Under review as submission to TMLR

Proper Orthogonal Decomposition for Scalable Training of
Graph Neural Networks

Anonymous authors
Paper under double-blind review

Abstract

As large-scale graphs become ubiquitous in real-world applications, there is growing concern
about the memory and time requirement to train a graph neural network (GNN) model for
such datasets. Storing the entire adjacency and node embedding matrices in memory is
infeasible in such a scenario. Standard sampling-based methods for addressing the memory
constraint suffer from the dependence of the number of mini-batches on the graph size.
Existing sketch-based methods and graph compression techniques operate at higher sketch
ratios, with the graph compression techniques showing poor generalization, implying that
different GNNs trained on the same synthetic graph have performance gaps. Sketch-based
methods necessitate online learning of sketches, further increasing the complexity. In this
paper, we propose a new sketch-based algorithm, PGNN, employing the Proper Orthogonal
Decomposition (POD) method to craft update rules to train GNNs, improving the memory
requirement and training time without the complication of updating the sketches during
training. Experiments on standard graph datasets show that PGNN can reach much lower
sketch ratios without compromising the performance. We prove the optimality of the POD
update rule for the linearized GNN (SGC). Empirical findings validate our approach, demon-
strating superior performance at reduced sketch ratios and adaptability across various GNN
architectures.

1 Introduction

Graph Neural Networks (GNNs) have proven to be powerful tools for graph learning across various do-
mains, excelling in tasks such as classification (Kipf & Welling, 2017)), clustering (Bianchi et al.l [2020)),
recommendation systems (Wu et al., 2022)), and social network analysis (Fan et al., 2019)). Their strength
lies in their ability to extract meaningful insights from local neighbourhoods within graphs, thus creating
effective representations of target nodes. However, the dependence of GNNs on graph topology introduces
significant challenges when scaling to larger graphs or deeper models while maintaining computational and
memory efficiency. Traditional full-batch training methods necessitate storing the Laplacian matrix of the
entire graph, resulting in a memory complexity of O(m + ndL + d*L) for an n-node, m-edge graph, where
node features have dimension d in an L-layer graph convolutional network (GCN). This linear dependency
on both n and m, combined with the limited memory capacity of GPUs, restricts the scalability of train-
ing on large graphs (especially large dense graphs with m being of the order of O(n?) in the worst case).
To address these memory constraints, research in this domain has broadly proposed two main approaches:
sampling-based strategies (Hamilton et al., [2018}|Chen et al., 2018azb} |Chiang et al., 2019; |Zeng et al., [2020)
and historical embedding techniques (Fey et al., [2021; |Ding et al., [2021). Although these methods improve
memory efficiency, the computational complexity still increases linearly with n and m.

In the context of matrix approximation, a sketch of an arbitrary matrix A € R"*? is defined as a reduced
matrix B € R®*4 where ¢y denotes the sketch dimension, and B providing a good approximation to A even
as ¢g < n(Ghashami et alJ |2015). The amount of compression achieved by sketching is best described by
the sketch ratio r = co/n. Proper orthogonal decomposition (POD), as described in the article Rathinam &
Petzold| (2003)), also known as the Karhunen—Loéve decomposition or principal component analysis, provides
an orthonormal basis representing the given data in an optimal least squares sense. To achieve sublinear

Under review as submission to TMLR

training time complexity with respect to n, Ding et al. (Ding et al., |2022) propose a sketch-based algorithm
named sketch-GNN, that trains the GNN on top of a few compact sketches of both the convolution and node
feature matrices. The authors propose an end-to-end training protocol in the sketch space by approximating
the non-linear activation function using polynomial tensor-sketch (PTS) theory (Pham & Paghl 2013a)).

As observed by the authors, the approximation of the non-linear activation limits the expressiveness, which
constrains the depth of GNNs that can be trained due to error accumulation. Working with dense matrices,
even in the reduced sketch space, imposes a significant computational burden. Despite showing promise, the
sketch-GNN algorithm has following limitations: (i) it requires higher sketch ratio which results in a lower
compression of the original graph and (ii) it requires frequent updates of the sketches during the training
which triggers re-computation of all the sketches involved. It is worthwhile to mention another technique
which guarantees efficient training of GNNs using random spanning trees (Bonchi et all |2024)) and leverages
the concept of effective resistance to enhance node classification tasks. This method enhances GNN efficiency
by creating path graphs from random spanning trees to maintain essential graph features while minimizing
complexity for faster training. This approach is currently constrained to only the GCN architecture.

The primary motivation for using POD to address limitation (i) in sketch-GNN was driven by the parallel
between dynamical systems and message passing methods in GNN |Choi et al.| (2023), coupled with the
fact that effective number of eigenmodes required for POD in dynamical system decreases on increasing
system size, resulting in a much lower sketch ratio. For limitation (ii), we theoretically establish bounds that
constrain the deviations of node representations when using our proposed method. Additionally, we prove
the optimality of the POD update rule for the linearized GNN update rule, indicating that the best low-rank
matrix for the update rules can be predetermined, which completely eliminates the need for online learning
via frequent updates of sketches. To this end, our paper presents PGINN, a novel sketch-based method
for GNNs. This method diverges fundamentally from prior approaches that emphasize sketching weights or
gradients (see |[Liu et al.| (2022); [Chen et al.| (2015)); Kasiviswanathan et al.| (2018); Lin et al.| (2019)); |Spring
et al| (2019)). Drawing inspiration from the update rules of linearized GNNs (SGC) (Wu et al., [2019)), we
customize the message passing process to function within the linear subspace formed by the columns of the
augmented input node feature matrix. Experimental results, as presented in section [5] demonstrate that the
sketch ratio necessary for achieving optimal performance decreases as the graph size increases. Despite its
theoretical optimality limitations beyond linearized GNN, the PGNN framework efficiently performs node
classification in POD-derived linear subspaces, providing insights into GNN operational subspaces (Lee et al.,
2023|).

Our contributions can be summarized as follows:

1. In section [d] we introduce specialized update rules designed to enhance the training efficiency of
GNNs by operating within a reduced subspace. Utilizing the POD method, we sketch the input node
feature and convolution matrices into their lower-dimensional approximations, thereby streamlining
the computational process.

2. In Theorem [} we establish the optimality of the POD method for the linearized update rule of
the GNN. Furthermore, in Theorem we present bounds that quantify the deviation of node
representations when using the PGNN framework.

3. The versatility of PGNN is evaluated across different GNN architectures, including GCN (Kipf &
Welling 2017), SGC (Wu et al.l 2019)), GraphSAGE (Hamilton et al., |2018), and GAT (Velickovié
et al., 2018, with results detailed in section [5| Through extensive experimentation, as demonstrated
in section [5} we find that PGNN is able to provide comparable performance at much lower sketch-
ratio compared to previous methods. For instance, on the Reddit dataset, the state-of-the-art
sketch-GNN framework achieves its highest accuracy at a sketch ratio of 0.3, while we achieve better
and comparable accuracy for various architectures for a much lower sketch ratio of 0.05. This
reduction in sketch ratio directly translates to accelerated runtime and a reduced memory footprint,
underscoring our method’s efficiency without compromising accuracy.

Under review as submission to TMLR

2 Related work

The scalability of GNNs has been predominantly addressed through mini-batching strategies, which, despite
mitigating memory bottlenecks, often fail to reduce epoch training time. Recent work in graph compression,
such as Graph Coarsening (Loukas| 2018) and dataset condensation (Zhao et all 2021), aims for sublinear
training times by condensing the graph, thus reducing node and edge counts (Huang et al., [2021} [Jin et al.|
2022). These methods, however, face significant challenges: the preprocessing overheads often exceed O(n),
reducing practical benefits, and the efficacy of the trained model varies with the GNN architecture used (Jin
et al.l 2022 Ding et al| [2022). Scalable GNN approaches fall into several categories: (A) full-graph training,
which is memory and time-intensive; (B) sampling-based methods like GraphSAGE (Hamilton et al., 2018)),
FastGCN (Chen et al., |2018b), and GraphSAINT (Zeng et al., |2020]), which employ various sampling strate-
gies to reduce computational load; (C) historical-embedding methods, such as GNNAutoScale (Fey et al.,
2021)) and VQ-GNN (Ding et al.}[2021)), which store embeddings but incur high memory costs; (D) linearized
GNNs (Bojchevski et al 2020; |[Wu et al., [2019; [Frasca et al., [2020), which offer computational efficiency
at the risk of oversimplification; (E) methods using random spanning trees (Bonchi et al., 2024)), which
reduce computational load by transforming graphs into sparse path graphs; and (F) sketch-based methods
like Sketch-GNN (Ding et al., |2022)), which approximate non-linear activations but struggle with error ac-
cumulation and high computational demands. Each approach presents trade-offs in terms of computational
complexity and model expressiveness, addressing different constraints in GNN applications.

3 Preliminaries

Basic Notations.

Let G = (V, E) denote a graph where V' = [n] := {1,...,n} is the set of n vertices and E C V x V is the
set of m edges. y represents the labels of the nodes. Additionally, the input node feature matrix associated
with G is denoted by X(© e R"*? where d is the number of features. Let X(® € R"*% and Z denote the
augmented feature matriz and its mean vector, respectively. C € R™*™ denotes the convolution matrix of
graph G and C(i, j) denotes its (i, j)-th entry. We represent the k* order element-wise power of C' as CF.
Additionally, C(i,:) denotes the i*" row and C(:,j) denotes the j* column.

Considering a GNN, X € R"*% denotes the node representations of layer [, where d; represents the number
of neurons at layer I. ||-|| denotes the ¢5 norm unless stated otherwise. o(-) is the non-linear activation and
©(:9) is the learnable weight matrix at layer [for filter g.

RM RA . R® denote the k count-sketch matrices with dimension R *", where k (a hyper-parameter)
denotes the number of sketches and ¢ is the fixed sketch dimension associated with all of them. 5 denotes
the upper bound on the number of elements in the set for unsketching.

The POD projection matrix which is the matrix of the linear projection expressed in the original coordinate
system in R” is given by P = pTp € R™*". We refer to the submatrix p as the factor of P. We represent a
matrix comprising of b n-dimensional column vectors y € R™ as [y],xp. p1 € R* denotes the learnable
matrix incorporated in the PGNN update rule. [denotes the number of nodes used for unsketching to
update p;.

3.1 Count Sketch.

Matrix multiplication is crucial in machine learning and scientific computation, with efficient techniques
developed in works like (Paszke et al. 2017, |Guennebaud et al., |2010), and |Abadi et al.| (2016). Count
sketch, a potent dimensionality reduction technique introduced in |Charikar et al. (2002)) and [Weinberger
et al.| (2010), projects an n-dimensional vector u into a cg-dimensional space using a random hash function
h: [n] = [ex] and a binary Rademacher variable s : [n] — {—1,1}. The dimension reduction transformation
CS(u)i = 35 jy=i s()u; = R(i,:)u involves a count sketch matrix & € R®*". The work in|Ding et al.| (2022)
provide theoretical guarantees on the approximation quality of CountSketch for Graph Neural Networks; we
restate the relevant result in Appendix [A] (Lemma [2)).

Under review as submission to TMLR

3.2 Tensor Sketch.

Tensor sketch, introduced as a generalization of the count sketch [Charikar et al.| (2002)), is a dimensionality
reduction technique frequently employed in machine learning for large datasets Pham & Pagh| (2013b)). Pham
and Pag Pham & Paghl (2013al) proposed an efficient way to compute tensor-sketch using FFT and inverse
FFT operation given by,

TSi(A) = FFT ! é FFT (CS(P)(A)) .

p=1

In Ding et al| (2022), Tensor-sketch is applied to approximate the element wise k-th power of a matrix
product:

(AB)®* ~ TS, (A) TS (BT,
where A € R"™*" B € R™*4 and TSx(A) € R"*¢ TSy (BT) € R¥* with ¢ < n.

3.3 Locality Sensitive Hashing.

Locality Sensitive Hashing (LSH) exploits hash functions, denoted as H : R — [c;], to map closely positioned
vectors into the same bucket with high probability. SimHash, an instance of LSH, uses a random matrix
P € R°/2%4 to define a hash function H(u) = argmax ([Pu|| — Pu]) (Charikar et al., 2002). This method
is efficient for large vector batches (Andoni et al., 2015).

3.4 Proper Orthogonal Decomposition.

Given the input node feature matrix X(©) = [z, zs,...,24], where z; € R™. Then the best approximating
affine subspace representing these data points and passing through the mean (z = 52?:1 x;) is given by
the leading eigenvectors of the centred covariance matriz (see (Rathinam & Petzold, 2003) for a detailed
explanation)

Fe b S B)T
fm;(ml—x)(xz—x) .

The factor p € R*™ of projection P is given by the leading eigenvectors of R, where ¢y < n. The sketch
ZO) = p(X©) —[F],,xq) € R*? of input node feature matrix X () represents the sketch of X© in the affine
subspace. Details of the POD technique can be found in (Rathinam & Petzold, 2003; [Holmes et al., |1996}
[Lall et all 1999} Moorel [1981)).

3.5 Unified Framework of GNNs.

For a GNN, message passing between layers can happen differently, like that of spatial convolution
(GCN)(Kipf & Welling, [2017)), self-attention (GAT)(Velickovié¢ et al., |2018), and Weisfeiler-Lehman (WL)
alignment, see Xu et al.| (2019). According to Balcilar et al.|(2021) the general rule for message passing is
given by,

x U+ _ o <Z C(lﬁq)X(l)@(l,q)> 7 (1)

q

where C(h9 € R"*™ is the ¢-th convolution support at layer [that defines how the node features are
propagated to the neighbouring nodes, X is the node representations at layer [, and ©-% are the trainable
weights. The input node feature matrix is given by X () e R"*4,

As shown in Ding et al| (2021), the gradient involved in the back-propagation rule for GNNs, for the loss
function ¢, is given by the following:

Vxnl = Z (C(l’q)>T (Vx<l+1)€ ® M(H'l)) (G(l’q)>T , (2)

q

Under review as submission to TMLR

where M+ = 5’ (O'_l (X(H‘l))). This formulation embodies the essence of the message-passing paradigm.

Here, 0 and o' denote the derivative and the inverse of the activation function o, respectively. The term
Vxwnl©®©o (0'_1 (X (H‘l))) represents the gradients propagated back through the non-linearity. In essence,
this rule captures the flow of information and updates dynamics within GNNs during the backward pass.

4 POD sketch based method on GNNs

Problem and Insights. The runtime complexity of the update rules of GNNs on a complete graph is O(n?),
and the memory complexity involved is O(n + m). The POD sketch-based method for GNNs approximates
the GNN’s update rule and utilizes sketches of both the convolution matrix and the input node feature
matrix for training. Initially, the input node feature matrix (X(®)) and the convolution matrix (C) are of
sizes n x d and n X n, respectively. These matrices are then transformed into low-dimensional sketches of size
co x d and ¢y x cg, respectively. The sketch Z(©) of the input node feature matrix X(©) and the convolution
matriz sketch (S¢) approximating the SGC architecture of GNN (PSGC) are given by:

7O = p(X — [z],xq), Sc=pCp".

Figure [] illustrates the overall PGNN framework. Recall that p is the factor of P, representing the singular
vectors of the augmented input node feature matrix X (® after normalization (see Algorithm [2)).

4.1 Approximate update rules with PGNN

Our primary goal is to approximate the forward propagation rule of the GNN:
XU — g (0X060).

We project the node representations at layers [and [+ 1 onto the subspace spanned by the columns of the
factor matrix p. This yields

ZWY = po (C (pTZ(l) + [E]nxd,) @(l)) -U.

The mean of the augmented input feature matrix X©) (See Algorithm is denoted by x. We denote the bias
induced by this projection as U = [pZ]¢,xa,,,. For ease of notation let the unsketched node representations

at layer [be X0 = prZ® 4+ [Z]nxd,- Employing an element-wise nonlinearity expressed as a power series
(see Equation 4 in Ding et al.|(2022)) leads to the following result:

AR (Xq: Cr (CXU)@(”)@q) ~U.

k=1

Using Tensor-sketch (Section to approximate the power series above leads to the following:

q
ARSI [Tsk(f((”@(”)T]T ~U.
k=1

c, represents the learnable coefficients for combining different powers of the representation matrix. Sketch
of the convolution matrix S& = p TS, (C).

q

N ™T
20 =37 ¢Sk (TSk (X<l>®<l>)) —U
k=1

T

q
Z(+1) _ Z cxSE —-U (3)

k=1

FFT~ <é FFT (V]@))
p=1

Under review as submission to TMLR

N = X(l)@(l)7V]§k) = CSW(NT) = NTR(’“)T, with R(®) € R™* denoting the count-sketch matrix. The
advantage of the PGNN update rule is that the objective is restricted to get optimal sketches of the matrix
p, which will be fixed throughout training. In Sketch-GNN, the update rule involves online learning
of sketches where the LSH and count-sketch hash tables corresponding to each layer are updated during
training. The update rule consists of computing the count-sketch of matrix p. Count-sketch of matrix p,

sk (p) = pR(k)T — ﬁ(k).

For the unsketching process, the count-sketch matrix R*) € Re*" is transferred to GPU memory. Each
column of R™) contains a single nonzero entry—either +1 or —1 located at a random row. Storing the
count-sketch matrix in memory is not an overhead because of its inherent sparse nature. To illustrate, for
the ogbn-products dataset, a single count-sketch matrix consumes approximately 88 MB of memory for a
count-sketch ratio of 0.1. The count-sketch ratio’s dependence on the approximation’s quality is addressed
in Lemma 2l However, an additional storage cost of O(cocy) is incurred to store the sketches p and R,
The intricacies of how message passing happens for the PGNN framework in various GNN architectures like
SGC, GCN, GraphSAGE, and GAT are explained in Appendix [B] Two challenges must be addressed for the
approximate update rule proposed in Equation

4.1.1 Challenges

Challenge (1). The PGNN method limits the update rule of the GNNs to the column space of p.
Addressing challenge (1) The PGNN update rule projects node representations onto the column space of
p. To overcome this limitation, we introduce a learnable matrix p; € R * into the update rule (Equaution7
resulting in the following formulation:

T

q
Z(+1) _ ch o Sg
k=1

-U. (4)

FFT~! (é FFT (ngp)))

p=1

V]ép) = (CS(p)(NT)), N = (p"p1ZW + [Z]xq,)OW. Equation {4 serves as the update rule for PGNN,
approximating the original GNN update mechanism. The complexities associated with the PGNN update
rule are explained in Appendix [C] We design a loss function £ to update the parameter p;. This loss
function incorporates the GNN loss ¢, which is evaluated on a subset St of the training set. The subset St
consists of B2 nodes, where (35 is a hyperparameter chosen to be significantly smaller than the total number
of training samples. The matrix D = p(St,:)p1 Z© + [#]g,xa — X (Sr,?),

L = ao||D||% + Bo £(St) - (5)
—_——— —\—
Term 1 Term 2

Z(L) denotes the sketched node representations at the last layer and the unsketched node representations at
the last layer L, X (20 (Sp 1) = RO (Sp, 1) 0" py Z(1) +[Z] g, xd, - Term 1 is used to control the deviations
between the unsketched node representations at the input and the input node feature matrix, whereas Term
2 gives weightage to the loss of the GNN ¢ while updating p;. The compute needed to update p; using the
loss function £ is O(Backdr, + crcodr). cg and By are kept as constants. £ is updated using gradient-descent
on every epoch (See Algorithm .

Challenge (2). Avoiding O(n) in the loss evaluation. Unsketching of node representations
Z(@I) e Reoxd at layer L from the sketch dimension ¢y to n and computing the losses for all nodes in
node classification involves O(cycon) computations and O(n) memory.

5 = Mean { RO ((5*)7 9129} + [#luar (6)

Mean refers to the element-wise mean over tensors.

LSH-based Loss Evaluation for Node Classification: To avoid O(n) complexity in loss evaluation,
we employ a locality-sensitive hashing approach that selects nodes with poor predictions as described in
Section 3.3 of |[Ding et al.| (2022)), outlined below:

Under review as submission to TMLR

1. Construct LSH hash tables: We build LSH hash tables H : R — [cj] (Section to index the
labeled training nodes across C' classes into ¢ hash buckets.

2. Formation of subset B: Using the LSH hash tables, we select nodes whose predicted class scores
have small inner products with respect to their ground truth (one-hot encoded) labels based on the

gradient signals of M (LF) = ﬁ(k)TplZ(L).
c
B= U {argm]ax M:(JL-’k)}
j=1

KO8, = Mean { R (B,9ME9Y + 3] 50 (7)
3. Evaluate loss on selected subset: We compute the classification loss only on the selected nodes:

1 N
Lisu = 3] > Ui yi) (8)

icB

£ is the loss function (e.g., cross-entropy), §; represents the predicted class probabilities.

Complexity advantage: This approach avoids the O(n) complexity of evaluating losses for all nodes by
focusing computational resources on nodes that are most likely to contribute significant gradients, i.e., those
with poor current predictions.

Simhash projection matrix update. The projection matrix P for the SimHash function H : R? — [c;]
is updated using gradient descent with the triplet loss function (Equation 7 in |Ding et al.| (2022))), originally
introduced in (Chen et al.| (2021).

Li(H,Pr,Po)=max{0, Y cos(H(u),H(v)— > cos(H(u),H(v))+a (9)
(u,v)eP_ (u,v)EP4

A

Py = {(Ries X5.) 11,7 € B, (X1, X30) > 14},

P — {(Xi7:,Xj,:) li,j € B, (X, X,.) < t,}

are the similar and dissimilar node-pairs in the subset B; ty > t_ and a > 0 are hyper-parameters.
This triplet loss £1(H,Py,P_) is used to update P using gradient descent at every Trsy epoch. The
complexities associated with the loss £; are explained in Appendix [C] In this section, we establish the
theoretical foundation of our approach by presenting a key result on the optimality of the POD projection
matrix in the context of linearized GNNs as shown in Theorem[I} Theorem [I] suggests that the POD method
offers an optimal projection matrix for the Linearized GNN update rule. Additionally, we analyze the error
propagation in node representations within the PGNN framework across different layers, as formalized in
Theorem

Theorem 1. Let P be the set of all orthogonal projection matrices of rank cy < n. The optimal projection
matriz Q) € P for the update rule
XD = QOO (T 20 + [Fa)O

is identified as the POD projection matriz, which is expressed as Q = pTp (See proof in Appendiz|A]). p is
the factor of POD projection matriz P, representing the singular vectors of the augmented input node feature
matriz X©) after normalization (see Algorithm @)

Under review as submission to TMLR

4.1.2 Error bound on the node representations at each layer [

Theorem 2. Let X and X represent the actual and approzimate node representations for the PGNN
method with the linearized GNN architecture at a layer 1. Following the update rule XD = CXHOOW | the

) . [| @D g+ L
normaliizea error € = at ayer cause € metnoa 1s given y
lized (I+1) & t layer 1+ 1 d by the PGNN method is g by
C — Cqfll [[0W =
D) < | ;” || H +e® | Cll H@(Z)H +T

where T = H(I - P)[a’c]nxdwl) H and the equivalent convolution matriz for the PGNN method Coq = PC, P =
XU+D)|

oLp, (S = W) (See proof in Appendix.

Theorem [2] indicates the quality of approximations made by the PGNN method depends on the equivalence
of matrices C' and Cgy. The Theorem indicates that errors across layers accumulate with depth. We
empirically study the propagation of error in deep GNNs in Appendix and observed that using the
Jumping Knowledge framework on PGNN compensates for accuracy loss and ensures faster
convergence (Figure . The learned representations can be qualitatively assessed by visualizing the t-SNE
plot of the features from the first layer of a pre-trained PGCN model, for example, shown for the Cora
dataset in Figure [I0] The visualization reveals distinct clusters in the 2D projected space. These clusters
align with the seven labels of the dataset, demonstrating the model’s ability to distinguish between the
seven topic classes in Cora effectively. Appendix [D.4]is dedicated to empirical validation, wherein a series
of experiments are conducted to ascertain the congruence of the convolution matrices for the Cora dataset.

4.2 Algorithm

Graph data Step 1: Preprocessing Step 2: Training

Generate Count sketch matrix R and LSH hash matrix P
p < Left singular vectors of augmented input feature matrix|
Sketch of node feature matrix ‘
20 < (X0~ [¥]y)

Sketch of convolution matrix 70 7@

(k) T Fa
Node feature matrix S¢’ «pC® € = TS(C) Input PGCN PGCN Loss
Xx(0) ¢ guxd Sketch of projection matrix Layer 1 Layer 2
Convolution matrix ﬁ(k)r « R® pT
CeRM™ Loss
. 1. Obtain subset B from the LSH hash table bucket b using the
Step 3: Inference fhelsHhas 1o using
gradient signals of M®) = p p; Z®). b =argmax j M

Layer parameters: CE:), o0

Input: 2,5, 5%, p;, R©, P ‘

. Getunsketched representations for nodes in set B ()7(‘)(8, :))

. Use GNN loss £, sy to update GNN parameters

. Compute loss £ to update p;

. If epoch e = Ty, compute similar and dissimilar pairs P*, P~
to Compute triple loss £; and update matrix P

Transfer parameters oW, c,(cl) post training from PGCN layers to GCN layers
Downstream task: Node classification, Link prediction

GCN GCN
—
Inference graph Layer 1 Layer 2

abhbOWN

Figure 1: The preprocessing, training and inference phases of the PGNN framework are shown. In the
preprocessing step, the sketch of the input node feature matrix (Z (0)), k sketches of the convolution
matrix (ng)) and the matrix p (p*)) are generated, where we make use of count-sketch matrices R(*).
These sketch matrices are utilized in the PGCN layers for the training step along with the LSH hash
matrix P. The loss function involves computation of GNN loss L sy for updating GNN parameters, loss £
to update p1, and triplet loss to update the LSH hash matrix P when epoch e = T sy. For the inference
step, we make use of the parameters learned but with the GCN layers as shown in the figure.

Figure [depicts the three-phase pipeline of our PGNN approach, encompassing preprocessing, training, and
inference stages. Algorithms [I] and [2] present the complete PGNN framework, which operates within the
GOCN architecture. The algorithm can be generalized to the architectures discussed in sections and [B.4]
However, for the PGAT architecture (See section , the computation of the sketch for the convolution
matrix must be omitted.

Under review as submission to TMLR

Algorithm 1 PGNN Training and Inference

Require: Preprocessed data: Z(©, RV . . RK), Sk, z, P®) from Algorithm
Labels y, LSH update interval 17, s;

Loss constants (8, B2, Bo, «, ag, t4, t— for £ and £
1: Training:

2: Initialize GNN weights ©)| coefficients c,(cl), matrix py
3: for each epoch do
4: forl=1to L do

5: Compute Z() using the PGNN propagation rule (Eq.

6: end for

7. Select subset B (|B| < j3) using gradient signals from LSH hash tables H*) (Section
8. Reconstruct X&) for nodes in the set B (Eq. , evaluate loss L1su (Eq.

9: Backpropagate and update O, ¢;, using Lygn

10: if epoch mod T1,sg = 0 then

11: Update matrix P*) using triplet loss £; (Eq. @)

12: end if

13: Update p; using B randomly sampled nodes using loss £ {Omitted for PSGC}
14: end for

15: return Learned weights ©) and coefficients c](f)
16: Inference:

17: Predict using standard GCN update rule with learned ©(), c,(cl)

Table 1: Performance comparison of PGNN with Graph-SAINT (Zeng et al., [2020), VQ-GNN (Ding et al.,
2021)), Sketch-GNN (Ding et al., [2022)), Graph Coarsening (Cai et all, [2021)) , and linearized GNN (Wu et al.,
2019) on Reddit, ogbn-arxiv, and ogbn-products. If the entry is unavailable in prior literature it is denoted
by ‘. The accuracy values in green highlight the best performance for a given method (e.g., GCN) within
each column, while the values in red denote the second-best performance for that method.

m ogbn-arxiv Reddit ogbn-products
SGC 69.44 + 0.05 94.64 + 0.11 [66.89 + 0.29
PSGC 68.57 + 0.16 94.66 + 0.04 65.6 + 0.00
GNN Model GCN GraphSAGE | GAT GCN GraphSAGE | GAT GCN GraphSAGE | GAT
"Full-Graph" 71.74 + 0.29 | 71.49 £ 0.27 | 73.65 + 0.11 OOM OOM OOM OOM OOM OOM
Graph-SAINT 70.79 + 0.57 | 69.87 £ 0.39 | 71.17 + 0.32 | 92.25 £ 0.57 | 95.81 + 0.57 | 94.31 + 0.67 | 76.02 + 0.21 | 79.08 & 0.24 | 79.71 & 0.42
Coarsening 68.92 + 0.35 66.09 + 0.61 | 63.07 £ 0.41 - - - - - -
VQ-GNN 70.55 £ 0.33 | 70.28 + 0.47 | 7043 + 0.34 | 93.99 + 0.21 | 94.49 + 0.24 | 94.38 + 0.59 | 75.24 + 0.32 | 78.09 + 0.19 | 78.23 + 0.49
sketch-ratio (r = ¢ /n) r=04 r=03 r=0.3
sketch-GNN 70.28 £ 0.87 [70.48 & 0.80 | 70.53 & 0.34 92.80 £ 0.34 | 94.85 + 0.61 | 93.26 = 0.63 | 75.53 & 1.05 | 77.62 £ 0.93 | 77.48 £ 0.71
PGNN ratio (r = ¢p/n) r=0.15 r=0.05 r = 0.003
PGNN 69.53 &£ 0.31 [69.63 £ 0.08 [70.27 £ 0.11 | 94.82 & 0.03 | 94.32 + 0.08 93.02 £ 0.09 75.21 £ 0.51 | 76.82 £+ 0.55 | OOM

5 Experiments.

We evaluate the efficiency of PGNN in terms of memory utilization and training time, with implementa-
tion details provided in Appendix [E] Our assessment, conducted on benchmark graph datasets, focuses on
node classification accuracy and compares PGNN’s performance against state-of-the-art methods, including
GCond (Jin et al., 2022) and Graph Coarsening (Cai et all 2021)). Additionally, we compare PGNN with
other sampling-based methods such as GraphSAINT (Zeng et all 2020), VQ-GNN (Ding et al.| [2021)), and
existing sketch based method Sketch-GNN (Ding et al.l|2022). For each dataset, the sketch ratios for GCond,
Graph Coarsening, and Sketch-GNN remain the same, while PGNN uses either the same or lower sketch
ratios than Sketch-GNN. The graph datasets used for evaluation include Cora, Citeseer, Pubmed, ogbn-
arxiv, Reddit, ogbn-products and ogbn-papers100M. The PGNN update rules for various GNN architectures
discussed in this section are detailed in Appendix [B] Figures[2] and [3] illustrate PGNN’s sublinear memory
complexity and training time, making PGNN suitabile for large graph datasets. Additionally, we examine
cross-architecture memory complexity in Appendix [C| (Figure . Node classification accuracies across all
datasets are reported in Tables [I] and] demonstrating PGNN’s ability to achieve competitive accuracy

Under review as submission to TMLR

Table 2: Performance comparison of PGNN with SGC, GCN, SAGE, GAT and graph compression techniques
like GCond (Jin et al., [2022)), Graph Coarsening (Cai et al., [2021) and Sketch-GNN (Ding et al.l 2022)) on
Cora, Citeseer, and Pubmed datasets. The baseline graph compression ratios for the Cora, Citeseer, and
Pubmed datasets are 0.026, 0.018, and 0.04, respectively, whereas our PGNN framework employs sketch
ratios of r = 0.02,0.018, and 0.01 for these datasets. If the entry is unavailable in prior literature it is
denoted by ‘- The accuracy values in green highlight the best performance for a given method (e.g., GCN)
within each column, while the values in red denote the second-best performance for that method.

ataset —

Metho Cora Citeseer Pubmed
GCN 81.19 + 0.23 71.91 &+ 0.18 79.0 + 0.4
SGC 81.0 £+ 0.0 71.9 £ 0.1 78.9 £+ 0.0
PSGC 80.51 + 0.18 72.01 + 0.31 79.90 + 0.10
SAGE 74.5 + 0.0 67.2 £ 0.0 76.8 £+ 0.0
GAT 83.0 £+ 0.7 72.5 £ 0.7 79.0 + 0.3
GCN SAGE GAT GCN SAGE GAT GCN SAGE GAT
Coarsening 65.18 & 0.51 — - 59.08 & 0.45 — — — — —
GCond 80.02 + 0.75 76.18 + 0.87 66.2 + 0.0 70.59 + 0.87 66.2 + 0 554+ 0 77.92 + 0.42 71.12 + 3.10 -
Sketch-GNN 80.35 £+ 0.71 79.14 + 1.21 71.14 £+ 0.59
PGNN 80.60 + 1.46 79.43 + 1.54 | 77.82 + 1.26 | 71.21 = 1.13 68.87 + 1.21 | 70.47 + 4.76 | 79.23 + 0.32 78.01 + 0.18 | 78.23 + 0.61

while maintaining computational efficiency. To further showcase PGNN'’s versatility across various tasks, we
also evaluated its performance on link prediction, comparing it against established graph-based methods.
The experimental results for the link prediction tasks are detailed in Table [§in the Appendix.

SGC

non{ —e— PSGC (ours) 100f 97 O
—4— SAGE
60000 O(n) -¥- 0(n)
O == PSGC (ours)
~ O ===
@ 50000 =
3 3
-~ -3 1 ——
40000 o0y A -
2 o Z
g H
30000 ©
g £
Z 20000 -
£
10000 /0\ -% 1072
-y £
B —— P o
oS) & & -y
& & & i & & S— v
¢ 4 & ¢ Q!‘b & 10
Y v 0 . R
() Q¢ & & s & & & S &
) % 9 & o 2 G S
° v{‘ & & o & &
OQ L ﬁo'

Dataset Dataset

Figure 2: Memory complexity of the PSGC method. Figure 3: Training time comparison of the SGC,
GCN, and SAGE with the PSGC method.

5.1 Performance evaluation of PGNN

As shown in Table [2, PGNN outperforms existing graph compression techniques—including Sketch-GNN,
GCond, and Graph Coarsening—while closely matching the accuracy of full-graph training on the Cora,
Citeseer, and Pubmed datasets, despite using lower or similar sketch ratios. For instance, PGNN achieves
better classification accuracies on Cora with a sketch ratio of r = 0.02, compared to r = 0.026 for Sketch-
GNN and other techniques such as GCond and Coarsening. Similarly, on Pubmed, PGNN attains superior
accuracy with r = 0.01, compared to the r = 0.04 required by existing methods. Notably, PGNN maintains
high classification accuracy even under lower compression levels, outperforming methods like SGC, GCN,
and GraphSAGE on Pubmed (Table[2). PGNN demonstrates scalability, particularly on large-scale datasets.
For the Reddit dataset, PGNN achieves an accuracy of 94.82% using a sketch ratio of only 0.05, compared
to Sketch-GNN, which requires a sketch ratio of 0.3 to reach a lower accuracy of 92.0%. PGNN with SGC
architecture achieves better classification accuracies than SGC. Additionally, PGNN’s memory footprint
for the Reddit dataset remains as low as 5400 MB with PSGC and approximately 7500 MB with PGCN
(Figure [7)). For the ogbn-products dataset we observe that with a low sketch-ratio of 0.003 we are able to

10

Under review as submission to TMLR

100
95 Models
<> <> O PGNN
O Sketch-GNN
90 O Coarsening
O GcCond
Full-Graph
85
)
s
a 80 Ep
s v g
375
5]
* le
70 A A
A
(%3 Datasets
65 £ Cora
O Citeseer
[0 PubMed
60 < Reddit
o /A ogbn-arxiv
V ogbn-products
55

0.0 0.2 0.4 0.6 0.8 1.0
Sketch Ratio (r)

Figure 4: Performance comparison of different models across varying sketch ratios. PGNN (blue) achieves
comparable accuracy to other methods while maintaining lower sketch ratios, demonstrating its efficiency in
preserving accuracy with reduced computational complexity. The comparison includes Sketch-GNN (red),
Graph Coarsening (green), GCond (purple), and the Full-Graph () baseline accuracies.

reach full-graph training accuracy for the GCN architecture unlike Sketch-GNN which uses a much higher
sketch-ratio of 0.3. PGCN consistently outperforms GCN architectures in link prediction tasks in the four
datasets: Core, Citeseer, Pubmed, and ogbn-arxiv, as shown in Table[§] Regarding training times, PGNN
demonstrates notable efficiency: the training time per epoch for PSGC is consistently lower than that of
SGC (except on ogbn-arxiv) and outperforms both GCN and GraphSAGE across all evaluated datasets
(Figure [3)). Unlike Sketch-GNN, PGNN does not require updating LSH hash tables at intermediate layers,
thereby reducing computational overhead.

In terms of preprocessing, methods such as GCond and Graph Coarsening, while effective for small-scale
graphs, exhibit scalability limitations. For instance, preprocessing the Reddit dataset takes approximately
90 minutes with GCond, whereas PGNN completes the preprocessing in around 560 seconds (Table .
Moreover, PGNN requires a lower sketch ratio to maintain full-graph accuracy as the graph size increases,
underscoring its adaptability to larger datasets (Figure 4). Despite processing a massive dataset of 111
million nodes, our approach achieves preprocessing in just 28 minutes.

PGCN on ogbn-arxiv incurs a 2.5% accuracy drop compared to full-graph GCN (Table . However despite
using a sketch ratio of r = 0.15 compared to r = 0.4 for baseline methods we observe only a 1% accuracy drop
with respect to existing graph compression techniques. Despite PGNN’s preprocessing time not being linear,
it remains approximately one-sixth of the time required by graph compression algorithms such as GCond
2022)), Graph Coarsening (Table). The out-of-memory (OOM) error for PGAT on
ogbn-products at a low sketch ratio of 0.003 occurs because GAT’s learnable convolution mechanism cannot
leverage convolution matrix sketching (Appendix , thus preventing the memory advantages achieved by
other PGNN architectures.

11

Under review as submission to TMLR

5.2 ogbn-papers100M: Paper Citation Network

We evaluate our PGNN framework on ogbn-papers100M, a large-scale citation network containing 111 million
nodes. This dataset follows the same preprocessing methodology as ogbn-arxiv|Wang et al.| (2019)), ensuring
consistency in feature construction and graph representation.

Due to computational constraints, baseline results for SGC [Wu et al.| (2019), Node2Vec |Grover & Leskovec
(2016)), and MLP are obtained from the OGB leaderboard Hu et al.| (2020), as full-batch training of these
methods requires more than 512 GB of CPU memory. Our experiments use a sketch ratio of 1076 for the
ogbn-papers100M dataset, selected based on available memory limitations. To enable a fair comparison of
memory usage, we keep the batch size to 1024 for both GCN and GraphSAGE models.

Table [3] compares PGNN with methods like SGC, GCN, GraphSAGE, MLP, Node2Vec for the oghn-
papers100M dataset. The preprocessing overhead for the ogbn-papers100M dataset requires only 29 minutes,
as shown in Table PSGC significantly enhances memory efficiency and training speed while maintain-
ing competitive accuracy. It outperforms MLP and Node2Vec, and achieves only a 4% accuracy reduction
compared to the full SGC model. Notably, it achieves a 339x speedup for the training time per epoch
compared to the conventional models. For PSGC, PGCN, and PSAGE, we utilized a POD sketch ratio of
1075 (r = 107°). The tensor-sketch ratio for PGCN was set to the same value. However, for PSAGE, a
tensor-sketch ratio of 5 x 107 was used. Higher ratios were not feasible due to CPU hardware limitations
for preprocessing.

For PGCN and PSAGE on ogbn-papers100M, we utilise PGNN layers during inference.
Table 3: Performance evaluation of PGINN against established graph-based and traditional methods

(SGC [Wu et al.| (2019), GCN Kipf & Welling| (2017), GraphSAGE Hamilton et al.| (2018), Node2Vec, and
MLP) on the large-scale ogbn-papers100M dataset. Blue: PGNN method; green: best memory/training

time; red: Out of Memory (OOM); : Speedup factor.
Method Test Memory Training time Speedup
Accuracy (%) (GB) per epoch (s)

SGC 63.29 £ 0.19 > 512 (010)\Y I —
PSGC (ours) 59.42 £ 0.01 7.70 0.62 —
MLP 55.60 £ 0.23 > 512 OOM —
GCN 27.18 £0.01 10.42 221.79 —
PGCN (ours) 56.35 £ 0.00 7.72 0.65

Node2Vec 47.24 +£0.31 > 512 (010)1\Y I —
GraphSAGE 67.06 +0.17 10.53 223.82 —
PSAGE (ours) 50.78 £ 1.37 3.58 0.63

6 Conclusions

The computational and memory demands of large-scale graph learning pose significant challenges for mod-
ern GNN frameworks. To address this, we propose PGNN, a novel sketch-based framework that compresses
graph data while preserving the downstream task performance. Our experiments demonstrate that PGNN
achieves competitive accuracy with state-of-the-art methods at significantly reduced sketch ratios and sub-
linear memory complexity. The condensed representations generated by PGNN not only reduce storage
overhead but also enable efficient training across diverse GNN architectures. Future work include (1) broad-
ening PGNN to dynamic graphs and streaming scenarios, and (2) extending the framework to heterogeneous
GNN architectures.

12

Under review as submission to TMLR

References

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin
Wicke, Yuan Yu, and Xiaoqgiang Zheng. Tensorflow: A system for large-scale machine learning, 2016.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and
optimal Ish for angular distance, 2015.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaiizere, Sébastien Adam, and Paul Honeine.
Analyzing the expressive power of graph neural networks in a spectral perspective. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=-qhOM9XWxnv.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks
for graph pooling, 2020.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek Rézem-
berczki, Michal Lukasik, and Stephan Giinnemann. Scaling graph neural networks with approximate
pagerank, August 2020. URL http://dx.doi.org/10.1145/3394486.3403296.

Francesco Bonchi, Claudio Gentile, Francesco Paolo Nerini, André Panisson, and Fabio Vitale. Fast and
effective gnn training with linearized random spanning trees, 2024.

Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural networks, 2021.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data streams. In
Peter Widmayer, Stephan Eidenbenz, Francisco Triguero, Rafael Morales, Ricardo Conejo, and Matthew
Hennessy (eds.), Automata, Languages and Programming, pp. 693-703, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg. ISBN 978-3-540-45465-6.

Beidi Chen, Zichang Liu, Baoxiang Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song, Anshumali
Shrivastava, and Christopher Ré. MONGOOSE: A Learnable LSH Framework for Efficient Neural Network
Training. International Conference on Learning Representations, 5 2021. URL https://openreview.net/
pdf ?71d=wWK7yXkULyh.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with variance
reduction, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: Fast learning with graph convolutional networks via impor-
tance sampling, 2018b.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing neural
networks with the hashing trick, 2015.

Wei-Lin Chiang, Xuanqging Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks, July 2019. URL http://dx.doi.
org/10.1145/3292500.3330925.

Jeongwhan Choi, Seoyoung Hong, Noseong Park, and Sung-Bae Cho. Gread: Graph neural reaction-diffusion
networks, 2023.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John P Dickerson, Furong Huang, and Tom Goldstein.
Vg-gnn: A universal framework to scale up graph neural networks using vector quantization, 2021.

Mucong Ding, Tahseen Rabbani, Bang An, Evan Z Wang, and Furong Huang. Sketch-GNN: Scalable
graph neural networks with sublinear training complexity. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=4PJbcrW_7wC.

13

https://openreview.net/forum?id=-qh0M9XWxnv
http://dx.doi.org/10.1145/3394486.3403296
https://openreview.net/pdf?id=wWK7yXkULyh
https://openreview.net/pdf?id=wWK7yXkULyh
http://dx.doi.org/10.1145/3292500.3330925
http://dx.doi.org/10.1145/3292500.3330925
https://openreview.net/forum?id=4PJbcrW_7wC

Under review as submission to TMLR

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The World Wide Web Conference, WWW 19, pp. 417-426, New York, NY,
USA, 2019. Association for Computing Machinery. ISBN 9781450366748. doi: 10.1145/3308558.3313488.
URL https://doi.org/10.1145/3308558.3313488.

Matthias Fey, Jan E. Lenssen, Frank Weichert, and Jure Leskovec. Gnnautoscale: Scalable and expressive
graph neural networks via historical embeddings, 2021.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico Monti.
Sign: Scalable inception graph neural networks, 2020.

Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions : Simple and
deterministic matrix sketching, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. CoRR, abs/1607.00653,
2016. URL http://arxiv.org/abs/1607.00653.

Gaél Guennebaud, Benoit Jacob, Philip Avery, Abraham Bachrach, Sebastien Barthelemy, et al. Eigen v3,
2010.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs, 2018.

Philip Holmes, John L. Lumley, and Gal Berkooz. Turbulence, Coherent Structures, Dynamical Systems and
Symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, 1996.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural networks
via graph coarsening, 2021.

Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph condensation for
graph neural networks, 2022.

Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin. Network approximation using tensor
sketching. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI-18, pp. 2319-2325. International Joint Conferences on Artificial Intelligence Organization, 7 2018.
doi: 10.24963/ijcai.2018/321. URL https://doi.org/10.24963/ijcai.2018/321.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks, 2017.

S. Lall, J. E. Marsden, and S. Glavaski. Empirical model reduction of controlled nonlinear systems. In
International Federation of Automatic Control, PROCEEDINGS OF THE WORLD CONGRESS- IN-
TERNATIONAL FEDERATION OF AUTOMATIC CONTROL, volume e, pp. 473-478, Oxford, 1999.
Published for the International Federation of Automatic Control by Pergamon;. ISBN 0080432166. URL
https://www.tib.eu/de/suchen/id/BLCP}%3ACN032062401.

See Hian Lee, Feng Ji, and Wee Peng Tay. Node-specific space selection via localized geometric hyperbolicity
in graph neural networks, 2023.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning, 2018.

Yibo Lin, Zhao Song, and Lin F. Yang. Towards a theoretical understanding of hashing-based neural nets,
2019.

Zirui Liu, Kaixiong Zhou, Fan Yang, Li Li, Rui Chen, and Xia Hu. EXACT: Scalable graph neural networks
training via extreme activation compression. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=vkaMaq95_rX.

14

https://doi.org/10.1145/3308558.3313488
http://arxiv.org/abs/1607.00653
https://doi.org/10.24963/ijcai.2018/321
https://www.tib.eu/de/suchen/id/BLCP%3ACN032062401
https://openreview.net/forum?id=vkaMaq95_rX

Under review as submission to TMLR

Andreas Loukas. Graph reduction with spectral and cut guarantees, 2018.

B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduc-
tion. IEEE transactions on automatic control, 26(1):17-32, 2 1981. doi: 10.1109/tac.1981.1102568. URL
https://doi.org/10.1109/tac.1981.1102568.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS 2017
Workshop on Autodiff, 2017. URL https://openreview.net/forum?id=BJJsrmfCZ

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In SIGKDD,
KDD ’13, pp. 239247, New York, NY, USA, 2013a. Association for Computing Machinery. ISBN
9781450321747 doi: 10.1145/2487575.2487591. URL https://doi.org/10.1145/2487575.2487591.

Ninh Pham and Rasmus Pagh. Fast and scalable polynomial kernels via explicit feature maps. In Proceedings
of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’13,
pp- 239-247, New York, NY, USA, 2013b. Association for Computing Machinery. ISBN 9781450321747.
doi: 10.1145/2487575.2487591. URL https://doi.org/10.1145/2487575.2487591.

Muruhan Rathinam and Linda R Petzold. A new look at proper orthogonal decomposition. SIAM Journal
on Numerical Analysis, 41(5):1893-1925, 2003.

Ryan Spring, Anastasios Kyrillidis, Vijai Mohan, and Anshumali Shrivastava. Compressing gradient optimiz-
ers via count-sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pp- 5946-5955. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/springl9a.html|

Jiawei Sun, Hongkang Li, and Meng Wang. How do skip connections affect graph convolutional networks
with graph sampling? a theoretical analysis on generalization, 2024. URL https://openreview.net/
forum?id=J2pMoN2pon.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks, 2018.

Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao
Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J. Smola,
and Zheng Zhang. Deep graph library: Towards efficient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019. URL http://arxiv.org/abs/1909.01315.

Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex Smola. Feature hashing
for large scale multitask learning, 2010.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr. au2, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying graph convolutional networks, 2019.

Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recommender systems:
A survey. ACM Comput. Surv., 55(5), dec 2022. ISSN 0360-0300. doi: 10.1145/3535101. URL https:
//doi.org/10.1145/3535101.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?,
2019.

Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method, 2020.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching, 2021.

15

https://doi.org/10.1109/tac.1981.1102568
https://openreview.net/forum?id=BJJsrmfCZ
https://doi.org/10.1145/2487575.2487591
https://doi.org/10.1145/2487575.2487591
https://proceedings.mlr.press/v97/spring19a.html
https://openreview.net/forum?id=J2pMoN2pon
https://openreview.net/forum?id=J2pMoN2pon
http://arxiv.org/abs/1909.01315
https://doi.org/10.1145/3535101
https://doi.org/10.1145/3535101

Under review as submission to TMLR

A Appendix

Definition 1. The column space of two matrices A and B are the same if there exists a matriz M such that
A=BM.

A.1 Proof for Theorem 2

Let the equivalent node representations at layer [+ 1 in the graph dimension n, be X (41 the PSGC update
rule (Appendix [B.2) is given by the following expression:

XD — pox®We® 4 +(I— P)[i]nXd(Hl)’
HX - Hl)H HCX(l 0l —(PCXWOWY + (I - P)[#]nxdq,,)

HX(Z“) - X(l"’l)H - HCX(Z)@(Z) — CogXDOU 4 0y XVOW — (C,yXVOW 4 (T = P)[Enxay,r,)

Using the triangular inequality and sub-multiplicative property of norms,
IC — Ceqll_[l0V]] [x
§ |X@f

e+ < +e 0yl [|o0)+T, 5=
Prior to proving Theorem [1| on the optimality of the POD update rule for the case of linearized GNN, We
establish a result concerning the invariance of column spaces in Lemmal [T} a property that will play a pivotal
role in the proof of Theorem [I}

Lemma 1. Columnspace of matriz B = CWpT is equal to the columnspace of matriz pT .

Proof: From Definition |1} If the column-space of B and column-space of p” are similar, then there exists a

matrix M such that p? M = B. The matrix M which accomplishes this M = pB (pp? = I.,). This shows

that matrix B and p” have the same column space.

The above lemma implies that for an arbitrary vector z € R, Cp” z, it can be represented as p’a, where
[T]nxco

a € R%. Also since the matrix p” denote the left singular vectors of the SVD of the matrix T they

©
span the column space of the matrix F' = %\/%“0 Thus CpTz = 3" w;F(:,4) for arbitrary values of

w;. The matrix X denotes the augmented input node feature matrix.

A.2 Proof for Theorem 1

The output layer node representations for the linearized GNN using the optimal approximation of the input
node feature matrix given by the POD,

X0 — C(l)pTz(O)@ + [C(l)i]nxd(a = BU + ¥,

=CWpT ¥ =700, ¥, = [CDz]O. Consider d as the number of hidden channels at layer I. We propose
that the projection matrix, denoted by @), is the product of two matrices ()1 and @Q)2, such that Q = Q1Q5.
In this context, Q2 signifies the linear transformation responsible for reducing the dimensionality of matrices.
Conversely, 07 is the matrix that handles the inverse projection. The objective is now to find

arg min ||QBY — BY||

argmmZHQB\I/ i) — BU(:,9)]|

i=1
- . (10)
argminz ZQwﬂ J)—wjiF(;,5)|| (Lemmal[l)
Q@ =
NSNS @i w0 S0)(. iy~ Qps) —ps
argmin »_|I> " =L(QXO(,5) —XO(,) - @————
Q iZi|j=1 P2 P2

16

Under review as submission to TMLR

F(0) (.
p3=> i, X ncf)"l). We denote P as the manifold of all rank (¢ < n) orthogonal projection matrices of size
n X n. The manifold is referred to as Grassmannian in the literature. The POD projection matrix P is a

minimizer of the function e,

e(P,x) =< Pz —x,Px —x > where z € X© (See Rathinam & Petzold| (2003)).

This, in turn, proves that the best matrix) which can be used in the scenario is the POD projection matrix
P.

Lemma 2 (Ding et al|(2022)). Given matrices C € R"*" and (XOWW)T € R>*" | consider a randomly
selected count sketch matriz R € R*™ (defined in section @, where ¢ s the sketch dimension, and it is
formed using r = \/jn underlying hash functions drawn from a S-wise independent hash family H for some
i>1. If e > 2437 e have

£24

Pr{|(CR{) (R X WD) — OXOWO |5 > 2k O 7| X WO F} < 6.

B Generalize to more GNNs

This section presents a compendium of prevalent GNNs that can be tailored to fit into the unified framework
delineated in section The crux of most GNN architectures revolves around message passing among
node features, followed by feature transformation and activation functions—a process commonly known as
‘generalized graph convolution’ Within this overarching framework, the distinctions among GNNs primarily
arise from their choice of convolution matrices, denoted as C(9, which can either remain static or evolve
as trainable parameters. A trainable convolution matrix is contingent upon input data and adjustable
parameters, potentially varying across different layers, as denoted by C(l, q).

L L l l
Cz‘(,jq) = Cz‘(,jq) ’ hé‘f?,q) (Xz'(,:)’ XJ(',:))
~—~— —
fixed learnable

B.1 Theoretical Guarantees for nonlinear GNN architectures.

We analyze how the PGNN framework extends to various nonlinear GNN architectures, including GCN (Kipf
& Welling}, [2017)), GraphSAGE (Hamilton et al [2018)), and GAT (Velickovi¢ et al,[2018). While Theor
establishes PGNN’s optimality specifically for the linearized GNN case (SGC), the framework maintains
rigorous performance guarantees for nonlinear architectures through general sketch-based approximation
theory. To quantify the approximation quality for these nonlinear cases, we adapt error bound results from
Ding et al, (2021)) as Theorems [3| and {4} which provide bounds for forward-pass node representations and
back-propagated gradients, respectively. This theoretical framework ensures reliable approximation quality
across diverse message-passing schemes and provides crucial insights into how compressed computations
affect the learning process relative to standard GNN update rules.

Theorem 3 dDing et al.| 42021[)). If the relative error of the l-th layer for the PGNN method is €, the
convolution matriz CY is either fized or learnable with the Lipschitz constant of hél)(~) : R%ft — R upper-

bounded by Lip(hg)), and the Lipschitz constant of the non-linearity is Lip(c), then the estimation error of
forward-passed features satisfies,

| XD = XED||p < e® - (14 O(Lip(hy) Lip(@) |V | X O 6l O

Theorem 4 (Ding et al[(2021)). If the conditions in Theoremlg hold and the non-linearity satisfies |0 (z)] <
0 maz for any z € R, then the estimation error of back-propagated gradients satisfies,

IVxarl = Vxawlllr < e (14 OLip(h{))TaulCO | |V X D ol WO .

In the below subsections, we discuss how the PGNN framework works with various GNN architectures using
update rules as described in the supplementary material of [Ding et al.| (2022).

17

Under review as submission to TMLR

—— PGCN, sketch-ratio: 0.026 —— PGCN, sketch-ratio: 0.009 —— PGCN, sketch-ratio: 0.01
—— PGCN, sketch-ratio: 0.013 —— PGCN, sketch-ratio: 0.018 —— PGCN, sketch-ratio: 0.02

— GeN s — GCN 10 — GEN

Loss

150 175 200 o 25 50 7 100 125 150 175 200

B0 s 200 0 2 50 5 100 125
Epoch Epoch

(a) Cora (b) Citeseer (c) Pubmed

Figure 5: Comparison of training losses during link prediction for PGCN and GCN methods across bench-
mark datasets: (a) Cora, (b) CiteSeer, and (c) PubMed. The sketch ratios used are 0.013 and 0.026 for
Cora, 0.009 and 0.018 for CiteSeer, and 0.01 and 0.02 for PubMed, respectively.

B.2 PGNN with SGC.

The convolution matrix for PSGC, C = D"Y2AD~Y2. D =D+ 1, A= A+ 1,. D denotes the degree
matrix and A represents the adjacency matrix of the graph. The node representation at layer [+ 1, Z(+1)
given by the PGNN method is Z(+) = §oZ2We® 4 [pCi]ndeO(”. The sketch of the convolution matrix

Sc = pCpT.
B.3 PGNN with GCN.

The update rule for PGCN is given by
T

q
ZH) = ch p1 SE -U (11)

k=1
U = [pZ]coxd,,,- The convolution matrix C' has the same form as the PSGC update rule (Appendix [B.2)).
St = pTSy(C). Tensor-sketch of order k, TS;(C) = [FFT_1 (@’;:1 FFT (CS(”) (C)))} N=(p"pZ" +
[@)nxa)00, VI = CSP(NT) = 00" ([fTR(k)T]dmk +2z0"py ﬁ)a p=pR®", R® € R denotes
the Count-sketch matrix (Section . Detailed steps for the PGCN method are explained in Algorithm

FFT™! (é FFT (v}f’))

p=1

B.4 PGNN with SAGE.

We extend PGNN to architectures involving multiple convolutions CV) = I,,.,, and C®?) = D=1A. C =
T
[C(l) I C'(Q)T} . The update rule for SAGE is

P (X(Z)W(l’l) n D_IAX(”G(Z’Q)) — ([In I (D—lA)T]T [X(l)@(lvl) | X(l)G)(va)D) (12)

With U = [pZ]nxq,.,- The update rule for PSAGE is given by

FFT~! <é FFT (Vf{”))
p=1

The sketch of the convolution matrix S& = p TS (C). Tensor-sketch of order k,

T

q
Z(+1) _ ch o Sé - U

k=1

k
TS (C) = FFT ! (@ FFT (CS<P>(C))> ,CSP(C) = CRWT, R() ¢ R2mxer,
p=1

N = {(meZ(l) + [i]nxdl> o I (meZ(l) + [f]nxdl) @(1,2)} .

18

Under review as submission to TMLR

- - T
VP = CsONT) = NTROT = [(500 pz® £ 1) 0D | (5007520 + 15) 002)]
pP = pRE(1 ¢ n,), pP = pR®(n + 1 : 2n:), Uy = [R®T(,1:n)z] exd s U2 =

[RP)T(:,n+1:2n)7]

cr Xd; :

B.5 PGNN with GAT.

The convolution mechanism intrinsic to the GAT architecture is inherently learnable. We propose PGAT
update rule for update rules involving learnable convolution for completeness. There is however no memory
or training advantage when using PGAT. A promising direction for future work lies in designing GAT
update rules that leverage the PGNN method’s computational advantages. Equation [6]defines the unsketch
operation.

U= [pZlnxd,,, BOD=Fo9 4 FlLa”
F9 = unsketch (Z(I’Q)) ot
ab?D = (pTp1 20D 1 [Z],0q,)0ED b0
C=A+1, ob9 R+
CGAT = O © exp(LeakyReLU(E(":9))) (13)

AR (softmax (C’GAT) unsketch (Z(l’q)) ®(l’q)> -U (14)

Algorithm 2 PGNN Preprocessing

Require: Node feature matrix X(©) € R"*?_ convolution matrix C, sketch ratio r = <0 number of sketches
k, count sketch matrix dimension cg

1: Set ¢g = [rn]

2: if ¢y > d then

3: 711,79 < randomly sample n indices from {1,2,...,d} with replacement
4 M=XO%0r)o X0 r)

5. Augmented node feature matrix: X(© = [X(©) M)

6: X < 0X©® {Omitted for PSGC}

7. else

8 Set X =x©

9: end if

10: Compute mean vector T < é S0 XO,0)

11: pT « left singular vectors from SVD of o (%
12: Sketch of input node feature matrix: Z(© = p(X(© — [z])
13: Generate count-sketch matrices R, ..., R(*)

14: Compute sketch SE = pTS,(C) {Omitted for PGAT}

15: Compute auxiliary terms for forward propagation: pz, jTR(k)T, and pF) = pR(k)T

16: Initialize LSH projections P(*)

17: re(turn Preprocessed sketch Z(| count-sketch matrices RV, ..., R®) sketch S(’i;, z, LSH projections
P

C Complexity analysis

We delineate the intricacies inherent in the algorithm with the PGNN framework.

19

Under review as submission to TMLR

One-time Preprocessing: The pre-processing step involves finding the right singular vectors of the ma-
trix described in Algorithm [2, which takes time O(dncy). Computing Sc = pCp? for PSGC takes O(n?)
computations and S = pTSy(C) for PGCN, PSAGE takes O(cocipn) computations. Computing the sketch
of the initial node feature matrix Sx = p(X(© — [Z],,q) takes time O(ncod). Computing the sketches of the
matrix p to obtain p has linear time complexity.

Overhead of computing LSH hash tables. The time complexity for computing the hash index for each
node is O(cpex) when using Simhash (See section [3)), and since there are n nodes and f hash tables, we get
an overhead of O(fncocy) for time and O(fcocy) for space.

Overall, the preprocessing phase has a time complexity of O(n?) and a memory complexity of O(n) for
PSGC. O(fcocgn) time complexity and O(n) memory complexity for PGCN, PSAGE. The time consuming
part involved in the preprocessing phase is the formation of matrix p, we present the time consumed by this
process in Table

Training complexities with PGNN. We present the complexities within the context of the GCN archi-
tecture. Forward and backward pass: Computing Vlép) involves O(dc?) + O(deger,). FFT and inverse FFT in-
volves O(dcy, log(cy)). This reduces to O(dc3) + (dcgeg). The memory complexity involved is O(cg) +O(cock)-
Complexity associated with loss Ly sp.

1. Computing the subset B of nodes based on gradient signals involves O(cy) computations. Unsketch-
ing 8 number of node representations involve O(fB¢id) computations.

2. O(Bd?) for computing similar and dissimilar node pairs. Computing and updating hash table P(*)
using £4 will involve O(cxd) operations, which needs to be updated every Tepoch epoch.

Complexity associated with loss £; (Section . Computing loss and updating £ requires
O(Backd) computations.

Inference: incurs O(Ld(™ + d)) time and O(m + ndL + d°L) memory as is the case in a standard GCN.
Remark. The training complexities mentioned above do not hold for the GAT architecture (Velickovié
et al. [2018)) because of the inherent nature of the operations involved, which is expounded in Appendix
The underlying complexities in the original GAT architecture will hold, and for completeness, we present
the accuracies for the various datasets using PGAT in Tables An implementation detail. When

co

Table 4: Computation time (p) for different datasets at specific sketch ratios (r = <2).

Dataset Sketch-ratio » = 2 | p (Time in s)
Cora 0.02 0.0141
Citeseer 0.018 0.0254
Pubmed 0.01 0.1558
ogbn-arxiv 0.15 1786.8692
Reddit 0.05 426.9778
ogbn-products 0.003 350.93
ogbn-papers100M le-6 1708.40

the sketch ratio r is such that [rn] > d, which is the feature dimension, the PCA or the POD method
necessitates computing the covariance matrix (Ding et all 2021). To overcome the challenge of storing
and computing the covariance matrix, we use the feature engineering method to augment X (9 by selecting
random combinations of columns of this matrix to find the augmented input node feature matrix X (See
Algorithm .

Preprocessing complexity scaling analysis. The dominant factor in preprocessing involving computa-
tion of the matrix p of projection as reported in Table (4] exhibits distinct scaling behaviours across different
graph size regimes, as illustrated in Figure [f]} We analyze these patterns by comparing observed runtime
against theoretical bounds.

Small-Scale Regime (10°-10* nodes): For citation networks including Cora, Citeseer, and Pubmed,

20

Under review as submission to TMLR

108

106 i

10* A o
ogbn-products 7
¢ (r=0.003) -

ogbn-arxiv
(r=0.15)

ogbn-papers100M
(r=1e-06)

102 4

109 4

SVD Computation Time (seconds)

10—2 i
Cor:

a
(r=0.02)

107 104 10° 10° 107 108
Number of nodes (n)

Figure 6: Preprocessing complexity scaling analysis.

the preprocessing time scales consistently with O(n!%), closely tracking the theoretical reference line in
our complexity plot. This near-optimal scaling demonstrates the effectiveness of POD-based sketching for
modestly-sized graphs with standard feature dimensions (< 128).

Intermediate-Scale Regime (10°—10° nodes): For Reddit and ogbn-arxiv, we observe performance degra-
dation approaching O(n?) scaling, indicating a “scaling bottleneck” in this regime. This behaviour stems
from two factors: Reddit’s higher feature dimensionality (602 features) increases the O(dncg) complexity
term, while ogbn-arxiv’s elevated sketch ratio similarly amplifies this cost, where d represents the feature
dimension.

Large-Scale Regime (10°+ nodes): Performance recovers dramatically at scale. The ogbn-products
dataset (2.4M nodes) returns to near-O(n'?®) scaling, while ogbn-papers100M (111M nodes) achieves sub-
O(n*®) performance, falling below the theoretical reference line. This super-linear efficiency at massive scale
likely results from a lower sketch-ratio scaling compared to the graph dimension n.

C.1 Experimental Evaluation of Memory Requirements for PGNN across architectures

Figure [7] compares the memory consumption of our proposed methods—PSGC, PSAGE, and PGCN-—across
various datasets. The results demonstrate that PSGC achieves the lowest memory usage. The tensor-sketch
ratio used for cora, citeseer, ogbn-arxiv and reddit are 0.7, 0.5, 0.15, 0.15 with order ¢ and number of sketches
k as 3 (Algorithm . These experiments were conducted without mini-batching. PSAGE incurs nearly twice
the memory complexity of PGCN due to the transfer of two convolution matrices to GPU memory.

D Additional Experiments

D.1 Comparing performance improvements obtained when using jumping knowledge networks.

As the depth of GNNs increases, there is a tendency for the node representations to converge to a standard
value, a phenomenon called "over-smoothing" (Li et al), [2018). A widely adopted mitigation approach in

21

Under review as submission to TMLR

250001 _o_ psgc
—m— PSAGE
—4— PGCN
20000 |
M
= 15000
2
)
£ 10000
o
=
5000 -
0{ ® A—
@ T s e &
($§ QSP (s& 1§+ ep
<& © / @
e} Q o
)
Dataset

Figure 7: Memory consumption comparison of PSGC, PSAGE, and PGCN across various datasets.

—— Train Loss (PSGC with skip-connection)
L7 —— Train Loss (PSGC)

150
125

1.00

Loss

075

050

025

o 10 20
Epochs

Figure 8: Classification loss when using Jump-
ing knowledge network architecture on the PSGC
versus the PSGC on a 3-layer GNN on the Cora
dataset.

hv(final)

Layer Aggregation
hGleRr

Co X djg

Coxd,

h(2) € R

Co X d,

h(1) ER

Input feature of node v
Figure 9: Jumping Knowledge network architec-

ture for the PGNN method. N.A. denotes neigh-
bourhood aggregation.

22

Under review as submission to TMLR

Table 5: Comparison of node representations between the PGCN method and the Taylor series
approximation of the GCN update rule.

Dataset | Method | ¢!V Layer 1 eg?;ylor Layer 2

Taylor
Cora PGCN 1.0105 0.9829
Cora Taylor 1.0274 0.8807
Citeseer PGCN 1.0075 0.6747
Citeseer Taylor 1.1895 1.0110

the literature is to bypass intermediate layers and directly contribute to the future layers by combining the
Jumping Knowledge framework with models like GCN and GraphSAGE. The Jumping Knowledge (JK)
framework (Xu et all 2018 [Sun et al., [2024) aggregates features from multiple GNN layers, enhancing
expressiveness and robustness while addressing the issue of oversmoothing. In PGNN, as the depth of the
GNNs increases, there is an accumulation of error, as shown for the linearized GNN in Theorem [2] affecting
the downstream task. We use the skip-connections in the Jumping Knowledge framework as shown in Figure
[0 while presenting the classification loss for the convergence aspect in Figure Empirically, we find that
the loss in accuracy due to depth for the Cora dataset was compensated by introducing skip connections as
described in the Jumping Knowledge architecture in Figure 0] In the final layer of our model, we employed
a layer aggregation technique. The layer aggregation process utilizes the formula

Rt = (20 (0,2), BD P h)Ocar,

to effectively combine the information from the various layers. mgjqsses denotes the number of output cate-
gories specific to the dataset. Ogny € R%es s XNelasses depy = dy + do + d3.

Figure 10: A t-SNE plot of the computed feature representations of the pre-trained PGCN at the first layer
on the Cora dataset. Node colours denote classes.

D.2 Evaluating the impact of increasing sketch-ratios.

To evaluate the impact of sketch ratio (r = <2) on the accuracy of PGNN and Sketch-GNN under comparable
conditions, we conduct additional experiments on the Cora and Citeseer datasets using the GCN architecture

23

Under review as submission to TMLR

as the base. The results in Table [f] illustrate the performance of both methods across similar and increasing
sketch ratios. We observe that the accuracies of our PGNN method is better than sketch-GNN for the
Cora and the Citeseer dataset for similar sketch-ratios. The training loss comparison between PGCN and
GCN methods across three citation datasets is shown in Figure [f] These results show that increasing the
sketch-ratio generally improves convergence speed, particularly for the Cora and Citeseer datasets. Notably,
PGCN demonstrates significantly faster convergence compared to the baseline GCN. For Pubmed, PGCN
exhibits convergence behavior comparable to GCN at sketch-ratios of 0.01 and 0.02.

Table 6: Accuracy Comparison of Sketch-GNN and PGNN on Cora and Citeseer

Dataset Sketch Ratio Sketch-GNN Accuracy (% + Std) PGNN Accuracy (% =+ Std)

Cora 0.013 80.12 £+ 1.04 80.65 £ 0.68
Cora 0.026 80.35 £ 0.71 80.52 £ 1.24
Citeseer 0.009 70.91 £ 0.93 70.23 £+ 0.61
Citeseer 0.018 71.14 + 0.59 71.21 £ 1.13

D.3 Evaluating the Quality of Node Representations at each Layer.

In Table [5] we present a comparative analysis of node representations generated by the Taylor series ap-
proximation and the PGNN method with the GCN architecture. The results demonstrate that the PGNN
method achieves lower error rates across individual layers for the Citeseer dataset. For the Cora dataset,
PGNN exhibits reduced errors in the first layer, while the errors in the second layer are comparable to those
of the Taylor series approximation. The Taylor series approximation of the node representations and the

x® _xW
node representations obtained from the PGCN method is utilized to compute eglylor (W)

Taylor

F
For the first layer, we have:

X0 = (X ©eO).

The Taylor series approximations of the node representations at layer one and i—th column are given by
X#l)lleT(:, i) = CX©0O)(:) + CX©AO(:,7). The approximate node representations in the graph dimen-
sion n by the PGCN method in the first layer is given by

X0 = Mean { RO ((5*)7p120) } + [#lnxar

Mean refers to the element-wise mean over tensors.
We conducted additional experiments on Cora and Citeseer datasets to examine error accumulation for

XM _xO
IXZ—X"Ie - Results

deeper GNNs. In TableH, we present the relative error at layer I, defined as e = TXOTF

Table 7: Relative error (e¥)) between GCN and PGCN representations across different network depths on
Cora and Citeseer datasets, with and without jumping knowledge (JK) connections.

Layers (1) Cora Citeseer

without JK with JK | without JK with JK
1 0.6744 0.6744 0.7835 0.7835
2 1.1222 1.1222 1.0893 1.0893
3 1.1270 1.1270 1.3990 1.3990
4 1.9854 1.9854 1.7829 1.7829
5 1.7450 1.7450 1.4365 1.4365
6 1.2477 1.0898 2.4158 1.0585

show that the relative error fluctuates across layers for both datasets. The error values remain identical with
and without jumping knowledge connections for layers 1-5, as jumping knowledge only impacts the final

24

Under review as submission to TMLR

layer aggregation. At layer 6, jumping knowledge connections significantly reduce the error (from 1.2477 to
1.0898 for Cora, and from 2.4158 to 1.0585 for Citeseer), effectively mitigating error accumulation in deeper
architectures.

D.4 Comparison of spectral properties of the sketches of the convolution matrices

We say that a matrix B € R"*™ is an € approximation to matrix A € R"*" if their quadratic forms have
the form
2T Bz

€

<zTAz <ex"Bzx VzeR™

The above equivalence implies the spectrum similarity between the two matrices (Courant-Fisher Theorem
(1997)). We present comparisons of the eigenvalues and eigenvectors of the convolution matrix C' and
the equivalent convolution matrix Ce, = PC for the Cora dataset in Figures [[Ta] and [ITb} The eigenvalues
and eigenvectors of the matrix Ce, closely align with those of C'.

o 0.7
i 0.6
' 0.5
. 0.4
L 1 03 £
oo 02
i &
0.2 {1 : | 0.1
. 0.0
0.0 i
0 500 1000 1500 2000 2500 _0.1
i-

o
EY
e

Relative Change
°
&>

o
IS
-

Eigenvalue Index

(a) Eigenvalue comparison of matrices C' and Ceq for

b) Comparison of Eigenvectors of C' and C., for the
the Cora dataset. Here the relative change is given by (b) P & ¢

Cora dataset, with the ij-th element M;; quantified by

X (C)=Xi(Ceg)l : . . P 2
Vo) 221, X(C) denoting the i — th eigenvalue of $i;(C) — $i;(Ceq), where ¢:;(C) and ¢;; denote the ij-
th component of the eigenvectors for C' and Ceq, respec-
tively.

Figure 11: Comparison of eigenvalues and eigenvectors of C' and C¢, for the Cora dataset.

D.5 Additional Experiments: Link Prediction

Table 8: Link prediction performance comparison between PGNN and GCN across four citation datasets.
Best Test AUC (+ Std) scores for each dataset are highlighted in green.

Dataset GCN PGNN (Sketch Ratio)
ogbn-arxiv | 92.08 £ 1.38 | 94.74 4 0.78 (r = 0.10)
Pubmed 90.51 + 1.82 | 92.66 + 2.86 (r = 0.04)
Cora 78.24 £ 0.04 | 81.90 + 3.30 (r = 0.03)
Citeseer 77.40 + 2.32 | 86.48 + 1.92 (r = 0.03)

To further evaluate the effectiveness of our method beyond node classification, we conducted additional
experiments on the task of link prediction using the Cora, Citeseer, Pubmed, and ogbn-arxiv datasets.
The results below compare PGNN with the standard GCN baseline. We observe that PGNN outperforms
the GCN method on all the four datasets.

25

Under review as submission to TMLR

D.6 Convergence Analysis: Loss and Accuracy in Node Classification

The convergence analysis for PGCN and PSAGE architectures on the Reddit dataset is presented in Fig-
ures [12] and [I3] where we examine the evolution of training loss alongside training, validation, and test
accuracy metrics throughout the optimization process.

404 —— Train Loss 0704
15 4 085 4
060 o
3.0 4
0554
=
E 2.5 4 E
3
2 D30 4
ks
2.0 1
045 4
1.5 4 0,40 4
1.0 1 0331
= \aldaton Accuracy
—— Test Accuracy
T v T T v T 030 T v T v -
Q 200 200 E00 800 1000 o 200 400 EQ0 E00 10040
Epoch Epach

Figure 12: Training convergence behavior of PGCN method for node classification downstream task for
Reddit.

a0
—— Train Loss
251
08
20 |
2.5 4 0.6 4
-
8
EETY 3
]
5
1.5 4 o
1.0 4
0.2
9.5 1 — Validation Accuracy
— e —— Teit Accuracy
0 200 200] e 1000 o 200 400 600 800 1000
Epoch Epoch

Figure 13: Training convergence behavior of PSAGE method for node classification downstream task for
Reddit.

26

Under review as submission to TMLR

Dataset Cora Citeseer Pubmed ogbn-arxiv Reddit ogbn-products ogbn-papers100M
Task node node node node node node node
Setting transductive transductive transductive transductive transductive transductive transductive
Label single single single single single single single
Metric accuracy accuracy accuracy accuracy accuracy accuracy accuracy

of Nodes 2,708 3,327 19,717 169,343 232,965 2,449,029 111,059,956

of Edges 5,429 4,732 44,338 1,166,243 11,606,919 61,859,140 1,615,685,872
of Features 1,433 3,703 500 128 602 100 128

of Classes 7 6 3 40 41 47 172

Table 9: Detailed Overview of the graph datasets utilized in experiments.

E Implementation Details

We outline the various implementation details with the hyper-parameter setups for experiments in section
Bl

Datasets. Table [J] provides a comprehensive summary of the statistics for all datasets utilized in the
experiments. The datasets ogbn-arxiv and ogbn-products were sourced from the Open Graph Benchmark
(OGB)H The Reddit dataset, a more streamlined variant of the original dataset by Hamilton and colleagues,
was acquired through the PyTorch Geometric libraryﬂ For our research, we adhered to the conventional
dataset divisions established by OGB and PyTorch Geometric.

Code Frameworks. The codes used for experimentation are made available at El PGNN framework make
use of the PyTorch library and the PyTorch Sparse libraryﬂ For the computation of the sketch of the
input node feature matrix, the svd function from the Pytorch library is used. The Count-sketch technique
implementation is taken from the repositoryﬂ All of the above code repositories we used are licensed under
the MIT license.

E.1 Hyperparameters

We conducted a comprehensive hyperparameter search across all model architectures. Learning rates
were tuned in the range [0.001,0.05], and weight decay values in the range [107°,4 x 1072]. Network
architectures employed hidden dimensions of {128,150,192,256} with either two or three layers. Dropout
rates were varied across {0.0,0.2,0.5}, and normalization strategies included no normalization, BatchNorm,
or LayerNorm. For PGNN-specific parameters, both the order r and number of sketches k were set from
{2,3}. The regularization parameters «, ag, and 3y were tuned over {0, 0.5, 1}, while 3, 82 were constrained
to at most [0.1n].

Computational Infrastructures. The experiments demonstrate the scalability of our model across
different computational setups. Small-scale datasets, including Cora, Pubmed, and Citeseer, were processed
on an Nvidia A30 GPU with 24 GB memory, while larger datasets like ogbn-arxiv and Reddit were trained
and evaluated on an Nvidia A100 GPU with 80GB memory for faster training and inference. The system
was equipped with an Intel Xeon Platinum CPUs and 512GB of RAM, ensuring efficient execution of
large-scale graph neural network experiments..

Setup of PGNN: In our experimental setup, we have designated at most 1000 epochs for each
run, with 10 runs to ensure statistical significance, more details about hyperparameters for different experi-
ments are listed in Table [0} We keep the order ¢ and the number of sketches k equal. The sketch-ratio
of 0.018 used for the citeseer is the same as mentioned from the paper [Ding et al. (2022), sketch-ratio of
0.02 against 0.026 is used for the cora dataset to demonstrate the effectiveness of the proposed method.

Thttps://ogb.stanford.edu/

*https://github.com/pyg-team/pytorch_geometric

3https : //anonymous . 4open.science/r/Proper-Orthogonal-Decomposition-for-Scalable-training-of-GNNs-4148
4https://github.com/rustyls/pytorch_sparse

Shttps://github.com/johnding1996/Sketch-GNN-Sublinear

27

https://ogb.stanford.edu/
https://github.com/pyg-team/pytorch_geometric
https://anonymous.4open.science/r/Proper-Orthogonal-Decomposition-for-Scalable-training-of-GNNs-4148
https://github.com/rusty1s/pytorch_sparse
https://github.com/johnding1996/Sketch-GNN-Sublinear

Under review as submission to TMLR

Dataset Model Learning Rate Weight Decay Hidden Dim Num Layers Dropout Norm Type

PGCN 0.01 le-5 128 2 0.0 BatchNorm
oghn-arxiv PSAGE 0.01 le-5 128 2 0.2 BatchNorm
PGAT le-3 le-4 128 2 0.2 BatchNorm
PSGC 0.02 4e-5 128 2 0.0 None
PGCN 0.008 2e-5 128 2 0.0 None
Reddit PSAGE 0.008 2e-5 128 2 0.0 None
PGAT 0.001 le-5 128 2 0.0 LayerNorm
PSGC 0.008 2e-5 192 2 0.0 None
PGCN 0.01 2e-3 128 3 0.0 None
Cora PSAGE 0.05 le-4 256 2 0.5 None
PGAT 0.002 le-3 128 3 0.0 None
PSGC 0.01 le-3 128 2 0.0 None
PGCN 0.01 9e-4 128 2 0.0 None
Citeseer PSAGE 0.005 He-4 256 2 0.2 None
PGAT 0.001 le-4 128 2 0.0 None
PSGC 0.01 5e-4 128 2 0.0 None
PGCN 0.004 6e-3 150 2 0.2 None
Pubmed PSAGE 0.03 2e-4 150 2 0.5 None
PGAT 0.004 6e-3 150 2 0.2 None
PSGC 0.005 4e-2 128 2 0.2 None

Table 10: Hyperparameters for Different Models and Datasets

For the Pubmed dataset, we selected a lower sketch ratio of 0.01. This choice aligns with the general
principle that as graph size increases, the sketch ratio or the effective number of components for preserving
variance decreases. Extensive experimentation confirmed that a sketch ratio of 0.01 was sufficient to achieve
good classification accuracy. For PGAT, we employ 2 attention masks. The training times of PGNN were
not compared with the existing sketch-based method, Sketch-GNN (Ding et al., 2022), due to observed
discrepancies in node classification accuracy from the implementation available in the repository [5}

28

	Introduction
	Related work
	Preliminaries
	Count Sketch.
	Tensor Sketch.
	Locality Sensitive Hashing.
	Proper Orthogonal Decomposition.
	Unified Framework of GNNs.

	POD sketch based method on GNNs
	Approximate update rules with PGNN
	Challenges
	Error bound on the node representations at each layer l

	Algorithm

	Experiments.
	Performance evaluation of PGNN
	ogbn-papers100M: Paper Citation Network

	Conclusions
	Appendix
	Proof for Theorem 2
	Proof for Theorem 1

	Generalize to more GNNs
	Theoretical Guarantees for nonlinear GNN architectures.
	PGNN with SGC.
	PGNN with GCN.
	PGNN with SAGE.
	PGNN with GAT.

	Complexity analysis
	Experimental Evaluation of Memory Requirements for PGNN across architectures

	Additional Experiments
	Comparing performance improvements obtained when using jumping knowledge networks.
	Evaluating the impact of increasing sketch-ratios.
	Evaluating the Quality of Node Representations at each Layer.
	Comparison of spectral properties of the sketches of the convolution matrices
	Additional Experiments: Link Prediction
	Convergence Analysis: Loss and Accuracy in Node Classification

	Implementation Details
	Hyperparameters

