
Under review as submission to TMLR

Proper Orthogonal Decomposition for Scalable Training of
Graph Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

As large-scale graphs become ubiquitous in real-world applications, there is growing concern
about the memory and time requirement to train a graph neural network (GNN) model for
such datasets. Storing the entire adjacency and node embedding matrices in memory is
infeasible in such a scenario. Standard sampling-based methods for addressing the memory
constraint suffer from the dependence of the number of mini-batches on the graph size.
Existing sketch-based methods and graph compression techniques operate at higher sketch
ratios, with the graph compression techniques showing poor generalization, implying that
different GNNs trained on the same synthetic graph have performance gaps. Sketch-based
methods necessitate online learning of sketches, further increasing the complexity. In this
paper, we propose a new sketch-based algorithm, PGNN, employing the Proper Orthogonal
Decomposition (POD) method to craft update rules to train GNNs, improving the memory
requirement and training time without the complication of updating the sketches during
training. Experiments on standard graph datasets show that PGNN can reach much lower
sketch ratios without compromising the performance. We prove the optimality of the POD
update rule for the linearized GNN (SGC). Empirical findings validate our approach, demon-
strating superior performance at reduced sketch ratios and adaptability across various GNN
architectures.

1 Introduction

Graph Neural Networks (GNNs) have proven to be powerful tools for graph learning across various do-
mains, excelling in tasks such as classification (Kipf & Welling, 2017), clustering (Bianchi et al., 2020),
recommendation systems (Wu et al., 2022), and social network analysis (Fan et al., 2019). Their strength
lies in their ability to extract meaningful insights from local neighbourhoods within graphs, thus creating
effective representations of target nodes. However, the dependence of GNNs on graph topology introduces
significant challenges when scaling to larger graphs or deeper models while maintaining computational and
memory efficiency. Traditional full-batch training methods necessitate storing the Laplacian matrix of the
entire graph, resulting in a memory complexity of O(m + ndL + d2L) for an n-node, m-edge graph, where
node features have dimension d in an L-layer graph convolutional network (GCN). This linear dependency
on both n and m, combined with the limited memory capacity of GPUs, restricts the scalability of train-
ing on large graphs (especially large dense graphs with m being of the order of O(n2) in the worst case).
To address these memory constraints, research in this domain has broadly proposed two main approaches:
sampling-based strategies (Hamilton et al., 2018; Chen et al., 2018a;b; Chiang et al., 2019; Zeng et al., 2020)
and historical embedding techniques (Fey et al., 2021; Ding et al., 2021). Although these methods improve
memory efficiency, the computational complexity still increases linearly with n and m.

In the context of matrix approximation, a sketch of an arbitrary matrix A ∈ Rn×d is defined as a reduced
matrix B ∈ Rc0×d, where c0 denotes the sketch dimension, and B providing a good approximation to A even
as c0 ≪ n(Ghashami et al., 2015). The amount of compression achieved by sketching is best described by
the sketch ratio r = c0/n. Proper orthogonal decomposition (POD), as described in the article Rathinam &
Petzold (2003), also known as the Karhunen–Loéve decomposition or principal component analysis, provides
an orthonormal basis representing the given data in an optimal least squares sense. To achieve sublinear

1

Under review as submission to TMLR

training time complexity with respect to n, Ding et al. (Ding et al., 2022) propose a sketch-based algorithm
named sketch-GNN, that trains the GNN on top of a few compact sketches of both the convolution and node
feature matrices. The authors propose an end-to-end training protocol in the sketch space by approximating
the non-linear activation function using polynomial tensor-sketch (PTS) theory (Pham & Pagh, 2013a).

As observed by the authors, the approximation of the non-linear activation limits the expressiveness, which
constrains the depth of GNNs that can be trained due to error accumulation. Working with dense matrices,
even in the reduced sketch space, imposes a significant computational burden. Despite showing promise, the
sketch-GNN algorithm has following limitations: (i) it requires higher sketch ratio which results in a lower
compression of the original graph and (ii) it requires frequent updates of the sketches during the training
which triggers re-computation of all the sketches involved. It is worthwhile to mention another technique
which guarantees efficient training of GNNs using random spanning trees (Bonchi et al., 2024) and leverages
the concept of effective resistance to enhance node classification tasks. This method enhances GNN efficiency
by creating path graphs from random spanning trees to maintain essential graph features while minimizing
complexity for faster training. This approach is currently constrained to only the GCN architecture.

The primary motivation for using POD to address limitation (i) in sketch-GNN was driven by the parallel
between dynamical systems and message passing methods in GNN Choi et al. (2023), coupled with the
fact that effective number of eigenmodes required for POD in dynamical system decreases on increasing
system size, resulting in a much lower sketch ratio. For limitation (ii), we theoretically establish bounds that
constrain the deviations of node representations when using our proposed method. Additionally, we prove
the optimality of the POD update rule for the linearized GNN update rule, indicating that the best low-rank
matrix for the update rules can be predetermined, which completely eliminates the need for online learning
via frequent updates of sketches. To this end, our paper presents PGNN, a novel sketch-based method
for GNNs. This method diverges fundamentally from prior approaches that emphasize sketching weights or
gradients (see Liu et al. (2022); Chen et al. (2015); Kasiviswanathan et al. (2018); Lin et al. (2019); Spring
et al. (2019)). Drawing inspiration from the update rules of linearized GNNs (SGC) (Wu et al., 2019), we
customize the message passing process to function within the linear subspace formed by the columns of the
augmented input node feature matrix. Experimental results, as presented in section 5, demonstrate that the
sketch ratio necessary for achieving optimal performance decreases as the graph size increases. Despite its
theoretical optimality limitations beyond linearized GNN, the PGNN framework efficiently performs node
classification in POD-derived linear subspaces, providing insights into GNN operational subspaces (Lee et al.,
2023).

Our contributions can be summarized as follows:

1. In section 4, we introduce specialized update rules designed to enhance the training efficiency of
GNNs by operating within a reduced subspace. Utilizing the POD method, we sketch the input node
feature and convolution matrices into their lower-dimensional approximations, thereby streamlining
the computational process.

2. In Theorem 1, we establish the optimality of the POD method for the linearized update rule of
the GNN. Furthermore, in Theorem 2, we present bounds that quantify the deviation of node
representations when using the PGNN framework.

3. The versatility of PGNN is evaluated across different GNN architectures, including GCN (Kipf &
Welling, 2017), SGC (Wu et al., 2019), GraphSAGE (Hamilton et al., 2018), and GAT (Veličković
et al., 2018), with results detailed in section 5. Through extensive experimentation, as demonstrated
in section 5, we find that PGNN is able to provide comparable performance at much lower sketch-
ratio compared to previous methods. For instance, on the Reddit dataset, the state-of-the-art
sketch-GNN framework achieves its highest accuracy at a sketch ratio of 0.3, while we achieve better
and comparable accuracy for various architectures for a much lower sketch ratio of 0.05. This
reduction in sketch ratio directly translates to accelerated runtime and a reduced memory footprint,
underscoring our method’s efficiency without compromising accuracy.

2

Under review as submission to TMLR

2 Related work

The scalability of GNNs has been predominantly addressed through mini-batching strategies, which, despite
mitigating memory bottlenecks, often fail to reduce epoch training time. Recent work in graph compression,
such as Graph Coarsening (Loukas, 2018) and dataset condensation (Zhao et al., 2021), aims for sublinear
training times by condensing the graph, thus reducing node and edge counts (Huang et al., 2021; Jin et al.,
2022). These methods, however, face significant challenges: the preprocessing overheads often exceed O(n),
reducing practical benefits, and the efficacy of the trained model varies with the GNN architecture used (Jin
et al., 2022; Ding et al., 2022). Scalable GNN approaches fall into several categories: (A) full-graph training,
which is memory and time-intensive; (B) sampling-based methods like GraphSAGE (Hamilton et al., 2018),
FastGCN (Chen et al., 2018b), and GraphSAINT (Zeng et al., 2020), which employ various sampling strate-
gies to reduce computational load; (C) historical-embedding methods, such as GNNAutoScale (Fey et al.,
2021) and VQ-GNN (Ding et al., 2021), which store embeddings but incur high memory costs; (D) linearized
GNNs (Bojchevski et al., 2020; Wu et al., 2019; Frasca et al., 2020), which offer computational efficiency
at the risk of oversimplification; (E) methods using random spanning trees (Bonchi et al., 2024), which
reduce computational load by transforming graphs into sparse path graphs; and (F) sketch-based methods
like Sketch-GNN (Ding et al., 2022), which approximate non-linear activations but struggle with error ac-
cumulation and high computational demands. Each approach presents trade-offs in terms of computational
complexity and model expressiveness, addressing different constraints in GNN applications.

3 Preliminaries

Basic Notations.

Let G = (V, E) denote a graph where V = [n] := {1, . . . , n} is the set of n vertices and E ⊂ V × V is the
set of m edges. y represents the labels of the nodes. Additionally, the input node feature matrix associated
with G is denoted by X(0) ∈ Rn×d, where d is the number of features. Let X̃(0) ∈ Rn×c0 and x̄ denote the
augmented feature matrix and its mean vector, respectively. C ∈ Rn×n denotes the convolution matrix of
graph G and C(i, j) denotes its (i, j)-th entry. We represent the kth order element-wise power of C as C⊙k.
Additionally, C(i, :) denotes the ith row and C(:, j) denotes the jth column.

Considering a GNN, X(l) ∈ Rn×dl denotes the node representations of layer l, where dl represents the number
of neurons at layer l. ∥·∥ denotes the ℓ2 norm unless stated otherwise. σ(·) is the non-linear activation and
Θ(l,q) is the learnable weight matrix at layer l for filter q.

R(1), R(2), . . . , R(k) denote the k count-sketch matrices with dimension Rck×n, where k (a hyper-parameter)
denotes the number of sketches and ck is the fixed sketch dimension associated with all of them. β denotes
the upper bound on the number of elements in the set for unsketching.

The POD projection matrix which is the matrix of the linear projection expressed in the original coordinate
system in Rn is given by P = ρT ρ ∈ Rn×n. We refer to the submatrix ρ as the factor of P . We represent a
matrix comprising of b n-dimensional column vectors y ∈ Rn as [y]n×b. ρ1 ∈ Rc0×c0 denotes the learnable
matrix incorporated in the PGNN update rule. β2 denotes the number of nodes used for unsketching to
update ρ1.

3.1 Count Sketch.

Matrix multiplication is crucial in machine learning and scientific computation, with efficient techniques
developed in works like (Paszke et al., 2017; Guennebaud et al., 2010), and Abadi et al. (2016). Count
sketch, a potent dimensionality reduction technique introduced in Charikar et al. (2002) and Weinberger
et al. (2010), projects an n-dimensional vector u into a ck-dimensional space using a random hash function
h : [n]→ [ck] and a binary Rademacher variable s : [n]→ {−1, 1}. The dimension reduction transformation
CS(u)i =

∑
h(j)=i s(j)uj = R(i, :)u involves a count sketch matrix R ∈ Rck×n. The work in Ding et al. (2022)

provide theoretical guarantees on the approximation quality of CountSketch for Graph Neural Networks; we
restate the relevant result in Appendix A (Lemma 2).

3

Under review as submission to TMLR

3.2 Tensor Sketch.

Tensor sketch, introduced as a generalization of the count sketch Charikar et al. (2002), is a dimensionality
reduction technique frequently employed in machine learning for large datasets Pham & Pagh (2013b). Pham
and Pag Pham & Pagh (2013a) proposed an efficient way to compute tensor-sketch using FFT and inverse
FFT operation given by,

TSk(A) = FFT−1
k⊙

p=1
FFT

(
CS(p)(A)

)
.

In Ding et al. (2022), Tensor-sketch is applied to approximate the element wise k-th power of a matrix
product:

(AB)⊙k ≈ TSk(A) TSk(BT)T ,

where A ∈ Rn×n, B ∈ Rn×d, and TSk(A) ∈ Rn×ck , TSk(BT) ∈ Rd×ck with ck < n.

3.3 Locality Sensitive Hashing.

Locality Sensitive Hashing (LSH) exploits hash functions, denoted as H : Rd → [ck], to map closely positioned
vectors into the same bucket with high probability. SimHash, an instance of LSH, uses a random matrix
P ∈ Rck/2×d to define a hash function H(u) = arg max ([Pu || − Pu]) (Charikar et al., 2002). This method
is efficient for large vector batches (Andoni et al., 2015).

3.4 Proper Orthogonal Decomposition.

Given the input node feature matrix X(0) = [x1, x2, . . . , xd], where xi ∈ Rn. Then the best approximating
affine subspace representing these data points and passing through the mean (x̄ = 1

d

∑d
i=1 xi) is given by

the leading eigenvectors of the centred covariance matrix (see (Rathinam & Petzold, 2003) for a detailed
explanation)

R̄ = 1
d− 1

d∑
i=1

(xi − x̄)(xi − x̄)T .

The factor ρ ∈ Rc0×n of projection P is given by the leading eigenvectors of R̄, where c0 ≪ n. The sketch
Z(0) = ρ(X(0)− [x̄]n×d) ∈ Rc×d of input node feature matrix X(0) represents the sketch of X(0) in the affine
subspace. Details of the POD technique can be found in (Rathinam & Petzold, 2003; Holmes et al., 1996;
Lall et al., 1999; Moore, 1981).

3.5 Unified Framework of GNNs.

For a GNN, message passing between layers can happen differently, like that of spatial convolution
(GCN)(Kipf & Welling, 2017), self-attention (GAT)(Veličković et al., 2018), and Weisfeiler-Lehman (WL)
alignment, see Xu et al. (2019). According to Balcilar et al. (2021) the general rule for message passing is
given by,

X(l+1) = σ

(∑
q

C(l,q)X(l)Θ(l,q)

)
, (1)

where C(l,q) ∈ Rn×n is the q-th convolution support at layer l that defines how the node features are
propagated to the neighbouring nodes, X(l) is the node representations at layer l, and Θ(l,q) are the trainable
weights. The input node feature matrix is given by X(0) ∈ Rn×d.
As shown in Ding et al. (2021), the gradient involved in the back-propagation rule for GNNs, for the loss
function ℓ, is given by the following:

∇X(l)ℓ =
∑

q

(
C(l,q)

)⊤ (
∇X(l+1)ℓ⊙M (l+1)

)(
Θ(l,q)

)⊤
, (2)

4

Under review as submission to TMLR

where M (l+1) = σ
′ (

σ−1 (X(l+1))). This formulation embodies the essence of the message-passing paradigm.
Here, σ

′ and σ−1 denote the derivative and the inverse of the activation function σ, respectively. The term
∇X(l+1)ℓ⊙σ

′ (
σ−1 (X(l+1))) represents the gradients propagated back through the non-linearity. In essence,

this rule captures the flow of information and updates dynamics within GNNs during the backward pass.

4 POD sketch based method on GNNs

Problem and Insights. The runtime complexity of the update rules of GNNs on a complete graph is O(n2),
and the memory complexity involved is O(n + m). The POD sketch-based method for GNNs approximates
the GNN’s update rule and utilizes sketches of both the convolution matrix and the input node feature
matrix for training. Initially, the input node feature matrix (X(0)) and the convolution matrix (C) are of
sizes n×d and n×n, respectively. These matrices are then transformed into low-dimensional sketches of size
c0 × d and c0 × c0, respectively. The sketch Z(0) of the input node feature matrix X(0) and the convolution
matrix sketch (SC) approximating the SGC architecture of GNN (PSGC) are given by:

Z(0) = ρ(X(0) − [x̄]n×d), SC = ρCρT .

Figure 1 illustrates the overall PGNN framework. Recall that ρ is the factor of P , representing the singular
vectors of the augmented input node feature matrix X̃(0) after normalization (see Algorithm 2).

4.1 Approximate update rules with PGNN

Our primary goal is to approximate the forward propagation rule of the GNN:

X(l+1) = σ
(

CX(l)Θ(l)
)

.

We project the node representations at layers l and l + 1 onto the subspace spanned by the columns of the
factor matrix ρ. This yields

Z(l+1) = ρσ
(

C
(

ρT Z(l) + [x̄]n×dl

)
Θ(l)

)
− U.

The mean of the augmented input feature matrix X̃(0) (See Algorithm 2) is denoted by x̄. We denote the bias
induced by this projection as U = [ρx̄]c0×dl+1 . For ease of notation let the unsketched node representations
at layer l be X̂(l) = ρT Z(l) + [x̄]n×dl

. Employing an element-wise nonlinearity expressed as a power series
(see Ding et al. (2022)) leads to the following result:

Z(l+1) = ρ

(
q∑

k=1
ck

(
CX̂(l)Θ(l)

)⊙q
)
− U.

Using Tensor-sketch (Section 3.2) to approximate the power series above leads to the following:

Z(l+1) ≈
q∑

k=1
ckSk

C

[
TSk

(
X̂(l)Θ(l))T

]T

− U.

ck represents the learnable coefficients for combining different powers of the representation matrix. Sketch
of the convolution matrix Sk

C = ρ TSk(C).

Z(l+1) =
q∑

k=1
ckSk

C

(
TSk

(
X̂(l)Θ(l)

)T
)T

− U

Z(l+1) =
q∑

k=1
ckSk

C

[
FFT−1

(
k⊙

p=1
FFT

(
V

(k)
N

))]T

− U (3)

5

Under review as submission to TMLR

N = X̂(l)Θ(l), V
(k)

N = CS(k)(NT) = NT R(k)T , with R(k) ∈ Rn×ck denoting the count-sketch matrix. The
advantage of the PGNN update rule is that the objective is restricted to get optimal sketches of the matrix
ρ, which will be fixed throughout training. In Sketch-GNN, the update rule involves online learning
of sketches where the LSH and count-sketch hash tables corresponding to each layer are updated during
training. The update rule consists of computing the count-sketch of matrix ρ. Count-sketch of matrix ρ,

CS(k)(ρ) = ρR(k)T

= ρ̃(k).

For the unsketching process, the count-sketch matrix R(k) ∈ Rck×n is transferred to GPU memory. Each
column of R(k) contains a single nonzero entry—either +1 or −1 located at a random row. Storing the
count-sketch matrix in memory is not an overhead because of its inherent sparse nature. To illustrate, for
the ogbn-products dataset, a single count-sketch matrix consumes approximately 88 MB of memory for a
count-sketch ratio of 0.1. The count-sketch ratio’s dependence on the approximation’s quality is addressed
in Lemma 2. However, an additional storage cost of O(c0ck) is incurred to store the sketches ρ̃ and R(k).
The intricacies of how message passing happens for the PGNN framework in various GNN architectures like
SGC, GCN, GraphSAGE, and GAT are explained in Appendix B. Two challenges must be addressed for the
approximate update rule proposed in Equation 3.

4.1.1 Challenges

Challenge (1). The PGNN method limits the update rule of the GNNs to the column space of ρ.
Addressing challenge (1) The PGNN update rule projects node representations onto the column space of
ρ. To overcome this limitation, we introduce a learnable matrix ρ1 ∈ Rc0×c0 into the update rule (Equation 3),
resulting in the following formulation:

Z(l+1) =
q∑

k=1
ck ρ1 Sk

C

[
FFT−1

(
k⊙

p=1
FFT

(
V

(p)
Ñ

))]T

− U. (4)

V
(p)

Ñ
=
(

CS(p)(ÑT)
)

, Ñ = (ρT ρ1Z(l) + [x̄]n×dl
)Θ(l). Equation 4 serves as the update rule for PGNN ,

approximating the original GNN update mechanism. The complexities associated with the PGNN update
rule are explained in Appendix D. We design a loss function L to update the parameter ρ1. This loss
function incorporates the GNN loss ℓ, which is evaluated on a subset ST of the training set. The subset ST

consists of β2 nodes, where β2 is a hyperparameter chosen to be significantly smaller than the total number
of training samples. The matrix D = ρT (ST , :)ρ1Z(0) + [x̄]β2×d −X(0)(ST , :),

L = α0∥D∥2
F︸ ︷︷ ︸

Term 1

+ β0 ℓ(ST)︸ ︷︷ ︸
Term 2

. (5)

Z(L) denotes the sketched node representations at the last layer and the unsketched node representations at
the last layer L, X̂(L,k)(ST , :) = R(k)T (ST , :) ρ̃(k)T

ρ1Z(L)+[x̄]β2×dL
. Term 1 is used to control the deviations

between the unsketched node representations at the input and the input node feature matrix, whereas Term
2 gives weightage to the loss of the GNN ℓ while updating ρ1. The compute needed to update ρ1 using the
loss function L is O(β2ckdL + ckc0dL). α0 and β0 are kept as constants. L is updated using gradient-descent
on every epoch (See Algorithm 1).
Challenge (2). Avoiding O(n) in the loss evaluation. Unsketching of node representations
Z(L) ∈ Rc0×dl at layer L from the sketch dimension c0 to n and computing the losses for all nodes in
node classification involves O(ckc0n) computations and O(n) memory.

X̂(L) = Mean
{

R(k)T
(

(ρ̃(k))T ρ1Z(L)
)}

+ [x̄]n×dl
. (6)

Mean refers to the element-wise mean over tensors.
LSH-based Loss Evaluation for Node Classification: To avoid O(n) complexity in loss evaluation, we
employ a locality-sensitive hashing approach that selects nodes with poor predictions as followed in Ding
et al. (2022):

6

Under review as submission to TMLR

1. Construct LSH hash tables: We build LSH hash tables H : Rd → [ck] (Section 3.3) to index the
labeled training nodes across C classes into ck hash buckets.

2. Formation of subset B: Using the LSH hash tables, we select nodes whose predicted class scores
have small inner products with respect to their ground truth (one-hot encoded) labels based on the
gradient signals of M (L,k) = ρ̃(k)T

ρ1Z(L).

B =
C⋃

j=1

{
arg max

j
M

(L,k)
:,j

}

X̂(L)(B, :) = Mean
{

R(k)T

(B, :)M (L,k)
}

+ [x̄]|B|×C (7)

3. Evaluate loss on selected subset: We compute the classification loss only on the selected nodes:

LLSH = 1
|B|

∑
i∈B

ℓ(ŷi, yi) (8)

ℓ is the loss function (e.g., cross-entropy), ŷi represents the predicted class probabilities.

Complexity advantage: This approach avoids the O(n) complexity of evaluating losses for all nodes by
focusing computational resources on nodes that are most likely to contribute significant gradients, i.e., those
with poor current predictions.
Simhash projection matrix update. The projection matrix P for the SimHash function H : Rd → [ck]
is updated using gradient descent, guided by the triplet loss function as described in Chen et al. (2020).

L1(H,P+,P−) = max

0,
∑

(u,v)∈P−

cos(H(u), H(v))−
∑

(u,v)∈P+

cos(H(u), H(v)) + α

 (9)

P+ =
{

(X̂i,:, X̂j,:) | i, j ∈ B, ⟨X̂i,:, X̂j,:⟩ > t+

}
,

P− =
{

(X̂i,:, X̂j,:) | i, j ∈ B, ⟨X̂i,:, X̂j,:⟩ < t−

}
are the similar and dissimilar node-pairs in the subset B; t+ > t− and α > 0 are hyper-parameters.
This triplet loss L1(H,P+,P−) is used to update P using gradient descent at every TLSH epoch. The
complexities associated with the loss L1 are explained in Appendix D. In this section, we establish the
theoretical foundation of our approach by presenting a key result on the optimality of the POD projection
matrix in the context of linearized GNNs as shown in Theorem 1. Theorem 1 suggests that the POD method
offers an optimal projection matrix for the Linearized GNN update rule. Additionally, we analyze the error
propagation in node representations within the PGNN framework across different layers, as formalized in
Theorem 2.
Theorem 1. Let P be the set of all orthogonal projection matrices of rank c0 < n. The optimal projection
matrix Q ∈ P for the update rule

X̃(l+1) = QC(l)(ρT Z(0) + [x̄]n×dl
)Θ

is identified as the POD projection matrix, which is expressed as Q = ρT ρ (See proof in Appendix A). ρ is
the factor of POD projection matrix P , representing the singular vectors of the augmented input node feature
matrix X̃(0) after normalization (see Algorithm 2).

7

Under review as submission to TMLR

4.1.2 Error bound on the node representations at each layer l

Theorem 2. Let X(l) and X̂(l) represent the actual and approximate node representations for the PGNN
method with the linearized GNN architecture at a layer l. Following the update rule X(l+1) = CX(l)Θ(l), the
normalized error ϵ(l+1) = ∥X(l+1)−X̂(l+1)∥

∥X(l+1)∥ at layer l + 1 caused by the PGNN method is given by,

ϵ(l+1) ≤
∥C − Ceq∥

∥∥Θ(l)
∥∥

S
+ ϵ(l) ∥Ceq∥

∥∥∥Θ(l)
∥∥∥+ T̄

where T̄ =
∥∥(I − P)[x̄]n×d(l+1)

∥∥ and the equivalent convolution matrix for the PGNN method Ceq = PC, P =

ρT ρ, (S = ∥X(l+1)∥
∥X(l)∥). (See proof in Appendix A).

Theorem 2 indicates the quality of approximations made by the PGNN method depends on the equivalence
of matrices C and Ceq. The Theorem indicates that errors across layers accumulate with depth. We
empirically study the propagation of error in deep GNNs in Appendix E.1 and observed that using the
Jumping Knowledge framework (Xu et al., 2018) on PGNN compensates for accuracy loss and ensures faster
convergence (Figure 7). The learned representations can be qualitatively assessed by visualizing the t-SNE
plot of the features from the first layer of a pre-trained PGCN model, for example, shown for the Cora
dataset in Figure 9. The visualization reveals distinct clusters in the 2D projected space. These clusters
align with the seven labels of the dataset, demonstrating the model’s ability to distinguish between the
seven topic classes in Cora effectively. Appendix E.4 is dedicated to empirical validation, wherein a series of
experiments are conducted to ascertain the congruence of the convolution matrices for the Cora dataset.

4.2 Algorithm

Figure 1: The preprocessing, training and inference phases of the PGNN framework are shown. In the
preprocessing step, the sketch of the input node feature matrix (Z(0)), k sketches of the convolution
matrix (S(k)

C) and the matrix ρ (ρ̃(k)) are generated, where we make use of count-sketch matrices R(k).
These sketch matrices are utilized in the PGCN layers for the training step along with the LSH hash
matrix P . The loss function involves computation of GNN loss LLSH for updating GNN parameters, loss L
to update ρ̃1, and triplet loss to update the LSH hash matrix P when epoch e = TLSH . For the inference
step, we make use of the parameters learned but with the GCN layers as shown in the figure.

Figure 1 depicts the three-phase pipeline of our PGNN approach, encompassing preprocessing, training, and
inference stages. Algorithms 1 and 2 present the complete PGNN framework, which operates within the
GCN architecture. The algorithm can be generalized to the architectures discussed in sections B.1 and B.3.
However, for the PGAT architecture (See section B.4), the computation of the sketch for the convolution
matrix must be omitted.

8

Under review as submission to TMLR

Algorithm 1 PGNN Training and Inference
Require: Preprocessed data: Z(0), R(1), . . . , R(k), Sk

C , x̄, P (k) from Algorithm 2;
Labels y, LSH update interval TLSH ;
Loss constants β, β2, β0, α, α0, t+, t− for L and L1

1: Training:
2: Initialize GNN weights Θ(l), coefficients c

(l)
k , matrix ρ1

3: for each epoch do
4: for l = 1 to L do
5: Compute Z(l) using the PGNN propagation rule (Eq. 11)
6: end for
7: Select subset B (|B| ≤ β) using gradient signals from LSH hash tables H(k) (Section 4.1.1)
8: Reconstruct X̂(L) for nodes in the set B (Eq. 7), evaluate loss LLSH (Eq. 8)
9: Backpropagate and update Θ(l), ck using LLSH

10: if epoch mod TLSH = 0 then
11: Update matrix P (k) using triplet loss L1 (Eq. 9)
12: end if
13: Update ρ1 using β2 randomly sampled nodes using loss L {Omitted for PSGC}
14: end for
15: return Learned weights Θ(l) and coefficients c

(l)
k

16: Inference:
17: Predict using standard GCN update rule with learned Θ(l), c

(l)
k

Table 1: Performance comparison of PGNN with Graph-SAINT (Zeng et al., 2020), VQ-GNN (Ding et al.,
2021), Sketch-GNN (Ding et al., 2022), Graph Coarsening (Cai et al., 2021) , and linearized GNN (Wu et al.,
2019) on Reddit, ogbn-arxiv, and ogbn-products. If the entry is unavailable in prior literature it is denoted
by ‘-’. The accuracy values in green highlight the best performance for a given method (e.g., GCN) within
each column, while the values in red denote the second-best performance for that method.

Method ↓
Dataset → ogbn-arxiv Reddit ogbn-products

SGC 69.44 ± 0.05 94.64 ± 0.11 66.89 ± 0.29
PSGC 68.57 ± 0.16 94.66 ± 0.04 65.6 ± 0.00
GNN Model GCN GraphSAGE GAT GCN GraphSAGE GAT GCN GraphSAGE GAT
"Full-Graph" 71.74 ± 0.29 71.49 ± 0.27 73.65 ± 0.11 OOM OOM OOM OOM OOM OOM
Graph-SAINT 70.79 ± 0.57 69.87 ± 0.39 71.17 ± 0.32 92.25 ± 0.57 95.81 ± 0.57 94.31 ± 0.67 76.02 ± 0.21 79.08 ± 0.24 79.71 ± 0.42
Coarsening 68.92 ± 0.35 66.09 ± 0.61 63.07 ± 0.41 - - - - - -
VQ-GNN 70.55 ± 0.33 70.28 ± 0.47 70.43 ± 0.34 93.99 ± 0.21 94.49 ± 0.24 94.38 ± 0.59 75.24 ± 0.32 78.09 ± 0.19 78.23 ± 0.49
sketch-ratio (r = c0/n) r = 0.4 r = 0.3 r = 0.3
sketch-GNN 70.28 ± 0.87 70.48 ± 0.80 70.53 ± 0.34 92.80 ± 0.34 94.85 ± 0.61 93.26 ± 0.63 75.53 ± 1.05 77.62 ± 0.93 77.48 ± 0.71
PGNN ratio (r = c0/n) r = 0.15 r = 0.05 r = 0.003
PGNN 69.53 ± 0.31 69.63 ± 0.08 70.27 ± 0.11 94.82 ± 0.03 94.32 ± 0.08 93.02 ± 0.09 75.21 ± 0.51 76.82 ± 0.55 OOM

5 Experiments.

We evaluate the efficiency of PGNN in terms of memory utilization and training time, with implementa-
tion details provided in Appendix F. Our assessment, conducted on benchmark graph datasets, focuses on
node classification accuracy and compares PGNN’s performance against state-of-the-art methods, including
GCond (Jin et al., 2022) and Graph Coarsening (Cai et al., 2021). Additionally, we compare PGNN with
other sampling-based methods such as GraphSAINT (Zeng et al., 2020), VQ-GNN (Ding et al., 2021), and
existing sketch based method Sketch-GNN (Ding et al., 2022). For each dataset, the sketch ratios for GCond,
Graph Coarsening, and Sketch-GNN remain the same, while PGNN uses either the same or lower sketch
ratios than Sketch-GNN. The graph datasets used for evaluation include Cora, Citeseer, Pubmed, ogbn-
arxiv, Reddit, ogbn-products and ogbn-papers100M. The PGNN update rules for various GNN architectures
discussed in this section are detailed in Appendix B. Figures 2 and 3 illustrate PGNN’s sublinear memory
complexity and training time, making PGNN suitabile for large graph datasets. Additionally, we examine
cross-architecture memory complexity in Appendix D (Figure 6). Node classification accuracies across all
datasets are reported in Tables 1 and 2, demonstrating PGNN’s ability to achieve competitive accuracy

9

Under review as submission to TMLR

Table 2: Performance comparison of PGNN with SGC, GCN, SAGE, GAT and graph compression techniques
like GCond (Jin et al., 2022), Graph Coarsening (Cai et al., 2021) and Sketch-GNN (Ding et al., 2022) on
Cora, Citeseer, and Pubmed datasets. The baseline graph compression ratios for the Cora, Citeseer, and
Pubmed datasets are 0.026, 0.018, and 0.04, respectively, whereas our PGNN framework employs sketch
ratios of r = 0.02, 0.018, and 0.01 for these datasets. If the entry is unavailable in prior literature it is
denoted by ‘-’. The accuracy values in green highlight the best performance for a given method (e.g., GCN)
within each column, while the values in red denote the second-best performance for that method.

Method ↓
Dataset → Cora Citeseer Pubmed

GCN 81.19 ± 0.23 71.91 ± 0.18 79.0 ± 0.4
SGC 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0
PSGC 80.51 ± 0.18 72.01 ± 0.31 79.90 ± 0.10
SAGE 74.5 ± 0.0 67.2 ± 0.0 76.8 ± 0.0
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT
Coarsening 65.18 ± 0.51 – – 59.08 ± 0.45 – – – – –
GCond 80.02 ± 0.75 76.18 ± 0.87 66.2 ± 0.0 70.59 ± 0.87 66.2 ± 0 55.4 ± 0 77.92 ± 0.42 71.12 ± 3.10 –
Sketch-GNN 80.35 ± 0.71 79.14 ± 1.21 – 71.14 ± 0.59 – – – – –
PGNN 80.60 ± 1.46 79.43 ± 1.54 77.82 ± 1.26 71.21 ± 1.13 68.87 ± 1.21 70.47 ± 4.76 79.23 ± 0.32 78.01 ± 0.18 78.23 ± 0.61

while maintaining computational efficiency. To further showcase PGNN’s versatility across various tasks, we
also evaluated its performance on link prediction, comparing it against established graph-based methods.
The experimental results for the link prediction tasks are detailed in Table 7 in the Appendix.

Figure 2: Memory complexity of the PSGC method. Figure 3: Training time comparison of the SGC,
GCN, and SAGE with the PSGC method.

5.1 Performance evaluation of PGNN

As shown in Table 2, PGNN outperforms existing graph compression techniques—including Sketch-GNN,
GCond, and Graph Coarsening—while closely matching the accuracy of full-graph training on the Cora,
Citeseer, and Pubmed datasets, despite using lower or similar sketch ratios. For instance, PGNN achieves
better classification accuracies on Cora with a sketch ratio of r = 0.02, compared to r = 0.026 for Sketch-
GNN and other techniques such as GCond and Coarsening. Similarly, on Pubmed, PGNN attains superior
accuracy with r = 0.01, compared to the r = 0.04 required by existing methods. Notably, PGNN maintains
high classification accuracy even under lower compression levels, outperforming methods like SGC, GCN,
and GraphSAGE on Pubmed (Table 2). PGNN demonstrates scalability, particularly on large-scale datasets.
For the Reddit dataset, PGNN achieves an accuracy of 94.82% using a sketch ratio of only 0.05, compared
to Sketch-GNN, which requires a sketch ratio of 0.3 to reach a lower accuracy of 92.0%. PGNN with SGC
architecture achieves better classification accuracies than SGC. Additionally, PGNN’s memory footprint
for the Reddit dataset remains as low as 5400 MB with PSGC and approximately 7500 MB with PGCN
(Figure 6). For the ogbn-products dataset we observe that with a low sketch-ratio of 0.003 we are able to

10

Under review as submission to TMLR

Figure 4: Performance comparison of different models across varying sketch ratios. PGNN (blue) achieves
comparable accuracy to other methods while maintaining lower sketch ratios, demonstrating its efficiency in
preserving accuracy with reduced computational complexity. The comparison includes Sketch-GNN (red),
Graph Coarsening (green), GCond (purple), and the Full-Graph (orange) baseline accuracies.

reach full-graph training accuracy for the GCN architecture unlike Sketch-GNN which uses a much higher
sketch-ratio of 0.3. PGCN consistently outperforms GCN architectures in link prediction tasks in all three
datasets: Core, Citeseer, and PubMed, as shown in Table 7. Regarding training times, PGNN demonstrates
notable efficiency: the training time per epoch for PSGC is consistently lower than that of SGC (except on
ogbn-arxiv) and outperforms both GCN and GraphSAGE across all evaluated datasets (Figure 3). Unlike
Sketch-GNN, PGNN does not require updating LSH hash tables at intermediate layers, thereby reducing
computational overhead.

In terms of preprocessing, methods such as GCond and Graph Coarsening, while effective for small-scale
graphs, exhibit scalability limitations. For instance, preprocessing the Reddit dataset takes approximately
90 minutes with GCond, whereas PGNN completes the preprocessing in around 560 seconds (Table 4).
Moreover, PGNN requires a lower sketch ratio to maintain full-graph accuracy as the graph size increases,
underscoring its adaptability to larger datasets (Figure 4). Despite processing a massive dataset of 111
million nodes, our approach achieves preprocessing in just 28 minutes.

PGCN on ogbn-arxiv incurs a 2.5% accuracy drop compared to full-graph GCN (Table 1). However despite
using a sketch ratio of r = 0.15 compared to r = 0.4 for baseline methods we observe only a 1% accuracy
drop with respect to existing graph compression techniques. Despite PGNN’s preprocessing time not being
linear, it remains approximately one-sixth of the time required by graph compression algorithms such as
GCond (Jin et al., 2022), Graph Coarsening (Cai et al., 2021) (Table 4).

5.2 ogbn-papers100M: Paper Citation Network

We evaluate our PGNN framework on ogbn-papers100M, a large-scale citation network containing 111 million
nodes. This dataset follows the same preprocessing methodology as ogbn-arxiv Wang et al. (2019), ensuring
consistency in feature construction and graph representation.

11

Under review as submission to TMLR

Due to computational constraints, baseline results for SGC Wu et al. (2019), Node2Vec Grover & Leskovec
(2016), and MLP are obtained from the OGB leaderboard Hu et al. (2020), as these methods require
more than 512 GB of CPU memory for training. Our experiments use a sketch ratio of 10−6 for the ogbn-
papers100M dataset, selected based on available memory limitations. To enable a fair comparison of memory
usage, we keep the batch size to 1024 for both GCN and GraphSAGE models.

Table 3 compares PGNN with methods like SGC, GCN, GraphSAGE, MLP, Node2Vec for the ogbn-
papers100M dataset. The preprocessing overhead for the ogbn-papers100M dataset requires only 29 minutes,
as shown in Table 4. PSGC significantly enhances memory efficiency and training speed while maintain-
ing competitive accuracy. It outperforms MLP and Node2Vec, and achieves only a 4% accuracy reduction
compared to the full SGC model. Notably, it achieves a 339× speedup for the training time per epoch
compared to the conventional models. For PSGC, PGCN, and PSAGE, we utilized a POD sketch ratio of
10−6 (r = 10−6). The tensor-sketch ratio for PGCN was set to the same value. However, for PSAGE, a
tensor-sketch ratio of 5 × 10−7 was used. Higher ratios were not feasible due to CPU hardware limitations
for preprocessing.

For PGCN and PSAGE on ogbn-papers100M, we utilise PGNN layers during inference.

Table 3: Performance evaluation of PGNN against established graph-based and traditional methods
(SGC Wu et al. (2019), GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2018), Node2Vec, and
MLP) on the large-scale ogbn-papers100M dataset. Blue: PGNN method; green: best memory/training
time; red: Out of Memory (OOM); orange: Speedup factor.

Method Test
Accuracy (%)

Memory
(GB)

Training time
per epoch (s)

Speedup

SGC 63.29± 0.19 > 512 OOM —

PSGC (ours) 59.42± 0.01 7.70 0.62 —

MLP 55.60± 0.23 > 512 OOM —

GCN 27.18± 0.01 10.42 221.79 —

PGCN (ours) 56.35± 0.00 7.72 0.65 ∼ 339×

Node2Vec 47.24± 0.31 > 512 OOM —

GraphSAGE 67.06± 0.17 10.53 223.82 —

PSAGE (ours) 50.78± 1.37 3.58 0.63 ∼ 339×

6 Conclusions

The computational and memory demands of large-scale graph learning pose significant challenges for mod-
ern GNN frameworks. To address this, we propose PGNN, a novel sketch-based framework that compresses
graph data while preserving the downstream task performance. Our experiments demonstrate that PGNN
achieves competitive accuracy with state-of-the-art methods at significantly reduced sketch ratios and sub-
linear memory complexity. The condensed representations generated by PGNN not only reduce storage
overhead but also enable efficient training across diverse GNN architectures. Future work include (1) broad-
ening PGNN to dynamic graphs and streaming scenarios, and (2) extending the framework to heterogeneous
GNN architectures.

References
Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,

12

Under review as submission to TMLR

Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning, 2016.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and
optimal lsh for angular distance, 2015.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul Honeine.
Analyzing the expressive power of graph neural networks in a spectral perspective. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=-qh0M9XWxnv.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks
for graph pooling, 2020.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rózem-
berczki, Michal Lukasik, and Stephan Günnemann. Scaling graph neural networks with approximate
pagerank, August 2020. URL http://dx.doi.org/10.1145/3394486.3403296.

Francesco Bonchi, Claudio Gentile, Francesco Paolo Nerini, André Panisson, and Fabio Vitale. Fast and
effective gnn training with linearized random spanning trees, 2024.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks, 2021.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Peter Widmayer, Stephan Eidenbenz, Francisco Triguero, Rafael Morales, Ricardo Conejo, and Matthew
Hennessy (eds.), Automata, Languages and Programming, pp. 693–703, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. ISBN 978-3-540-45465-6.

Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshumali Shrivastava. Slide
: In defense of smart algorithms over hardware acceleration for large-scale deep learning systems, 2020.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via impor-
tance sampling, 2018b.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick, 2015.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks, July 2019. URL http://dx.doi.
org/10.1145/3292500.3330925.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-diffusion
networks, 2023.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, and Tom Goldstein.
Vq-gnn: A universal framework to scale up graph neural networks using vector quantization, 2021.

Mucong Ding, Tahseen Rabbani, Bang An, Evan Z Wang, and Furong Huang. Sketch-GNN: Scalable
graph neural networks with sublinear training complexity. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=4PJbcrW_7wC.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The World Wide Web Conference, WWW ’19, pp. 417–426, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313488.
URL https://doi.org/10.1145/3308558.3313488.

13

https://openreview.net/forum?id=-qh0M9XWxnv
http://dx.doi.org/10.1145/3394486.3403296
http://dx.doi.org/10.1145/3292500.3330925
http://dx.doi.org/10.1145/3292500.3330925
https://openreview.net/forum?id=4PJbcrW_7wC
https://doi.org/10.1145/3308558.3313488

Under review as submission to TMLR

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and expressive
graph neural networks via historical embeddings, 2021.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks, 2020.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions : Simple and
deterministic matrix sketching, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. CoRR, abs/1607.00653,
2016. URL http://arxiv.org/abs/1607.00653.

Gaël Guennebaud, Benoît Jacob, Philip Avery, Abraham Bachrach, Sebastien Barthelemy, et al. Eigen v3,
2010.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs, 2018.

Philip Holmes, John L. Lumley, and Gal Berkooz. Turbulence, Coherent Structures, Dynamical Systems and
Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, 1996.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural networks
via graph coarsening, 2021.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation for
graph neural networks, 2022.

Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin. Network approximation using tensor
sketching. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 2319–2325. International Joint Conferences on Artificial Intelligence Organization, 7 2018.
doi: 10.24963/ijcai.2018/321. URL https://doi.org/10.24963/ijcai.2018/321.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.

S. Lall, J. E. Marsden, and S. Glavaski. Empirical model reduction of controlled nonlinear systems. In
International Federation of Automatic Control, PROCEEDINGS OF THE WORLD CONGRESS- IN-
TERNATIONAL FEDERATION OF AUTOMATIC CONTROL, volume e, pp. 473–478, Oxford, 1999.
Published for the International Federation of Automatic Control by Pergamon;. ISBN 0080432166. URL
https://www.tib.eu/de/suchen/id/BLCP%3ACN032062401.

See Hian Lee, Feng Ji, and Wee Peng Tay. Node-specific space selection via localized geometric hyperbolicity
in graph neural networks, 2023.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning, 2018.

Yibo Lin, Zhao Song, and Lin F. Yang. Towards a theoretical understanding of hashing-based neural nets,
2019.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. EXACT: Scalable graph neural networks
training via extreme activation compression. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vkaMaq95_rX.

Andreas Loukas. Graph reduction with spectral and cut guarantees, 2018.

B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduc-
tion. IEEE transactions on automatic control, 26(1):17–32, 2 1981. doi: 10.1109/tac.1981.1102568. URL
https://doi.org/10.1109/tac.1981.1102568.

14

http://arxiv.org/abs/1607.00653
https://doi.org/10.24963/ijcai.2018/321
https://www.tib.eu/de/suchen/id/BLCP%3ACN032062401
https://openreview.net/forum?id=vkaMaq95_rX
https://doi.org/10.1109/tac.1981.1102568

Under review as submission to TMLR

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017
Workshop on Autodiff, 2017. URL https://openreview.net/forum?id=BJJsrmfCZ.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In SIGKDD,
KDD ’13, pp. 239–247, New York, NY, USA, 2013a. Association for Computing Machinery. ISBN
9781450321747. doi: 10.1145/2487575.2487591. URL https://doi.org/10.1145/2487575.2487591.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13,
pp. 239–247, New York, NY, USA, 2013b. Association for Computing Machinery. ISBN 9781450321747.
doi: 10.1145/2487575.2487591. URL https://doi.org/10.1145/2487575.2487591.

Muruhan Rathinam and Linda R Petzold. A new look at proper orthogonal decomposition. SIAM Journal
on Numerical Analysis, 41(5):1893–1925, 2003.

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing gradient optimiz-
ers via count-sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp. 5946–5955. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/spring19a.html.

Jiawei Sun, Hongkang Li, and Meng Wang. How do skip connections affect graph convolutional networks
with graph sampling? a theoretical analysis on generalization, 2024. URL https://openreview.net/
forum?id=J2pMoN2pon.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks, 2018.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao
Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola,
and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.01315.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola. Feature hashing
for large scale multitask learning, 2010.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks, 2019.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
A survey. ACM Comput. Surv., 55(5), dec 2022. ISSN 0360-0300. doi: 10.1145/3535101. URL https:
//doi.org/10.1145/3535101.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?,
2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method, 2020.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching, 2021.

15

https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1145/2487575.2487591
https://doi.org/10.1145/2487575.2487591
https://proceedings.mlr.press/v97/spring19a.html
https://openreview.net/forum?id=J2pMoN2pon
https://openreview.net/forum?id=J2pMoN2pon
http://arxiv.org/abs/1909.01315
https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101

Under review as submission to TMLR

A Appendix

Definition 1. The column space of two matrices A and B are the same if there exists a matrix M such that
A = BM .

A.1 Proof for Theorem 2

Let the equivalent node representations at layer l +1 in the graph dimension n, be X̂(l+1), the PSGC update
rule (Appendix B.1) is given by the following expression:

X̂(l+1) = PCX̂(l)Θ(l) + (I − P)[x̄]n×d(l+1) ,∥∥∥X(l+1) − X̂(l+1)
∥∥∥ =

∥∥∥CX(l)Θ(l) − (PCX̂(l)Θ(l) + (I − P)[x̄]n×d(l+1))
∥∥∥ ,∥∥∥X(l+1) − X̂(l+1)

∥∥∥ =
∥∥∥CX(l)Θ(l) − CeqX(l)Θ(l) + CeqX(l)Θ(l) − (CeqX̂(l)Θ(l) + (I − P)[x̄]n×d(l+1))

∥∥∥ ,

Using the triangular inequality and sub-multiplicative property of norms,

ϵ(l+1) ≤
∥C − Ceq∥

∥∥Θ(l)
∥∥

S
+ ϵ(l) ∥Ceq∥

∥∥∥Θ(l)
∥∥∥+ T̄ , S =

∥∥X(l+1)
∥∥∥∥X(l)
∥∥ .

Prior to proving Theorem 1 on the optimality of the POD update rule for the case of linearized GNN, We
establish a result concerning the invariance of column spaces in Lemma 1, a property that will play a pivotal
role in the proof of Theorem 1.
Lemma 1. Columnspace of matrix B = C(l)ρT is equal to the columnspace of matrix ρT .

Proof: From Definition 1, If the column-space of B and column-space of ρT are similar, then there exists a
matrix M such that ρT M = B. The matrix M which accomplishes this M = ρB (ρρT = Ic0). This shows
that matrix B and ρT have the same column space.
The above lemma implies that for an arbitrary vector z ∈ Rc0 , CρT z, it can be represented as ρT α, where
α ∈ Rc0 . Also since the matrix ρT denote the left singular vectors of the SVD of the matrix X̃(0)−[x̄]n×c0√

nc0−1 , they

span the column space of the matrix F = X̃(0)−[x̄]n×c0√
nc0−1 . Thus CρT z =

∑c0
i=1 ωiF (:, i) for arbitrary values of

ωi. The matrix X̃(0) denotes the augmented input node feature matrix.

A.2 Proof for Theorem 1

The output layer node representations for the linearized GNN using the optimal approximation of the input
node feature matrix given by the POD,

X̂(l) = C(l)ρT Z(0)Θ + [C(l)x̄]n×dΘ = BΨ + Ψ1,

B = C(l)ρT , Ψ = Z(0)Θ, Ψ1 = [C(l)x̄]Θ. Consider d as the number of hidden channels at layer l. We propose
that the projection matrix, denoted by Q, is the product of two matrices Q1 and Q2, such that Q = Q1Q2.
In this context, Q2 signifies the linear transformation responsible for reducing the dimensionality of matrices.
Conversely, Q1 is the matrix that handles the inverse projection. The objective is now to find

arg min
Q

∥QBΨ−BΨ∥

arg min
Q

c∑
i=1
∥QBΨ(:, i)−BΨ(:, i)∥

arg min
Q

c∑
i=1

∥∥∥∥∥∥
c∑

j=1
QωjiF (:, j)− ωjiF (:, j)

∥∥∥∥∥∥ (Lemma 1)

arg min
Q

c∑
i=1

∥∥∥∥∥∥
c∑

j=1

ω̄ji

p2
(QX̃(0)(:, j) −X̃(0)(:, j))− ω̄ji

Q(p3)− p3

p2

∥∥∥∥

(10)

16

Under review as submission to TMLR

p3 =
∑c0

i=1
X̃(0)(:,i)

nc0
. We denote P as the manifold of all rank (c0 < n) orthogonal projection matrices of size

n × n. The manifold is referred to as Grassmannian in the literature. The POD projection matrix P is a
minimizer of the function e,

e(P, x) =< Px− x, Px− x > where x ∈ X̃(0) (See Rathinam & Petzold (2003)).

This, in turn, proves that the best matrix Q which can be used in the scenario is the POD projection matrix
P .
Lemma 2 (Ding et al. (2022)). Given matrices C ∈ Rn×n and (X(l)W (l))T ∈ Rd×n, consider a randomly
selected count sketch matrix R ∈ Rck×n (defined in section 3), where ck is the sketch dimension, and it is
formed using r =

√
jn underlying hash functions drawn from a 3-wise independent hash family H for some

j ≥ 1. If ck ≥ 2+3j
ε2δ , we have

Pr{∥(CRT
k)(RkX(l)W (l))− CX(l)W (l)∥2

F > ε2k∥C∥2
F ∥X(l)W (l)∥2

F } ≤ δ.

B Generalize to more GNNs

This section presents a compendium of prevalent GNNs that can be tailored to fit into the unified framework
delineated in section 3. The crux of most GNN architectures revolves around message passing among
node features, followed by feature transformation and activation functions—a process commonly known as
’generalized graph convolution’. Within this overarching framework, the distinctions among GNNs primarily
arise from their choice of convolution matrices, denoted as C(q), which can either remain static or evolve
as trainable parameters. A trainable convolution matrix is contingent upon input data and adjustable
parameters, potentially varying across different layers, as denoted by C(l, q).

C
(l,q)
i,j = C(l,q)

i,j︸ ︷︷ ︸
fixed

·h(q)
θ(l,q)(X

(l)
i,: , X

(l)
j,:)︸ ︷︷ ︸

learnable

We analyze how the PGNN framework works with various GNN architectures. The architecture of focus
involves SGC (Wu et al., 2019), GCN (Kipf & Welling, 2017), SAGE (Hamilton et al., 2018), GAT (Veličković
et al., 2018). In the below subsections, we discuss how the PGNN framework works with various GNN
architectures using update rules as described in the supplementary material of Ding et al. (2022).
To quantify the deviation introduced by PGNN relative to conventional GNNs, we adapt two results from
Ding et al. (2021) (Theorems 3, 4), which provide error bounds for both forward-pass node representations
and back-propagated gradients. These bounds are crucial for understanding how approximate or compressed
computations (in PGNN) can affect the learning process, relative to standard GNN update rules. The training
loss comparison between PGCN and GCN methods across three citation datasets is shown in Figure 5.
These results show that increasing the sketch-ratio generally improves convergence speed, particularly for
the Cora and Citeseer datasets. Notably, PGCN demonstrates significantly faster convergence compared to
the baseline GCN. For Pubmed, PGCN exhibits convergence behavior comparable to GCN at sketch-ratios
of 0.01 and 0.02.
Theorem 3 (Ding et al. (2021)). If the relative error of the l-th layer for the PGNN method is ε(l), the
convolution matrix C(l) is either fixed or learnable with the Lipschitz constant of h

(l)
θ (·) : R2fl → R upper-

bounded by Lip(h(l)
θ), and the Lipschitz constant of the non-linearity is Lip(σ), then the estimation error of

forward-passed features satisfies,

∥X̂(l+1) −X(l+1)∥F ≤ ε(l) · (1 + O(Lip(h(l)
θ)))Lip(σ)∥C(l)∥F∥X(l)∥F∥W (l)∥F.

Theorem 4 (Ding et al. (2021)). If the conditions in Theorem 3 hold and the non-linearity satisfies |σ′(z)| ≤
σ′

max for any z ∈ R, then the estimation error of back-propagated gradients satisfies,

∥∇̂X(l)ℓ−∇X(l)ℓ∥F ≤ ε(l) · (1 + O(Lip(h(l)
θ))σ

′

max∥C(l)∥F∥∇X(l+1)∥F∥W (l)∥F.

17

Under review as submission to TMLR

(a) Cora (b) Citeseer (c) Pubmed

Figure 5: Comparison of training losses during link prediction for PGCN and GCN methods across bench-
mark datasets: (a) Cora, (b) CiteSeer, and (c) PubMed. The sketch ratios used are 0.013 and 0.026 for
Cora, 0.009 and 0.018 for CiteSeer, and 0.01 and 0.02 for PubMed, respectively.

B.1 PGNN with SGC.

The convolution matrix for PSGC, C = D̃−1/2ÃD̃−1/2. D̃ = D + In, Ã = A + In. D denotes the degree
matrix and A represents the adjacency matrix of the graph. The node representation at layer l + 1, Z(l+1)

given by the PGNN method is Z(l+1) = SCZ(l)Θ(l) + [ρCx̄]n×dl
Θ(l). The sketch of the convolution matrix

SC = ρCρT .

B.2 PGNN with GCN.

The update rule for PGCN is given by

Z(l+1) =
q∑

k=1
ck ρ1 Sk

C

[
FFT−1

(
k⊙

p=1
FFT

(
V

(p)
Ñ

))]T

− U (11)

U = [ρx̄]c0×dl+1 . The convolution matrix C has the same form as the PSGC update rule (Appendix B.1).
Sk

C = ρ TSk(C). Tensor-sketch of order k, TSk(C) =
[
FFT−1

(⊙k
p=1 FFT

(
CS(p)(C)

))]
. Ñ = (ρT ρ1Z(l) +

[x̄]n×dl
)Θ(l), V

(p)
Ñ

= CS(p)(ÑT) = Θ(l)T
(

[x̄T R(k)T]dl×ck
+ Z(l)T

ρ1 ρ̃
)

, ρ̃ = ρR(k)T , R(k) ∈ Rn×ck denotes
the Count-sketch matrix (Section 3). Detailed steps for the PGCN method are explained in Algorithm 1.

B.3 PGNN with SAGE.

We extend PGNN to architectures involving multiple convolutions C(1) = In×n and C(2) = D−1A. C =[
C(1) ∥C(2)T

]⊤
. The update rule for SAGE is

X(l+1) = σ
(

X(l)W (l,1) + D−1AX(l)Θ(l,2)
)

= σ
([

In ∥ (D−1A)⊤]⊤ [X(l)Θ(l,1) ∥X(l)Θ(l,2)
])

. (12)

With U = [ρx̄]n×dl+1 . The update rule for PSAGE is given by

Z(l+1) =
q∑

k=1
ck ρ1 Sk

C

[
FFT−1

(
k⊙

p=1
FFT

(
V

(p)
Ñ

))]T

− U.

The sketch of the convolution matrix Sk
C = ρ TSk(C). Tensor-sketch of order k,

TSk(C) = FFT−1

(
k⊙

p=1
FFT

(
CS(p)(C)

))
, CS(p)(C) = CR(p)⊤, R(p) ∈ R2n×ck .

Ñ =
[(

ρ⊤ρ1Z(l) + [x̄]n×dl

)
Θ(l,1) ∥

(
ρ⊤ρ1Z(l) + [x̄]n×dl

)
Θ(l,2)

]
.

18

Under review as submission to TMLR

V
(p)

Ñ
= CS(p)(Ñ⊤) = ÑT R(p)⊤ =

[(
ρ̃(1,p)⊤

ρ1Z(l) + U1

)
Θ(l,1) ∥

(
ρ̃(2,p)T

ρ1Z(l) + U2

)
Θ(l,2)

]⊤
.

ρ̃(1,p) = ρR(p)(1 : n, :), ρ̃(2,p) = ρR(p)(n + 1 : 2n, :), U1 =
[
R(p)⊤(:, 1 : n)x̄

]
ck×dl

, U2 =[
R(p)⊤(:, n + 1 : 2n)x̄

]
ck×dl

.

B.4 PGNN with GAT.

The convolution mechanism intrinsic to the GAT architecture is inherently learnable. We propose PGAT
update rule for update rules involving learnable convolution for completeness. There is however no memory
or training advantage when using PGAT. A promising direction for future work lies in designing GAT
update rules that leverage the PGNN method’s computational advantages. Equation 6 defines the unsketch
operation.

U = [ρx̄]n×dl+1 , Ẽ(l,q) = F (l,q)+F (l,q)T

, F (l,q) = unsketch
(

Z(l,q)
)

Θ(l,q)a(l,q) = (ρT ρ1Z(l,q)+[x̄]n×dl
)Θ(l,q)a(l,q)

,
C = A + I, a(l,q) ∈ Rdl+1 , CGAT = C ⊙ exp(LeakyReLU(Ẽ(l,q))).

Z(l+1,q) = ρ1ρ σ
(

softmax
(

CGAT
)

unsketch
(

Z(l,q)
)

Θ(l,q)
)

− U. (13)

C Preprocessing for PGNN

Algorithm 2 PGNN Preprocessing
Require: Node feature matrix X(0) ∈ Rn×d, convolution matrix C, sketch ratio r = c0

n , number of sketches
k, count sketch matrix dimension ck

1: Set c0 = ⌈rn⌉
2: if c0 > d then
3: r1, r2 ← randomly sample n indices from {1, 2, . . . , d} with replacement
4: M = X(0)(:, r1)⊙X(0)(:, r2)
5: Augmented node feature matrix: X̃(0) = [X(0), M]
6: X̃(0) ← CX̃(0) {Omitted for PSGC}
7: else
8: Set X̃(0) = X(0)

9: end if
10: Compute mean vector x̄← 1

c0

∑c0
i=1 X̃(0)(:, i)

11: ρT ← left singular vectors from SVD of σ
(

X̃(0)−[x̄]c0×d√
c0d−1

)
12: Sketch of input node feature matrix: Z(0) = ρ(X(0) − [x̄])
13: Generate count-sketch matrices R(1), . . . , R(k)

14: Compute sketch Sk
C = ρ TSk(C) {Omitted for PGAT}

15: Compute auxiliary terms for forward propagation: ρx̄, x̄⊤R(k)⊤ , and ρ̃(k) = ρR(k)⊤

16: Initialize LSH projections P (k)

17: return Preprocessed sketch Z(0), count-sketch matrices R(1), . . . , R(k), sketch Sk
C , x̄, LSH projections

P (k)

D Complexity analysis

We delineate the intricacies inherent in the algorithm with the PGNN framework.

One-time Preprocessing: The pre-processing step involves finding the right singular vectors of the ma-
trix described in Algorithm 2, which takes time O(dnc0). Computing SC = ρCρT for PSGC takes O(n2)
computations and SC = ρTSk(C) for PGCN, PSAGE takes O(c0ckn) computations. Computing the sketch
of the initial node feature matrix SX = ρ(X(0)− [x̄]n×d) takes time O(nc0d). Computing the sketches of the

19

Under review as submission to TMLR

matrix ρ to obtain ρ̃ has linear time complexity.
Overhead of computing LSH hash tables. The time complexity for computing the hash index for each
node is O(c0ck) when using Simhash (See section 3), and since there are n nodes and f hash tables, we get
an overhead of O(fnc0ck) for time and O(fc0ck) for space.
Overall, the preprocessing phase has a time complexity of O(n2) and a memory complexity of O(n) for
PSGC. O(fc0ckn) time complexity and O(n) memory complexity for PGCN, PSAGE. The time consuming
part involved in the preprocessing phase is the formation of matrix ρ, we present the time consumed by this
process in Table 4
Training complexities with PGNN. We present the complexities within the context of the GCN archi-
tecture. Forward and backward pass: Computing V

(p)
Ñ

involves O(dc2
0)+O(dc0ck). FFT and inverse FFT in-

volves O(dck log(ck)). This reduces to O(dc2
0)+(dc0ck). The memory complexity involved is O(c2

0)+O(c0ck).
Complexity associated with loss LLSH .

1. Computing the subset B of nodes based on gradient signals involves O(ck) computations. Unsketch-
ing β number of node representations involve O(βckd) computations.

2. O(βd2) for computing similar and dissimilar node pairs. Computing and updating hash table P (k)

using L1 will involve O(ckd) operations, which needs to be updated every Tepoch epoch.

Complexity associated with loss L1 (Section 4.1.1). Computing loss and updating L1 requires
O(β2ckd) computations.
Inference: incurs O(Ld(m

n + d)) time and O(m + ndL + d2L) memory as is the case in a standard GCN.
Remark. The training complexities mentioned above do not hold for the GAT architecture (Veličković
et al., 2018) because of the inherent nature of the operations involved, which is expounded in Appendix B.4.
The underlying complexities in the original GAT architecture will hold, and for completeness, we present
the accuracies for the various datasets using PGAT in Tables 1, 2. An implementation detail. When

Table 4: Computation time (ρ) for different datasets at specific sketch ratios (r = c0
n).

Dataset Sketch-ratio r = c0
n

ρ (Time in s)
Cora 0.02 0.0141
Citeseer 0.018 0.0254
Pubmed 0.01 0.1558
ogbn-arxiv 0.15 1786.8692
Reddit 0.05 426.9778
ogbn-products 0.003 350.93
ogbn-papers100M 1e-6 1708.40

the sketch ratio r is such that ⌈rn⌉ > d, which is the feature dimension, the PCA or the POD method
necessitates computing the covariance matrix (Ding et al., 2021). To overcome the challenge of storing
and computing the covariance matrix, we use the feature engineering method to augment X(0) by selecting
random combinations of columns of this matrix to find the augmented input node feature matrix X̃(0) (See
Algorithm 2).

D.1 Experimental Evaluation of Memory Requirements for PGNN across architectures

Figure 6 compares the memory consumption of our proposed methods—PSGC, PSAGE, and PGCN—across
various datasets. The results demonstrate that PSGC achieves the lowest memory usage. The tensor-sketch
ratio used for cora, citeseer, ogbn-arxiv and reddit are 0.7, 0.5, 0.15, 0.15 with order q and number of sketches
k as 3 (Algorithm 1). These experiments were conducted without mini-batching. PSAGE incurs nearly twice
the memory complexity of PGCN due to the transfer of two convolution matrices to GPU memory.

20

Under review as submission to TMLR

Figure 6: Memory consumption comparison of PSGC, PSAGE, and PGCN across various datasets.

E Additional Experiments

E.1 Comparing performance improvements obtained when using jumping knowledge networks.

Figure 7: Classification loss when using Jump-
ing knowledge network architecture on the PSGC
versus the PSGC on a 3-layer GNN on the Cora
dataset.

Layer Aggregation

N.A

N.A

N.A

hv
(final)

hv
(3)

hv
(2)

hv
(1) ∈ℝ

c0 x d1

∈ℝ
c0 x d2

∈ℝ
c0 x d3

Input feature of node v

Figure 8: Jumping Knowledge network architec-
ture for the PGNN method. N.A. denotes neigh-
bourhood aggregation.

As the depth of GNNs increases, there is a tendency for the node representations to converge to a standard
value, a phenomenon called "over-smoothing" (Li et al., 2018). A widely adopted mitigation approach in
the literature is to bypass intermediate layers and directly contribute to the future layers by combining the
Jumping Knowledge framework with models like GCN and GraphSAGE. The Jumping Knowledge (JK)
framework (Xu et al., 2018; Sun et al., 2024) aggregates features from multiple GNN layers, enhancing
expressiveness and robustness while addressing the issue of oversmoothing. In PGNN, as the depth of the

21

Under review as submission to TMLR

Table 5: Comparison of node representations between the PGCN method and the Taylor series
approximation of the GCN update rule.

Dataset Method e(1) Layer 1 e(2) Layer 2
Cora PGCN 1.0105 0.9829
Cora Taylor 1.0274 0.8807
Citeseer PGCN 1.0075 0.6747
Citeseer Taylor 1.1895 1.0110

GNNs increases, there is an accumulation of error, as shown for the linearized GNN in Theorem 2 affecting
the downstream task. We use the skip-connections in the Jumping Knowledge framework as shown in Figure
8 while presenting the classification loss for the convergence aspect in Figure 7. Empirically, we find that
the loss in accuracy due to depth for the Cora dataset was compensated by introducing skip connections as
described in the Jumping Knowledge architecture in Figure 8. In the final layer of our model, we employed
a layer aggregation technique. The layer aggregation process utilizes the formula

hfinal
v = (Z(0)(v, :), h(1)

v , h(2)
v , h(3)

v)Θcat,

to effectively combine the information from the various layers. nclasses denotes the number of output cate-
gories specific to the dataset. Θcat ∈ Rdeff ×nclasses , deff = d1 + d2 + d3.

Figure 9: A t-SNE plot of the computed feature representations of the pre-trained PGCN at the first layer
on the Cora dataset. Node colours denote classes.

E.2 Evaluating the impact of increasing sketch-ratios.

To evaluate the impact of sketch ratio (r = c0
n) on the accuracy of PGNN and Sketch-GNN under comparable

conditions, we conduct additional experiments on the Cora and Citeseer datasets using the GCN architecture
as the base. The results in Table 6 illustrate the performance of both methods across similar and increasing
sketch ratios. We observe that the accuracies of our PGNN method is better than sketch-GNN for the Cora
and the Citeseer dataset for similar sketch-ratios.

22

Under review as submission to TMLR

Table 6: Accuracy Comparison of Sketch-GNN and PGNN on Cora and Citeseer

Dataset Sketch Ratio Sketch-GNN Accuracy (% ± Std) PGNN Accuracy (% ± Std)
Cora 0.013 80.12 ± 1.04 80.65 ± 0.68
Cora 0.026 80.35 ± 0.71 80.52 ± 1.24
Citeseer 0.009 70.91 ± 0.93 70.23 ± 0.61
Citeseer 0.018 71.14 ± 0.59 71.21 ± 1.13

E.3 Evaluating the Quality of Node Representations at each Layer.

In Table 5, we present a comparative analysis of node representations generated by the Taylor series ap-
proximation and the PGNN method with the GCN architecture. The results demonstrate that the PGNN
method achieves lower error rates across individual layers for the Citeseer dataset. For the Cora dataset,
PGNN exhibits reduced errors in the first layer, while the errors in the second layer are comparable to those
of the Taylor series approximation. The Taylor series approximation of the node representations and the
node representations obtained from the PGCN method is utilized to compute e(l)

(
∥X(l)−X̂(l)∥

F

∥X(l)∥
F

)
. For the

first layer, we have:
X(1) = σ(CX(0)Θ(0)).

The Taylor series approximations of the node representations at layer one and i−th column are given by
σ(CX(0)(Θ(0) + ∆Θ)):,i = CX(0)Θ(0)(:, i) + CX(0)∆Θ(:, i). The approximate node representations in the
graph dimension n by the PGCN method in the first layer is given by

X̂(1) = Mean
{

R(k)T
(

(ρ̃(k))T ρ1Z(1)
)}

+ [x̄]n×dl
.

Mean refers to the element-wise mean over tensors.

E.4 Comparison of spectral properties of the sketches of the convolution matrices

We say that a matrix B ∈ Rn×n is an ϵ approximation to matrix A ∈ Rn×n if their quadratic forms have
the form

xT Bx

ϵ
≤ xT Ax ≤ ϵ xT Bx ∀ x ∈ Rn.

The above equivalence implies the spectrum similarity between the two matrices (Courant-Fisher Theorem
Chung (1997)). We present comparisons of the eigenvalues and eigenvectors of the convolution matrix C and
the equivalent convolution matrix Ceq = PC for the Cora dataset in Figures 10a and 10b. The eigenvalues
and eigenvectors of the matrix Ceq closely align with those of C.

E.5 Additional Experiments: Link Prediction

Table 7: Link prediction performance comparison between PGNN and GCN across three citation datasets.
Best Test AUC (± Std) scores for each dataset are highlighted in green.

Dataset GCN PGNN (Sketch Ratio)
Pubmed 90.51 ± 1.82 92.66 ± 2.86 (r = 0.04)
Cora 78.24 ± 0.04 81.90 ± 3.30 (r = 0.03)
Citeseer 77.40 ± 2.32 86.48 ± 1.92 (r = 0.03)

To further evaluate the effectiveness of our method beyond node classification, we conducted additional
experiments on the task of link prediction using the Cora, Citeseer, and Pubmed datasets. The results
below compare PGNN with the standard GCN baseline. We observe that PGNN outperforms the GCN
method on all the three datasets.

23

Under review as submission to TMLR

(a) Eigenvalue comparison of matrices C and Ceq for
the Cora dataset. Here the relative change is given by
|λi(C)−λi(Ceq)|

λi(C) . λi(C) denoting the i − th eigenvalue of
C.

(b) Comparison of Eigenvectors of C and Ceq for the
Cora dataset, with the ij-th element Mij quantified by
ϕij(C) − ϕ̃ij(Ceq), where ϕij(C) and ϕ̃ij denote the ij-
th component of the eigenvectors for C and Ceq, respec-
tively.

Figure 10: Comparison of eigenvalues and eigenvectors of C and Ceq for the Cora dataset.

E.6 Convergence Analysis: Loss and Accuracy in Node Classification

The convergence analysis for PGCN and PSAGE architectures on the Reddit dataset is presented in Fig-
ures 11 and 12, where we examine the evolution of training loss alongside training, validation, and test
accuracy metrics throughout the optimization process.

Figure 11: Training convergence behavior of PGCN method for node classification downstream task for
Reddit.

24

Under review as submission to TMLR

Figure 12: Training convergence behavior of PSAGE method for node classification downstream task for
Reddit.

Dataset Cora Citeseer Pubmed ogbn-arxiv Reddit ogbn-products ogbn-papers100M
Task node node node node node node node
Setting transductive transductive transductive transductive transductive transductive transductive
Label single single single single single single single
Metric accuracy accuracy accuracy accuracy accuracy accuracy accuracy
of Nodes 2,708 3,327 19,717 169,343 232,965 2,449,029 111,059,956
of Edges 5,429 4,732 44,338 1,166,243 11,606,919 61,859,140 1,615,685,872
of Features 1,433 3,703 500 128 602 100 128
of Classes 7 6 3 40 41 47 172

Table 8: Detailed Overview of the graph datasets utilized in experiments.

F Implementation Details

We outline the various implementation details with the hyper-parameter setups for experiments in section
5.
Datasets. Table 8 provides a comprehensive summary of the statistics for all datasets utilized in the
experiments. The datasets ogbn-arxiv and ogbn-products were sourced from the Open Graph Benchmark
(OGB)1. The Reddit dataset, a more streamlined variant of the original dataset by Hamilton and colleagues,
was acquired through the PyTorch Geometric library2. For our research, we adhered to the conventional
dataset divisions established by OGB and PyTorch Geometric.
Code Frameworks. The codes used for experimentation are made available at 3. PGNN framework make
use of the PyTorch library and the PyTorch Sparse library4. For the computation of the sketch of the
input node feature matrix, the svd function from the Pytorch library is used. The Count-sketch technique
implementation is taken from the repository5. All of the above code repositories we used are licensed under
the MIT license.

1https://ogb.stanford.edu/
2https://github.com/pyg-team/pytorch_geometric
3https://anonymous.4open.science/r/Proper-Orthogonal-Decomposition-for-Scalable-training-of-GNNs-4148
4https://github.com/rusty1s/pytorch_sparse
5https://github.com/johnding1996/Sketch-GNN-Sublinear

25

https://ogb.stanford.edu/
https://github.com/pyg-team/pytorch_geometric
https://anonymous.4open.science/r/Proper-Orthogonal-Decomposition-for-Scalable-training-of-GNNs-4148
https://github.com/rusty1s/pytorch_sparse
https://github.com/johnding1996/Sketch-GNN-Sublinear

Under review as submission to TMLR

F.1 Hyperparameters

Dataset Model Learning Rate Weight Decay Hidden Dim Num Layers Dropout Norm Type

ogbn-arxiv

PGCN 0.01 1e-5 128 2 0.0 BatchNorm
PSAGE 0.01 1e-5 128 2 0.2 BatchNorm
PGAT 1e-3 1e-4 128 2 0.2 BatchNorm
PSGC 0.02 4e-5 128 2 0.0 None

Reddit

PGCN 0.008 2e-5 128 2 0.0 None
PSAGE 0.008 2e-5 128 2 0.0 None
PGAT 0.001 1e-5 128 2 0.0 LayerNorm
PSGC 0.008 2e-5 192 2 0.0 None

Cora

PGCN 0.01 2e-3 128 3 0.0 None
PSAGE 0.05 1e-4 256 2 0.5 None
PGAT 0.002 1e-3 128 3 0.0 None
PSGC 0.01 1e-3 128 2 0.0 None

Citeseer

PGCN 0.01 9e-4 128 2 0.0 None
PSAGE 0.005 5e-4 256 2 0.2 None
PGAT 0.001 1e-4 128 2 0.0 None
PSGC 0.01 5e-4 128 2 0.0 None

Pubmed

PGCN 0.004 6e-3 150 2 0.2 None
PSAGE 0.03 2e-4 150 2 0.5 None
PGAT 0.004 6e-3 150 2 0.2 None
PSGC 0.005 4e-2 128 2 0.2 None

Table 9: Hyperparameters for Different Models and Datasets

Computational Infrastructures. The experiments demonstrate the scalability of our model across
different computational setups. Small-scale datasets, including Cora, Pubmed, and Citeseer, were processed
on an Nvidia A30 GPU with 24 GB memory, while larger datasets like ogbn-arxiv and Reddit were trained
and evaluated on an Nvidia A100 GPU with 80GB memory for faster training and inference. The system
was equipped with an Intel Xeon Platinum CPUs and 512GB of RAM, ensuring efficient execution of
large-scale graph neural network experiments..

Setup of PGNN: In our experimental setup, we have designated at most 1000 epochs for each
run, with 10 runs to ensure statistical significance, more details about hyperparameters for different
experiments are listed in Table 9. We keep the order q and the number of sketches k equal. The sketch-ratio
of 0.018 used for the citeseer is the same as mentioned from the paper Ding et al. (2022), sketch-ratio of
0.02 against 0.026 is used for the cora dataset to demonstrate the effectiveness of the proposed method.
For the Pubmed dataset, we selected a lower sketch ratio of 0.01. This choice aligns with the general
principle that as graph size increases, the sketch ratio or the effective number of components for preserving
variance decreases. Extensive experimentation confirmed that a sketch ratio of 0.01 was sufficient to achieve
good classification accuracy. For PGAT, we employ 2 attention masks. The training times of PGNN were
not compared with the existing sketch-based method, Sketch-GNN (Ding et al., 2022), due to observed
discrepancies in node classification accuracy from the implementation available in the repository 5.

26

	Introduction
	Related work
	Preliminaries
	Count Sketch.
	Tensor Sketch.
	Locality Sensitive Hashing.
	Proper Orthogonal Decomposition.
	Unified Framework of GNNs.

	POD sketch based method on GNNs
	Approximate update rules with PGNN
	Challenges
	Error bound on the node representations at each layer l

	Algorithm

	Experiments.
	Performance evaluation of PGNN
	ogbn-papers100M: Paper Citation Network

	Conclusions
	Appendix
	Proof for Theorem 2
	Proof for Theorem 1

	Generalize to more GNNs
	PGNN with SGC.
	PGNN with GCN.
	PGNN with SAGE.
	PGNN with GAT.

	Preprocessing for PGNN
	Complexity analysis
	Experimental Evaluation of Memory Requirements for PGNN across architectures

	Additional Experiments
	Comparing performance improvements obtained when using jumping knowledge networks.
	Evaluating the impact of increasing sketch-ratios.
	Evaluating the Quality of Node Representations at each Layer.
	Comparison of spectral properties of the sketches of the convolution matrices
	Additional Experiments: Link Prediction
	Convergence Analysis: Loss and Accuracy in Node Classification

	Implementation Details
	Hyperparameters

