.1112 0.0289 0.1374 0.1091 0.1630 0.1227
epoxide 0.0273 0.0481 0.0449 0.0300 0.0049 0.0005 0.0086 - 0.0437 0.0235
ether 0.2314 0.0694 0.1060 0.1069 0.1023 0.0185 0.0498 0.1821 0.1034 0.1083
furan 0.0635 0.0257 0.0387 0.0227 0.0061 0.0311 0.0148 0.0135 0.0375 0.0270
guanido 0.0765 0.0201 0.0509 0.0715 0.0286 0.0057 0.0094 0.1088 0.0499 0.0464
halogen 0.1488 0.0849 0.1827 0.0773 0.0908 0.0143 0.0347 0.2353 0.1721 0.1086
imidazole 0.0601 0.0427 0.0492 0.0460 0.1212 0.0102 0.0398 0.1280 0.0483 0.0622
imide 0.0951 0.0246 0.0401 0.0428 0.0518 0.0094 0.0188 - 0.0392 0.0404
lactam 0.4263 0.0184 0.0116 0.0646 0.0543 0.0006 0.0048 - 0.0182 0.0830
morpholine 0.0512 0.0126 0.0343 0.0268 0.0425 0.0068 0.0101 0.0668 0.0329 0.0314
N O 0.0438 0.0195 0.0467 0.0391 0.0709 0.0195 0.0144 0.0537 0.0452 0.0385
oxazole 0.0126 0.0184 0.0321 0.0359 0.0123 0.0079 0.0080 0.0364 0.0312 0.0205
piperdine 0.1450 0.0305 0.0844 0.0575 0.0418 0.0079 0.0226 0.0935 0.0803 0.0604
piperzine 0.0509 0.0214 0.0421 0.0776 0.0648 0.0111 0.0192 0.0063 0.0424 0.0367
pyridine 0.0598 0.0402 0.0549 0.0338 0.0833 0.0129 0.0300 0.1747 0.0529 0.0612
tetrazole 0.1161 0.0158 0.0251 0.0300 0.0286 0.0083 0.0123 0.0334 0.0247 0.0337
thiazole 0.1389 0.0521 0.0345 0.0445 0.0183 0.0118 0.0173 0.0539 0.0348 0.0464
thiophene 0.0356 0.0467 0.0472 0.0315 0.0113 0.0166 0.0081 0.0438 0.0456 0.0301
urea 0.0790 0.0236 0.0506 0.0471 0.0268 0.0079 0.0329 0.0516 0.0489 0.0399
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D.2. Pearson’s chi-squared test, Substructure and Downstream Property

D.3. Distribution of Substructures
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Ether .
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Imidazole .
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E. Spectrum
We provide more examples on the spectrum analyses of the embedding space from different datasets.
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Figure 5. Spectrum of the SSL Pre-trained Embedding Space on Bace Dataset, Left: Node; Right: Graph.
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Figure 6. Spectrum of the SSL Pre-trained Embedding Space on Clintox Dataset, Left: Node; Right: Graph.
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Figure 7. Spectrum of the SSL Pre-trained Embedding Space on HIV Dataset, Left: Node; Right: Graph.
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Figure 8. Spectrum of the SSL Pre-trained Embedding Space on HIV Dataset, Left: Node; Right: Graph.



1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Evaluating Self-Supervised Learned Molecular Graph Representations

0 50 100 200 300

4

-2

-8

-14

Lo
g 

of
 S

in
gu

la
r V

al
ue

0 50 100 200 3000.0 0.2 0.4 0.6 0.8 1.0
Singular Value Rank Index

0.0

0.2

0.4

0.6

0.8

1.0
Random AttrMask GPT-GNN InfoGraph GraphCL G-Motif JOAO JOAOv2 ContextPred G-Contextual

Figure 9. Spectrum of the SSL Pre-trained Embedding Space on MUV Dataset, Left: Node; Right: Graph.
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Figure 10. Spectrum of the SSL Pre-trained Embedding Space on Sider Dataset, Left: Node; Right: Graph.
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Figure 11. Spectrum of the SSL Pre-trained Embedding Space on Tox21 Dataset, Left: Node; Right: Graph.
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Figure 12. Spectrum of the SSL Pre-trained Embedding Space on Toxcast Dataset, Left: Node; Right: Graph.
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F. Topological Metrics
We first describe the graph structural metrics and motif substructures used in Sec. 6, we then visualise the histograms of
the structural metrics and the substructure w.r.t. the downstream datasets. Note that the vertical axes sometimes are in the
logarithm scale.

F.1. Distribution of Structural Metrics
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F.2. Descriptions on the Graph-Level Structural Metrics

We refer to “Graph Representation Learning” written by WL Hamilton the for the description of graph-level structural
metrics used in this study.


