Decoding Projections From Frozen Random Weights in Autoencoders: What Information Do They Encode?

Nancy Thomas *

AI Research, J.P. Morgan Chase & Co. noniekt@gmail.com

Annita Vapsi

AI Research, J.P. Morgan Chase & Co. annita.vapsi@jpmchase.com

Keshav Ramani

AI Research, J.P. Morgan Chase & Co. keshav.ramani@jpmchase.com

Daniel Borrajo

AI Research, J.P. Morgan Chase & Co. daniel.borrajo@jpmchase.com

Abstract

Despite the widespread use of gradient-based training, neural networks without gradient updates remain largely unexplored. To examine these networks, this paper utilizes an image autoencoder to decode embeddings from an encoder with fixed random weights. Our experiments span three datasets, six latent dimensions, and 28 initialization configurations. Through these experiments we demonstrate the capability of random weights to capture broad structural themes from the input and we make a case for their adoption as baseline models.

1 Introduction

Deep neural networks learn task-specific input representations by defining a loss function and updating weights through gradient calculations. While research has focused on optimizing representations and architectures, the inherent representations that could be formed by a model's architecture without gradient updates have received less attention. As models become larger and more resource-intensive, exploring this aspect is increasingly important. This investigation could potentially reduce the need for gradient updates, improve neural network explainability, and support more sustainable AI practices.

In a fixed weight setting, network weights remain at their initial random values. For a single-layer network: $Y = f(W^TX) + b$, freezing W with random weights focuses on random transformations of X and the activation function f. To examine the information preservation of random weights we employ an autoencoder architecture, applying multiple transformations in the encoder with the ReLU activation function. We selected autoencoders for their simple architecture and the perceptible task of reconstruction, which allows visual inspection of results to assess reconstruction success. This approach aligns with recent studies on frozen random weights in CNNs with ReLU activation functions [Nachum et al., 2022a].

Our work raises two key questions:

- How useful are representations generated by random weights in neural networks?
- What information is captured in these representations?

Previous work on random weights has primarily been theoretical. Our study is the first empirical investigation to document and quantify the perceptibility of representations generated with random

^{*} All contributions by this author were made while working at AI Research, J.P. Morgan Chase & Co.

weights. It provides empirical evidence of the predictive capacity of random weight networks and highlights the distinction between architecture and training.

2 Related Work

The effectiveness of random weights can be understood through various theoretical lenses. The Johnson-Lindenstrauss lemma provides a foundational explanation, showing that random projections approximately preserve pairwise distances with high probability [Freksen, 2021, Nachum et al., 2022a]. For linear fully-connected networks, this geometric preservation is straightforward, while networks with ReLU activations exhibit more nuanced behavior through angle contraction [Nachum et al., 2022a]. Some studies have explored the validity of the Johnson-Lindenstrauss lemma for random matrices with elements drawn from distributions such as Gaussian, Orthogonal, and Hadamard [Johnson and Lindenstrauss, 1984, Ailon and Chazelle, 2009, Achlioptas, 2003]. Further discussion on related works, including the scope and applications of random weights in neural networks, their theoretical foundations, the effect of initializations and training dynamics on performance, and their relationship to kernel methods, is detailed in Section A.1 of the Appendix.

3 Method

We limit our study to autoencoders with randomly initialized encoder weights using specific methods/distributions, while decoder weight initializations follow PyTorch's default settings. The list of all initialization methods considered for the encoder are discussed in Table 1 of the Appendix. By default, ConvTranspose2d decoder layers are initialized using Kaiming Uniform initialization [He et al., 2015], where the scale is determined by the number of output channels, while linear layers use the same initialization based on the number of input channels. Biases are initialized to zero for convolutional layers and to a Uniform distribution proportional to the inverse square root of the number of input channels for linear layers. ² In our implementation, the encoder consists of convolutional layers, followed by the ReLU activation. Our choice is motivated by the works of Nachum et al. [2022b] that discusses the theoretical properties of random weights in convolutional layers with ReLU. The decoder consists of two fully connected layers followed by a set of convolutional layers. Further details can be found in Section A.2 of the Appendix.

Formally, let X denote the input image, Z the latent representation, and \hat{X} the reconstructed image. The encoder is represented by the function $F_{\theta_e}(X) = Z$, where θ_e are the encoder weights. The decoder is represented by the function $G_{\theta_d}(Z) = \hat{X}$, where θ_d are the decoder weights.

We consider two experimental scenarios. In the first scenario, both the encoder and decoder weights are updated during training. We refer to this scenario as **Learnable** when analyzing our results. In the second scenario, the encoder weights θ_e are initialized and frozen, while the decoder weights θ_d are updated. We refer to this scenario as **Fixed**. The objective for both scenarios is to minimize the reconstruction loss $L(X,\hat{X})$, where $\hat{X} = G_{\theta_d}(F_{\theta_e}(X))$. The reconstruction loss is typically measured using the mean squared error and the weights are updated using gradient descent.

Reconstruction loss measures image similarity but not structural or semantic similarity. Images with low reconstruction errors can still appear dissimilar as demonstrated by the work of Zhang et al. [2018]. To assess structural and perceptual similarity, we use the Structural Similarity Index (SSIM) [Wang et al., 2004] and Frechet Information Distance (FID) [Heusel et al., 2017]. These perceptual loss functions, along with reconstruction loss, evaluate similarity between the generated image \hat{X} and input image X, and are used in our experiments (see Section A.4 of the Appendix).

To evaluate the generality of our findings, we varied three parameters: latent space dimensionality, weight initialization method, and encoder weight updates. We tested 8 initialization methods—Gaussian, Orthogonal [Saxe et al., 2013], Uniform, Xavier Uniform, Xavier Normal [Glorot and Bengio, 2010], Kaiming Uniform, Kaiming Normal [He et al., 2015], and Hadamard [Zhao et al., 2022]—resulting in 28 configurations. Six latent space dimensions (16, 32, 64, 128, 256, 512) were tested. For each combination, 5 models were trained with different seeds to mitigate seed-specific effects. We used three datasets (CIFAR-10, CIFAR-100, and Fashion-MNIST) and

²https://pytorch.org/docs/stable/nn.init.html

experiments involved 840 model pairs per dataset—one with learnable encoder weights and one with fixed weights—totaling 2520 pairs. More information on the three datasets used can be found in Section A.5 of the Appendix. Models were trained on a single GPU from a g4dn.12xlarge instance, with up to 500 epochs and early stopping.

4 Results and analysis

In an effort to understand the relationship between fixed and learnable weights, we plot their metrics across all random seeds, latent dimensions, and initializations and calculate the R^2 relative to the best-fit line. Through this strategy we discovered at least one parametrization per initialization strategy with a high R^2 and slope around 0.8. We select these parametrizations where fixed weight metrics scale linearly with learnable weight metrics. Table 2 in the Appendix Section A.6 presents the average R^2 and slope of the best-fit line for each configuration.

Figure 1 displays plots for the selected parametrizations with the best-fit line. A broad linear relationship is observed between learnable and fixed networks as latent dimension increases, evaluated using reconstruction loss, SSIM, and FID. This trend persists until dimensions reach 128, after which occasional outliers appear. Reconstruction loss and FID show a general correlation across datasets, while SSIM exhibits a weaker correlation, potentially due to SSIM emphasizing exact structural similarity that is easily disrupted in reconstructions.

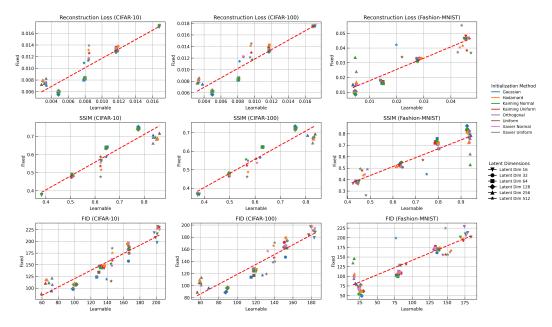


Figure 1: **Fixed versus learnable scenarios for different metrics** The color family represents the distribution used and the shape stands for the latent dimension. The red dashed line in every plot represents the line of best fit.

Figure 2 shows average performance values across random seeds against latent dimensions for selected parametrizations. In CIFAR-10, CIFAR-100, and Fashion-MNIST, learnable encoder weights lead to decreasing reconstruction loss as latent dimension increases until around 256, then gradually rises. Fixed weights show similar behavior, with loss decreasing until around dimension 128. Learnable weights generally outperform fixed weights, but differences are minimal below dimension 128 and converge above 256. This is expected, as learnable encoders can better represent images for the decoder, while fixed encoders rely on the decoder to interpret random projections. Fixed weights follow the trajectory of learnable weights across dimensions, showing reasonable performance.

For SSIM, where higher values are better, a similar trend is observed with learnable weights outperforming fixed weights, especially at higher latent dimensions. For FID, which assesses feature space similarity, the trend is similar, but the difference between learnable and fixed settings is smaller

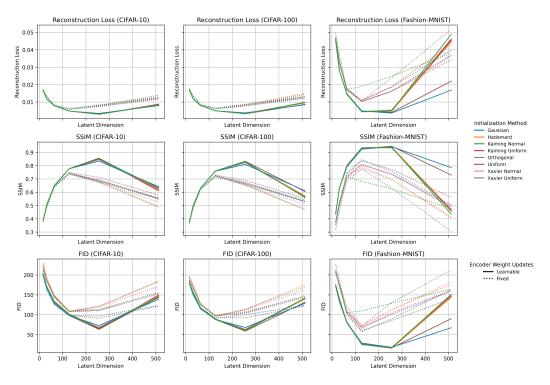


Figure 2: Average metrics across latent dimensions Average reconstruction error, SSIM, and FID across 5 random seeds for each weight initialization method for both learnable and fixed weights.

at higher latent dimensions. This may be because FID is more sensitive to image blurriness than reconstruction loss (see Appendix Section A.7), where images appear blurry in both settings.

Fashion-MNIST exhibits similar trends to CIFAR-10 and CIFAR-100, with minor differences. Due to its single-channel nature, the reconstruction loss reaches a minimum more quickly than in three-channel datasets. At high latent dimensions, learnable models sometimes have slightly worse reconstruction loss than fixed models, though both perform poorly. SSIM and FID plots show similar behavior, with FID consistently better in the learnable setting compared to the fixed setting. A qualitative analysis (see Appendix A.7) also confirms the finding that fixed weights are able to capture meaningful representations comparable to leanable weights. Results for all dataset, metric and parameter configuration combinations are available in Section A.8 of the Appendix.

Overall, training models with fixed weights is faster and less computationally intensive than using fully learnable weights. For instance, training a model with a latent dimension of 512 on CIFAR-10, CIFAR-100, and Fashion-MNIST took 7657, 3874, and 8616 seconds, respectively, in the learnable setting, compared to 5177, 2047, and 3066 seconds in the fixed setting.

5 Discussion and Conclusion

Our experiments have led to two significant insights that deepen our understanding of neural networks. Firstly, we empirically demonstrate that fixed random weights are capable of capturing structural themes within inputs even without gradient updates. This suggests that these weights can serve as effective baselines for exploring the representational capabilities of neural networks. Secondly, the use of fixed random weights provides a foundation for efficient architecture selection, as there is a linear relationship between losses in settings with fixed weights and those with learnable weights. These findings highlight the baseline representational ability of neural networks and underscore the potential of utilizing frozen random weight initializations to enhance their performance and efficiency. Our work complements and confirms the growing body of work similar to Nachum et al. [2022b] as perceptible empirical demonstrations.

A limitation of our work is testing fixed random weights on only three datasets: CIFAR-10, CIFAR-100, and Fashion-MNIST, which may not capture real-world image variation. While latent dimensions varied, network width and depth were unchanged. Training was capped at 500 epochs, with most models converging early. Future work could explore different activations, generalize findings to other architectures and initialization functions, and deepen the theoretical understanding of random weights in neural networks.

6 Disclaimer

This paper was prepared for informational purposes by the Artificial Intelligence Research group of JPMorgan Chase & Co. and its affiliates ("JP Morgan") and is not a product of the Research Department of JP Morgan. JP Morgan makes no representation and warranty whatsoever and disclaims all liability, for the completeness, accuracy or reliability of the information contained herein. This document is not intended as investment research or investment advice, or a recommendation, offer or solicitation for the purchase or sale of any security, financial instrument, financial product or service, or to be used in any way for evaluating the merits of participating in any transaction, and shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under such jurisdiction or to such person would be unlawful.

References

- Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. *Journal of Computer and System Sciences*, 66(4):671–687, 2003. ISSN 0022-0000. doi: https://doi.org/10.1016/S0022-0000(03)00025-4. URL https://www.sciencedirect.com/science/article/pii/S0022000003000254.
- Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate nearest neighbors. *SIAM J. Comput.*, 39(1):302–322, May 2009. ISSN 0097-5397. doi: 10.1137/060673096. URL https://doi.org/10.1137/060673096.
- Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv: Learning, 2018. URL https://api.semanticscholar.org/CorpusID: 53388625.
- Casper Benjamin Freksen. An introduction to johnson-lindenstrauss transforms, 2021. URL https://arxiv.org/abs/2103.00564.
- Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a study through the random features lens. In *Proceedings of the 37th International Conference on Neural Information Processing Systems*, NIPS '23, Red Hook, NY, USA, 2023. Curran Associates Inc.
- Adam Gaier and David Ha. Weight agnostic neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/e98741479a7b998f88b8f8c9f0b6b6f1-Paper.pdf.
- Raja Giryes, Guillermo Sapiro, and Alex M. Bronstein. Deep neural networks with random gaussian weights: A universal classification strategy? *IEEE Transactions on Signal Processing*, 64(13): 3444–3457, 2016. doi: 10.1109/TSP.2016.2546221.
- Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural networks. In *Proceedings of the thirteenth international conference on artificial intelligence and statistics*, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.
- Boris Hanin and David Rolnick. How to start training: The effect of initialization and architecture. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/d81f9c1be2e08964bf9f24b15f0e4900-Paper.pdf.

- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE international conference on computer vision*, pages 1026–1034, 2015.
- Kun He, Yan Wang, and John Hopcroft. A powerful generative model using random weights for the deep image representation. In *Advances in Neural Information Processing Systems*, volume 29, 2016. URL https://proceedings.neurips.cc/paper_files/paper/2016/file/58238e9ae2dd305d79c2ebc8c1883422-Paper.pdf.
- Donald O Hebb. The organization of behavior, 1949. URL https://pure.mpg.de/rest/items/item_2346268_3/component/file_2346267/content.
- Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf.
- Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: a new learning scheme of feedforward neural networks. In 2004 IEEE international joint conference on neural networks (IEEE Cat. No. 04CH37541), volume 2, pages 985–990. Ieee, 2004.
- Guang-Bin Huang, Lei Chen, and Chee-Kheong Siew. Universal approximation using incremental constructive feedforward networks with random hidden nodes. *IEEE Transactions on Neural Networks*, 17(4):879–892, 2006. doi: 10.1109/TNN.2006.875977.
- Guang-Bin Huang, Dian Hui Wang, and Yuan Lan. Extreme learning machines: a survey. *International journal of machine learning and cybernetics*, 2(2):107–122, 2011.
- Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on Computer Vision, pages 2146–2153, 2009. doi: 10.1109/ICCV.2009.5459469.
- William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space. *Contemporary Mathematics*, 26:189–206, 01 1984. doi: 10.1090/conm/026/737400.
- Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009. URL https://api.semanticscholar.org/CorpusID:18268744.
- Ming Li, Sho Sonoda, Feilong Cao, Yu Guang Wang, and Jiye Liang. How powerful are shallow neural networks with bandlimited random weights? In *Proceedings of the 40th International Conference on Machine Learning*, ICML'23. JMLR.org, 2023.
- Marvin Minsky. Neural nets and theories of memory, 1963. URL http://hdl.handle.net/1721. 1/6103.
- Marvin Minsky and Oliver G Selfridge. Learning in random nets, 1961. URL https://stacks.stanford.edu/file/druid:yr384hg3073/yr384hg3073.pdf.
- Ido Nachum, Jan Hazła, Michael Gastpar, and Anatoly Khina. A johnson-lindenstrauss framework for randomly initialized cnns. *ArXiv*, abs/2111.02155, 2022a. URL https://api.semanticscholar.org/CorpusID:241033116.
- Ido Nachum, Jan Hazła, Michael Gastpar, and Anatoly Khina. A johnson-lindenstrauss framework for randomly initialized cnns, 2022b. URL https://arxiv.org/abs/2111.02155.
- Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic. Learning and generalization characteristics of the random vector functional-link net. *Neurocomputing*, 6(2):163–180, 1994.
- Jonathan Pilault, Jaehong Park, and Christopher Pal. On the impressive performance of randomly weighted encoders in summarization tasks, 2020. URL https://arxiv.org/abs/2002.09084.

- Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, *Advances in Neural Information Processing Systems*, volume 20. Curran Associates, Inc., 2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf.
- Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems*, volume 21. Curran Associates, Inc., 2008. URL https://proceedings.neurips.cc/paper_files/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf.
- Amir Rosenfeld and John K. Tsotsos. Intriguing properties of randomly weighted networks: Generalizing while learning next to nothing. In 2019 16th Conference on Computer and Robot Vision (CRV), pages 9–16, 2019. doi: 10.1109/CRV.2019.00010.
- Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng. On random weights and unsupervised feature learning. In *Proceedings of the 28th International Conference on Machine Learning*, ICML'11, page 1089–1096, Madison, WI, USA, 2011. Omnipress. ISBN 9781450306195.
- Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. *CoRR*, abs/1312.6120, 2013. URL https://api.semanticscholar.org/CorpusID:17272965.
- Wouter F Schmidt, Martin A Kraaijveld, Robert PW Duin, et al. Feed forward neural networks with random weights. In *International conference on pattern recognition*, pages 1–1. IEEE Computer Society Press, 1992.
- Johan Suykens and Joos Vandewalle. Least squares support vector machine classifiers. *Neural Processing Letters*, 9:293–300, 06 1999. doi: 10.1023/A:1018628609742.
- Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
- Vladimir Vapnik. *The Nature Of Statistical Learning Theory*, volume 6. Springer New York, NY, 01 1995. ISBN 978-1-4757-2442-4. doi: 10.1007/978-1-4757-2440-0.
- Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–612, 2004. doi: 10.1109/TIP.2003.819861.
- John Wieting and Douwe Kiela. No training required: Exploring random encoders for sentence classification. *arXiv preprint arXiv:1901.10444*, 2019.
- Ezekiel Williams, Avery Hee-Woon Ryoo, Thomas Jiralerspong, Alexandre Payeur, Matthew G. Perich, Luca Mazzucato, and Guillaume Lajoie. Expressivity of neural networks with random weights and learned biases, 2024. URL https://arxiv.org/abs/2407.00957.
- Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.
- Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/5481b2f34a74e427a2818014b8e103b0-Paper.pdf.
- Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2018.
- Jiawei Zhao, Florian Schäfer, and Anima Anandkumar. Zero initialization: Initializing neural networks with only zeros and ones, 2022. URL https://arxiv.org/abs/2110.12661.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros, signs, and the supermask. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf.

A Appendix

In this appendix, we provide a review on related works and a quantitative and qualitative results of various configurations of initializations discussed earlier. By doing so, we aim to provide a comprehensive understanding of the effects of fixed random weights in generating representations of input images.

A.1 Related Work

In some of the earliest works, randomly sampled weights were found to be suitable for simple tasks when used with perceptrons [Hebb, 1949, Minsky and Selfridge, 1961, Minsky, 1963]. With the evolution of perceptrons to neural networks, random weights have continued to demonstrate surprising effectiveness across various tasks and architectures. For instance, random weights have been used to show that the last layer of a neural network is more important than the hidden layers [Schmidt et al., 1992]. The effectiveness of random weights was studied using the Random Vector Functional Link networks [Pao et al., 1994], three-layer (input, hidden, output) feedforward networks with fixed random weights in the hidden layer and direct input-output connections. Extreme Learning Machines (ELMs), a type of neural network in which the hidden layer weights are randomly initialized and never updated, were shown to be theoretically and empirically capable of learning concepts [Huang et al., 2004]. SVMs [Vapnik, 1995] and Least Square SVMs [Suykens and Vandewalle, 1999] were found to perform well with ELMs as well [Huang et al., 2011].

Beyond the initial work on random weight networks, the success of random weights has been observed across more modern network architectures including convolutional neural networks [Jarrett et al., 2009, Saxe et al., 2011], attention mechanisms [Fu et al., 2023], and traditional feedforward networks [Giryes et al., 2016]. Further studies expanded this understanding, demonstrating success with partially frozen weights [Rosenfeld and Tsotsos, 2019], networks with only learnable biases [Williams et al., 2024], and even single-hidden-layer feed forward networks (SLFNs) with random hidden nodes [Huang et al., 2006]. Our approach deviates from existing literature by utilizing a randomly initialized and partially frozen autoencoder network. This is done with the aim of enhancing the understanding of the performance of random neural networks. By reconstructing the input images, the autoencoder allows us to visually assess how much information is preserved, making the network's performance perceptible to the eye.

Scope and Applications The breadth of applications spans from object recognition [Jarrett et al., 2009] to representation inversion [He et al., 2016, Ulyanov et al., 2018] and texture synthesis [He et al., 2016]. In computer vision specifically, Jarrett et al. [2009] achieved a 63% recognition rate on Caltech-101 using random filters, while Rosenfeld and Tsotsos [2019] showed that learning only a small subset of network parameters or layers leads to surprisingly minimal performance degradation. They suggest that this may be a result of significant over-parametrization in current models. The versatility extends to bias-learned networks in auto-regressive modeling, multi-task learning, and dynamical system forecasting [Williams et al., 2024], highlighting the broad applicability of random weight approaches in neural networks. In the language domain, random weights have been used for effective sentence embeddings [Wieting and Kiela, 2019] and abstractive summarization [Pilault et al., 2020]. Our work focuses on a vision reconstruction task using a partially frozen autoencoder. We believe that the granularity of reconstruction metrics and the ability to visually demonstrate the extent of information preservation in random initializations provide empirically useful results, which are not extensively covered in the existing literature.

We find that some works, such as He et al. [2016], have explored generating meaningful visual representations of input images by inverting feature representations using generative techniques. These approaches reconstruct images through iterative refinement, starting from white noise inputs, rather than relying on an autoencoder with random and frozen encoder weights. Similarly, in the context of the work of Ulyanov et al. [2018], the goal is to recover the original image from a degraded or incomplete version by using a randomly-initialized generator network as a handcrafted prior. In contrast, our approach aims to capture the amount of information preserved by a random weight encoder both qualitatively and quantitatively.

Theoretical Foundations The effectiveness of random weights can be understood through multiple theoretical lenses. The Johnson-Lindenstrauss lemma provides a foundational explanation, demonstrating that random projections approximately preserve pairwise distances with high proba-

bility [Freksen, 2021, Nachum et al., 2022a]. For linear fully-connected networks, this geometric preservation is direct, while networks with ReLU activations exhibit more nuanced behavior through angle contraction [Nachum et al., 2022a]. Some works in the literature explored the validity of the Johnson-Lindenstrauss lemma for random matrices with elements drawn from various distributions including Gaussian, Orthogonal and Hadamard distributions Johnson and Lindenstrauss [1984], Ailon and Chazelle [2009], Achlioptas [2003].

Building on these geometric insights, Giryes et al. [2016] proved that deep neural networks with random i.i.d Gaussian weights produce distance-preserving embeddings, with particular emphasis on in-class versus out-of-class data discrimination. The recent theoretical contributions of Williams et al. [2024] have further strengthened these foundations, proving that networks with fixed random weights but learnable biases can approximate arbitrary functions with high probability. This extends to SLFNs, where Huang et al. [2006] demonstrated that input weights and hidden layer biases need not be tuned at all for universal approximation, provided appropriate activation functions are chosen. We regard these works as fundamental in explaining why random weights perform well. We extend this foundational research by empirically and perceptually validating their findings using various weight initialization distributions and non-linear neural network encoder-decoder architectures for autoencoders.

Initialization and Training Dynamics Research has shown that initialization significantly impacts training dynamics [Hanin and Rolnick, 2018], with poor initializations leading to more frequent training failures in deeper networks. The mean and variance of length scales strongly predict early training dynamics, and proper initialization of weights and residual modules prevents exponential growth or decay of activation sizes with depth. Furthermore, Saxe et al. [2013] introduced the concept of dynamical isometry for faithful backpropagation, demonstrating that, while random Gaussian initializations cannot achieve this condition, random orthogonal initializations can, enabling depth-independent learning times. Finally, in the intersection of random weights with neural architecture search [Gaier and Ha, 2019], the discovery of "lottery tickets" [Frankle and Carbin, 2018] and "supermasks" [Zhou et al., 2019] suggests that the initialization plays a crucial role in network performance, opening new avenues for understanding the relationship between network architecture, initialization, and training. Our work supports the importance of initialization for feature preservation over random weights and Section 4 addresses this phenomenon by examining the performance of the partially randomly initialized autoencoder using an array of initialization distributions.

Relationship to Kernel Methods The connection between random weights and kernel methods offers another theoretical perspective. Random feature approaches, originally proposed as computationally efficient alternatives to kernel methods [Rahimi and Recht, 2007], have shown that randomized feature maps can effectively approximate kernel functions. Rahimi and Recht [2008] demonstrated comparable performance between shallow architectures with random non-linearities and those with optimally tuned ones.

Limitations and Considerations Despite these successes, important limitations exist. Yehudai and Shamir [2019] proved that random features cannot efficiently learn even a single ReLU neuron over standard Gaussian inputs unless the network size or weight magnitude is exponentially large. Additionally, Li et al. [2023] have derived new approximation error lower bounds for depth-2 band-limited random neural networks, showing that, when hidden parameters are distributed in a bounded domain, zero approximation error may not be achievable.

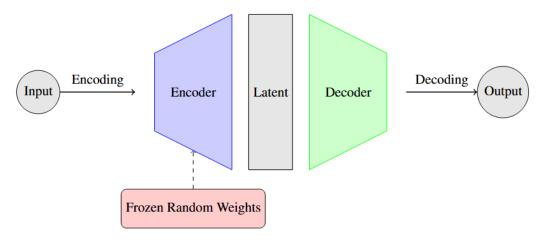


Figure 3: An overview of the experimental setup and architecture.

A.2 Architecture

This section discusses the design of the encoder and decoder used in our experiments. Most of our design choices (as previously highlighted) are motivated by prior works.

A.2.1 Encoder

In our experiments, the encoder exclusively consists of convolutional layers followed by the ReLU activation function. Theoretical works of Nachum et al. [2022b] have been centered around such layers and therefore this choice was made. The convolutional layers progressively reduce the dimensions of the input image and therefore learn a compact and dense representation of the input.

A.2.2 Decoder

The decoder in each experiment consists of two fully connected learnable linear layers followed by learnable convolutional layers with the ReLU activation function. This choice was made with the idea of the decoder learning encoder specific representations using the linear transformations followed by convolutional operations.

While we explore this controlled setting, we acknowledge that future works could expand on the architectures in scope.

A.3 Neural network weight initialization methods

Table 1: Neural network weight initialization methods. We experiment with the below initialization methods. These were chosen mainly for their popularity and ubiquity. For each initialization, we experiment with several parametrizations. The complete results can be found in Section A.8 of the Appendix.

Initialization Method	Equation/Description	Tested Configurations	Notes
Gaussian (Normal)	$W \sim \mathcal{N}(\mu, \sigma^2)$	(μ, σ) : (0, 1), (0, 0.5), (0, 0.02), (1, 1), (1, 0.5), (1, 0.02), (-1, 1), (-1, 0.5), (-1, 0.02)	Weights are drawn from a Normal distribution with mean μ and variance σ^2 .
Uniform	$W \sim \mathcal{U}(a,b)$	(a, b): (-1, 1), (-0.5, 0.5), (-0.02, 0.02), (0, 1), (-1.5, 1.5)	Weights are drawn from a Uniform distribution between a and b .
Xavier (Glorot) Uniform	$W \sim \mathcal{U}\left(-\frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in}+n_{out}}}\right)$	Gain: 1, 0.5, 1.5	Suitable for sigmoid and tanh activations. Gain scales the standard devia- tion of the weight initial- ization.
Xavier (Glorot) Normal	$W \sim \mathcal{N}\left(0, \frac{2}{n_{in} + n_{out}}\right)$	Gain: 1, 0.5, 1.5	Suitable for sigmoid and tanh activations. Gain scales the standard devia- tion of the weight initial- ization.
Kaiming (He) Normal	$W \sim \mathcal{N}\left(0, \frac{2}{n_{in}}\right)$	Mode: fan_in, fan_out	Suitable for ReLU and variants. Mode controls weight normalization using input or output neurons.
Kaiming (He) Uniform	$W \sim \mathcal{U}\left(-\sqrt{\frac{6}{n_{in}}}, \sqrt{\frac{6}{n_{in}}}\right)$	Mode: fan_in, fan_out	Suitable for ReLU and variants. Mode controls weight normalization using input or output neurons.
Orthogonal	W = Q	Gain: 1, 0.5, 1.5	Q is an orthogonal matrix obtained from the QR de- composition of a random matrix. Gain scales the standard deviation of the
Hadamard	W = H	Default configuration only	weight initialization. H is a Hadamard matrix with random sign flips and scaling to control weight variance.

A.4 Metrics Definitions

A.4.1 Structural Similarity Index (SSIM)

SSIM is defined as:

$$\mathrm{SSIM}(X, \hat{X}) = \frac{(2\mu_X \mu_{\hat{X}} + C_1)(2\sigma_{X\hat{X}} + C_2)}{(\mu_X^2 + \mu_{\hat{X}}^2 + C_1)(\sigma_X^2 + \sigma_{\hat{X}}^2 + C_2)}$$

where μ and σ represent the means and standard deviations, and C_1 and C_2 are constants to stabilize the division.

A.4.2 Frèchet Inception distance (FID)

FID is defined as:

$$FID(X, \hat{X}) = \|\mu_X - \mu_{\hat{X}}\|^2 + Tr(\Sigma_X + \Sigma_{\hat{X}} - 2(\Sigma_X \Sigma_{\hat{X}})^{1/2})$$

where μ and Σ are the means and covariances of the feature vectors extracted from the images using a pretrained Inception-v3 model and Tr indicates the trace operation.

A.5 Data

We used three datasets: CIFAR-10, CIFAR-100 [Krizhevsky, 2009], and Fashion-MNIST [Xiao et al., 2017]. CIFAR-10 has 60,000 color images (32x32 pixels) across 10 classes, with a default split of 50,000 training and 10,000 test images. We allocated 20% of the training images for validation. CIFAR-100 also contains 60,000 color images (32x32 pixels) but across 100 classes, following the same train-test split and validation allocation. Fashion-MNIST includes 70,000 grayscale images (28x28 pixels) in 10 classes, with a similar split and validation setup. These datasets are widely used in computer vision, making them suitable for our experiments. ³.

A.6 Analysis of Fixed Versus Learnable Metrics

In Figure 1, we plot the fixed versus learnable value for each of our three metrics and for each of our three datasets. As shown in this figure, many weight initialization configurations seem to display a linear relationship between the fixed and learnable metrics. For each initialization configuration, we examine the line of best fit through these points, as well as the \mathbb{R}^2 to the line of best fit. The average of these value across all metrics and datasets, along with the average slope of the associated line of best fit, are recorded in Table 2. Within each initialization family, the configuration with the highest \mathbb{R}^2 is shown in bold. These values tend to be high, indicating that for each initialization, there exists a configuration for which the relationship between fixed and learnable losses is approximately linear.

³ImageNet was excluded due to licensing restrictions, leaving it for future work

Table 2: Learnable versus fixed metrics The average \mathbb{R}^2 and average slope of the lines of best fit through the fixed versus learnable points for all weight initialization configurations. The average is taken across all three metrics and all three datasets and the configuration with the highest \mathbb{R}^2 within each initialization family is shown in bold.

Initialization Method	Average \mathbb{R}^2	Average slope
Gaussian ($\mu = -1, \sigma = 0.02$)	0.6878	0.801
Gaussian ($\mu = -1, \sigma = 0.5$)	0.0997	0.0272
Gaussian ($\mu = -1, \sigma = 1$)	0.0389	-0.0211
Gaussian ($\mu = 0, \sigma = 0.02$)	0.6018	0.6704
Gaussian ($\mu = 0, \sigma = 0.5$)	0.8315	0.7963
Gaussian ($\mu = 0, \sigma = 1$)	0.3186	2.1667
Gaussian ($\mu = 1, \sigma = 0.02$)	0.5559	1.0433
Gaussian ($\mu = 1, \sigma = 0.5$)	0.0863	-0.6091
Gaussian ($\mu = 1, \sigma = 1$)	0.3174	-2.6777
Orthogonal (Gain=0.5)	0.2123	0.7083
Orthogonal (Gain=1)	0.8731	0.7531
Orthogonal (Gain=1.5)	0.898	0.7583
Uniform (-1.5, 1.5)	0.3812	2.2416
Uniform (-1, 1)	0.8474	0.8438
Uniform (-0.5, 0.5)	0.9036	0.8335
Uniform (-0.02, 0.02)	0.1462	0.2744
Uniform (0,1)	0.092	0.5189
Xavier Normal (Gain=0.5)	0.0673	-0.4711
Xavier Normal (Gain=1)	0.4361	0.7774
Xavier Normal (Gain=1.5)	0.8827	0.7826
Xavier Uniform (Gain=0.5)	0.1524	-1.0842
Xavier Uniform (Gain=1)	0.2027	0.6493
Xavier Uniform (Gain=1.5)	0.8388	0.7935
Kaiming Normal (Mode=fan_in)	0.7971	0.7012
Kaiming Normal (Mode-fan_out)	0.5151	0.5359
Kaiming Uniform (Mode=fan_in)	0.8935	0.7766
Kaiming Uniform (Mode=fan_out)	0.5534	0.7364
Hadamard	0.843	0.7894

A.7 Qualitative comparison of image reconstructions

While several works have discussed the theoretical aspects of working with random weights in neural networks, seldom have they explored the perceptibility of results generated using them. In this section we explore this aspect of the images reconstructed in the fixed scenario and compare the results arising from different initializations.

Figures 4, 5, and 6 show samples of the reconstructed images produced by the fixed and learnable scenarios from various initializations for the CIFAR-10, CIFAR-100, and Fashion-MNIST datasets respectively. We show the reconstructions for the initializations that have demonstrated the highest \mathbb{R}^2 for each distribution as outlined in Table 2.

We notice that across datasets, the sampled reconstructions from the fixed scenario are all perceptibly comparable to the ones from the learnable scenario. In Figure 4 we notice broad themes of the inputs being captured by the fixed random weights and the shapes of the cars, objects, and animals are well outlined. The low resolution of images from the CIFAR-10 dataset hinders a closer commentary on other features of the input. In CIFAR-10 as well as CIFAR-100, we notice colors and shapes of multiple artifacts in the image being reconstructed from the embeddings generated in the fixed scenario. This trend carries over to the monochromatic images shown in Figure 6 where the reconstructions are comparable between both scenarios. Features of the input image such as textures, patterns, and

outline of texts are also shown to be captured in the representations generated by the fixed weight encoder.

In summary, these figures sufficiently demonstrate that some random weight initializations, when fixed, are able to generate reasonable embeddings from which the input image can be decoded. It must also be noted that a few fixed and learnable initializations tend to have poor quality reconstructions. However, the better performing parameters of each distribution seem to be captured well by the highest \mathbb{R}^2 values from Table 2, as can be qualitatively confirmed from these figures.

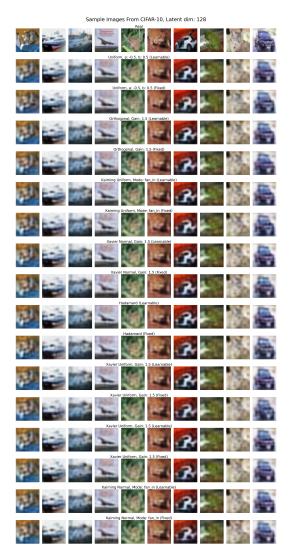


Figure 4: **CIFAR-10 reconstructions** Visualization of the reconstruction of images from the latent dimension 128 for the CIFAR-10 dataset for various initializations in both the fixed and learnable setting.

A.8 Analyzing different parameters for random distributions

In this section we document the results from reconstruction loss, SSIM, and FID for different configurations of the distributions in consideration. In order to be comprehensive, we study multiple parameters for each distribution, and their results can be found below. All results are the average of five random seeds as noted earlier and this section is not limited to the models with the best R^2 scores alone. For each latent dimension, the best value across initializations for either fixed or learnable is shown in bold.

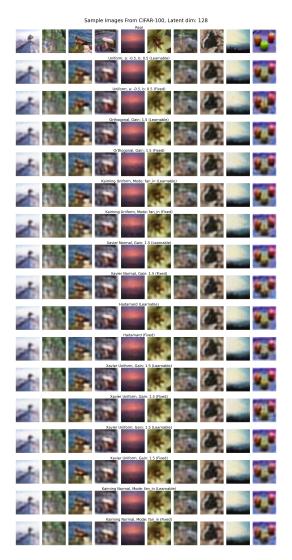


Figure 5: **CIFAR-100 reconstructions** Visualization of the reconstruction of images from the latent dimension 128 for the CIFAR-100 dataset for various initializations in both the fixed and learnable setting.

A.8.1 CIFAR-10

Tables 3, 4, and 5 tabulate the reconstruction loss, SSIM, and FID for the CIFAR-10 dataset respectively. From Table 3, we notice that learnable weights consistently achieve a lower reconstruction loss, with no single initialization demonstrating the best performance. This is not a surprise as the encoders and decoders in the learnable scenario were trained to yield the lowest reconstruction loss.

This trend seems to have mostly carried over to the evaluations using SSIM, as evidenced by Table 4 with the only exception being dim = 16. By a narrow margin, we note that the fixed scenario is able to produce images with the highest structural similarity with the input in this setting alone.

However, with the FID we notice the fixed scenario performs consistently better than the learnable scenario. This is noteworthy, as the embeddings generated in the fixed scenario had no information about the reconstruction task. The decoder was the only learning component, and seem to have reconstructed images with high similarity to the input as measured by the FID. The only exception to this trend is the setting where dim=256 in which the learnable scenario achieved the least FID. Further we notice that the uniform initialization generally performs better than other initializations, followed by the Gaussian initialization.

Figure 6: **Fashion-MNIST reconstructions** Visualization of the reconstruction of images from the latent dimension 128 for the Fashion-MNIST dataset for various initializations in both the fixed and learnable setting.

A.8.2 CIFAR-100

The trend seen in Table 3, where the learnable scenario convincingly has the least reconstruction error, is confirmed by the results for CIFAR-100, as seen in Table 6. Once again, this could be explained by the explicit training that the parameters of the encoder have undergone in the learnable scenario.

Similar to the results for CIFAR-10, we notice that the learnable scenario generally performs the best in terms of SSIM for CIFAR-100, as evidenced by Table 7, with the notable exception of dim=16 where, once again, the fixed scenario demonstrates better performance, albeit by a small margin.

Table 8 further confirms some earlier observations, and reiterates that the images generated in the fixed scenario are more similar to the inputs than the ones generated by the learnable scenario. While the margins are not high, it is still noteworthy that the representations generated by the encoder had no task specific information. The only two exceptions here are dim=128 and dim=256, where the learnable scenario performs better.

A.8.3 Fashion-MNIST

We further study the metrics in both these scenarios for the monochromatic images in the Fashion-MNIST dataset. Table 9 confirms that across all datasets, the lowest reconstruction losses are achieved by the learnable scenario where task specific representations are learnt with the primary objective of reducing the reconstruction loss.

Table 10 establishes that the best SSIM scores for this dataset are consistently achieved by the learnable scenario, confirming the trend so far as well. It is important to note that unlike the multichannel images studied so far, there is no configuration of fixed weights that outperforms learnable weights.

Differing from the multi-channel image trend, we notice from Table 11 that for the monochromatic images in this dataset, the best FID scores are also achieved by the learnable scenario. This is different from the insights shown for multi-channel images.

In summary, it can be seen that learnable weights mostly achieve the best performance across all datasets and metrics, with the exception of FID for multi-channel RGB images. While the superior performance of learnable weights is not surprising, the comparability, margin of difference, and superior performance in FID for multi-channel images is an interesting finding. All these insights condense to the fact that while fixed random weights will never be as good as learnable weights, they are still able to generate reasonable embeddings, as evidenced in our closed setting experiments. This study further quantifies and qualifies the information captured by them and appeals for their use as a baseline at the very least.

Table 3: Reconstruction Loss (↓) for CIFAR-10

Initialization Method	16		32		64		128		256		512	2
manual menod	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.0169	0.0180	0.0120	0.0175	0.0080	0.0094	0.0049	0.0093	0.0148	0.0157	0.0618	0.0618
Gaussian ($\mu = 0, \sigma = 0.5$)	0.0168	0.0170	0.0117	0.0130	0.0079	0.0080	0.0048	0.0059	0.0034	0.0081	0.0080	0.0125
Gaussian, $(\mu = 0, \sigma = 1)$	0.0167	0.0170	0.0118	0.0131	0.0079	0.0080	0.0049	0.0060	0.0039	0.0085	0.0129	0.2961
Gaussian ($\mu = 1, \sigma = 0.02$)	0.0168	0.1700	0.0618	0.3005	0.0618	0.2926	0.0618	0.3068	0.0618	0.3081	0.0618	0.3058
Gaussian ($\mu = 1, \sigma = 0.5$)	0.0168	0.1669	0.0118	0.3018	0.0079	0.2921	0.0066	0.3067	0.0052	0.3058	0.0231	0.3036
Gaussian ($\mu = 1, \sigma = 1$)	0.0168	0.1660	0.0117	0.2998	0.0079	0.2928	0.0049	0.3047	0.0037	0.3148	0.0113	0.3062
Gaussian ($\mu = -1, \sigma = 0.02$)	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618	0.0618
Gaussian ($\mu = -1, \sigma = 0.5$)	0.0349	0.0618	0.0618	0.0618	0.0190	0.0616	0.0506	0.0617	0.0520	0.0617	0.0618	0.0618
Gaussian ($\mu = -1, \sigma = 1$)	0.0169	0.0594	0.0319	0.0608	0.0080	0.0571	0.0060	0.0606	0.0047	0.0606	0.0221	0.0616
Orthogonal (Gain = 0.5)	0.0168	0.0175	0.0119	0.0137	0.0080	0.0086	0.0048	0.0072	0.0032	0.0131	0.0091	0.0618
Orthogonal (Gain = 1)	0.0168	0.0172	0.0117	0.0132	0.0079	0.0084	0.0049	0.0062	0.0030	0.0083	0.0092	0.0130
Orthogonal (Gain = 1.5)	0.0168	0.0171	0.0117	0.0130	0.0079	0.0083	0.0049	0.0060	0.0031	0.0077	0.0085	0.0120
Uniform, (-0.02, 0.02)	0.0169	0.0201	0.0120	0.0618	0.0080	0.0101	0.0049	0.0343	0.0267	0.0618	0.0618	0.0618
Uniform (-0.5, 0.5)	0.0168	0.0172	0.0117	0.0132	0.0079	0.0081	0.0048	0.0058	0.0029	0.0074	0.0084	0.0116
Uniform (-1, 1)	0.0167	0.0171	0.0117	0.0132	0.0079	0.0080	0.0048	0.0058	0.0036	0.0078	0.0084	0.0123
Uniform (-1.5, 1.5)	0.0168	0.0171	0.0117	0.0132	0.0079	0.0080	0.0049	0.0059	0.0038	0.0080	0.0117	0.2377
Uniform (0, 1)	0.0168	0.0191	0.0119	0.2392	0.0079	0.2349	0.0055	0.3007	0.0528	0.3019	0.0418	0.3065
Xavier Normal (Gain = 0.5)	0.0169	0.0177	0.0119	0.0143	0.0080	0.0089	0.0048	0.0106	0.0035	0.0618	0.0100	0.0618
Xavier Normal (Gain = 1)	0.0168	0.0175	0.0118	0.0137	0.0079	0.0086	0.0048	0.0074	0.0035	0.0137	0.0303	0.0618
Xavier Normal (Gain = 1.5)	0.0168	0.0173	0.0117	0.0135	0.0080	0.0084	0.0048	0.0063	0.0032	0.0083	0.0085	0.0130
Xavier Uniform (Gain = 0.5)	0.0168	0.0177	0.0119	0.0194	0.0079	0.0090	0.0048	0.0586	0.0035	0.0618	0.0094	0.0618
Xavier Uniform (Gain = 1)	0.0168	0.0174	0.0119	0.0134	0.0079	0.0085	0.0048	0.0066	0.0033	0.0122	0.0097	0.0341
Xavier Uniform (Gain = 1.5)	0.0168	0.0173	0.0118	0.0130	0.0079	0.0084	0.0048	0.0061	0.0031	0.0082	0.0085	0.0139
Kaiming Normal (Mode = fan_in)	0.0168	0.0172	0.0117	0.0133	0.0079	0.0083	0.0049	0.0062	0.0031	0.0082	0.0082	0.0126
Kaiming Normal (Mode = fan_out)	0.0168	0.0174	0.0117	0.0137	0.0080	0.0085	0.0049	0.0065	0.0030	0.0093	0.0087	0.0144
Kaiming Uniform (Mode = fan_in)	0.0168	0.0172	0.0117	0.0132	0.0079	0.0083	0.0048	0.0061	0.0030	0.0078	0.0088	0.0 12
Kaiming Uniform (Mode = fan_out)	0.0168	0.0174	0.0119	0.0132	0.0079	0.0084	0.0048	0.0062	0.0034	0.0097	0.0086	0.0186
Hadamard	0.0168	0.0172	0.0118	0.0133	0.0079	0.0084	0.0048	0.0061	0.0031	0.0081	0.0084	0.0138

Table 4: SSIM (↑) for CIFAR-10

Table 4. SSIM () for CITAR-10												
Initialization Method	16		32		64		128		256		512	2
Induitation rection	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.3818	0.3688	0.5091	0.4671	0.6449	0.6291	0.7761	0.6400	0.7060	0.4673	0.1323	0.1323
Gaussian ($\mu = 0, \sigma = 0.5$)	0.3813	0.3788	0.5049	0.4874	0.6501	0.6444	0.7764	0.7446	0.8344	0.6854	0.6414	0.5553
Gaussian ($\mu = 0, \sigma = 1$	0.3797	0.3763	0.5052	0.4857	0.6487	0.6422	0.7749	0.7410	0.8135	0.6708	0.4798	0.0038
Gaussian ($\mu = 1, \sigma = 0.02$)	0.3822	0.1213	0.1323	0.0038	0.1324	0.0031	0.1324	0.0037	0.1323	0.0037	0.1323	0.0035
Gaussian ($\mu = 1, \sigma = 0.5$)	0.3820	0.1206	0.5070	0.0037	0.6478	0.0026	0.7094	0.0037	0.7572	0.0034	0.3989	0.0037
Gaussian ($\mu = 1, \sigma = 1$)	0.3819	0.1214	0.5048	0.0035	0.6470	0.0032	0.7747	0.0037	0.8209	0.0038	0.5222	0.0032
Gaussian ($\mu = -1, \sigma = 0.02$)	0.1324	0.1323	0.1322	0.1322	0.1323	0.1323	0.1323	0.1323	0.1323	0.1323	0.1323	0.1323
Gaussian ($\mu = -1, \sigma = 0.5$)	0.2819	0.1324	0.1323	0.1322	0.5431	0.1326	0.2502	0.1324	0.2041	0.1324	0.1323	0.1323
Gaussian ($\mu = -1, \sigma = 1$)	0.3811	0.1383	0.3574	0.1338	0.6466	0.1460	0.7303	0.1341	0.7765	0.1339	0.4189	0.1324
Orthogonal (Gain = 0.5)	0.3822	0.3753	0.5084	0.4841	0.6448	0.6326	0.7758	0.7051	0.8455	0.5130	0.5972	0.1324
Orthogonal (Gain = 1)	0.3821	0.3787	0.5047	0.4902	0.6465	0.6367	0.7754	0.7353	0.8523	0.6686	0.5962	0.5210
Orthogonal (Gain = 1.5)	0.3819	0.3797	0.5055	0.4887	0.6471	0.6396	0.7760	0.7402	0.8503	0.6906	0.6230	0.5565
Uniform (-0.02, 0.02)	0.3814	0.3686	0.5088	0.1322	0.6453	0.6111	0.7758	0.3554	0.5552	0.1323	0.1323	0.1323
Uniform (-0.5, 0.5)	0.3809	0.3778	0.5053	0.4826	0.6488	0.6432	0.7774	0.7492	0.8559	0.7107	0.6246	0.5780
Uniform (-1, 1)	0.3794	0.3766	0.5044	0.4837	0.6493	0.6460	0.7761	0.7493	0.8285	0.6905	0.6246	0.5528
Uniform (-1.5, 1.5)	0.3806	0.3764	0.5046	0.4821	0.6487	0.6437	0.7754	0.7464	0.8178	0.6881	0.5048	0.1062
Uniform (0, 1)	0.3823	0.3883	0.5074	0.0850	0.6476	0.1227	0.7474	0.0038	0.1814	0.0036	0.2872	0.0039
Xavier Normal (Gain = 0.5)	0.3819	0.3728	0.5084	0.4770	0.6449	0.6294	0.7760	0.5941	0.8293	0.1324	0.5667	0.1324
Xavier Normal (Gain = 1)	0.3820	0.3759	0.5086	0.4817	0.6467	0.6310	0.7764	0.6927	0.8310	0.5015	0.4051	0.1324
Xavier Normal (Gain = 1.5)	0.3821	0.3773	0.5052	0.4849	0.6461	0.6364	0.7763	0.7336	0.8447	0.6747	0.6199	0.5261
Xavier Uniform (Gain = 0.5)	0.3819	0.3738	0.5103	0.3766	0.6469	0.6213	0.7762	0.1334	0.8286	0.1324	0.5880	0.1324
Xavier Uniform (Gain = 1)	0.3817	0.3762	0.5106	0.4879	0.6470	0.6349	0.7762	0.7222	0.8384	0.5436	0.5775	0.2318
Xavier Uniform (Gain = 1.5)	0.3819	0.3773	0.5076	0.4858	0.6474	0.6368	0.7762	0.7412	0.8490	0.6739	0.6216	0.4869
Kaiming Normal (Mode = fan_in)	0.3823	0.3776	0.5044	0.4840	0.6471	0.6384	0.7760	0.7361	0.8502	0.6811	0.6331	0.5473
Kaiming Normal (Mode = fan_out)	0.3820	0.3760	0.5052	0.4847	0.6461	0.6346	0.7757	0.7275	0.8544	0.6499	0.6130	0.4864
Kaiming Uniform (Mode = fan_in)	0.3818	0.3777	0.5038	0.4828	0.6482	0.6399	0.7762	0.7410	0.8528	0.6928	0.6103	0.5482
Kaiming Uniform (Mode = fan_out)	0.3820	0.3765	0.5108	0.4900	0.6467	0.6362	0.7761	0.7383	0.8364	0.6211	0.6164	0.3749
Hadamard	0.3817	0.3778	0.5045	0.4896	0.6474	0.6402	0.7764	0.7461	0.8501	0.6827	0.6264	0.4918

Table 5: FID (\downarrow) for CIFAR-10

Initialization Method	1	6	3	2	6	4	12	28	25	56	51	2
midalization Method	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	203.8714	245.8416	170.1749	241.8876	132.6609	165.0251	99.7668	161.4639	145.1659	222.6520	456.7696	456.7786
Gaussian ($\mu = 0, \sigma = 0.5$)	200.8313	197.7794	166.7423	161.6618	128.1037	124.6547	97.9044	97.7828	72.7366	96.9689	138.9144	123.1540
Gaussian ($\mu = 0, \sigma = 1$	197.5735	193.1815	167.9353	160.4486	124.1292	120.0340	97.0217	94.0685	81.0270	97.6529	182.4072	478.5343
Gaussian ($\mu = 1, \sigma = 0.02$)	198.9519	197.7125	458.4298	515.2014	467.9735	467.8844	447.5934	516.8441	453.9875	490.4471	451.0224	459.6968
Gaussian ($\mu = 1, \sigma = 0.5$)	198.5620	217.2923	167.4394	504.0632	129.1247	488.1917	115.5052	473.5292	102.6466	476.8645	241.3645	481.8716
Gaussian ($\mu = 1, \sigma = 1$)	197.9122	217.5943	167.3174	497.2559	131.6604	507.0174	101.5437	505.2754	78.6406	473.9390	169.2239	541.3786
Gaussian ($\mu = -1, \sigma = 0.02$)	453.9857	457.6421	461.8598	461.5971	447.4334	446.9508	453.2713	454.0710	455.1198	455.1721	454.6053	457.0475
Gaussian ($\mu = -1, \sigma = 0.5$)	300.1751	456.1936	454.9631	456.8790	200.3819	450.1558	385.8363	445.2631	404.6956	448.4085	458.4824	454.3195
Gaussian ($\mu = -1, \sigma = 1$)	211.8576	417.1591	290.7107	428.3455	136.8156	376.5017	113.8027	420.2316	94.7660	440.8685	232.7105	451.4181
Orthogonal (Gain = 0.5)	202.5649	234.6800	167.1068	202.1423	132.7072	149.2592	99.1106	123.7785	67.8194	192.8911	152.4817	456.7346
Orthogonal (Gain = 1)	204.5313	223.9168	167.0671	193.3545	131.4684	148.1803	101.9759	109.1293	65.3211	119.5430	152.5085	173.6032
Orthogonal (Gain = 1.5)	201.0340	215.1335	167.5513	183.8371	133.0137	144.4053	101.6463	108.1394	66.2897	110.1505	145.8183	152.0322
Uniform (-0.02, 0.02)	204.5676	262.6497	169.9517	461.5289	131.1087	180.3531	100.0333	326.2196	229.5681	454.0649	452.6827	460.8555
Uniform (-0.5, 0.5)	200.0021	209.9359	166.1523	170.8800	130.0720	133.0439	98.1676	98.4345	63.0506	91.2329	144.3277	121.5707
Uniform (-1, 1)	198.1587	197.9735	166.9635	161.8566	127.9312	123.3643	98.9669	94.7042	75.6332	94.0704	143.2481	124.3923
Uniform (-1.5, 1.5)	200.1311	198.2672	166.7834	163.4821	126.1630	119.6831	97.2993	93.7838	79.0227	93.6728	173.1077	432.3132
Uniform (0, 1)	203.5686	218.0428	170.7694	455.7111	131.8741	452.5606	106.3817	487.4816	395.4356	514.1393	346.4521	471.4219
Xavier Normal (Gain = 0.5)	203.4820	235.8485	166.6828	207.8234	132.5345	152.1559	98.8247	175.5650	73.7299	457.8352	158.3653	449.4362
Xavier Normal (Gain = 1)	201.7016	230.3907	166.2114	194.1856	131.0969	147.9112	97.8332	122.9046	74.0737	196.6364	271.9412	457.4161
Xavier Normal (Gain = 1.5)	202.1547	227.7135	166.0910	192.1118	131.3674	148.8128	100.3043	109.6404	68.4997	119.3479	146.8924	171.5187
Xavier Uniform (Gain = 0.5)	203.0753	236.7116	166.8513	248.0841	133.0265	152.9370	97.9908	445.9062	75.0038	452.1075	153.8430	452.7558
Xavier Uniform (Gain = 1)	203.8311	234.0839	165.6804	198.8899	132.4623	148.5412	98.2993	113.5351	70.9328	179.9320	156.3881	325.7304
Xavier Uniform (Gain = 1.5)	202.4615	229.3706	166.4272	188.8543	131.1432	148.3616	99.2122	108.1039	66.3070	121.7508	146.7658	182.7901
Kaiming Normal (Mode = fan_in)	203.0479	218.8304	171.2693	186.5371	134.1824	145.4180	101.8193	109.3164	66.4424	113.3181	142.9782	154.7894
Kaiming Normal (Mode = fan_out)	205.2424	231.6536	167.8388	198.4719	131.0087	149.4044	101.1184	110.7348	64.0376	138.8431	148.8014	194.1676
Kaiming Uniform (Mode = fan_in)	201.3271	222.4708	167.4424	186.3614	133.1087	145.1121	100.5890	107.6714	64.7305	111.1232	149.3870	155.9740
Kaiming Uniform (Mode = fan_out)	202.2209	232.4030	166.1359	197.0349	130.6100	148.7798	98.9740	108.4047	71.9651	147.0019	148.0916	230.0073
Hadamard	200.8951	227.0174	167.8796	193.8820	133.3731	148.5855	99.5843	107.3967	66.2025	120.1903	145.5386	184.9573

Table 6: Reconstruction Loss (\downarrow) for CIFAR-100

Tuble of Reconstruction Eoss (\$\psi\$) for CHTIR 100												
Initialization Method	16		32		64		128		256		512	2
	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.0171	0.0196	0.0118	0.0176	0.0081	0.0099	0.0050	0.0101	0.0035	0.0141	0.0705	0.0705
Gaussian ($\mu = 0, \sigma = 0.5$)	0.0170	0.0173	0.0117	0.0133	0.0080	0.0082	0.0050	0.0061	0.0038	0.0084	0.0085	0.0130
Gaussian ($\mu = 0, \sigma = 1$)	0.0169	0.0173	0.0118	0.0134	0.0080	0.0082	0.0050	0.0063	0.0039	0.0087	0.0232	0.2460
Gaussian ($\mu = 1, \sigma = 0.02$)	0.0170	0.1709	0.0705	0.3072	0.0334	0.3006	0.0705	0.3127	0.0705	0.3171	0.0705	0.3085
Gaussian ($\mu = 1, \sigma = 0.5$)	0.0171	0.1693	0.0119	0.3029	0.0080	0.2431	0.0055	0.3153	0.0177	0.3134	0.0120	0.3114
Gaussian ($\mu = 1, \sigma = 1$)	0.0172	0.1713	0.0117	0.3063	0.0081	0.3004	0.0050	0.3169	0.0040	0.3158	0.0107	0.3176
Gaussian ($\mu = -1, \sigma = 0.02$)	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705	0.0705
Gaussian ($\mu = -1, \sigma = 0.5$)	0.0280	0.0705	0.0705	0.0705	0.0208	0.0700	0.0197	0.0703	0.0488	0.0703	0.0603	0.0705
Gaussian ($\mu = -1, \sigma = 1$)	0.0172	0.0670	0.0354	0.0690	0.0081	0.0642	0.0050	0.0685	0.0042	0.0685	0.0114	0.0702
Orthogonal (Gain = 0.5)	0.0170	0.0180	0.0119	0.0143	0.0081	0.0088	0.0050	0.0075	0.0034	0.0140	0.0093	0.0705
Orthogonal (Gain = 1)	0.0169	0.0174	0.0118	0.0137	0.0081	0.0085	0.0050	0.0064	0.0034	0.0086	0.0097	0.0135
Orthogonal (Gain = 1.5)	0.0169	0.0173	0.0117	0.0132	0.0081	0.0084	0.0050	0.0062	0.0034	0.0080	0.0097	0.0124
Uniform (-0.02, 0.02)	0.0171	0.0224	0.0121	0.0705	0.0081	0.0108	0.0050	0.0195	0.0304	0.0705	0.0705	0.0705
Uniform (-0.5, 0.5)	0.0169	0.0174	0.0117	0.0135	0.0080	0.0083	0.0049	0.0060	0.0033	0.0077	0.0087	0.0122
Uniform (-1 to 1)	0.0169	0.0174	0.0117	0.0135	0.0080	0.0082	0.0050	0.0060	0.0038	0.0081	0.0089	0.0131
Uniform (-1.5, 1.5)	0.0169	0.0174	0.0118	0.0135	0.0080	0.0082	0.0050	0.0061	0.0038	0.0084	0.0111	0.3030
Uniform (0, 1)	0.0171	0.0202	0.0118	0.3012	0.0080	0.2987	0.0056	0.3141	0.0588	0.3182	0.0466	0.3133
Xavier Normal (Gain = 0.5)	0.0171	0.0183	0.0118	0.0151	0.0081	0.0091	0.0050	0.0114	0.0036	0.0705	0.0095	0.0705
Xavier Normal (Gain = 1)	0.0170	0.0179	0.0117	0.0141	0.0081	0.0088	0.0050	0.0076	0.0036	0.0142	0.0098	0.0628
Xavier Normal (Gain = 1.5)	0.0170	0.0176	0.0117	0.0139	0.0081	0.0086	0.0050	0.0066	0.0035	0.0087	0.0095	0.0135
Xavier Uniform (Gain = 0.5)	0.0172	0.0183	0.0118	0.0168	0.0081	0.0093	0.0050	0.0274	0.0037	0.0705	0.0107	0.0705
Xavier Uniform (Gain = 1)	0.0170	0.0178	0.0118	0.0137	0.0081	0.0087	0.0050	0.0071	0.0037	0.0126	0.0090	0.0454
Xavier Uniform (Gain = 1.5)	0.0169	0.0176	0.0118	0.0133	0.0081	0.0086	0.0050	0.0064	0.0035	0.0085	0.0097	0.0144
Kaiming Normal (Mode = fan_in)	0.0169	0.0175	0.0118	0.0136	0.0081	0.0085	0.0050	0.0065	0.0033	0.0086	0.0098	0.0131
Kaiming Normal (Mode = fan_out)	0.0169	0.0179	0.0117	0.0142	0.0081	0.0088	0.0050	0.0068	0.0034	0.0095	0.0095	0.0149
Kaiming Uniform (Mode = fan_in)	0.0169	0.0174	0.0117	0.0134	0.0080	0.0084	0.0050	0.0064	0.0034	0.0081	0.0096	0.0129
Kaiming Uniform (Mode = fan_out)	0.0169	0.0176	0.0118	0.0134	0.0081	0.0086	0.0050	0.0065	0.0036	0.0099	0.0097	0.0192
Hadamard	0.0169	0.0174	0.0118	0.0136	0.0081	0.0085	0.0050	0.0063	0.0035	0.0086	0.0095	0.0149

Table 7: SSIM (↑) for CIFAR-100

Initialization Method	16		32		64		128		256		512	2
manadon mediad	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.3757	0.3721	0.4959	0.4578	0.6263	0.6092	0.7591	0.6198	0.8241	0.4982	0.1413	0.1413
Gaussian ($\mu = 0, \sigma = 0.5$)	0.3745	0.3665	0.4976	0.4793	0.6312	0.6234	0.7583	0.7255	0.8095	0.6644	0.6104	0.5328
Gaussian ($\mu = 0, \sigma = 1$	0.3745	0.3667	0.4960	0.4769	0.6293	0.6221	0.7569	0.7214	0.8028	0.6554	0.4416	0.1033
Gaussian ($\mu = 1, \sigma = 0.02$)	0.3751	0.1154	0.1413	0.0038	0.4333	0.0036	0.1413	0.0038	0.1412	0.0033	0.1413	0.0035
Gaussian ($\mu = 1, \sigma = 0.5$)	0.3766	0.1090	0.4977	0.0035	0.6300	0.1183	0.7367	0.0034	0.6505	0.0111	0.4980	0.0034
Gaussian ($\mu = 1, \sigma = 1$)	0.3775	0.1136	0.4967	0.0039	0.6295	0.0034	0.7564	0.0035	0.8015	0.0033	0.5323	0.0033
Gaussian ($\mu = -1, \sigma = 0.02$)	0.1413	0.1414	0.1413	0.1413	0.1413	0.1413	0.1412	0.1412	0.1413	0.1413	0.1414	0.1414
Gaussian ($\mu = -1, \sigma = 0.5$)	0.3304	0.1414	0.1414	0.1414	0.5307	0.1418	0.5663	0.1414	0.2482	0.1414	0.1807	0.1413
Gaussian ($\mu = -1, \sigma = 1$)	0.3767	0.1478	0.3535	0.1432	0.6287	0.1551	0.7576	0.1438	0.7899	0.1434	0.5081	0.1416
Orthogonal (Gain = 0.5)	0.3752	0.3722	0.4968	0.4776	0.6272	0.6166	0.7589	0.6837	0.8264	0.4968	0.5792	0.1414
Orthogonal (Gain = 1)	0.3729	0.3671	0.4958	0.4838	0.6284	0.6215	0.7592	0.7171	0.8294	0.6518	0.5661	0.5039
Orthogonal (Gain = 1.5)	0.3742	0.3687	0.4966	0.4821	0.6303	0.6225	0.7599	0.7218	0.8284	0.6717	0.5650	0.5418
Uniform (-0.02, 0.02)	0.3764	0.3699	0.4976	0.1413	0.6271	0.5948	0.7583	0.4727	0.5451	0.1413	0.1413	0.1414
Uniform (-0.5, 0.5)	0.3742	0.3653	0.4977	0.4753	0.6311	0.6232	0.7601	0.7294	0.8330	0.6884	0.6049	0.5543
Uniform (-1, 1)	0.3741	0.3666	0.4962	0.4739	0.6309	0.6245	0.7582	0.7288	0.8082	0.6720	0.5946	0.5244
Uniform (-1.5, 1.5)	0.3740	0.3670	0.4964	0.4726	0.6297	0.6232	0.7574	0.7273	0.8063	0.6644	0.5184	0.0074
Uniform (0, 1)	0.3764	0.3842	0.4965	0.0033	0.6305	0.0041	0.7297	0.0038	0.2148	0.0034	0.2963	0.0110
Xavier Normal (Gain = 0.5)	0.3762	0.3745	0.4962	0.4673	0.6270	0.6121	0.7582	0.5732	0.8187	0.1414	0.5748	0.1413
Xavier Normal (Gain = 1)	0.3738	0.3708	0.4964	0.4737	0.6282	0.6133	0.7584	0.6742	0.8156	0.4877	0.5624	0.1608
Xavier Normal (Gain = 1.5)	0.3744	0.3670	0.4963	0.4769	0.6297	0.6196	0.7597	0.7150	0.8244	0.6526	0.5727	0.5088
Xavier Uniform (Gain = 0.5)	0.3777	0.3731	0.4954	0.4269	0.6283	0.6057	0.7579	0.3702	0.8111	0.1414	0.5387	0.1414
Xavier Uniform (Gain = 1)	0.3713	0.3702	0.4962	0.4783	0.6286	0.6181	0.7585	0.6969	0.8133	0.5272	0.5909	0.2173
Xavier Uniform (Gain = 1.5)	0.3733	0.3678	0.4963	0.4802	0.6289	0.6195	0.7586	0.7212	0.8230	0.6520	0.5656	0.4735
Kaiming Normal (Mode = fan_in)	0.3720	0.3664	0.4964	0.4771	0.6297	0.6219	0.7597	0.7171	0.8305	0.6613	0.5606	0.5298
Kaiming Normal (Mode = fan_out)	0.3730	0.3719	0.4966	0.4777	0.6287	0.6177	0.7592	0.7089	0.8284	0.6291	0.5717	0.4729
Kaiming Uniform (Mode = fan_in)	0.3740	0.3656	0.4973	0.4762	0.6309	0.6213	0.7594	0.7219	0.8266	0.6736	0.5689	0.5273
Kaiming Uniform (Mode = fan_out)	0.3723	0.3697	0.4965	0.4810	0.6288	0.6187	0.7583	0.7191	0.8180	0.6039	0.5674	0.3705
Hadamard	0.3723	0.3689	0.4960	0.4800	0.6293	0.6223	0.7597	0.7272	0.8241	0.6594	0.5724	0.4652

Table 8: FID (\downarrow) for CIFAR-100

					(Y /	_						
Initialization Method	1	6	32		64		128		256		51	12
Initialization Method	Learnable	Fixed	Learnable	Fixed	Learnable	Fixed	Learnable	Fixed	Learnable	Fixed	Learnable	Fixed
Gaussian ($\mu = 0, \sigma = 0.02$)	183.0714	226.4144	152.4853	218.1764	118.7887	151.8834	88.6712	155.8850	62.5579	197.5636	446.9524	453.7532
Gaussian ($\mu = 0, \sigma = 0.5$)	179.0554	177.1442	153.0044	149.3330	115.1627	113.5859	87.7116	91.1229	67.8090	99.8157	128.6850	123.7941
Gaussian ($\mu = 0, \sigma = 1$	177.5401	173.9579	152.1853	150.7130	114.1189	109.7487	85.7010	89.7494	71.2509	98.5784	214.9221	425.7336
Gaussian ($\mu = 1, \sigma = 0.02$)	177.1480	193.7569	447.8329	524.0421	261.2349	509.9010	443.4188	500.5533	447.2748	507.4375	445.5235	476.8426
Gaussian ($\mu = 1, \sigma = 0.5$)	177.2612	213.6498	153.8454	519.6964	115.2407	463.5438	91.9068	473.3522	155.3197	480.8309	158.4461	486.2239
Gaussian ($\mu = 1, \sigma = 1$)	178.4474	194.9128	152.3325	480.8134	116.5051	534.0475	89.0951	495.8878	71.5585	461.1200	149.3136	474.6477
Gaussian ($\mu = -1, \sigma = 0.02$)	453.8588	453.3746	447.8728	443.8270	450.8869	449.4509	444.7023	447.1397	443.6439	446.9514	447.1573	446.8599
Gaussian ($\mu = -1, \sigma = 0.5$)	243.5210	455.3725	451.3300	447.1603	188.3488	448.6424	177.2609	441.8264	340.6086	442.2053	406.6731	449.2385
Gaussian ($\mu = -1, \sigma = 1$)	187.7530	406.3138	277.8171	419.5802	118.1635	364.8020	89.7250	424.6603	74.7700	438.4925	155.2045	434.9560
Orthogonal (Gain = 0.5)	181.9317	205.3326	153.4782	188.3867	118.8899	134.6475	88.6314	112.1980	61.8051	184.6875	138.1685	452.5748
Orthogonal (Gain = 1)	179.8894	192.3198	156.6029	176.4457	118.3627	127.3099	89.2277	98.0656	60.3823	112.6503	141.7588	162.5084
Orthogonal (Gain = 1.5)	180.5597	185.0709	153.4874	166.4058	117.6520	124.5160	88.7658	96.7367	60.3933	103.9144	140.9319	142.3769
Uniform (-0.02, 0.02)	181.4915	246.5185	158.3255	447.4950	117.4418	168.3182	89.0386	238.4189	220.0897	443.9430	450.3622	446.4369
Uniform (-0.5, 0.5)	179.1902	184.6318	151.2621	157.7564	116.1361	117.4907	87.8410	92.4923	58.6401	92.2858	131.2850	121.5421
Uniform (-1, 1)	178.1346	176.3214	152.5265	151.7006	114.9230	111.9121	87.4961	89.7354	68.1323	97.4910	133.0328	128.8066
Uniform (-1.5, 1.5)	177.6370	176.8045	153.1880	151.7605	113.6461	111.1578	86.8068	89.3090	68.8900	96.9063	154.0161	492.5122
Uniform (0, 1)	183.2623	201.6881	152.9768	539.8026	116.2003	541.1843	93.9946	541.0256	390.0802	511.8127	333.2009	520.5569
Xavier Normal (Gain = 0.5)	182.8722	210.3721	152.4383	192.9956	117.6267	137.6916	88.7232	167.4810	65.0197	456.4190	140.1085	452.3163
Xavier Normal (Gain = 1)	180.7308	201.6339	151.9775	178.9803	116.1575	132.4176	88.6833	111.9473	66.0399	177.6619	142.5526	424.4128
Xavier Normal (Gain = 1.5)	179.8782	193.4091	153.7713	176.1558	116.8737	128.5625	89.1732	98.4813	62.5334	111.8037	140.2330	161.7399
Xavier Uniform (Gain = 0.5)	184.2523	210.1855	152.8523	208.7189	117.7331	139.5411	88.0695	265.0084	67.7077	457.6977	148.6311	453.5656
Xavier Uniform (Gain = 1)	179.9830	201.9290	152.6019	180.2479	115.8996	131.9550	88.7228	105.3162	67.0680	165.5826	136.6790	344.7588
Xavier Uniform (Gain = 1.5)	179.5444	197.6550	153.3699	172.5248	117.2454	128.3960	88.9577	97.2003	63.3121	113.9055	141.5417	169.5280
Kaiming Normal (Mode = fan_in)	179.4043	187.2206	156.6531	166.1056	117.7342	125.3071	89.1772	98.3341	59.6919	107.2348	141.7981	145.5695
Kaiming Normal (Mode = fan_out)	179.0123	202.5186	151.8673	181.2652	117.1243	131.0979	89.1713	99.7737	60.9441	126.1473	139.8583	176.6325
Kaiming Uniform (Mode = fan_in)	179.4043	187.2206	156.6531	166.1056	117.7342	125.3071	89.1772	98.3341	59.6919	107.2348	141.7981	145.5695
Kaiming Uniform (Mode = fan_out)	179.0123	202.5186	151.8673	181.2652	117.1243	131.0979	89.1713	99.7737	60.9441	126.1473	139.8583	176.6325
Hadamard	179.9593	193.9618	153.6315	174.6738	116.8275	127.4908	88.3731	95.7952	62.4802	112.6284	139.4465	175.7041

Table 9: Reconstruction Loss (\downarrow) for Fashion-MNIST

Initialization Method	16		32		64		128		256		512	2
Initialization Method	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.0449	0.0475	0.0278	0.0359	0.0144	0.0205	0.0044	0.0241	0.0053	0.0587	0.0426	0.0937
Gaussian ($\mu = 0, \sigma = 0.5$)	0.0457	0.0466	0.0279	0.0334	0.0148	0.0172	0.0049	0.0108	0.0037	0.0186	0.0169	0.0397
Gaussian ($\mu = 0, \sigma = 1$)	0.0463	0.0474	0.0281	0.0335	0.0151	0.0176	0.0049	0.0114	0.0067	0.0585	0.0404	0.0776
Gaussian ($\mu = 1, \sigma = 0.02$)	0.0456	0.0744	0.0282	0.0950	0.0502	0.0813	0.1028	0.1435	0.1027	0.2329	0.1026	0.2791
Gaussian ($\mu = 1, \sigma = 0.5$)	0.0455	0.0852	0.0277	0.0885	0.0145	0.0961	0.0090	0.1570	0.0138	0.2348	0.0394	0.1347
Gaussian ($\mu = 1, \sigma = 1$)	0.0461	0.0755	0.0280	0.0814	0.0145	0.0585	0.0046	0.1819	0.0053	0.2909	0.0444	0.2426
Gaussian ($\mu = -1, \sigma = 0.02$)	0.1031	0.1031	0.1030	0.1029	0.1028	0.1027	0.1026	0.1026	0.1028	0.1027	0.1027	0.1026
Gaussian ($\mu = -1, \sigma = 0.5$)	0.0462	0.1031	0.0301	0.1029	0.0134	0.0957	0.0330	0.0979	0.0755	0.0992	0.0750	0.0992
Gaussian ($\mu = -1, \sigma = 1$)	0.0454	0.0810	0.0287	0.0764	0.0152	0.0769	0.0046	0.0862	0.0050	0.0913	0.0386	0.0915
Orthogonal (Gain = 0.5)	0.0456	0.0462	0.0281	0.0333	0.0145	0.0184	0.0044	0.0144	0.0052	0.0444	0.0438	0.0870
Orthogonal (Gain = 1)	0.0461	0.0459	0.0283	0.0322	0.0147	0.0171	0.0046	0.0102	0.0047	0.0162	0.0457	0.0370
Orthogonal (Gain = 1.5)	0.0461	0.0459	0.0283	0.0322	0.0147	0.0171	0.0046	0.0102	0.0047	0.0162	0.0457	0.0370
Uniform (-0.02, 0.02)	0.0455	0.0489	0.0278	0.0372	0.0144	0.0234	0.0043	0.0553	0.0052	0.1027	0.0444	0.1026
Uniform (-0.5, 0.5)	0.0452	0.0468	0.0279	0.0330	0.0149	0.0172	0.0048	0.0105	0.0040	0.0162	0.0220	0.0343
Uniform (-1 to 1)	0.0457	0.0472	0.0276	0.0334	0.0151	0.0171	0.0049	0.0107	0.0039	0.0182	0.0264	0.0475
Uniform (-1.5, 1.5)	0.0453	0.0473	0.0284	0.0329	0.0149	0.0170	0.0049	0.0109	0.0060	0.0207	0.0401	0.0899
Uniform (0, 1)	0.0457	0.0450	0.0275	0.0290	0.0145	0.0412	0.0099	0.0847	0.0520	0.2173	0.0779	0.2294
Xavier Normal (Gain = 0.5)	0.0452	0.0473	0.0282	0.0349	0.0146	0.0196	0.0044	0.0285	0.0055	0.0789	0.0412	0.1026
Xavier Normal (Gain = 1)	0.0452	0.0466	0.0278	0.0338	0.0143	0.0180	0.0044	0.0119	0.0053	0.0261	0.0427	0.0602
Xavier Normal (Gain = 1.5)	0.0448	0.0466	0.0279	0.0335	0.0146	0.0174	0.0044	0.0112	0.0048	0.0186	0.0447	0.0439
Xavier Uniform (Gain = 0.5)	0.0453	0.0480	0.0285	0.0367	0.0145	0.0288	0.0045	0.0795	0.0058	0.1027	0.0404	0.1026
Xavier Uniform (Gain = 1)	0.0461	0.0465	0.0286	0.0339	0.0145	0.0197	0.0044	0.0196	0.0058	0.0527	0.0398	0.0858
Xavier Uniform (Gain = 1.5)	0.0459	0.0469	0.0280	0.0334	0.0143	0.0181	0.0045	0.0107	0.0054	0.0239	0.0455	0.0518
Kaiming Normal (Mode = fan_in)	0.0458	0.0498	0.0280	0.0370	0.0149	0.0172	0.0044	0.0190	0.0049	0.0248	0.0490	0.0381
Kaiming Normal (Mode = fan_out)	0.0458	0.0463	0.0300	0.0337	0.0144	0.0319	0.0044	0.0494	0.0063	0.0482	0.0416	0.0631
Kaiming Uniform (Mode = fan_in)	0.0454	0.0471	0.0280	0.0331	0.0149	0.0173	0.0046	0.0102	0.0052	0.0162	0.0462	0.0366
Kaiming Uniform (Mode = fan_out)	0.0453	0.0466	0.0284	0.0337	0.0144	0.0193	0.0044	0.0150	0.0058	0.0403	0.0423	0.0680
Hadamard	0.0460	0.0462	0.0281	0.0327	0.0149	0.0170	0.0046	0.0111	0.0047	0.0189	0.0449	0.0429

Table 10: SSIM (↑) for Fashion-MNIST

Initialization Method	16		32		64		128		256		512	2
Induitation recurse	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	0.4464	0.2951	0.6329	0.4145	0.8036	0.6093	0.9345	0.5732	0.9349	0.2725	0.4938	0.0664
Gaussian ($\mu = 0, \sigma = 0.5$)	0.4425	0.3733	0.6280	0.5175	0.7904	0.7467	0.9241	0.8434	0.9428	0.7560	0.7848	0.5023
Gaussian ($\mu = 0, \sigma = 1$	0.4338	0.3715	0.6262	0.5295	0.7838	0.7593	0.9237	0.8483	0.9167	0.4837	0.5080	0.2949
Gaussian ($\mu = 1, \sigma = 0.02$)	0.4455	0.3213	0.6286	0.2799	0.4947	0.3182	0.0548	0.0792	0.0548	0.0230	0.0549	0.0033
Gaussian ($\mu = 1, \sigma = 0.5$)	0.4417	0.2980	0.6317	0.3367	0.7997	0.2298	0.8820	0.0583	0.8275	0.0115	0.5195	0.0658
Gaussian ($\mu = 1, \sigma = 1$)	0.4377	0.3136	0.6332	0.3444	0.7930	0.4885	0.9326	0.0343	0.9344	0.0196	0.4727	0.0075
Gaussian ($\mu = -1, \sigma = 0.02$)	0.0549	0.0548	0.0547	0.0546	0.0546	0.0547	0.0547	0.0547	0.0548	0.0549	0.0548	0.0548
Gaussian ($\mu = -1, \sigma = 0.5$)	0.4045	0.0547	0.5907	0.0545	0.8176	0.0773	0.6446	0.0674	0.2575	0.0586	0.1791	0.0584
Gaussian ($\mu = -1, \sigma = 1$)	0.4358	0.1423	0.6167	0.1742	0.7819	0.1384	0.9289	0.1041	0.9322	0.0663	0.5379	0.0662
Orthogonal (Gain = 0.5)	0.4440	0.3395	0.6288	0.4761	0.8004	0.6646	0.9337	0.7111	0.9348	0.3707	0.4799	0.0744
Orthogonal (Gain = 1)	0.4357	0.3787	0.6260	0.5247	0.7916	0.7134	0.9327	0.8101	0.9410	0.7336	0.4598	0.4862
Orthogonal (Gain = 1.5)	0.4357	0.3787	0.6260	0.5247	0.7916	0.7134	0.9327	0.8101	0.9410	0.7336	0.4598	0.4862
Uniform (-0.02, 0.02)	0.4396	0.2737	0.6333	0.3895	0.8050	0.5556	0.9341	0.2758	0.9348	0.0548	0.4776	0.0548
Uniform (-0.5, 0.5)	0.4427	0.3753	0.6323	0.5231	0.7897	0.7343	0.9284	0.8363	0.9460	0.7717	0.7284	0.5615
Uniform (-1, 1)	0.4389	0.3807	0.6375	0.5327	0.7876	0.7523	0.9230	0.8509	0.9438	0.7638	0.6684	0.3981
Uniform (-1.5, 1.5)	0.4430	0.3821	0.6241	0.5462	0.7889	0.7622	0.9219	0.8536	0.9255	0.7303	0.5132	0.2118
Uniform (0, 1)	0.4374	0.3996	0.6351	0.6209	0.7993	0.6218	0.8746	0.2312	0.4861	0.0238	0.2292	0.0095
Xavier Normal (Gain = 0.5)	0.4411	0.3173	0.6296	0.4445	0.7994	0.6344	0.9350	0.5284	0.9327	0.1357	0.5104	0.0548
Xavier Normal (Gain = 1)	0.4456	0.3389	0.6320	0.4728	0.8023	0.6797	0.9321	0.7494	0.9360	0.5988	0.4917	0.2412
Xavier Normal (Gain = 1.5)	0.4458	0.3500	0.6311	0.4899	0.7949	0.7017	0.9355	0.7771	0.9402	0.6963	0.4628	0.4038
Xavier Uniform (Gain = 0.5)	0.4378	0.3066	0.6283	0.4256	0.8012	0.5158	0.9331	0.1257	0.9288	0.0548	0.5182	0.0548
Xavier Uniform (Gain = 1)	0.4253	0.3397	0.6259	0.4783	0.8021	0.6419	0.9343	0.6502	0.9291	0.2851	0.5171	0.0902
Xavier Uniform (Gain = 1.5)	0.4345	0.3533	0.6322	0.4980	0.8019	0.6806	0.9337	0.7761	0.9344	0.6301	0.4621	0.3056
Kaiming Normal (Mode = fan_in)	0.4361	0.3183	0.6272	0.4520	0.7925	0.7176	0.9332	0.6815	0.9386	0.6253	0.4349	0.4780
Kaiming Normal (Mode = fan_out)	0.4175	0.3459	0.5947	0.4783	0.8013	0.5111	0.9343	0.3530	0.9234	0.4287	0.5001	0.2521
Kaiming Uniform (Mode = fan_in)	0.4424	0.3689	0.6310	0.5162	0.7916	0.7187	0.9319	0.8058	0.9370	0.7365	0.4569	0.4953
Kaiming Uniform (Mode = fan_out)	0.4413	0.3454	0.6253	0.4804	0.8045	0.6519	0.9347	0.7113	0.9286	0.4211	0.4995	0.1642
Hadamard	0.4388	0.3718	0.6296	0.5134	0.7921	0.7179	0.9313	0.7922	0.9405	0.6963	0.4690	0.4126

Table 11: FID (\downarrow) for Fashion-MNIST

Initialization Method	1	6	3	32		64		28	256		512	
Initialization Method	Learnable	Fixed										
Gaussian ($\mu = 0, \sigma = 0.02$)	178.4276	218.7172	133.8405	197.8785	79.0841	126.2222	24.4798	131.4325	18.4275	233.8625	141.1779	319.4675
Gaussian ($\mu = 0, \sigma = 0.5$)	171.5091	210.4390	136.5693	175.8949	80.9980	98.8907	28.7288	57.7473	18.0161	89.5628	67.2428	163.3966
Gaussian ($\mu = 0, \sigma = 1$	172.3919	211.9167	135.2910	167.4778	82.8584	92.0028	29.7082	52.4620	23.3368	180.9148	153.6093	276.7094
Gaussian ($\mu = 1, \sigma = 0.02$)	173.9740	195.8672	138.0503	169.6501	192.9372	254.9356	352.6039	379.8038	353.5087	415.9422	355.5287	409.5339
Gaussian ($\mu = 1, \sigma = 0.5$)	170.2878	173.4771	138.1840	166.6962	78.1149	260.6100	41.6254	399.3627	57.2834	378.6912	146.8364	468.2354
Gaussian ($\mu = 1, \sigma = 1$)	170.8678	187.8037	133.6235	165.7766	80.3770	184.5602	25.3015	390.4048	19.2955	411.6939	148.5768	430.0127
Gaussian ($\mu = -1, \sigma = 0.02$)	350.5009	352.1599	348.1890	349.9350	348.6937	348.2652	349.4396	348.0315	352.0145	351.9135	353.1674	352.1848
Gaussian ($\mu = -1, \sigma = 0.5$)	198.2017	355.3506	157.1520	352.8964	83.9886	323.8154	129.1395	326.2354	266.9524	348.3002	253.6508	349.4343
Gaussian ($\mu = -1, \sigma = 1$)	182.2203	232.7002	143.3895	220.9111	82.6830	234.8540	29.5301	247.8729	20.8915	338.9296	137.1517	337.1287
Orthogonal (Gain = 0.5)	176.2405	213.4522	138.0169	177.5687	79.5886	119.5016	24.5925	87.5695	17.8503	189.0431	141.0744	306.9878
Orthogonal (Gain = 1)	171.1702	210.4954	132.9115	170.7393	80.9021	109.7682	25.1612	64.8384	15.9699	105.2417	150.6491	161.4446
Orthogonal (Gain = 1.5)	171.1702	210.4954	132.9115	170.7393	80.9021	109.7682	25.1612	64.8384	15.9699	105.2417	150.6491	161.4446
Uniform (-0.02, 0.02)	175.2026	224.6855	135.8981	199.1652	78.9040	135.4349	26.1417	231.1302	19.2092	349.7004	144.7068	353.2435
Uniform (-0.5, 0.5)	173.6673	207.5652	136.0056	174.0267	80.0325	104.0387	28.3653	59.9937	16.3568	84.9445	90.0399	140.6081
Uniform (-1, 1)	176.8569	209.5528	132.0886	174.8881	81.7074	96.6367	29.9206	55.3884	17.6826	85.3822	106.0517	195.8420
Uniform (-1.5, 1.5)	176.9801	208.0298	135.2002	163.6716	82.3362	90.5122	29.4016	51.9878	20.2563	98.4423	147.2280	289.9079
Uniform (0, 1)	172.3307	211.0640	134.1532	151.2473	77.9346	126.0953	42.6135	324.7710	187.1713	402.9615	279.4473	419.7646
Xavier Normal (Gain = 0.5)	176.7011	216.8205	138.2731	185.9724	80.6514	124.1608	24.4654	149.4544	19.3133	287.4142	140.2415	355.5469
Xavier Normal (Gain = 1)	171.8320	209.2904	135.0339	180.2099	78.7730	116.8141	26.5568	77.3584	17.2359	136.0253	146.5963	224.1291
Xavier Normal (Gain = 1.5)	173.0749	205.3336	136.4374	176.0217	82.7547	111.3343	24.6124	72.9501	15.8888	112.7811	149.3688	182.3617
Xavier Uniform (Gain = 0.5)	182.4055	224.1428	136.1948	192.6981	78.7905	163.9333	25.4300	310.9050	19.6205	354.9524	138.8488	356.9361
Xavier Uniform (Gain = 1)	186.6149	216.3850	136.1653	183.9397	79.1636	129.2100	26.8881	117.3258	19.8907	222.9482	140.5917	307.2277
Xavier Uniform (Gain = 1.5)	173.3115	213.9354	132.8233	176.4165	79.3204	119.7971	26.1742	71.9950	17.3586	130.5526	150.1506	212.0603
Kaiming Normal (Mode = fan_in)	175.7812	227.0953	140.5513	189.9054	80.4035	105.3271	25.3717	109.5506	16.4685	128.7356	151.4423	164.2091
Kaiming Normal (Mode = fan_out)	192.7411	209.5611	149.0085	176.3418	81.1644	169.0999	25.0696	203.0001	22.2838	197.8771	143.8145	238.8719
Kaiming Uniform (Mode = fan_in)	175.2201	206.2546	132.4174	175.1433	80.4289	108.4591	25.0194	68.2233	15.7122	100.8423	145.9667	158.9615
Kaiming Uniform (Mode = fan_out)	177.8347	216.5534	133.4456	182.2388	78.6883	127.3091	24.6866	97.3891	19.6215	185.9586	142.7112	247.3069
Hadamard	171.0226	202.5676	134.6836	170.8583	80.9484	105.2641	25.6911	68.0015	15.4854	112.6257	144.3757	176.1968