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Abstract

Large vision models (LVM) based gait recognition has achieved impressive per-
formance. However, existing LVM-based approaches may overemphasize gait
priors while neglecting the intrinsic value of LVM itself, particularly the rich,
distinct representations across its multi-layers. To adequately unlock LVM’s po-
tential, this work investigates the impact of layer-wise representations on down-
stream recognition tasks. Our analysis reveals that LVM’s intermediate layers
offer complementary properties across tasks, integrating them yields an impres-
sive improvement even without rich well-designed gait priors. Building on this
insight, we propose a simple and universal baseline for LVM-based gait recog-
nition, termed BiggerGait. Comprehensive evaluations on CCPG, CAISA-B*,
SUSTech1K, and CCGR_MINI validate the superiority of BiggerGait across both
within- and cross-domain tasks, establishing it as a simple yet practical base-
line for gait representation learning. All the models and code are available at
https://github.com/ShiqiYu/OpenGait/.

1 Introduction

Gait recognition aims to identify an individual based on the unique patterns in the walk sequence.
Unlike other biometric [23] modalities such as face [53, 8, 38, 27, 46, 45, 28, 18], fingerprint [3],
or iris [51, 49], gait is unobtrusive and capable of identifying individuals from afar without their
active involvement. These unique advantages make gait recognition especially effective for security
applications, including suspect tracking and identity verification [47, 58, 39, 40, 29, 79, 22, 21].

To focus on pure gait patterns, early approaches suppress appearance noise by transforming each
frame into pre-defined representations, like silhouettes [5, 11, 37, 57, 14], skeleton landmarks [36,
4, 63, 15], body parsing [41, 77, 80], or SMPL meshes [34, 76, 43], before feature extraction, as
shown in Figure 1 (a). Although such explicit representations curb distractions from clothing and
background, they also discard crucial cues: silhouettes erase body structure, skeletons remove shape
information, and SMPL overly smooths personal idiosyncrasies, capping accuracy. Alternatively,
recent approaches [74, 72, 26] achieve substantial gains by guiding large vision models (LVM)
with human priors such as feature smoothing [74], language guidance [72], and geometry-driven
denoising [26] to extract rich and implicit gait features directly from RGB data.
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Figure 1: Comparison of gait representation paradigms. (a) Pre-defined gait learning uses explicit gait patterns
for prediction, losing essential identity information. (b) Typical LVM gait learning relies heavily on gait priors
and treats all LVM layers equally, underutilizing discriminative features. (c) Our layer-wise LVM gait learning
fully utilizes intermediate LVM layers with minimal gait priors.

Despite recent advances, LVM-based gait recognition methods [74, 26] still rely heavily on traditional
gait priors, whether through supervised or self-supervised training, as shown in Fig 1(b). However,
is this dependence truly necessary? Through extensive experiments, we challenge this assumption,
showing that LVMs [48, 30, 52] inherently possess rich, layer-wise representations that can support
high-performance gait recognition with minimal reliance on human-designed priors. These findings
suggest a simpler yet more robust baseline for LVM-based gait recognition, potentially redefining
the role of domain knowledge in this field. Our experiments across various LVMs [52, 48, 30] and
datasets [75, 56, 80, 25] further validate this remarkable observation, aligning similarly with related
studies [7, 16, 59, 60, 62].

To make the above findings comprehensive, this work systematically investigates layer-wise rep-
resentations in LVMs for gait recognition and uncovers three key insights: (1) Across a range of
LVM architectures and scales, intermediate layers consistently yield more discriminative features
than the final layer, echoing trends observed in LLMs [7, 16, 60]. (2) Each layer contributes unique,
task-dependent information. (3) Intermediate-layer features are highly complementary, and their
fusion produces substantial performance gains. Based on these findings, we propose a simple and
universal layer-wise baseline, termed BiggerGait. However, fully exploiting the advantages of
BiggerGait remains a challenge for GPU-limited scenes. The issue lies in the need to add a dedicated
gait encoder to every LVM layer, inflating the parameters and computation cost as depth grows.

To mitigate this issue, we propose an optional grouping strategy for BiggerGait to balance performance
and efficiency. Previous work [62] suggests that residual connections in LVMs encourage intermediate
layers to inhabit a shared feature space. Based on this insight, we contend that a single gait encoder
can effectively process features from multiple LVM layers, eliminating the need for layer-specific
encoders. Specifically, this grouping strategy to merge neighboring similar LVM layers, replacing
per-layer gait encoders with two shared ones: one for shallow layers and one for deep layers. This
design delivers the similar performance gains as the standard BiggerGait while saving considerable
cost during gait representation extraction. Experiments on CCPG [33], CCGR_MINI [80], CASIA-
B* [75] and SUSTech1K [56] datasets validate the effectiveness of BiggerGait and this grouping
strategy in both within- and cross-domain evaluations.

This paper makes two important contributions.

* Comprehensive layer-wise analysis. We conduct the first systematic examination of LVM
layer representations for gait recognition, detailing how different depths affect task-specific
performance and discovering that fusing complementary intermediate features unlocks
substantial accuracy gains.

* A simple yet powerful baseline. We present BiggerGait, a simple and universal framework
for LVM-based gait recognition, along with a grouping strategy to balance performance-
efficiency trade-offs. Extensive experiments show that BiggerGait establishes state-of-the-art
results across multiple RGB-based gait benchmarks, achieving superior performance in both
intra-domain and cross-domain evaluation settings.



2 Related Work

Gait Recognition Gait recognition aims to extract subtle gait patterns that remain invariant to
background clutter and clothing variations. Recent research has primarily focused on addressing these
challenges in RGB video-based gait analysis [33, 56, 19, 61, 69, 66, 20]. Existing approaches can
be broadly grouped into two categories: pre-defined [64, 5, 11, 37, 57, 14, 36, 63, 15, 4, 77, 41, 34,
76, 43,71, 70, 73, 58] and LVMs representations [74, 72, 26]. Pre-defined methods explicitly extract
gait-relevant components using segmentation [5, 11, 37, 57, 14], pose estimation [36, 63, 15, 4], and
3D modeling [34, 76, 43], effectively suppressing irrelevant gait information. However, this often
comes at the cost of discarding identity-discriminative cues. In contrast, LVMs methods [74, 72, 26]
extract implicit gait features from large vision models guided by human priors, preserving richer
semantics and achieving stronger performance. Building on the LVMs paradigm, this paper introduces
BiggerGait to delve deeper into its potential for gait representation.

Large Vision Models Motivated by the success of LLMs [2, 9, 24, 31, 54], the vision community
has increasingly turned its attention to building large-scale foundation models for visual understand-
ing [48, 30]. These models aim to learn transferable and general-purpose visual representations from
massive web-scale datasets. Representative LVMs include CLIP [52], which leverages language super-
vision to guide visual representation learning; SAM [30], a promptable segmentation model trained on
a large-scale annotated dataset for strong generalization; and DINOv2 [48], a self-supervised model
that learns highly transferable features from vast, diverse image collections. The features extracted
from these LVMs are termed all-purpose, as they effectively transfer to a range of downstream tasks,
including image classification, semantic segmentation, and depth prediction. Our aim is to explore
how these all-purpose representations can be adapted to the task of gait recognition, harnessing the
broad advantages offered by LVMs. In this paper, we conduct a comprehensive investigation of how
different types and scales of three representative LVMs (CLIP, SAM, and DINOv2) can be leveraged
for downstream gait recognition. Further, we propose a unified baseline, BiggerGait, that consistently
excels across multiple LVM architectures and model sizes.

Layer-wise Analysis in Large Models Recent works [60, 16, 62,42, 17, 10, 1] have increasingly
focused on layer-wise representation from large models, as intermediate features often show surprising
robustness, challenging the traditional final layer representations. In NLP, researchers [42] have
found that lower layers tend to encode more syntactic information, while higher layers specialize
in semantic features. Others suggest that residual connections encourage layers to share a common
feature space while still specializing in distinct sub-tasks [62], or that attention sink effects may
weaken final-layer performance [17]. Similar trends emerge in vision domains: Head2Toe [10] selects
the most useful representations from intermediate layers in transfer learning, outperforming the final
layer. A fresh work [1] on LVMs again suggests that the final layer may not contain the most robust
visual features, and addresses this by distilling optimal intermediate features back into the final layer.
Unlike prior works [10, 1] that focus on coarse-grained vision tasks (classification, detection, and
tracking), our study goes a step further by validating and advancing this insight in a significantly more
demanding setting, i.e., a highly fine-grained recognition task. Beyond broadening this insight, we
further reveal more interesting and unexplored findings unique to gait tasks in Sec. 3.4 & 3.5.

3 Layer-wise Representation Analysis

First of all, we hypothesize that the unique layer-wise heterogeneity observed in large language
models [60, 62, 16, 7, 59] (LLM) may also exist in large vision models [48, 30, 52] (LVM), potentially
influencing downstream gait recognition. To verify our conjecture, we introduce a simple layer-
wise gait baseline, a comprehensive experiment setting, and three key questions to systematically
explore the impact of different LVM layers on gait recognition. Eventually, we further analyse the
computational overhead inherent in layer-wise methods and propose a mitigation option.

3.1 BiggerGait: A Layer-wise LVM-based Gait Baseline

We construct a simple layer-wise gait baseline, called BiggerGait, illustrated in Fig. 2. Given an
image x ~ p(x) from a walking video, a LVM projects it into multiple intermediate feature maps
{fi|i€{1,2,..., N}} with the corresponding semantic hierarchy spanning from low to high levels.



Human Silhouette m

,’7 Lyec

WLtri
¢ Auto Encoder /,3 Lee

&

I
[

aly
g /1l
f"‘ . f—) Gait Extractor E 9y 7 o
i O ) - —) Gait Extractor E 9y_| ;
N-1

o—».—» ' ,
— 2

Z Walking Video ® Mask Selection gf‘, Trainable Linear Projection E?;

A0IODLIXT J1DL)

Figure 2: Overview of the proposed BiggerGait. An LVM extracts multi-level features from RGB videos.
Human silhouettes are generated using an unsupervised auto-encoder [74], serving as the only human-designed
gait prior. Each level’s features, with background noise removed, are processed by separate linear projection
layers and gait extractors to obtain the final gait representations.

In BiggerGait, we set N = 12, uniformly sampling 12 layers from the LVMs. Followed the design of
BigGait [74], the last feature map fn which contains the highest-level semantic information, is fed
into an auto-encoder to generate the human silhouette m:

m = softmax(E(f)), fx = D(m), Lyee = ||fx — fx|f5 1

where F and D are 1 x 1 convolution layers, ' outputs 2 channels, and D restores the original
channel dimension. Notably, unlike traditional LVM gait methods [74, 26] reliant on heavy gait
priors (e.g., geometric, denoising, and diversity constraints), this human mask is the only gait
prior we employed. The softmax function is conducted along the channel dimension, and £,
presents the reconstruction loss. After masking the background noise in {f;}, we obtain { f/"}:

fit=m- fi, @

where - denote the multiplication. To reduce the GPU memory consumption, each f/™ is fed into a
lightwight linear projection layer:

f7 = sigmoid(EP(f™)), ?3)

where Ef consists of two 1 x 1 convolutions, two batch-normalization layers, a GELU activation.
Its output channel is set to C. Here the hyper-parameter C'is set to 16, following [74]. Each f? is
upsampled by bilinear interpolation to improve the resolution, i.e., exhibited as a 3-D tensor with a
size of 16 x 64 x 32 while the first dimension denotes the output channel of the linear projection.
Finally, we feed the ff into gait extractors Ef (GaitBase [14]) to obtain gait representation g;.
Overall, the gait representation R of the BiggerGait can be formulated as:

R = {g; = Ej(sigmoid(E (f;"))) | i € {1,2, ..., N}}. 4)

Consistent with recent works [76, 44, 67, 68, 81], triplet losses L;,; and cross-entropy losses L. are
used for gait training. The overall loss can be formulated as:

L= Ltri + Lce + Lrec- (5)
In summary, the central innovation of BiggerGait lies in treating intermediate layers independently to

fully unlock the power of large vision models.

3.2 Experimental Setting

Separate Testing. To assess each layer’s discriminative power, we adopt a separate testing strategy
at inference. Given a probe sample z ~ X" and a gallery sample y ~ ), layer ¢ produces gait features
g¥ and g}. Their Buclidean distance serves as the similarity score for layer i:

di (z,y) = llgi" — 9} |l=- (6)

Since embeddings vary across depths, each layer yields a distinct score for this pair (z, y).
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Figure 3: Layer-wise Performance Across LVMs. This figure presents the gait recognition accuracy of six
large vision models, i.e., DINOv2-Small/Large [48], CLIP-Small/Large [52], and SAM-Small/Large [30], across
12 intermediate layers, evaluated on the CCPG [33] dataset. Each cell lists the Rank-1 accuracy for full clothing
(CL), top (UP), pants (DN), and bag (BG) changes, along with the average (AVG). A downward arrow on the
left indicates increasing network depth. In each column, the best score is shown in black color.

DINOv2-S DINOv2-L CLIP-S CLIP-L SAM-S SAM-L
- ; EOR 61.4 14522 2N 60.0 496
~ 835 43.5/36.4 186727 X 38.1 |
m BNl 42.7 |36.8 87.6 52.7 46.4
< g o 5 88.6 57.2 46.4
oo 85.9 [5¥:] 51.6 89.1 56.7 51.5
Qo 86.7 58.9 56.6 88.0 5] 46.7 9.1
@~ 86.7 160.6 61.8 88.9 fEN] 46.9 9.9
) 78.8 159:2| 60.6 84.2 64.0 66.2 89.7 2% 50.5 11.0
o 75.4 63.2 58.9 65.963.2 89.7 3 EENAN Y
S ROK] 63.5 60.4 90.1 pPRY 513 11.6
o 90.8 2] 67.9 16.9 51.3 [H] 61.9 59.8 89.8 EEWA 48.7 12.3
B 88.3 X 59.3 16.2 BISWIEINY 51.3 [EEI57.1 58.4 89.2 PEWY 53.1 12.4

A B C D

A B C A B C D A B C D A B C D

Figure 4: Layer-wise Performance Across Datasets. The columns (A, B, C, D) represent the four test sets,
CCPG [33], SUSTechlK [56], CASIA-B* [75], and CCGR_MINI [80]. All models are trained on CCPG dataset.
Column A reports within-domain performance, whereas columns B-D present cross-domain results.

Target LVMs. Three representative LVMs with distinct pretraining strategies are evaluated in our
experiment: SAM [30] is trained under supervised segmentation objectives, CLIP [52] follows
an image-text contrastive learning approach, and DINOv2 [48] adopts self-supervised knowledge
distillation. In this paper, LVM-S and LVM-L refer to the small and large versions of LVM. We test
every one of the 12 layers in LVM-S, but uniformly sample 12 layers from LVM-L.

Dataset. Subsequent experiments are mainly conducted on four widely used clothing-variation and
multi-view gait datasets: CCPG [33], CASIA-B* [75], SUSTechlK [56], and CCGR_MINI [80].
CCPG serves as the cornerstone benchmark, offering diverse full body clothing variations while
masking faces and shoes to simulate real-world cloth-changing scenarios.

3.3 Do Middle Layers Outperform the Final Layer?

As shown in Fig. 3, to investigate whether middle layers offer stronger discriminative power than the
final layer, we evaluate gait recognition accuracy across 12 layers of three popular LVMs [30, 52, 48]
in different model sizes. Clearly, all LVMs achieve peak performance at middle layers rather than at
the deepest one, echoing similar findings in LLMs [60, 16, 7]. For instance, in DINOv2-S [48], the
highest average accuracy of 89.5% occurs at Layer 6, while the final layer drop to 80.9%.

This similar trend is also observed in both CLIP [52], which uses image-text pretraining, and
SAM [30], trained with supervision, despite their different paradigms from the self-supervised
DINOV2, highlighting the generality of this interesting phenomenon. Notably, even when model size
increases, this middle-layer advantage remains, suggesting that deeper depth does not eliminate the
representational superiority of intermediate layers. This effect is particularly evident in CLIP, where
middle layers outperform both shallow and final layers by a significant margin.

Our answer: Yes, middle layers consistently outperform the final layer for gait recogni-
tion, regardless of LVM type and size.
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likes a fair voting manner. (c) All models are trained on CCPG [33], and tested on four datasets [33, 80, 75, 56].
CCGR* indicates CCGR_MINI dataset.

3.4 Do Middle Layers Contribute Similarly?

To further evaluate the contribution of different LVM layers to gait recognition, we adopt additional
testing datasets, each reflecting distinct characteristics. Specifically, SUSTech1K [56] emphasizes
LiDAR-accessible scenes, CASIA-B* [75] represents controlled indoor environments, CCPG [33]
provides extensive clothing variations, and CCGR_MINI [80] integrates diverse covariates.

We see two interesting finding in Fig. 4: (1) The best layers for cross-domain performance often differ
from those for within-domain performance, occurring with a probability of 83.3%. This means that,
for domain-specific tasks, the contribution of layers is inconsistent, where the most effective layer
may change. (2) Notably, SUSTech1K achieves peak performance in shallow layers, most frequently
at Layer 1 (66.7%), while performs better in deeper ones. We consider that deeper
LVM layers capture stronger semantic features, while shallower ones preserve appearance details. To
verify this, we carefully check its layer-wise performance on SUSTech1K, where the optimal layer
shifts from the 1st (Same-clothing condition, easy appearance task) to the 7th (Changing-clothing
condition, harder semantic task). These results suggest that all LVM layers, from the shallowest
to the deepest, may potentially benefit different domain-specific recognition tasks.

Our answer: No, layer contributions vary by task, and should be treated independently.

3.5 Are Middle Layers Complementary?

To evaluate the complementarity of these layers, we introduce ensemble testing during inference and
compare it with separate testing, as illustrated in Fig. 5.

Ensemble Testing. Unlike separate testing in Sec. 3.2, which scores each layer independently,
ensemble testing pools all layer distances and yields a single unified result. For a probe-gallery pair
(w,y) with per-layer scores {d;(z,y)},, the final similarity of ensemble testing is their mean:

1 N
D (w,y) = 5 D _di(w,y). ™
i=1

Fig. 5 (c) shows that ensemble testing often offers an impressive performance gain in both within-
and cross-domain settings, raising accuracy by +7.7% on DINOv2-S, +10.3% on CLIP-S, and
+7.0% on SAM-S. Meanwhile, an abnormal observation arises in the CCGR_MINI, where the fusion
results sometimes slightly drop compared to the separated ones. Sec. 3.4 shows that the challenging
CCGR_MINI prefers deeper semantic-based layers due to its complex data variations. We further
experimented with fusing only the deeper half of the layers, which alleviate this problem on CCGR
but harm generalization on other datasets such as SUSTech1K. Thus, our BiggerGait still adopts all
layers for simplicity, consistency, and stronger generalization.
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Our answer: Yes, middle layers are highly complementary, and aggregating them often
yields significant gains in both within- and cross-domain tasks.

3.6 Efficiency Discussion and Mitigation

Although multi-layer features are highly complementary, assigning a separate gait head to every
LVM layer inflates computation and memory. Recent work [62] in LLMs shows that ViT residual
connections encourage middle layers in a shared feature space. Fig. 6 (a) shows that the same pattern
may also exist in LVM: for DINOv2-S [48], similarity remains strong between adjacent middle layers
but decays quickly. To suit the need of GPU-limited scene, we equip BiggerGait with a grouping
strategy inspired by this shared space hypothesis. To distinguish it from the standard version, we
denote this grouping-based variant as BiggerGait*. As shown in Fig. 6 (b), the strategy has two
components: (1) depth grouping, which lowers the computational cost of gait heads; and (2) gait
grouping, which reduces parameter overhead.

Depth Grouping. Adjacent, similar layer features { f/} are divided into J continuous depth groups,
and the features within each group are concatenated:

Jit = concat(f", fi', ..., fi') 17 € {1,2,..., ]}, (8)

J [REXSRN

where f/" represents the concatenated feature for group j. The subscript , i1, i2, ..., ij; refer to the
specific layers. Depth grouping cuts the number of gait heads’ forward passes from N to J.

Gait Grouping. The multiple gait encoders are also merged from {EY} into P groups {Ef |pe
{1,2,..., P}}. Gait grouping reduces parameters of the gait encoders from N's to Ps, where s is the
size of one gait encoder. The gait results R’ of BiggerGait* is reformulated as:

R ={g; = E}(sigmoid(E}(/]"))) | j € T,p € P}, )
where 7 = {1,2, ..., J} and P = {1, 2, ..., P}, denoting the number of depth groups and gait groups.

The objective of the grouping paradigm is to minimize the number of groups J and P while preserving
the fidelity of the output representations, i.e., ensuring that new gait result R’ closely approximates its
original counterpart R in Eq. (4). This objective can be expressed as a bi-level optimization problem:

min st.  min  |R—R|)<e (10)
JP (B} B}

In Sec. 4.3, we experimentally conclude that J = 6 and P = 2 represent an effective configuration.
Our current grouping design prioritizes feasibility, reproducibility, and efficiency. More sophisticated
grouping strategies, like explicitly maximizing representational dissimilarity or learnable grouping,
are also promising future directions worth specific exploration.



Table 1: Performance comparison across methods and datasets. Yellow regions indicate within-domain
evaluations, others are cross-domain. The last column reports the overall average accuracy. CCGR* indicates
CCGR_MINI dataset. BiggerGait* refers the grouping-based BiggerGait.

Testing Dataset

Trainin,
Damsef Input Method LVM Venue CCPG [33] CCGR* [80] SUSTechlk [56] CASIA-B*[75] ,
CL UP DN BG R1 R5 CL R1 NM BG CL

Silh. GaitSet [5] - PAMI'22 60.2 652 65.1 685 24 69 82 128 474 409 258 295

Silh. GaitPart [11] - CVPR20 643 678 68.6 71.7 24 69 81 135 512 419 260 30.9

Silh. GaitGL [37] - ICCV’21 683 762 67.0 767 33 84 254 336  63.1 585 46.3 412

Silh. GaitBase [13] - CVPR’23 71.6 750 768 78.6 28 73 95 168  59.1 52.7 304 35.6

Silh. DeepGaitV2 [12] - Arxiv 78.6 84.8 80.7 892 37 9.1 270 384 746 672 502 474

Silh+Skel.  BiFusion [50] - MTA23 62.6 67.6 663 660 - - - - - - - -
Silh+Skel.  SkeletonGait++ [15] - AAAT24 79.1 839 81.7 89.9 - - - - - - - -
Silh.+Pars. XGait [78] - MM24 728 77.0 79.1 805 - - - - - - - -

CCPG  silh+Pars+Flow  MultiGait++ [25] - AAAT'25 839 89.0 86.0 91.5 - - - - - - -
RGB+Silh.  GaitEdge [35] - ECCV’22 66.9 74.0 70.6 77.1 - - 89 196 665 587 448 -
RGB+Silh. DenoisingGait [26] ~ SD[55] CVPR’25 84.0 88.0 90.1 959 - - 373 591 839 761 348 -

RGB BigGait [74] ~ DINOv2-S CVPR'24 82.6 859 87.1 93.1 74 163 437 564 774 715 33.6 53.0

RGB BiggerGait ~ SAM-S[30] Ours 868 89.5 91.8 959 95 178 646 755 80.1 76.2 31.8 59.7

RGB BiggerGait ~ CLIP-S[52] Ours 810 862 89.7 969 152 26.1 670 842 915 87.8 473 65.8

RGB BiggerGait ~ DINOv2-S[48] Ours  89.8 92.1 93.7 97.5 155 269 709 79.6  93.0 90.8 55.6 67.0

RGB BiggerGait* SAM-S Ours 869 89.4 923 958 9.1 172 60.8 744  79.7 749 289 59.0

RGB BiggerGait* CLIP-S Ours 789 838 87.9 96.1 13.9 242 63.1 815 923 87.1 429 64.0

RGB BiggerGait*  DINOv2-S  Ours  89.0 91.9 94.0 972 145 253 695 804  91.6 87.7 547 665

Silh. GaitBase - CVPR’23 20.8 31.3 383 702 21.1 378 287 480  66.3 57.7 33.9 40.5

Silh. DeepGaitV2 - Arxiv 230 37.1 365 69.9 264 452 321 517 720 620 36.6 44.1

RGB BigGait DINOv2-S CVPR’24 229 422 250 805 88.0 959 719 856  90.1 87.9 584 737

} RGB BiggerGait SAM-S Ours 158 32.8 23.1 69.6 85.1 940 727 892  87.6 85.3 484 708
CCGR* RGB BiggerGait CLIP-S Ours  21.7 46.5 28.6 88.4 80.7 920 812 933 942 928 60.9 75.7
RGB BiggerGait DINOV2-S  Ours 232 445 295 867 857 94.1 821 938 972 964 66.7 78.1

RGB BiggerGait* SAM-S Ours 152 333 248 71.1 863 950 737 882 842 820 469 704

RGB BiggerGai CLIP-S Ours  19.6 42.3 29.3 859 822 932 80.6 924 929 915 60.4 75.1

RGB BiggerGait* ~ DINOv2-S ~ Ours  22.6 449 315 858 87.8 958 837 938 969 963 65.6 785

4 Experiments

We conduct our experiments on four widely used clothing-variation and multi-view gait datasets:
CCPG [33], CASIA-B*[75], SUSTech1K [56], and CCGR_MINI [80]. CCPG acts as our cornerstone
benchmark, since it offers the richest wardrobe diversity, covering an array of coats, trousers, and bags
in assorted color and styles, and faces and shoes are masked to emulate real-world cloth-changing
scenarios. Although outfit changes are few in CCGR, it excels in covariate variety: abundant
viewpoints, complex ground conditions, different walking speeds, and composite covariate scene.
The full CCGR set is too large for quick testing, so we use the official mini version, which keeps
the challenge but significantly drops the bulk. Therefore, the challenge CCPG and CCGR_MINI
sets supply the training data, whereas evaluation is performed on all four datasets. Every experiment
strictly follows the official protocols released by the owner. Gait evaluation protocols is reported for
multi-view settings, and rank-1 accuracy serves as the principal metric.

4.1 Implementation Details

All input frames are resized to 448 x 224 for DINOv2 [48], 224 x 224 for CLIP [52] and 512 x 256
for SAM [30]. The training runs for 30k iterations using SGD (momentum = 0.9, weight-decay
= 5 x 10~%) with an initial learning rate of 0.1, which is dropped by 10x at 15k and 25k steps.
Each mini-batch adopts the tuple (p, k, 1) = (8,4, 30), which is 8 identities, 4 sequences per identity,
and 30 frames per sequence. Frame sampling follows the protocol of GaitBase [13], and the sole
augmentation is a random horizontal flip applied consistently to every frame within a sequence. Using
eight 24GB RTX 6000 GPUs, the DINOv2-S-based BiggerGait requires approximately 8.8 hours to
train on CCPG. Ensemble testing method presented in Sec. 3.5 is used during inference.

4.2 Main Results

To show our superiority, BiggerGait and its grouping-based variant are compared with diverse SoTA
methods, including the silhouette-based [5, 11, 37, 13, 12], multimodal-based [50, 15, 35], and
RGB-based [74, 35] gait methods. Due to the lack of multimodal data, cross-domain results for
multimodal-based methods are unavailable.



Table 2: All models are evaluated on CCPG [33]. (a) & (b) Hyperparameter search for BiggerGait*. (c) Ablation
study on larger LVMs. (d) Efficiency comparison across gait methods. The yellow cells in (a) & (b) mark the
final setting for BiggerGait*. FLOPs are computed for an input resolution of 448 x 224.

(a) Ablation of Gait Group (J = 12) (b) Ablation of Depth Group (P = 2,2, 3)
LVM P #Params CL UP DN BG LVM J FLOPS CL UP DN BG
12 2097M 868 895 918 959 12 951G 858 895 918 963
SAM-S[30] 2 1I122M 858 89.5 918 96.3 SAM-S 6 792G 869 894 923 958
1 1017M 852 886 913 958 3 712G 846 875 905 944
12 2086M 8L0 862 89.7 969 12 493G 80.1 855 894 963
CLIP-S[52] 2 1108M 80.1 855 894 963 CLIP-S 6 334G 789 838 879 961
1 1006M 784 829 877 950 3 255G 754 806 868 958
12 1422M 898 921 937 975 12 457G 895 925 940 976
DINOV2-S [48] 2 436M 895 925 940 97.6 DINOV2-S 6 298G 890 919 940 972
1 334M 863 903 925 97.1 3 219G 888 917 931 975

(d) Parameter and GFLOPs Comparison

(C) Ablation of Scaling LVM'’s Size Method Upstream Downstream  #Params FLOPs

Silh.-based DeepLabV3+ [6] GaitBase 34.2M 454G

LM Method _ #Params FLOPs CL UP DN BG Parsing-based SCHP [32] GaitBase 740M 352G
SAM-L BiggerGait  4364M  258.7G 90.0 912 938 97.0 Skeleton-based HRNet-W32 [65] Gait-TR 29.0M 31.2G
BiggerGait*  337.7M  246.1G  89.0 912 935 96.6 BigGait [74] DINOvV2-S GaitBase 30.8M 12.7G

CLIP-L BiggerGait  4309M 111.3G  87.5 90.7 929 974 BiggerGait SAM-S 12 x GaitBase  209.7M  95.1G
BiggerGait*  3322M  97.0G 856 89.7 915 972 BiggerGait CLIP-S 12 x GaitBase  208.6M  49.3G

DINOvs BiggerGait 4290M 2034G 928 946 957 982 BiggerGait DINOv2:§  12xGaitBase 1422M 457G
BiggerGait*  339.6M  190.7G  92.7 939 96.2 978 BiggerGait* SAM-S 2 x GaitBase 1122M  79.2G
BiggerGait* CLIP-S 2 x GaitBase 110.8M 334G

BiggerGait* DINOv2-S 2 x GaitBase 43.6M 29.8G

Cross-domain Evaluation. The final column of Tab. 1 highlights BiggerGait’s impressive results.
Trained on CCPG, the SAM-S-, CLIP-S-, and DINOv2-S-based BiggerGait impressively boost rank-1
by +6.7%, +12.8%, and +14.0% over prior work. With CCGR_MINI as the train set, CLIP-S- and
DINOv2-S-based BiggerGait push SoTA up by +2.0% and +4.4%, respectively. Such huge jumps
confirm that BiggerGait learns a robust gait embedding that travels well across datasets.

Like BigGait [74], BiggerGait also shows a data-bias limitation, i.e., the distribution of training data
influences outcomes. Trained on CCGR_MINI and tested on CCPG, RGB-based methods exhibit less
impressive results in some cases, e.g., performing well in the ups-changing (UP) and bag-changing
(BG), but poorly in the full-changing (CL) and pants-changing (DN). The limited clothing diversity
in CCGR_MINI (9.4% of pairs, exclusively UP changes) probably accounts for this result.

Within-domain Evaluation. As highlighted in the yellow block of Tab. 1, BiggerGait shines on
the challenge CCPG dataset. SAM-S- and DINOv2-S-based BiggerGait outperforms other methods
on every metric. Notably, DINOv2-S-based BiggerGait shows significant improvements of +5.9%
on CL, +3.1% on UP, +6.6% on DN, and +4.4% on BG. These results highlight BiggerGait’s
effectiveness in learning subtle clothing-irrelevant gait representations.

On the CCGR_MINI, BiggerGait slightly struggles. As discussed on Sec. 3.4 and 3.5, CCGR_MINI
with diverse covariant only prefers deeper semantic-based layers, and other datasets prefers shal-
low appearance-based layers. For simplicity, consistency, and stronger generalization, BiggerGait
adopts all layers, resulting slightly drop on CCGR_MINI. We consider that this performance gap
is acceptable: with the same DINOv2-S backbone, BiggerGait and BiggerGait* achieves 2.3% and
0.2% lower rank-1 accuracy than BigGait, respectively, comparing their larger overall performance
gains of +4.4% and +4.8%.

Comparing Different LVMs. A clear domain pattern emerges: (1) the text-aligned CLIP [52] excels
in cross-domain tests but lags within-domain; (2) the segmentation-supervised SAM [30] exhibits the
reverse trend; (3) the self-supervised DINOv2 [48] balances both. This implies that LVM supervision
strategies probably shape their domain adaptation properties thereby affecting gait recognition.

4.3 Ablation Study

All experiments in this section are performed on the CCPG benchmark [33]. We systematically
evaluate: (1) an effective configuration for BiggerGait*; (2) the efficiency issue of BiggerGait.

Gait & Depth Group. Tab. 2(a) shows, using just two gait encoders delivers an accuracy similar to
that of using twelve. Remarkably, even with all layer-wise features share one single gait encoder, the
DINOV2-S- and SAM-S-based BiggerGait still delivers SOTA results, outperforming the methods
listed in Tab. 1. Tab. 2(b) reveals that six depth groups achieve an accuracy comparable to the



Table 3: Model size and computation cost comparison across methods. All methods trained on CCPG, and
tested on four datasets. This is a supplement for Tab. 1. This report follows the settings in Table 2 (d), with
FLOPs computed at an input resolution of 448 x 224.

Testing Dataset

Input Method Upstream #Param FLOPs CCPG CCGR* SUSTechlk CASIA-B* A
CL UP DN BG R-1 R-5 CL R-1 NM BG CL Ve

Silh. GaitSet DeepLabV3+ 294M 503G 602 652 65.1 68.5 24 6.9 82 128 474 409 258 29.5
Silh. GaitPart DeepLabV3+ 31.6M 53.0G 64.3 67.8 68.6 71.7 2.4 6.9 8.1 135 51.2 41.9 26.0 309
Silh. GaitGL DeepLabV3+ 30.IM  88.7G 68.3 76.2 67.0 76.7 3.3 84 254 33.6 63.1 58.5 46.3 41.2
Silh. GaitBase DeepLabV3+ 342M 454G 71.6 750 76.8 786 2.8 73 9.5 16.8 59.1 52.7 304 356
Silh. DeepGaitV2 DeepLabV3+ 352M 932G 78.6 84.8 80.7 89.2 3.7 9.1 27.0 384 746 672 50.2 47.4

Silh.+Skel. BiFusion - - - 626 67.6 66.3 660 - - - - - - - -

Silh.+Skel.  SkeletonGait++ - - - 79.1 839 81.7 89.9

Silh.+Pars. XGait - - - 728 77.0 79.1 80.5

Silh.+Pars.+Flow ~ MultiGait++ - - - 839 89.0 86.0 91.5 - - - - - - -

RGB+Silh. GaitEdge UNet - - 669 740 70.6 77.1 - - 89 196 66.5 58.7 44.8

RGB+Silh. DenoisingGait SD & DeepLabV3+ - - 840 8.0 90.1 959 - - 373 59.1 839 76.1 348 -
RGB BigGait DINOV2-S 30.8M 12.7G 82.6 859 87.1 93.1 74 163 43.7 564 774 71.5 33.6 53.0
RGB BiggerGait SAM-S 209.7M 95.1G 86.8 89.5 91.8 959 9.5 178 64.6 755 80.1 76.2 31.8 59.7
RGB BiggerGait CLIP-S 208.6M 49.3G 81.0 86.2 89.7 96.9 152 26.1 67.0 84.2 91.5 87.8 47.3 65.8
RGB BiggerGait DINOv2-S 1422M 457G 89.8 92.1 93.7 97.5 15.5 26.9 70.9 79.6 93.0 90.8 55.6 67.0
RGB BiggerGait* SAM-S 1122M 792G 86.9 89.4 923 958 9.1 172 60.8 744 79.7 749 289 59.0
RGB BiggerGait* CLIP-S 110.8M 33.4G 789 83.8 87.9 96.1 139 242 63.1 81.5 92.3 87.1 42.9 64.0
RGB BiggerGait* DINOV2-S 43.6M 298G 89.0 91.9 94.0 97.2 145 253 69.5 80.4 91.6 87.7 54.7 66.5

ungrouped setup, except the CLIP-S-based one. Therefore, we set P = 2 and J = 6 for BiggerGait*,
cutting roughly 108.8M and 23.8G FLOPs for DINOv2-S-based one. In this setting, DINOv2-S-based
BiggerGait* achieves a 44% speedup (29.89 ms / image), approaching BigGait (21.64 ms).

Scaling the LVM Size Tab. 2(c) shows BiggerGait* offers marginal benefits, saving FLOPs limited
while hurting performance. We consider that the upstream LVM dominates computation (= 87.5%
for DINOv2-L), basicly making BiggerGait’s overhead negligible compared to the expensive LVM’s
cost. Therefore, for larger LVM cases, the standard BiggerGait is recommended.

Efficiency Comparison. Tab. 2(d) shows that BiggerGait*, especially for DINOv2-S-based one, has
similar FLOPs as the popular gait methods. This result indicates that the BiggerGait’s superiority
stems not from increased parameters or FLOPs, but from diverse layer-wise LVM features.

Parameter & FLOPs Comparison. Tab. 3 further confirms that despite its significant performance
gains, the DINOv2-S-based BiggerGait* maintains FLOPs and size comparable to popular gait
methods. We include the cost of DeepLabV3+ (26.8M parameters, 43.7 GFLOPs) for mask extraction
in silhouette-based methods. Statistics for multimodal approaches are unavailable due to reproduction
difficulty, yet they clearly incur higher computation costs from additional preprocessing models.

5 Conclusions

This work shifts the attention of LVM-based gait research from well-designed gait priors to the fun-
damental properties of LVMs itself. Our comprehensive study shows that layer-wise representations
in LVM contain rich, distinct gait semantics. Without relying on elaborate gait priors, integrating
these diverse layer-wise features delivers substantial gains. Building on these insights, we propose
BiggerGait, a simple yet universal layer-wise LVM framework for gait recognition. We systematically
analyze the inherent efficiency challenges of layer-wise methods and introduce an optional mitigation
strategy. Comprehensive evaluations on CCPG, CASIA-B*, SUSTech1K and CCGR_MINI reveal
BiggerGait’s advance in most within- and cross-domain tasks. The work may also provide inspiration
for employing the layer-wise knowledge produced by LVMs for other vision tasks.

Limitation. While BiggerGait sets impressive results in gait tasks, its feature extraction is mainly at
the image level. The temporal feature remains underexplored in this work and deserves further study.
Meanwhile, predicting the most effective layers for new, unseen datasets remains an open challenge,
as the optimal layer often shifts with training data and task types.

Acknowledgement. This work was supported partially by National Natural Science Foundation of
China (Grant 62476120, 62325307, 62422312, and 62506236) and partially by National Key R&D
Program of China (Grant 2020YFA0908700 and 2023 YFB4704900).
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much the results can be expected to generalize to other settings.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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* The authors should discuss the computational efficiency of the proposed algorithms
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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results in Sec. 4.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The reproduce details are shown in Sec. 4.1, and all the source code will be
released.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: While all the source code will be released, it is not included in the paper now.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experimental setting can be found in Sec. 4.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: This paper use Rank-1 as main results, which is following prior works[5, 11,
37, 13].

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources are reported in Sec. 4.1, and Tab. 2 (d).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Gait recognition helps security applications, which is mentioned in Sec. 1.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA]
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and models used in this paper are public and cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: No new human subject assets are collected in this study. All human subject
assets are exclusively from publicity available datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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