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Abstract

The integration and transfer of information from multiple sources to multiple tar-
gets is a core motive of neural systems. The emerging field of partial information
decomposition (PID) provides a novel information-theoretic lens into these mecha-
nisms by identifying synergistic, redundant, and unique contributions to the mutual
information between one and several variables. While many works have studied
aspects of PID for Gaussian and discrete distributions, the case of general contin-
uous distributions is still uncharted territory. In this work we present a method
for estimating the unique information in continuous distributions, for the case of
one versus two variables. Our method solves the associated optimization problem
over the space of distributions with fixed bivariate marginals by combining copula
decompositions and techniques developed to optimize variational autoencoders.
We obtain excellent agreement with known analytic results for Gaussians, and illus-
trate the power of our new approach in several brain-inspired neural models. Our
method is capable of recovering the effective connectivity of a chaotic network of
rate neurons, and uncovers a complex trade-off between redundancy, synergy and
unique information in recurrent networks trained to solve a generalized XOR task.

1 Introduction and background

In neural systems, often multiple neurons are driven by one external event or stimulus; conversely
multiple neural inputs can converge onto a single neuron. A natural question in both cases is how
multiple variables hold information about the singleton variable. In their seminal work [1], Williams
and Beer proposed an axiomatic extension of classic information theory to decompose the mutual
information between multiple source variables and a single target variable in a meaningful way. For
the case of two sources X1, X2, their partial information decomposition (PID) amounts to expressing
the mutual information of X1, X2 with a target Y as a sum of four non-negative terms,

I(Y : (X1, X2)) = U(Y :X1\X2) + U(Y :X2\X1) +R(Y : (X1, X2)) + S(Y : (X1, X2)) , (1.1)

corresponding to unique (U1, U2), redundant (R) and synergistic (S) contributions, respectively.
These terms should also obey the consistency equations

I(Y :X1) = R(Y : (X1, X2)) + U(Y :X1\X2) , (1.2)
I(Y :X2) = R(Y : (X1, X2)) + U(Y :X2\X1) . (1.3)

The PID has proved useful in understanding information processing by distributed systems in a
diverse array of fields including machine learning [2, 3], earth science [4] and cellular automata [5],
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and particularly in neuroscience [6–10], where notions of synergy and redundancy, traditionally
considered mutually exclusive and distinguished by the sign of

∆ = I(Y : (X1, X2))− I(Y :X1)− I(Y :X2) ,

= S(Y : (X1, X2))−R(Y : (X1, X2)) , (1.4)
have long played a central role in the quest to understand how neural circuits integrate information
from multiple sources [11–14]. The novelty of the PID framework here is in separating the measures
of synergy and redundancy in (1.4).

The above abstract formulation of PID provides three equations for four unknowns, and only becomes
operational once one of U1, U2, R, or S is defined. This has been done in [15] via a definition of the
unique information:

Definition 1 (BROJA [15]). Given three random variables (Y,X1, X2) with joint probability den-
sity p(y, x1, x2), the unique information U1 of X1 with respect to Y is

U(Y :X1\X2) = min
q∈Q

Iq(Y :X1|X2) , (1.5)

= min
q∈Q

∫
dydx1dx2 q(y, x1, x2) log

(
q(y, x1|x2)

q(y|x2)q(x1|x2)

)
, (1.6)

where
Q = {q(y, x1, x2) | q(y, xi) = p(y, xi), i = 1, 2} . (1.7)

In words, we minimize the conditional mutual information I(Y :X1|X2) over the space of density
functions that preserve the marginal densities p(y, x1) and p(y, x2). The above definition implies,
along with (1.2)-(1.3), that the unique and redundant information only depend on the marginals
p(y, x1), p(y, x2), and that the synergy can only be estimated from the full p(y, x1, x2).

The original definition in [15] was limited to discrete random variables. Here, we show that the
extension to continuous variables is well-defined and can be practically estimated.

Motivation from decision theory [15]. Consider for simplicity discrete variables. A decision maker
DM1 can choose an action a from a finite set A, and receives a reward u(a, y) based on the selected
action and the state y, which occurs with probability p(y). Notably, DM1 has no knowledge of y,
but observes instead a random signal x1 sampled from p(x1|y). Choosing the action maximizing the
expected reward for each x1, his maximal expected reward is

R1 =
∑
x1

p(x1) max
a|x1

∑
y

p(y|x1)u(a, y) . (1.8)

DM1 is said to have no unique information about y w.r.t. another decision maker DM2 that observes
x2 ∼ p(x2|y) – if R2 ≥ R1 for any set A, any distribution p(y), and any reward function u(a, y).
A celebrated theorem by Blackwell [16, 17] states that such a generic advantage by DM2 occurs iff
there exist a stochastic matrix q(x1|x2) which satisfies

p(x1|y) =
∑
x2

p(x2|y)q(x1|x2) . (1.9)

But this occurs precisely when the unique information (1.5) vanishes, since then there exists a joint
distribution q(y, x1, x2) in Q for which y ⊥ x1|x2, which implies q(x1|x2, y) = q(x1|x2), and
thus (1.9) holds. Similar results exist for continuous variables [18, 19]. Thus the unique information
from Definition 1 quantifies a departure from Blackwell’s relation (1.9).

In this work we present a definition and a method to estimate the BROJA unique information
for generic continuous probability densities. Our approach is based on the observation that the
constraints (1.7) can be satisfied with an appropriate copula parametrization, and makes use of
techniques developed to optimize variational autoencoders. We only consider one-dimensional
Y,X1, X2 for simplicity, but the method can be naturally extended to higher dimensional cases. In
Section 2 we review related works, in Section 3 we present our method and Section 4 contains several
illustrative examples.
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2 Related works

Partial information decomposition offers a solution to a repeated question that was not addressed by
‘classical’ information theory regarding the relations between two sources and a target [1]. From a
mathematical perspective a ’functional definition’ has to be made, meaning that such a definition
should align with our intuitive notions. Yet, as shown in [20], not all intuitively desirable properties
of a PID can be realized simultaneously. Thus, different desirable properties are chosen for distinct
application scenarios. Thus, various proposals for decomposition measures are not seen as conflicting
but as having different operational interpretations. For example, the BROJA approach used here
builds on desiderata from decision theory, while other approaches appeal to game theory [21] or
the framework of Kelly gambling [22]. Yet other approaches use arguments from information
geometry [23]. Other approaches assume agents receiving potentially conflicting or incomplete
information about the source variables for the purpose of inference or decryption (see e.g. [24, 25]).
In [26] the authors separate the specific operational interpretations of PID measures from the general
structure of information decomposition.

The actual computation of the BROJA unique information is non-trivial, even for discrete variables.
Optimization methods exist for the latter case [27–29], and analytic solutions are only known when
all the variables are univariate binary [30]. For continuous probability densities, an earlier definition
aligned with the BROJA measure was made by Barret [31], but only applies to Gaussian variables. For
Barret’s measure, an analytic solution is known when p(y, x1, x2) is a three-dimensional Gaussian
density [31], but does not generalize to higher dimensional Gaussians [32].

3 Bounding and estimating the unique information

We proceed in two steps. We first introduce a parametrization of the optimization space Q in (1.7)
and then introduce and optimize an upper bound on the unique information.

3.1 Parametrizing the optimization space with copulas

To characterize the optimization space Q in (1.5)-(1.7), it is convenient to recall that according to
Sklar’s theorem [33], any n-variate probability density can be expressed as

p(x1 . . . xn) = p(x1) . . . p(xn)c(u1 . . . un) , (3.1)

where p(xi) is the marginal and ui = F (xi) is the CDF of each variable. The dependency structure
among the variables is encoded in the function c:[0, 1]n → [0, 1]. This is a copula density, a
probability density on the unit hypercube with uniform marginals [34],∫

[0,1]n−1

n∏
j=1,j 6=i

duj c(u1 . . . un) = 1 ∀i . (3.2)

Note that under univariate reparametrizations z′i = g(zi), the ui’s and the copula c remain invariant.
For an overview of copulas in machine learning, see [35].
Proposition 1. Under the BROJA Definition 1 of unique information, all the terms of the partial infor-
mation decomposition in (1.1)-(1.3) are independent of the univariate marginals p(x1), p(x2), p(y),
and only depend on the copula c(uy, u1, u2).

Proof. Expressing q(y, x1, x2), q(x1, x2), q(y, x2) via copula decompositions (3.1), and changing
variables as duy = q(y)dy, etc., the objective function in (1.6) becomes

Iq(Y :X1|X2) =

∫
[0,1]3

duydu1du2 c(uy, u1, u2) log

(
c(uy, u1, u2)

c(uy, u2)c(u1, u2)

)
. (3.3)
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Note that the copula of any marginal distribution is the marginal of the copula:

c(uy, u2) =

∫
[0,1]

du1 c(uy, u1, u2) , c(u1, u2) =

∫
[0,1]

duy c(uy, u1, u2) . (3.4)

Thus the optimization objective and the unique information are independent of the univariate
marginals. A similar result holds for the mutual information terms in the l.h.s. of (1.1)-(1.3).1
It follows that none of the PID terms in (1.1)-(1.3) depend on the univariate marginals, and therefore
all the PID terms are invariant under univariate reparametrizations of (y, x1, x2).

In order to parametrize the optimization space Q in (1.7) using copulas, consider the factorization

p(y, x1, x2) = p(x1)p(y|x1)p(x2|y, x1) . (3.5)

Using the copula decomposition (3.1) for n = 2, the last two factors in (3.5) can be expressed as

p(y|x1) =
p(y, x1)

p(x1)
=
p(y)p(x1)c(y, x1)

p(x1)
= c(uy, u1)p(y) , (3.6)

and similarly

p(x2|y, x1) =
p(x1, x2|y)

p(x1|y)
, (3.7)

= c1,2|y(u1|y, u2|y)p(x2|y) , (3.8)
= c1,2|y(u1|y, u2|y)c(uy, x2)p(x2) , (3.9)

where we defined the conditional CDFs,

ui|y = F (ui|uy) =
∂C(uy, ui)

∂uy
i = 1, 2 (3.10)

and C(uy, ui) is the CDF of c(uy, ui). Note that the function c1,2|y(u1|y, u2|y) in (3.8) is not
the conditional copula c(u1, u2|uy), but rather the copula of the conditional p(x1, x2|y). Using
expressions (3.6) and (3.9), the full density (3.5) becomes

p(y, x1, x2) = p(y)p(x1)p(x2)c(uy, u1, u2) , (3.11)

where

c(uy, u1, u2) = c(uy, u1) c(uy, u2)c1,2|y(u1|y, u2|y) . (3.12)

This is a simple case of the pair-copula construction of multivariate distributions [38–40], which
allows to expand any n-variate copula as a product of (conditional) bivariate copulas.

Proposition 2. The copula of the conditional, c1,2|y(·, ·), parametrizes the space Q in (1.7).

Proof. Since q(y, xi) = p(y, xi) (i = 1, 2), the copula factors in

p(y, xi) = p(y)p(xi) c(uy, ui) , i = 1, 2 (3.13)

are fixed in Q. Therefore, in the copula decomposition (3.12) for q(y, x1, x2) ∈ Q, only the
last factor can vary in Q. Let us denote by θ the parameters of a generic parametrization for the
copula c1,2|y(u1|y, u2|y). Since the latter is conditioned on uy, the parameters can be taken as a
function θ(uy). It follows that the copula of q necessarily has the form

cθ(uy, u1, u2) = c(uy, u1) c(uy, u2) c1,2|θ(uy)(u1|y, u2|y) , (3.14)

and the parameters of the function θ(uy) are the optimization variables.2

1The connection between mutual information and copulas was discussed in [36, 37].
2We note that in multivariate pair-copula expansions it is common to assume constant conditioning parame-

ters θ [41], but we do not make such a simplifying assumption.
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3.2 Optimizing an upper bound

Inserting now the expression (3.14) into the objective function (3.3) we get

I[θ] = Ecθ(uy,u1,u2) log
[
c(uy, u1)c1,2|θ(uy)(u1|y, u2|y)

]
− Ecθ(u1,u2) log cθ(u1, u2) , (3.15)

which is our objective function and satisfies the marginal constraints (1.7). Note that apart from
the optimization parameters θ, it depends on the bivariate copulas c(uy, u1) and c(uy, u2) which
should be estimated from the observed data. Given D observations {y(i), x

(i)
1 , x

(i)
2 )}Di=1, we map

each value to [0, 1] via the empirical CDFs of each coordinate (y, x1, x2). Computing the latter has a
O(D logD) cost from sorting each coordinate and yields a data set {u(i)

y , u
(i)
1 , u

(i)
2 )}Di=1. The latter

set is used to estimate copula densities c(uy, u1) and c(uy, u2) by fitting several parametric and
non-parametric copula models [42], and choosing the best pair of models using the AIC criterion.3
From the learned copulas we also get the conditional CDF functions ui|y = F (ui|uy) that appear in
the arguments of the first term in (3.15).

A variational upper bound. Minimizing (3.15) directly w.r.t. θ is challenging because the second
term depends on the copula marginal cθ(u1, u2) which has no closed form, as it requires integrating
(3.14) w.r.t. uy. We introduce instead an inference distribution rφ(uy|u1, u2), with parameters φ,
that approximates the conditional copula cθ(uy|u1, u2), and consider the bound

log cθ(u1, u2) = log

∫
du′y cθ(u

′
y, u1, u2) ≥

∫
du′y rφ(u′y|u1, u2) log

cθ(u
′
y, u1, u2)

rφ(u′y|u1, u2)
, (3.16)

which follows from Jensen’s inequality and is tight when rφ(u′y|u1, u2) = cθ(u
′
y|u1, u2). This

expression gives an upper bound on Iq[θ], which can be minimized jointly w.r.t. (θ, φ).

A disadvantage of the bound (3.16) is that its tightness depends strongly on the expressiveness of the
inference distribution rφ(u′y|u1, u2). This situation can be improved by considering a multiple-sample
generalization proposed by [44],

log cθ(u1, u2) ≥ DA,θ,φ(u1, u2) ≡ E
p(u

(1)
y ...u

(A)
y )

log

[
1

A

A∑
a=1

cθ(u
(a)
y , u1, u2)

rφ(u
(a)
y |u1, u2)

]
, (3.17)

where the expectation is w.r.t. A independent samples of rφ(u′y|u1, u2). DA,θ,φ(u1, u2) coincides
with the lower bound in (3.16) for A = 1 and satisfies [44]

DA+1,θ,φ(u1, u2) ≥ DA,θ,φ(u1, u2), (3.18)
lim
A→∞

DA,θ,φ(u1, u2) = log cθ(u1, u2) . (3.19)

Thus, even when rφ(u′y|u1, u2) 6= cθ(u
′
y|u1, u2), the bound can be made arbitrarily tight for large

enough A. Inserting (3.17) in (3.15), we get finally

Iq[θ] ≤ B1[θ] +B2[θ, φ] , (3.20)

where

B1[θ] = Ecθ(uy,u1,u2) log
[
c(uy, u1)c1,2|θ(uy)(u1|y, u2|y)

]
, (3.21)

B2[θ, φ] = −Ecθ(u1,u2)DA,θ,φ(u1, u2) , (3.22)

and we minimize the r.h.s. of (3.20) w.r.t. (θ, φ). Low-variance estimates of the gradients to perform
the minimization can be obtained with the reparametrization trick [45, 46], as discussed in detail in
Appendix A. In our examples below we use for c1,2|θ(uy) a bivariate Gaussian copula (reviewed in
Appendix B). Such a copula has just one parameter θ ∈ [−1,+1], and thus the optimization is done
over the space of functions θ(uy):[0, 1]→ [−1,+1], which we parametrize with a two-layer neural
network. Similarly, we parametrize rφ(uy|u1, u2) with a two-layer neural network. Details of these
networks are in Appendix D.

3For this fitting/model selection step, we used the pyvinecopulib python package [43].
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Figure 1: Estimated vs. exact values of unique information for Gaussians. For a three-
dimensional Gaussian, we show estimates of U(Y : X1\X2) as a function of the correlations
ρy,xi(i = 1, 2), compared with the exact results from [31]. Only for Gaussian distributions are exact
results known for continuous variables.

While the term B2 in our bound is similar to the negative of the ELBO bound in importance weighted
autoencoders (IWAEs) [44], there are some differences between the two settings, the most important
being that we are interested in the precise value of the bound at the minimum, rather than the learned
functions cθ, rφ. Note also that our latent variables u(k)

y are one-dimensional, as opposed to the
usual higher dimensional latent distributions of variational autoencoders, and that the empirical
expectation over data observations in IWAEs is replaced in B2 by the expectation over cθ(u1, u2),
whose parameters are also optimized.

Estimating the other PID terms In the following we adopt the minimal value taken by the upper
bound (3.20) as our estimate of U1. The other terms in the partial information decomposition
are obtained from the consistency relations (1.1)-(1.3), after estimating the mutual informations
I(Y : (X1, X2)), I(Y : X1), I(Y : X2). There are several methods for the latter. In our examples,
we use the observed data to fit additional copulas c(u1, u2) and c12|θ(uy) and estimate I(Y :X1) '
1
D

∑D
i=1 log c(u

(i)
y , u

(i)
1 ) and similarly for the other terms. Note that all our estimates have sources

of potential bias. Firstly, the estimation of the parametric copulas is subject to model or parameter
misspecification, which can be ameliorated by more refined model selection strategies. Secondly,
the optimized bound might not saturate, biasing the estimate upwards. This can be improved using
higher A values and improving the gradient-based optimizer used.

4 Examples

Comparison with exact results for Gaussians. Consider a three-dimensional Gaussian with corre-
lations ρy,xi between y, xi for i = 1, 2. The exact solution to (1.5) in this case is [31]

U(Y :X1\X2) =
1

2
log

(
1− ρ2

y,x2

1− ρ2
y,x1

)
1 [ρy,x2 < ρy,x1 ] . (4.1)

Fig. 1 compares the above expression with estimates from our method. Here we know that cy,1
and cy,2 are Gaussian copulas, with parameters ρy,x1

, ρy,x2
, and we assumed a Gaussian copula for

c1,2|y,θ(u1|y, u2|y) as well. For each pair of values ρy,x1
, ρy,x2

. In this and the rest of the experiments,
we optimized the parameters (θ, φ) using the ADAM algorithm [47] with a fixed learning rate 10−2

during 1200 iterations, and using A = 50. The results reported correspond to the mean of the bound
in the last 100 iterations. The comparison in Fig. 1 shows excellent agreement.

Model systems of three neurons. The nature of information processing of neural systems is a
prominent area of application of the PID framework, since synergy has been proposed as natural
measure of information modification [7, 48]. We consider two models:

M1
(X1, X2) ∼ N (0, ρ2

12),
Y = tanh(w1X1 + w2X2).

M2
(X1, X2) ∼ N (0, ρ2

12),
Y = X2

1/
(
0.1 + w1X

2
1 + w2X

2
2

)
.

(4.2)
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Figure 2: Partial information decomposition for two neural network models. In both mod-
els (4.2) we fixed w1 = 0.5, ρ12 = 0.3, and show the PID terms as a function of the synaptic
strength w2, normalized by I(Y : (X1, X2)). We show mean (lines) and standard deviations (shaded
area around each line) from 3 runs. Left: Model 1: The input of greatest weight conveys all the
unique information, and synergy and redundancy both peak as w1 = w2. Right: Model 2: The second
input X2 has negligible unique information contribution, but its synaptic strength w2 modulates the
synergistic term, associated to the modification of information the neuron performs [48].

Both models are parameterized by the correlation ρ12 and weights w1, w2. Model 1 is a particularly
simple neural network. The tanh activation does not affect its copula, and even for a linear activation
function the variables are not jointly Gaussian since Y is deterministic on (X1, X2). Model 2 is
inspired by a normalization operation widely believed to be canonical in neural systems [49] and
plays a role in common learned image compression methods [50]. The results, presented in Figure 2.
are obtained from 3000 samples from each model

Computational aspects of connectivity in recurrent neural circuits. We apply our continuous
variable PID to understand computational aspects of the information processing between recurrently
coupled neurons (Fig. 3). A large amount of work has been devoted to applying information theoretic
measures for quantifying directed pairwise information transfer between nodes in dynamic networks
and neural circuits [51]. However, classical information theory only allows for the quantification of
information transfer, whereas the framework of PID enables further decomposition of information
processing into transfer, storage, and modification, providing further insights into the computation
within a recurrent system [52]. Transfer entropy (TE) [53] is a popular measure to estimate the
directed transfer of information between pairs of neurons [54, 55], and is sometimes approximated by
linear Granger causality. Intuitively, TE between a process X and a process Y measures how much
the past of X , X−, can help to predict the future of Y , Y +, accounting for its past Y −. Although
TE quantifies how much information is transferred between neurons, it does not shed light on the
computation emerging from the interaction of X− and Y −. Simply put, the information transferred
from X− could enter Y +, independently of the past state Y −, or it could be fused in a non-trivial
way with the information in the state in Y −[52, 56]. PID decomposes the TE into modified transfer
(quantified by S(Y +:X−, Y −)) and unique transfer (quantified by U(Y +:X− \ Y −)) terms (see
the Appendix for a proof):

TE(X → Y ) = I(Y +:X−|Y −) = U(Y +:X− \ Y −) + S(Y +:X−, Y −) .

Furthermore, the information kept by the system through time can be quantified by the unique storage
(given by U(Y +:Y − \X−)) and redundant storage (given by R(Y +:X−, Y −)) in PID [48]. This
perspective is a new step towards understanding how the information is processed in recurrent systems
beyond merely detecting the direction functional interactions estimated by traditional TE methods
(see Appendix G, for details). To explore these ideas, we simulated chaotic networks of rate neurons
with an a-priori causal structure consisting of two sub-networks X and Y (Fig. 3a, see [57] for more
details on causal analyses of this network model). The sub-network X is a Rossler attractor of three
neurons obeying the dynamical equations:

Ẋ1 = −X2 −X3

Ẋ2 = X1 + αX2

Ẋ3 = β +X3(X1 − γ)

(4.3)
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Figure 3: PID uncovers the effective connectivity and allows for the quantification of storage,
modification, and transfer of information in a chaotic network of rate neurons. a: Schematics
of recurrent network architecture (left) and representative activity (right). b: Schematic of the PID
triplets for each 3 × 3 block of the matrices in c, d. c: PID decomposition into modified transfer
S, unique transfer U1, redundant storage R, and unique storage U2 for the rate network. The future
of X neurons only depends on unique information in the past of X neurons and their synergistic
interactions. The interactions between theX and Y sub-networks only contain synergistic information
regarding the future of Y but no redundant information; the latter is only present in the interactions
confined within each sub-network. d: The transfer entropy (TE), estimated via IDTxl [58], recovers
the sum of modified and unique transfer terms S + U1.

where {α, β, γ} = {0.2, 0.2, 5.7}. There are 100 neurons in the sub-network Y from which we
chose the first three, Y1:3, to simulate the effect of unobserved nodes. Neurons within the sub-network
Y obey the dynamical equations

Ẏ = −λY + 10 tanh(JY XX + JY Y Y ) (4.4)

where JY X ∈ R100×3 has all its entries equal to 0.1, and JY Y is the recurrent weight matrix of
the Y sub-network, sampled as zero-mean, independent Gaussian variables with standard deviation
g = 4. No projections exist from the downstream sub-network Y to the upstream sub-network X. We
simulated time series from this network (exhibiting chaotic dynamics, see Fig. 3a) and estimated the
PID as unique, redundant, and synergistic contribution of neuron i and neuron j at time t in shaping
the future of neuron j at time t + 1. For each pair of neurons Zi, Zj ∈ {X1:3, Y1:3} we treated
(Zti , Z

t
j , Z

t+1
j )Tt=1 as iid samples4 and ran PID on these triplets (i, j represent rows and columns

in Fig. 3b-d). The PID uncovered the functional architecture of the network and further revealed
non-trivial interactions between neurons belonging to the different sub-networks, encoded in four
matrices: modified transfer S, unique transfer U1, redundant storageR, and unique storage U2 (details
in Fig. 3d). The sum of the modified and unique transfer terms was found to be consistent with the TE
(Fig. 3c, TE equal to S + U1, up to estimation bias). The TE itself captured the network effective
connectivity, consistent with previous results [55, 57].

Uncovering a plurality of computational strategies in RNNs trained to solve complex tasks. A
fundamental goal in neuroscience is to understand the computational mechanisms emerging from

4Note that the estimation of the PID from many samples of the triplets (Zt
i , Z

t
j , Z

t+1
j ) is operationally

the same whether such triplets are iid or, as in our case, temporally correlated. This is similar to estimating
expectations w.r.t. the equilibrium distribution of a Markov chain by using temporally correlated successive
values of the chain. In both cases, the temporal correlations do not introduce bias in the estimator but can
increase the variance.
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Figure 4: PID of RNNs trained to solve generalized XOR problem. a: Input data drawn from a
2D Gaussian Mixture Model with K mixture components X ∼

∑K
k=1

1
KN (X|µk, σI) with means

lying on the unit circle (grey and black dots represent the two class labels). b: Two layer network with
2D input layer, 5 recurrently connected hidden neurons X and one readout neuron Y ; RNN activity
unfolds in time (horizontal axis). The input is presented at time t = 0, then withdrawn, and the RNN
is trained with BPTT to report the decision at t = 10. In this representation, layers correspond to
time-steps and weights WXX are shared between layers. c: PID between output Y (t) and pairs of
hidden neurons Xi(t− 1), Xj(t− 1) for t = 10 yielding S,R,U1, U2 (distribution over 1000 input
samples for each task K; 20 networks per task). Harder tasks led to an increase in PID measures.
d: Example receptive fields for a network with U > S shows emergence of grand-mother cells in
the hidden layer (red and blue colors represent hidden neurons outputs; grandmother cell, second
from left). e: Example receptive fields for a network with S > U , relying on higher synergy between
neurons to solve the task.

the collective interactions of recurrent neural circuits leading to cognitive function and behavior.
Here, we show that PID opens a new window for assessing how specific computations arise from
recurrent neural interactions. Unlike MI or TE, the PID quantifies the alternative ways in which a
neuron determines the information in its output from its inputs, and thus can be a sensitive marker
of different computational strategies. We here trained RNNs as models of cortical circuits [59]
and used the PID to elucidate how the computations emerging from recurrent neural interactions
contribute to task performance. We trained RNNs to solve a generalized version of the classic XOR
classification problem with target labels corresponding to odd vs. even mixture components (Fig. 4a).
Stimuli were presented for one time step (t = 0) and the network was trained to report the decision at
t = 10. By tracking the temporal trajectories of the hidden layer activity we found that the network
recurrent dynamics (represented as unfolded in time in Fig. 4b) progressively pulls the two input
classes in opposite directions along the output weights (see Appendix). We used PID to dissect
how a plurality of different strategies emerge from recurrent neural interactions in RNNs trained for
solving a classification task. The computation emerged from the recurrent interaction between hidden
neurons at different time steps. Do all successfully trained networks have a similar profile in terms of
the PID terms? If so, this hints at a single computational strategy across these networks. If not, it is
safe to assume that task performance is reached via different mechanisms, despite identical network
architecture and training algorithm.
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We found that on average across multiple networks S, R, and U rose with task difficulty (Fig. 4c),
yet at all difficulties, individual networks differed strongly with respect to the ratio S/U , i.e. there
were networks with larger average synergy across neuron pairs compared to the average unique
information, and vice versa. For simple networks like the ones used here, one can inspect receptive
fields to understand the reason for this differential behaviour (Fig. 4d-e). Indeed, networks with
high average unique information displayed ’grandmother-cell’-like neurons, that would alone classify
a large parts of the sample space, while in networks with higher average synergy such cells were
absent (Fig. 4d). The emergence of these ’grandmother-cell’-like receptive fields is due to the
recurrent dynamics. While in a feedforward architecture (WXX = 0) hidden layer receptive fields
are captured by hyperplanes in input space, in the RNN the receptive fields are time dependent,
where later times are interpreted as deeper layers (Fig. 4b) and thus can capture highly non-linear
features in input space. The advantage of PID versus a manual inspection of receptive fields is
twofold: First, the PID framework abstracts and generalizes descriptions of receptive fields as being
e.g. ’grandmother-cell’-like; thus the concept of unique information stays relevant even in scenarios
where the concept of a receptive field becomes meaningless, or inaccessible. Second, the quantitative
outcomes of a PID rest only on information theory, not specfic assumptions about neural coding or
computational strategies, and can be obtained for large numbers of neurons.

Comparison of our PID-based approach with the concept of neuronal selectivity used in neuroscience
highlights interesting similarities and differences. Several kinds of selectivity (pure, mixed linear,
and mixed non-linear) can be identified by performing regression analysis of neural responses vs.
task variables [60]. In this framework, our grand-mother cells correspond to neurons with pure
selectivity to the input class labels (a.k.a. "choice-selective" neurons). In the XOR task, [60] showed
that non-linear mixed selectivity of neurons to the class labels is beneficial when solving the XOR
task, by leading to a high-dimensional representation of the task variables. While selectivity profiles
are a property of single neuron responses to task variables, our PID measures are a property of the
combined activity of triplets of neurons and thus reveal emerging functional interactions between
units and their computational algorithms (see also [7] and [52]). This allowed us to characterize a
functional property of neural systems less studied than task variable selectivity: the computations that
require functional mixing of the information from multiple units (measured by the average synergistic
information) vs. the computations that rely on the output of individual neurons (measured by the
unique information and described as grandmother cells). Concretely, by comparing PID and receptive
fields we found that that in networks with high unique information, neurons typically have receptive
fields with pure selectivity (grandmother cells, with large unique information to the class labels). In
networks with high synergy, neurons show complex mixed selectivity to class labels.

5 Conclusions

We presented a partial information decomposition measure for continuous variables with arbitrary
probability densities, thereby extending the popular BROJA PID measure for discrete variables.
Extending PID measures to continuous variables drastically broadens the possible applications of
the PID framework. This is important as the latter provides key insights into the way a complex
system represents and modifies information in a computation – via asking which variables carry
information about a target uniquely (such that it can only be obtained from that variable), redundantly,
or only synergistically with other variables. Answering these questions is pivotal to understanding
distributed computation in complex systems in general, and neural coding in particular. We believe
that the methods presented here will allow PIDs to be extended efficiently in neuroscience for multiple
continuous sources with potentially complex dependency structures, as would be common in cellular
imaging data or activation properties of brain modules or areas in functional imaging. More generally,
the approach we presented here would be relevant for other application domains such as machine
learning, biomedical science, finance, and the physical sciences.
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