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Abstract

We prove a new asymptotic unequipartition property for the perplexity of long texts generated
by a language model and present supporting experimental evidence from open-source models.
Specifically we show that the logarithmic perplexity of any large text generated by a language
model must asymptotically converge to the average entropy of its token distributions. This
defines a “typical set” that all long synthetic texts generated by a language model must
belong to. We refine the concept of ”typical set” to include only grammatically correct
texts. We then show that this refined typical set is a vanishingly small subset of all possible
grammatically correct texts for a very general definition of grammar. This means that
language models are strongly constrained in the range of their possible behaviors and outputs.
We make no simplifying assumptions (such as stationarity) about the statistics of language
model outputs, and therefore our results are directly applicable to practical real-world models
without any approximations. We discuss possible applications of the typical set concept to
problems such as detecting synthetic texts and membership inference in training datasets.

1 Introduction and Background.

Consider a generative model, defined as an algorithm that takes a user input X and produces an output Y
that statistically resembles data from a natural source. A specific type of generative model is a large language
model (LLM) whose output Y is a body of text and the input is a text user prompt X. State-of-the-art LLMs
(Anthropic, 2024; OpenAI, 2024) are now able to produce detailed and information-rich text outputs such as
entire screenplays and book-length manuscripts from a short and simple user prompt. They can also pass the
Turing test (Pinar Saygin et al., 2000) i.e. imitate human-written text well enough to be convincing to human
observers. In this work, we argue that an LLM is strongly constrained by statistical laws. Specifically, we show
that the logarithmic perplexity of any large text produced by a language model must asymptotically converge
to the average entropy of its token distributions. This means that any language model is constrained to only
output text strings from a typical set, which we show, is an exponentially vanishing subset of all possible
grammatically correct strings. This involves a generalization of the well-known Asymptotic Equipartition
Theorem (AEP) (Cover & Thomas, 2005a) from information theory and refining it for language models to
account for the concept of grammatical correctness.

This work touches on ideas such as entropy, equipartition theorems and computational linguistics/natural
language processing (CL/NLP), each of which boast of a vast body of previous work. We now present a brief
literature survey to place our work in context.

1.1 Equipartition Theorems

The simplest version of the AEP states that a long sequence of independent and identically distributed (iid)
random symbols is likely to be a typical sequence (Csiszar, 1998) defined by the property that the empirical
distribution of the occurrence of different symbols within the sequence is very close to the distribution from
which the symbols were drawn. The AEP itself can be thought of as a consequence of the Law of Large
Numbers (LLN) (Idele, 2018) that asserts the convergence of a log-likelihood random variable to a limiting
“entropy rate” (Algoet & Cover, 1988).
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A weak AEP for iid sequences with a finite alphabet was originally introduced by Shannon (1948) followed
by strong versions for stationary, ergodic sequences by McMillan (1953) and Breiman (1957), extensions
to infinite alphabets by Chung (1961), and continuous-valued sequences in Barron (1985). Thus, the AEP
is also commonly referred to as the Shannon-McMillan-Breiman (SMB) Theorem Hamdan et al. (2008).
Generalizations of the SMB Theorem (Moy, 1961) in the form of ergodic theorems are now available for many
classes of stationary sequences (Pollicott & Yuri, 1998).

Extending the AEP for iid sequences to a non-stationary sequence of independent, but non-identically
distributed symbols is straightforward (Tang et al., 2024). AEPs for word-valued functions of stationary
sequences are considered in (Nishiara & Morita, 2000; Timo et al., 2010). However, beyond this, the literature
on the AEP for non-stationary sequences is much more limited. Closest to our work is the analysis in Yang &
Liu (2004) and Wang & Yang (2016) that consider a very general class of non-homogeneous Markov processes,
but assume the existence of a unique limiting distribution for the Markov process to establish a constant
entropy rate.

Our key point of departure is to not require equal partitions: without stationarity or similarly restrictive
assumptions on the statistics of the process, the likelihoods of long sequences do not all become asymptotically
equal. Crucially, we show that the the typical sets defined by the resulting Un-Equipartition Property still
retain certain essential properties that make the typical set concept so powerful for stationary processes.

1.2 Natural Language Processing

Perplexity, defined as an inverse likelihood function, is widely used as a performance metric for training
language models (Meister & Cotterell, 2021). It is closely related to the information-theoretic concepts
of surprisal (Levy, 2008) and entropy (Cover & Thomas, 2005b), and it also appears to capture linguistic
(Miaschi et al., 2021; Gamallo et al., 2017) and cognitive (Demberg & Keller, 2008; Cohen & Pakhomov,
2020) phenomena at least partially. Many “AI detection” tools are based on observed differences between the
perplexity of synthetic and natural text (Mitchell et al., 2023; Gehrmann et al., 2019).

Statistical analysis of languages in its modern form dates back to the work of (Shannon, 1951) on the entropy
of written English. These statistical ideas competed (Chomsky, 1959) with structural theories of language
(Chomsky, 2014) in the early days of modern linguistics. Early methods such as n-gram models (Manning
& Schütze, 1999) evolved into more mathematically sophisticated methods such as Hidden Markov Models
(HMMs) (Rabiner, 1989). The statistical approach has now become dominant after the recent introduction of
neural network architectures (Bengio et al., 2003), culminating in the development of powerful large language
models (LLMs) based on transformer networks (Vaswani et al., 2017).

1.3 Contribution: An Un-Equipartition Property for Unnatural Language

Our main contributions are (a) to formulate and provide theoretical and experimental justification for a
version of the AEP that applies to real-world practical LLMs without any approximations, and (b) use this
AEP to define a concept of typical set specifically adapted for language models. While our focus is on the
theoretical development, we also briefly discuss possible applications to practical problems such as AI text
detection and LLM dataset inference.

Unlike computational linguistics, we do not study natural language; instead our exclusive focus is on unnatural
language i.e. synthetic text created by LMMs. Natural languages are shaped by complex social, psychological
and biological processes and they can only ever be approximated by computational models. In contrast,
LLMs are machines whose internals, while complex, are in theory completely knowable.

Thus, it is possible for us to derive exact laws that govern the outputs of LLMs in a way that is not possible
to do for natural language. However, this requires us to be disciplined about not making any assumptions or
approximations about the statistics of LLM outputs. While we use well-known analysis and proof techniques
from information theory and statistics, the method of typical sets has not previously been applied to the
outputs of generative AI models to our knowledge.
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2 Definitions and Problem Statement

Let M be a generative model described by Y = m(X, W), where the output Y consisting of a (potentially
infinite) string of tokens Y = [Y1, Y2, . . . YN . . . ] is a deterministic function of user prompt X and a
pseudo-random sequence W. Each token is chosen from a finite set of tokens Yn ∈ Y. The model M can
produce a number of different output strings Y for the same user prompt X corresponding to different values
of the pseudo-random sequence W. This defines a probability distribution P (Y|X), or more formally, a
sequence of probability distributions P (YN |X) over YN ∈ YN where YN

.= [Y1, Y2, . . . YN ] is the substring
of Y consisting of the first N tokens. Practical implementations of LLMs specify the probability distribution
iteratively (Radford et al., 2018):

P (Y1, Y2|X) = P (Y1|X)P (Y2|Y1, X) (1)

and so on. Thus, the model M first draws a random value for the first token say Y1 = y1 by sampling from
the distribution P (Y1|X). Then the model determines a distribution for the second token as a function of the
initial prompt X and the randomly chosen first token y1. Thus, the second token is randomly sampled from
a distribution P (Y2|X, Y1 = y1) and so on. We can write

P (YN |X) = p1(Y1)p2(Y2) . . . pN (YN ), where pn(Yn) = P (Yn|Y1, Y2, Yn−1, X) (2)

Given a string Y, open-source LLMs can be programmed to print out the distributions pn(Yn) from which its
tokens were selected. Specifically, given a user prompt X and a string of tokens YN ≡ [Y1, Y2, . . . , YN ], it
is possible to get a complete listing of the distributions pn(Yn), n = 1 . . . N .

Remark. Equation (2) is simply an application of the Bayes rule of probability theory and it always holds for
any generative model regardless of whether the tokens Yn are sequentially generated. However, the conditional
distributions pn(y) are not in general easily accessible, so while (2) is true for all generative models, it may
only be useful for sequential models.

The perplexity perpM (YN ) .=
∏N

n=1 pn(Yn)− 1
N of a text string YN = [Y1, Y2, . . . YN ] for a model M is

defined as the per-token inverse likelihood of the string Y. It is usually more convenient to work with the
log-perplexity lM (YN ):

lM (YN ) .= log2 (perpM (YN )) ≡ − 1
N

N∑
n=1

log2(pn(Yn)) (3)

2.1 A Toy Problem

Let α(y), β(y) be two fixed probability distributions over the (discrete) set Y of tokens. Consider a toy
problem involving two language models A and B, that each generate a string of tokens Y = [Y1, Y2, . . . ]
where each token is generated iid from the distribution α(y) and β(y) respectively. The iid assumption implies
that the tokens Yn can be thought of as being generated by a stationary and ergodic random process1.

Consider a long string AN
.= [A1, A2, . . . , AN ], N ≫ 1 randomly generated from model A. Let pA(y)

denote the empirical distribution of y ∈ Y in the string AN :

pA(y) .= nA(y)
N

≡ 1
N

N∑
n=1

1(An ≡ y), ∀y ∈ Y (4)

where 1(.) denotes the indicator function and nA(y) is the number of occurrences of token y in the (long)
string AN . The log-perplexity of string AN for model A is:

lA(AN ) = − 1
N

N∑
n=1

log2(α(Yn)) ≡ −
∑
y∈Y

nA(y)
N

log2(α(y)) ≡ H(pA, α) (5)

1Strictly speaking, a stationary random process “starts" at n = −∞ rather than n = 1; here we ignore the tokens produced
by the assumed random process before n = 1.
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where H(γ1, γ2) .= −
∑

y∈Y γ1(y) log2(γ2(y)) is the cross-entropy between distributions γ1(y), γ2(y) over
y ∈ Y . It is well-known H(γ1, γ2) ≥ H(γ1) with equality when γ1 ≡ γ2, where H(γ) .= −

∑
y∈Y γ(y) log2(γ(y))

is the entropy of distribution γ. Thus we have from (5):
lA(AN ) ≡ H(pA, α) ≥ H(pA)with equality iff pA(y) ≡ α(y), ∀y ∈ Y (6)

The simplest version of the classical Asymptotic Equipartition Theorem (AEP) (Cover & Thomas, 2005a)
from information theory states that the log-perplexity of a long string AN of iid symbols is almost always
very close to the entropy H(α) of the distribution α(y) the symbols are drawn from.
Proposition 2.1. Simple AEP. For a long text string AN = [A1, A2, . . . , AN ] of iid tokens An drawn
from a distribution α(y), the log perplexity lA(AN ) as defined in (3) is close to the entropy of the distribution
H(α) of the distribution α(y) with high probability:

lim
N→∞

Pr[|lA(AN ) − H(α)| > ϵ] ≡ 0, ∀ϵ > 0 (7)

Proposition 2.1 can be thought of as a direct consequence of the (weak) Law of Large Numbers applied to
the random variable lM (AN ):

lM (AN ) → E [lM (AN )] ≡ H(α) (8)

From (5) and (6), we see that (8) itself is equivalent to pA(y) ≡ nA(y)
N → α(y), ∀y ∈ Y i.e. the empirical

distribution pA(y) for long strings A is very close to α(y) with high probability. Putting these observations
together we have:

lA(A) ≡ H(pA, α) → H(pA) ≤ H(pA, β) ≡ lB(A) (9)

Intuitively, (9) states that a long string A generated from model A is likely to have a lower perplexity
for model A than for any other model B. This means that a model trained to have low perplexity over a
set of reference texts will generate text strings that are statistically similar to the reference texts. This
is the theoretical justification for using perplexity as a loss function for training language models and it
is an excellent justification - provided only that we accept the Shannon model of language i.e. the idea
that languages can be reasonably modeled as a stochastic sequence of tokens (Jakobson, 1961). This same
reasoning also underlies popular tools for LLM-related applications as we discuss in Section 6.

2.2 A Modest Generalization

The simple AEP in Proposition 2.1 has been extended in various ways in the literature such as the following
version (see Tal et al. (2017), Appendix B.4), which we will make use of in the sequel.
Proposition 2.2. Generalized AEP. Consider a language model A’ that generates text string A′

N =
[A′

1, A′
2, . . . , A′

N ] where the tokens A′
n are drawn independently from a sequence of distributions αn(y), n =

1, 2, . . . . Assuming the entropies of distributions αn(y) are uniformly bounded i.e. H(αn(y)) < Hmax < ∞, ∀n,
the log perplexity lA′(A′

N ) of the string A′
N as defined in (3) is close to the average entropy of the distributions

αn(y), n = 1, 2, . . . , N with high probability:

lim
N→∞

Pr[|lA′(A′
N ) − HA′(N)| > ϵ] ≡ 0, ∀ϵ > 0, where HA′(N) ≡ 1

N

N∑
n=1

H(αn) (10)

The regularity condition that the entropies of αn(y) are uniformly bounded is trivially true if the token
dictionary Y is a finite set: H(p(y)) ≤ log2 |Y| for any distribution p(y) over y ∈ Y.

While Proposition 2.2 does not lend itself to an intuitive interpretation in terms of the empirical distribution
of the tokens A′

n, it too is a direct consequence of the Law of Large Numbers applied to the log-perplexity
random variable. Much of the analysis in Section 2.1 can be extended to generalized models like A′ in
Proposition 2.2 that allows each token A′

n to be drawn from different distributions αn(y). However, the tokens
in these models must be drawn from fixed distributions independent of past tokens. This is still quite trivial
compared to modern language models where the output tokens depend in highly complex and sophisticated
ways on past tokens.
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3 An Un-Equipartition Property for Perplexity

We now propose a generalization of the theory described in Section 2.1 to a more interesting class of models.
Consider a language model M and a random infinitely long text string Y generated by M, whose probabilities
for a given prompt X is described by (2). Specifically, given a model M and a string Y, (2) defines a sequence
of probability distributions pn(y) over the set of tokens y ∈ Y. We will assume that the prompt X is fixed
and omit it from our notation in the sequel.
Definition 3.1. The empirical entropy hM (YN ) of model M for string YN is defined as:

hM (YN ) .= 1
N

N∑
n=1

H(pn) (11)

where H(p) ≡ −
∑

y∈Y p(y) log2(p(y)) is the entropy of the distribution p(y) over y ∈ Y.

Note that we make no assumptions about the existence of an “entropy rate” limN→∞ hM (YN ) for the model
M . However, we can show that

E [lM (YN )] ≡ E [hM (YN )] ≡ 1
N

H (Pr(YN )) (12)

where H (Pr(YN )) is the entropy of the random text strings YN .
Definition 3.2. Let the log-deviation λ(p) of a probability distribution p(y) over y ∈ Y be defined as:

λ(p) .=
√

S(p) − (H(p))2, where S(p) .=
∑
y∈Y

p(y) (log2 p(y))2 (13)

Note that the entropy H(p) and log-deviation λ(p) are the mean and standard deviation of the log-likelihood
random variable lp(y) ≡ − log2 p(y) under distribution p(y).
Definition 3.3. The log-deviation λM (YN ) of a string YN for model M is defined as:

λM (YN ) .= 1
N

√√√√ N∑
n=1

λ2(pn) (14)

We can again interpret H(pn), λ(pn) as the conditional mean and standard deviation of − log2(Pr(Yn))
conditioned on YN−1. Clearly, if the log-deviations λ(pn) of the distributions pn(y) for a string Y are
uniformly upper-bounded, λM (YN ) asymptotically vanishes. We are now ready to state our main result.
Proposition 3.1. Un-Equipartition Property for Perplexity. For a long text string Y i.e. N ≫ 1
generated from a language model with a given prompt X, with high probability, the log perplexity lM (Y) is
close to the empirical entropy hM (Y). More precisely:

lim
N→∞

Pr[|lM (YN ) − hM (YN )| > ϵ] ≡ 0, ∀ϵ > 0 (15)

We want to argue that λM (YN ) is the standard deviation of lM (YN )−hM (YN ), and therefore asymptotically
vanishing λM (YN ) implies lM (YN ) → hM (YN ). This, however, is very wrong - for one thing λM (YN ) is
itself a random variable. In the sequel, we show an informal argument to carry through reasoning like the
above. But first we present a direct proof of Proposition 3.1.

3.1 Formal Proof: an LLN for LLMs

We will use a version of the Weak Law of Large Numbers that applies to sequences of random variables with
no restrictions on their dependence. Such a Law can be obtained using martingale difference ideas and an
elementary derivation is presented in Appendix A.
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Proof of Proposition 3.1. Consider the sequence of conditional likelihood random variables {ln} defined as:

ln
.= − log2 Pr (Yn|Yn−1) ≡ − log2 (pn(Yn)) (16)

We note that the random variables Zn
.= ln satisfy all of the conditions for Lemma A.2, if we impose the

restriction that they are strictly bounded i.e. |ln| < L, for some some finite L. This is equivalent to requiring
that all non-zero token probabilities pn(y) are above some lower bound e.g. pn(y) ≥ 10−10. In practice, this
is easily satisfied by any practical LLM. Then from Lemma A.2, we have for any ϵ > 0:

lim
N→∞

Pr
(∣∣∣∣∣ 1

N

N∑
n=1

(ln − H(pn))

∣∣∣∣∣ > ϵ

)
= 0 (17)

From the definition (16), we note that 1
N

∑N
n=1 ln ≡ lM (YN ), and likewise 1

N

∑N
n=1 H(pn) ≡ hM (YN ).

Combining these observations with (17) gives (15).

3.2 Informal Proof: Roads not Traveled

Y0

Y1 = 1

Y2 = 1

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 2

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 3

Y3 = 1 Y3 = 2 Y3 = 3

Y1 = 2

Y2 = 1

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 2

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 3

Y3 = 1 Y3 = 2 Y3 = 3

Y1 = 3

Y2 = 1

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 2

Y3 = 1 Y3 = 2 Y3 = 3

Y2 = 3

Y3 = 1 Y3 = 2 Y3 = 3

Figure 1: Probability tree for the first 3 tokens of a language model M that selects each token Yn from a
dictionary Y of three tokens. Also shown in red is the probability tree of an auxiliary model M ′

S for a string
S with S1 = 3, S2 = 1 and so on.

Consider a fixed string S. For this particular string S and model M, we have a fixed set of distributions
qn(y) .= Pr(Sn = y|Sn−1). Now define an auxiliary generative model M ′

S that generates a random string
Y′ .= [Y ′

1 , Y ′
2 , . . . , Y ′

N , . . . ] where the tokens Y ′
n are generated independently from the distributions qn(y). If

we represent a language model M as a probability tree, an auxiliary model M ′
S represents one specific subtree

corresponding to the string S that defines the model. This is illustrated in Fig. 1. The auxiliary model M ′
S is

much simpler than the general language model M, because its output tokens Y ′
n are generated independently

of other tokens. Our informal proof of Proposition 3.1 is based on the following idea: while calculating Pr(E)
for some event E, we can change any part of the probability tree that do not affect the event E (“the roads
not traveled”) to make our calculation easier e.g. by allowing us to work with an auxiliary language model
M ′

S which generates strings of independent tokens.

Informal Proof of Proposition 3.1. Assuming the tokens Yn are generated by the auxiliary model M ′
S (instead

of the original model M), the random variables lm, ln are independent and E [ln] ≡ H (qn). Equation (17)
then immediately follows from Proposition 2.2.

This informal method allows us to treat the martingale property that the formal proof relies on as a quasi-
independence condition to reason about the random variables ln intuitively. As an example, for the auxiliary
model M ′

S, from (13, 14), the variances of ln, lM (SN ) are respectively λ2(qn), λ2
M (SN ). We then have the

following simple bound on deviations using the Chebyshev’s Inequality Cohen (2015):

Pr (|lM (SN ) − hM (SN )| > αλM (SN )) ≤ 1
α2 , ∀α > 0 (18)
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3.3 Typical Sets

We can now formally define the typical set T n
M (ϵ) ⊂ Yn of typical strings Yn for a model M with ϵ > 0:

T n
M (ϵ) .= {Yn : |lM (Yn) − hM (Yn)| < ϵ} ≡

{
Yn :

∣∣∣∣hM (Yn) + 1
n

log2 (Pr(Yn))
∣∣∣∣ < ϵ

}
(19)

Proposition 3.1 asserts that with high probability a stochastic model M is constrained to only output typical
strings from this set T n

M (ϵ) for any ϵ > 0 if we consider sufficiently long strings. In practical applications
of the typical set concept, we almost invariably find that the typical set is vanishingly small. This is what
makes the typical set concept so powerful: it identifies the small number of outcomes that actually matter, so
we can focus our resources on them efficiently.

Unlike the classical AEP for stationary, ergodic processes, the elements of the typical set in (19) do not all
have nearly equal perplexities. However, we will show that here too, the typical set must be vanishingly small
under mild assumptions. Since the vast majority of token strings represent gibberish text, this result will be
considerably strengthened if we limit ourselves only to grammatically correct texts. This requires additional
analytical machinery which we now introduce.

4 The Grammar Police

Consider the augmented language model G = (M, D) shown in Fig. 2, where the output of a model M is
screened by a grammar-checking device D; if the model’s output Y is not grammatically correct, then it is
prompted again to produce a new random string Y until it generates a grammatically correct output. The
grammar-checking device D serves as a functional definition of the concept of “grammatically correct”.

Let G(n) denote the set of grammatically correct strings Yn of length n and g(n) .= 1
n log2 |G(n)|. Since most

token strings are likely to be ungrammatical, we expect |G(n)| ≪ |Y|n or g(n) ≪ log2 |Y|. However, we also
want the grammar to be rich enough to model the capabilities of natural language e.g. the ability to generate
sentences of unlimited length and complexity. Formally we require that g(n) ≥ gmin > 0. The construction
in Fig. 2 implicitly assumes that the grammar is decidable. Together, these requirements mean that the
device D describes a “recursive language” (Roeper & Snyder, 2008) i.e. a language in Type 1 of the Chomsky
hierarchy - the same category natural languages are believed to belong to (Chomsky, 2014).

Our analysis below is very general and requires very little beyond this about the device D, which means
we can define “grammatically correct” to be essentially anything we want. However, we do require D to be
deterministic, which means our analysis does not allow D to be another stochastic LLM.

4.1 Refined Typical Sets for Language Models

We can now define the typical set of the augmented model G ≡ (M, D) as:

T n
M,D(ϵ) .= G(n) ∩ T n

M (ϵ) ≡ {Yn ∈ G(n) : |lM (Yn) − hM (Yn)| < ϵ} (20)

Let pG(n) .= Pr(Yn ∈ G(n)) be the probability that model M generates a grammatically correct string
Yn ∈ G(n). Assuming pG(n) ≥ pG > 0 i.e. the model generates grammatical strings of any length with a
non-zero probability, the augmented model G will almost certainly terminate in a finite number of steps
and the generated string will be in the typical set T n

M,D(ϵ) with high probability. The probability that the
augmented model G generates any grammatical string Yn ∈ G(n) can be written as:

Pr
(
Yn

∣∣G(n)
)

=
Pr
(
Yn

)
pG(n) ≡ 2−nlM (Yn)

pG(n) (21)

Remark. Note that we can also define a typical set T n
G (ϵ) of the augmented model G directly following (19).

The two sets T n
M,D(ϵ), T n

G (ϵ) are not identical, but they are both asymptotically almost certain. However,
our interest is in model M and the augmented model G is merely an analytical device to reason about M , so
we focus on T n

M,D(ϵ) here.
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M
X

D
Y 👍 Y

Try Again 👎

Figure 2: Language Model Augmented with a Grammar Checking Device.

Analogous to (12), we can use (21) to relate the perplexity to the entropy of the augmented model G:

1
n

H
(
Pr(Yn)

∣∣G(n)
)

≡ log2 pG(n)
n

+ E
[
lM (Yn)

∣∣G(n)
]

≤ g(n) (22)

where the last inequality holds with equality for the unique entropy-maximizing distribution that selects
all grammatical texts with equal probability: Pr(Yn) ≡ 1

|G(n)| , ∀Yn ∈ G(n) (for which pG(n) = 1). This,
however, imposes no restriction on the empirical entropy hM (Yn) of individual strings Yn. We will now show
that we can safely ignore high entropy strings.
Proposition 4.1. Entropies cannot be too large. The empirical entropy hM (Yn) of any long string Yn

generated by the augmented model G is greater than g(n) ≡ 1
n log2 |G(n)| with vanishing probability:

lim
n→∞

Pr
(
hM (Yn) > g(n) + ϵ

∣∣G(n)
)

= 0, ∀ϵ > 0 (23)

Proof. First we note that for sufficiently large n, we must have with high probability |lM (Yn) − hM (Yn)| < ϵ
2 .

Then we have:

Pr
(
hM (Yn) > g(n) + ϵ

∣∣G(n)
)

≤ 1
pG(n) Pr

(
E1(n)

)
≤ 1

pG
Pr
(
E1(n)

)
where E1(n) .=

{
Yn ∈ G(n) : lM (Yn) > g(n) + ϵ

2
}

. We can then bound this probability as:

Pr(E1(n)) =
∑

Yn∈E1(n)

Pr(Yn) ≤
∑

Yn∈E1(n)

2−n(g(n)+ ϵ
2 ) ≡ |E1(n)| 2−n(g(n)+ ϵ

2 ) < |G(n)| 2−n(g(n)+ ϵ
2 ) ≡ 2− nϵ

2

Thus we have shown that Pr
(
hM (Yn) > g(n) + ϵ

∣∣G(n)
)

< 1
pG

2− nϵ
2 → 0 as n → ∞.

Proposition 4.1 allows us to purge high entropy strings out of the typical set while retaining all of its
probability mass. Specifically, we define the purged typical set Pn

M,D(ϵ) as:

Pn
M,D(ϵ) .= G(n) ∩ T n

M (ϵ) ∩ Ec
1(n), where lim

n→∞
Pr
G

(
Pn

M,D(ϵ)
)

= 1, ∀ϵ > 0 (24)

4.2 The Essential Smallness of Typical Sets

For an entropy-maximizing model that chooses all grammatical strings with equal probability, the typical set
includes all grammatical strings Pn

M,D(ϵ) ≡ G(n). We now formalize the assumption that practical LLMs do
not do this, and for all such models, we will show that the typical set is a vanishingly small subset of G(n).
Assumption 4.1. Practical LLMs are not entropy-maximizing. The empirical entropy hM (Yn) is
strictly smaller than g(n) for at least some fraction of typical strings. Specifically, there is an entropy gap
∆g > 0 such that hM (Yn) ≤ g(n) − ∆g for at least some non-zero fraction ρ > 0 of typical strings Yn:

|E2(n)| ≥ ρ
∣∣Pn

M,D

∣∣ , where E2(n) .=
{

Yn ∈ Pn
M,D : hM (Yn) ≤ g(n) − ∆g

}
(25)

Proposition 4.2. Typical sets are small. Under Assumption 4.1, the size of the pruned typical set Pn
M,D

is an exponentially vanishing fraction of all grammatically correct sequences G(n).
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Proof. From Proposition 3.1, for sufficiently large n, we have |lG(Yn)−hG(Yn)| ≤ ∆g
2 . Using this observation

for Yn ∈ E2(n), we have lG(Yn) ≤ g(n) − ∆g
2 . Then we have:

1 ≥ Pr(E2(n)) ≡
∑

Yn∈E2(n)

2−nlG(Yn) ≥
∑

Yn∈E2(n)

2−n(g(n)− ∆g
2 ) ≡ |E2(n)|

|G(n)| 2
n∆g

2 ≥
ρ|Pn

M,D|
|G(n)| 2

n∆g
2 (26)

Thus, we have shown |Pn
M,D| ≤ |G(n)|2−n

(
∆g

2 − log2(ρ)
n

)
.

The obverse of Proposition 4.2 is that almost all grammatically correct strings are non-typical for a given
language model M. A string can be non-typical in two different ways depending on whether its perplexity is
abnormally high (“under-typical") or abnormally low (“over-typical"). Formally, we define the set Vn

M (ϵ) of
over-typical strings of length n for a model M as:

Vn
M (ϵ) .= {Yn ∈ G(n) : lM (Yn) ≤ hM (Yn) − ϵ < g(n) − ϵ} (27)

Proposition 4.3. Over-Typical sets are smaller still. The size of the over-typical set Vn
M (ϵ) is an

exponentially vanishing fraction of all grammatically correct sequences.

Proof. The argument is similar to the proof of Proposition 4.2:

1 ≥ Pr (Yn ∈ Vn
M (ϵ)) ≡

∑
Yn∈Vn

M
(ϵ)

2−nlM (Yn) ≥ |Vn
M (ϵ)| 2−n(g(n)−ϵ) ≡ |Vn

M (ϵ)|
|G(n)| 2nϵ (28)

Thus we have |Vn
M (ϵ)| ≤ |G(n)| 2−nϵ which proves the result.

For Assumption 4.1 to be violated, we need the perplexities of almost all typical strings to be almost equal;
conversely, any model that chooses some strings with higher probabilities than others must satisfy Assumption
4.1 and therefore Proposition 4.2. Together with Proposition 4.3, this means that almost all grammatical
strings are undertypical for any practical LLM, thus providing a rigorous justification for the intuition of (9).

5 Experiments with Open-Source Models

We performed a series of experiments to verify the ideas described in Sections 3 and 4. The basic idea is to
use a local instance of a pre-trained open-source model to evaluate the empirical entropy of a given string
using the model’s conditional probability distributions and compare the result with the log-perplexity of the
string again calculated using the model’s probability distributions. We ran experiments on the smaller GPT-2
model (Radford et al., 2019) as well as the more recent, larger and more capable Llama 3.1 8B (Touvron
et al., 2023) model.

5.1 Perplexity of Self-Generated Strings

Our first set of experiments consisted of repeatedly generating a long text string from a model (GPT-2 or
Llama 3.1 8B) and then evaluating its log-perplexity, empirical entropy and log-deviations for the same model.

We initialized the prompt string and the seed of random number generator with fixed values to allow for later
reproduction. We then used top-k sampling with k = 100 to generate the probability distribution for the
next token. We normalized the probabilities of the top-k tokens to sum to unity. We then created and saved
a table consisting of token ID, token string and selection probability of each of the top k tokens. Finally, a
random next token is chosen by sampling from the normalized distribution, and the new token is appended
to the prompt to repeat the process for Nmax total tokens. We want the number of tokens Nmax to be large
enough to observe the asymptotic behavior of the perplexity of the generated string.

The random token Yn chosen at each step along with the probability distribution pn(y) from which they were
chosen were saved into a json file for later processing. We ran this experiment many times for different seed
values for the random number generator, different choices of sampling distributions and initial prompts.

9
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(a) GPT-2, Nmax = 512. (b) Llama 3.1 8B, Nmax = 1024.

(c) Llama 3.1 8B, Nmax = 10240. (d) Llama 3.1 8B, Nmax = 10240.

Figure 3: Log-perplexity & empirical entropy for GPT-2 or Llama 3.1, self-generated text, top-100 sampling.

For each generated string, we can then test our claim in Proposition 3.1. Specifically, for each token
N ∈ 1 . . . Nmax we calculated the log-perplexity lM (YN ), empirical entropy hM (YN ) and the log-deviation
λM (YN ) of the substring YN consisting of the first N tokens of the generated string.

5.2 Perplexity of Externally Generated Strings

We also used a slightly modified version of the procedure described in Section 5.1 to calculate the log-perplexity
and empirical entropy of an arbitrary string (that was not generated by the model itself) on the GPT-2 and
Llama 3.1 8B models. We first choose a text string that we wish to analyze. We fix an initial fragment of the
string as our prompt X. We tokenize the remaining portion of the string excluding the prompt using the
model’s tokenizer. Let Yn, n = 1 . . . Nmax denote the resulting sequence of tokens.

Stating with n = 1, we list the probability distribution pn(y) of the next token Yn for the model using
top-k with k = 100 sampling for the n’th token. We can then calculate the empirical entropy hM (YN ) and
log-deviation λM (YN ) as in Section 5.1. However, to calculate the log-perplexity lM (YN ), we also need the
probability that our model will output the actual next token Yn from the string Y which may not be included
in the list of top-k tokens2. When this happens, we replaced the lowest probability entry in the list of top-k
tokens with the actual next token from our string along with its probability.

The normalized probability of each of the top-k tokens along with their token-ID and token strings, as well
as the probability and ID of the actual next token are saved in a json file. This json file is then processed
in exactly the same way as in Section 5.1 to compute lM (YN ), hM (YN ) and λM (YN ) of the sub-strings
YN , N = 1 . . . Nmax for the GPT-2 or Llama 3.1 8B model.

5.3 Results and Discussion

Figure 3 shows the log-perplexity and empirical entropy for sub-strings YN for the GPT-2 or Llama 3.1 8B
model as a function of N for several text strings generated by the same model. The plots also shows the
range hM (YN ) ± λM (YN ) and hM (YN ) ± 2λN (YN ). We see that the log-perplexity lM (YN ) stays within
the range hM (YN ) ± 2λM (YN ) consistently in all cases. The asymptotic convergence is more clearly seen in

2Our choice of top-k sampling is a compromise. The number of tokens in GPT-2 or Llama is quite large (|T | ≈ 40, 000). If we
exhaustively list the full probability distribution of all tokens, the experiment becomes very computationally expensive and slow.
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(a) Human writing. (b) Text from ChatGPT o1 pro.

Figure 4: Log-perplexity and empirical entropy for Llama 3.1 8B of non-Llama-generated strings Y.

the long strings from the Llama 3.1 8B model3 in Fig. 3c, 3d . We find that very long synthetic texts such as
those in Fig. 3c, 3d can be ungrammatical and generally of poor quality, as reported elsewhere Holtzman
et al. (2020). However, Proposition 3.1 holds regardless of the quality of the text as seen in Fig. 3.

Figure 4 shows the log-perplexity and empirical entropy for the Llama 3.1 8B model for two long, non-Llama
generated strings. The text used in Fig. 4a is an excerpt from a recent article Pelly (2025) in Harper’s
Magazine, a respected literary publication. The string used in Fig. 4b was generated by ChatGPT o1
Pro OpenAI (2024).

We see from Fig. 4a and Fig. 4b that the log-perplexity lM (YN ) for Llama 3.1 8B is several standard
deviations λM (YN ) larger than the empirical entropy hM (YN ) showing that the corresponding strings
are clearly under-typical for the Llama 3.1 8B model. While this non-convergence is not required by our
theory - we have not considered whether the converse to Proposition 3.1 is true - it is strongly suggested by
Propositions 4.2 and 4.3 if we assume that the strings in Fig. 4 are randomly sampled from the set of all
grammatically correct texts.

5.4 More Catholic than the Pope

This brings us to the remarkable plots in Fig. 5 which shows the log-perplexity of excerpts from classic
texts for Llama 3.1 8B, specifically from Alice in Wonderland and The Great Gatsby in Figs. 5a and 5b
respectively. The average entropy for the token distributions in Fig. 5a is an astonishingly small 0.11 bits,
which means that the model on average assigns a very high probability (∼ 99%) to the precise sequence of
tokens from the excerpt for its predicted next tokens. In other words, this excerpt has been memorized by the
Llama 3.1 8B model in the sense of eidetic memorization Carlini et al. (2021): with zero temperature, it will
output this text verbatim. The same observation also applies to Fig. 5b.

We also see from both plots that the log-perplexity is several standard deviations below the empirical entropy
making the excerpts slightly, but unambiguously, over-typical for the Llama-8B model: the model judges
these texts to be more perfect than its own creations! From Proposition 4.3, we can conclude that these
excerpts are among the small number of very special strings to be so memorized by the model. Clearly, these
texts were part of the training set of the Llama-8B model and they were esteemed highly by its cost function.

Additional plots and more details about these experiments are presented in Appendix B.1.

6 Practical applications: the capybara problem

A simple and direct application of the ideas in this work is for testing whether a given piece of text has
“abnormally” high or low perplexity for a language model. Such a test is relevant to many important practical
problems. Low perplexity is commonly used as one marker of synthetic text in AI text detection tools (Wu
et al., 2025) by testing lM (Yn)<

>lth against a threshold lth. However, it turns out that choosing a suitable
classification threshold lth is difficult - the so-called “capybara problem” (Hans et al., 2024).

3The GPT-2 model cannot generate similarly long texts.
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(a) Alice in Wonderland excerpt. (b) The Great Gatsby excerpt.

Figure 5: Log-perplexity and empirical entropy for Llama 3.1 8B of excerpts from literary classics.

Our theory shows a principled way to do this: with lth = hM (Yn) + 3λM (Yn), Fig. 3 shows that we can
accurately distinguish between synthetic text generated by Llama 3.1 8B and non-Llama text such as in Fig.
4 even with relatively short strings of 1000 tokens. The key insight is to choose variable rather than fixed
thresholds, i.e. different lth for different strings Yn.

Our theory can also provide performance guarantees: e.g. a simple lower-bound on the false negative rate
(i.e. failing to detect a Llama-generated string) can be obtained from (18). Similar comments apply to the
dataset inference problem (Maini et al., 2024): while it is well-known (Carlini et al., 2021) that text strings
memorized by an LLM have low perplexity, our theory allows us to rigorously derive threshold values and
performance guarantees. Extrapolating from Fig. 5, we posit that if a long excerpt from a human-written
book is over-typical for a language model, it is a near-statistical certainty that the book was part of the training
data set for that model.

7 Conclusions

We proposed an asymptotic property that must be satisfied by the perplexity of any long string generated by
a language model and provided theoretical and experimental arguments in support of the property. We used
this property to extend the information theoretic concept of typical set to language models. An important
open problem is to apply these theoretical concepts to practical problems such as AI text detection and
dataset inference. Proposition 4.2 leads naturally to the question of how much do the typical sets of different
models overlap. The theory presented in this paper is neutral on this question which must be answered
empirically and both possible answers have interesting implications. No overlap between typical sets means
that each model can be associated with a unique statistical signature. On the other hand, independently
trained models converging on a common set of typical strings, would be a notable linguistic phenomenon,
though it is hard to speculate on what this might mean. The AEP is also just one example of the broader
observation that generative AI models are stochastic machines subject to statistical laws and the discovery of
other statistical regularities in the outputs of generative models is an important topic for future work.
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A A Generalized Law of Large Numbers for Random Variables with Arbitrary
Dependence

Consider a infinitely long string Y = [Y1 Y2 . . . Yn . . . ] consisting of a sequence of symbols Yn ∈ Y generated
stochastically from a finite dictionary Y. We will denote the substring consisting of the first N symbols as
YN ≡ [Y1 Y2 . . . YN ] and the joint distribution of the symbols P (YN ). We make no assumptions about the
distribution P (YN ) from which the symbols Yn are generated. In particular, we do not assume that the
symbols are independent or weakly dependent even asymptotically. We also do not assume stationarity i.e.
the marginal distributions of symbols Yn and Ym can be completely different. We also do not assume any
Markovian or conditional independence properties.

A.1 Conditional Means and Sample Means for Sequences of Dependent Random Variables

Consider a sequence of random variables Z = [Z1 Z2 . . . Zn . . . ] whose n’th element Zn is a function of the
first n symbols Y1, Y2, . . . , Yn i.e. Zn

.= gn(Yn) and gn : Yn → R are functions that we will assume to be
uniformly bounded i.e. |gn(Yn)| ≤ G < ∞, ∀n ∈ Z+, Yn ∈ Yn.

We define the conditional mean and conditional variance of the random variables Zn:

µ(Y)
n

.=
∑
y∈Y

p(Y)
n (y)gn ([Yn−1 y]) ≡ E [Zn|Yn−1] (29)

V (Y)
n

.=
∑
y∈Y

p(Y)
n (y)

(
gn ([Yn−1 y]) − µ(Y)

n

)2
≡ E

[
Z2

n|Yn−1
]

−
(

µ(Y)
n

)2
(30)

where the distribution p
(Y)
n (y) .= Pr(Yn = y|Yn−1). Since the random variables Zn are discrete-valued and

bounded, they have bounded moments for any distribution:

|µ(Y)
n | ≤ G, V (Y)

n ≤ G2 (31)

A more formal statement. Let Fn be the σ-algebra defined by Yn ≡ [Y1 Y2 . . . Yn] i.e. Fn is a
collection that includes all (mathematically reasonable) events defined on the first n symbols. Then the
random variables Zn as we have defined them are defined by the condition that Zm is Fm-measurable, and
µ

(Y)
m ≡ E

[
Zm

∣∣Fm−1
]
.

We need some intermediate results before presenting our main result. First, we define the partial sums of the
sequence Zn and conditional means:

Sn
.=

n∑
m=1

Zm, µ
(Y)
Sn

.=
n∑

m=1
µ(Y)

m (32)

Clearly, E [Zn] ≡ E
[
µ

(Y)
n

]
and E [Sn] ≡ E

[
µ

(Y)
Sn

]
. The key idea is that the sequence Zm −µ

(Y)
m is a martingale

difference sequence, and Sn − µ
(Y)
Sn

is a martingale for any arbitrary distribution of the Zm’s.

Lemma A.1. The variance of the zero-mean random variable Sn−µ
(Y)
Sn

can be written as sums of contributions
from each of the Zm’s. Specifically, we have:

VSn

.= E
[(

Sn − µ
(Y)
Sn

)2
]

=
n∑

m=1
E
[
V (Y)

m

]
(33)

Proof. We will use the method of induction to prove (33). For n = 1, (33) holds trivially. Now, let’s assume
(33) holds for n = l i.e. assume that:

VSl
≡

l∑
m=1

E
[
V (Y)

m

]
(34)
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Now consider Sl+1 ≡ Sl + Zl+1. Its variance can be written as:

VSl+1 = E
[(

Sl + Zl+1 − µ
(Y)
Sl

− µ
(Y)
l+1

)2
]

(35)

= VSl
+ E

[
V

(Y)
l+1

]
− 2 E

[(
Sl − µ

(Y)
Sl

)(
Zl+1 − µ

(Y)
l+1

)]
(36)

We will now show that the last term in (36) is zero. We apply the law of iterated expectations to write:

E
[(

Sl − µ
(Y)
Sl

)(
Zl+1 − µ

(Y)
l+1

)]
= E

Yl

[
E
[(

Sl − µ
(Y)
Sl

)(
Zl+1 − µ

(Y)
l+1

) ∣∣Yl

]]
(37)

= E
Yl

[(
Sl − µ

(Y)
Sl

)
E
[(

Zl+1 − µ
(Y)
l+1

) ∣∣Yl

]]
≡ 0 (38)

where we used the fact that Sl − µ
(Y)
Sl

is a deterministic function of Yl and µ
(Y)
l+1 ≡ E [Zl+1|Yl].

Remark. An alternative way to arrive at (38) is to treat µ
(Y)
l+1 ≡ E

[
Zl+1

∣∣Yl

]
as an estimate of Zl+1 given

Yl, and then use the Orthogonality Principle to argue that the estimation error
(

Zl+1 − µ
(Y)
l+1

)
must be

uncorrelated with any function of Yl. More formally,
(

Sl − µ
(Y)
Sl

)
is Fl-measurable and is therefore orthogonal

to (Zl+1 − E [Zl+1|Fl]).

Using (38), we can now simplify (36) to:

VSl+1 = VSl
+ E

[
V

(Y)
l+1

]
≡

l+1∑
m=1

E
[
V (Y)

m

]
(39)

where we used the induction assumption (34). We have shown that if (33) holds for n = l, then (33) must
also hold for n = l + 1, thus completing the induction.

Lemma A.2. The sequence 1
n

(
Sn − µ

(Y)
Sn

)
converges to zero in probability:

lim
n→∞

Pr
(

1
n

∣∣∣Sn − µ
(Y)
Sn

∣∣∣ > ϵ

)
= 0, ∀ϵ > 0 (40)

Proof. Using Lemma A.1, we can write:

VSn
=

n∑
m=1

E
[
V (Y)

m

]
≤ nG2 (41)

using the simple bounds in (31). The variance of 1
n

(
Sn − µ

(Y)
Sn

)
is simply 1

n2 VSn ≤ G2

n → 0 as n → ∞.
Equation (40) now follows immediately using the Chebyshev Inequality (Cohen, 2015).

Lemma A.2 states that the sample means of the two random sequences {Zn} and {µ
(Y)
n } must be close to

each other asymptotically. Since we have made very few assumptions about the random variables involved, we
cannot assume that either of the sequences {Zn} or {µ

(Y)
n } themselves converge in any sense to an asymptotic

limit. Neither can we assume that their sample means separately converge to a limit.

With an additional assumption stating the existence of one such limit, we can establish a Weak Law of Large
Numbers generalized to its most extreme i.e. a statement that the sample mean of a sequence of random
variables {Zn} with arbitrary dependence converges asymptotically to a suitably defined average quantity in
probability.
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Proposition A.1. A Weak Law of Large Numbers. If the average of the conditional means converges
to a limit i.e. µ(Y) ≡ lim

n→∞
1
n

n∑
m=1

µ
(Y)
m exists, then the sequence 1

n Sn converges in probability to µ(Y):

1
n

n∑
m=1

Zn
→
p µ(Y) or lim

n→∞
Pr
(∣∣∣∣ 1nSn − µ(Y)

∣∣∣∣ > ϵ

)
= 0, ∀ϵ > 0 (42)

Proof. Combining Lemma A.2 with the observation 1
n µ

(Y)
Sn

→ µ(Y) completes the proof.
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B Supplemental Material

B.1 Additional Experimental Context and Results

In this work, all experiments were ran on a high-performance computing server running Linux (Ubuntu).
AMD EPYC 7413 24-Core Processor, 48 logical cores, 96 GB RAM, four NVIDIA A100-SXM4-80GB GPUs.
On this setup, each run of a text generation (i.e., running GPT-2 to generate Nmax = 512 tokens, Llama-8B
to generate Nmax = 1024 tokens and Nmax = 10240 tokens, their distributions, etc.), file I/O, data analysis
and plotting takes several seconds to minutes, with each experiment taking about 90 minutes to run in the
case of 10,240 steps. We were able to run a few hundred of these experiments for this paper from which
selected examples are presented in Section 5.3.

Figure 6 shows additional results similar to Fig. 3 where we naively varied the seed value of the random number
generator from 209 − 214 for Llama-8B. We present these to show that Fig. 3’s results are representative of
the general case and were not cherry-picked. In all cases, K = 100.

(a) Seed=209. (b) Seed=210.

(c) Seed=211. (d) Seed=212.

(e) Seed=213. (f) Seed=214.

Figure 6: Log-perplexity and empirical entropy for Llama 3.1 of strings generated by the same model with
top-100 sampling.
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