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ABSTRACT

Many well-known Graph Neural Network (GNN) models assume the underlying
graphs are homophilous, where nodes share similar features and labels with their
neighbours. They rely on message passing that iteratively aggregates neighbour’s
features and often suffer performance degradation on non-homophilous graphs
where useful information is hardly available in the local neighbourhood. In ad-
dition, earlier studies show that in some cases, GNNs are even outperformed by
Multi-Layer Perceptron, indicating insufficient exploitation of node feature informa-
tion. Motivated by these two limitations, we propose ProtoGNN, a novel message
passing framework that augments existing GNNs by effectively combining node
features with structural information. ProtoGNN learns multiple class prototypes
for each class from raw node features with the slot-attention mechanism. These
prototype representations are then transferred onto the structural node features with
explicit message passing to all non-training nodes irrespective of distance. This
form of message passing, from training nodes to class prototypes to non-training
nodes, also serves as a shortcut that bypasses local graph neighbourhoods and cap-
tures global information. ProtoGNN is a generic framework which can be applied
onto any of the existing GNN backbones to improve node representations when
node features are strong and local graph information is scarce. We demonstrate
through extensive experiments that ProtoGNN brings performance improvement
to various GNN backbones and achieves state-of-the-art performance on several
non-homophilous datasets.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as prominent models for learning representations on
graph-structured data. GNNs iteratively update the node embeddings based on the node features of
its own and its local neighbors on the graph (Kipf & Welling, 2016; Defferrard et al., 2016; Gilmer
et al., 2017). This form of iterative message passing provides strong structural inductive bias that
assumes the presence of useful information in local neighborhoods. This assumption holds true for
homophilous graphs whose connected nodes tend to share similar features and labels. However, many
real-world graphs are structured in a heterophilous way wherein nodes tend to be dissimilar with their
local neighbors. Such non-homophilous graphs can be found in domains of fraud detection (Shi et al.,
2022; Pandit et al., 2007), molecular biology (Ye et al., 2022) and certain social networks (Lim et al.,
2021).

Recent studies show that many GNNs (e.g. GCN (Kipf & Welling, 2016)) fail to learn well on non-
homophilous graphs (Zhu et al., 2020b; 2021), and are even outperformed by simple architectures
such as Multi-Layer Perceptron (MLP) that ignore graph structures and only leverage node features.
This indicates two limitations of these GNNs. First, information of node features is not sufficiently
exploited and might be diluted by iterative message passing. Second, the prevailing structural
inductive bias that utilizes local neighbourhood information may not be helpful on non-homophilous
graphs, since useful information is often scarce within the local neighbourhood.

Therefore, it is essential to go beyond the local neighborhood for useful information. Existing works
either explicitly capture multi-hop information (Zhu et al., 2020b) or try to leverage globally available
correlations with distant nodes (Suresh et al., 2021; Li et al., 2022). However, such methods often
go beyond the linear complexity of GNN message passing (Suresh et al., 2021). More importantly,
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Figure 1: (a) Visualization of features for Penn94 and Twitch Gamers datasets. The plots show clustering
patterns of the nodes in the feature space. (b) Illustration of information transfer from training nodes to prototypes.
Yellow and blue represent different classes. The prototype nodes learn multiple representations per class from
the training nodes and transfer the information to non-training nodes through attention.

since relevant information is often scattered within the vast amount of distant nodes, identifying and
extracting such information is a challenging task.

To address the two limitations, we draw inspiration from prototypical networks (Snell et al., 2017), an
efficient and effective paradigm that constructs a single representation for each class called a prototype
to assist learning in data-scarce settings. Learning node representations on graph structures using
class prototypes can facilitate information flow from distant nodes and capture global correlations
efficiently. We observe that in many datasets, nodes from the same class form multiple clusters
(see Fig. 1(a)). If we use a single prototype for each class, the prototype representation would be
inaccurate or insufficient. For example, the single prototype may learn to represent the average of
different clusters. Alternatively, the single prototype may learn to represent one of the dominant
clusters in the feature space, therefore failing to capture information of the remaining clusters. Hence
using a single prototype for each class may lead to suboptimal performance.

In this work, we propose ProtoGNN, a novel message-passing framework that augments existing
GNNs and overcomes two limitations of GNNs on heterophilous graphs by facilitating efficient
information transfer from distant nodes. In ProtoGNN, we first disentangle the two sources of
information from the graph in the form of node feature view and structure view. With the node
features of the training nodes, we construct multiple prototypes from each class independent of graph
structure by adapting the mechanism of slot-attention (Locatello et al., 2020). These class prototypes
are learnt from the node feature space via multiple rounds of attention. It provides an effective way of
soft-clustering the node features as well as the needed model capacity for learning different clusters
within the same class. Alternatively, this process can also be viewed as message passing from training
nodes to prototype nodes as illustrated in Fig. 1(b). The learned prototype representations are then
transferred onto all node representations from the structure view to make them more discriminative.

To enhance the effectiveness of ProtoGNN, we design two regularizers. To exploit the presence of
the feature and structure views for regularization, we enforce cross-view compatibility between the
prototypes (feature view) and node embeddings (structure view) through a hierarchical compatibility
function which handles the presence of multiple prototypes within each class. To further exploit the
full power of prototypes, we regularize them so that they are distinct from each other by encouraging
the prototypes to be orthogonal to each other through an orthogonality loss.

The learning of prototypes introduces artificial edges from training nodes of each class to all non-
training nodes via prototype nodes. This serves as a shortcut in message passing which bypasses
local graph neighbourhoods and captures global information, while maintaining the linear complexity
with respect to the backbone GNNs. Additionally, since the prototypes are learnt from node feature
space, it preserves strong feature information that might be diluted by traditional message passing.

Overall, ProtoGNN is a generic framework which presents the following advantages: (1) It is
orthogonal to existing GNN backbones and can be applied onto any of them to improve node
representations in heterophilous graphs. (2) It is efficient and can capture global node correlations
with only O(n) additional edges. (3) It can be useful in graphs where distant information is helpful
and node feature information is strong, even in homophilous settings when label rate is low. (4) It
preserves the node features from dilution due to message passing. We conduct extensive experiments
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on several non-homophilous datasets which show consistent improvement over various backbone
GNN models, achieving state-of-the-art performance in multiple instances.

2 RELATED WORKS

GNN models like GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2017) have performed
profoundly well on graph-structured data in a multitude of domains. However, GCN-like models
have an intrinsic assumption of homophily on graphs, and it has been noted by multiple works that
they perform poorly on heterophilous graphs (Pei et al., 2020; Zhu et al., 2020b). Early works tried to
address this issue either through multi-hop neighbourhood aggregation or building auxiliary graph
structures based on node and structural features. Since then, various ways have been proposed to
make GNNs work better on non-homophilous graphs (Bo et al., 2021; Yan et al., 2021; Chien et al.,
2020; Dong et al., 2021; Suresh et al., 2021; Yang et al., 2021; Lim et al., 2021; Luan et al., 2021;
Zhu et al., 2020a; Liu et al., 2021). Some of these methods leverage global information by letting the
model choose either proximity or structural information or both for prediction (Suresh et al., 2021),
while other methods like GGCN (Yan et al., 2021) address this by introducing signed messages in the
propagation scheme based on over-smoothing effect observed in GCN-like models.

More recently, LINKX (Zhu et al., 2021) showed that a simple MLP applied on node features and
adjacency matrix can perform well on many heterophilous graph datasets. In addition, GloGNN (Li
et al., 2022) showed substantial improvements when further global information is captured. However,
despite introducing an efficient approach to do this, it can take quadratic runtime when the graph is
dense. In this work, we capture relevant information from distant nodes, which is often scattered
within the graph structure. Identifying and extracting such information is a challenging task. Inspired
by prototypical networks (Snell et al., 2017), we construct class prototypes to enable efficient
information transfer from distant nodes with linear complexity. Furthermore, with the observation
that node features occur in several clusters in heterophilous graphs, we learn multiple prototypes
for each class with an adapted form of slot-attention (Locatello et al., 2020). There are also a few
works that use prototype-based learning in graphs. One uses prototypes to make the predictions
more explainable (Zhang et al., 2022) while another considers few-shot setting (Ding et al., 2020).
However, they do not integrate prototype learning with backbone GNNs, use multiple prototypes per
class or consider heterophilous graphs. Very recently, Xu et al. (2022) proposed using memory units
to capture global patterns in the graph. However, unlike Xu et al. (2022), we train multiple prototypes
per class and are inductively-biased with slot attention mechanism to capture node clusters.

3 PRELIMINARIES

Notations. Let G = (V, E) represent an undirected graph, where V = {vi}ni=1 is the set of nodes
and E ⊆ V × V is the set of edges on the graph. A denotes the adjacency matrix of the graph, where
Aij represents the edge eij between nodes vi and vj . X represents the feature matrix of nodes, where
Xi is the features of node i, and Xtrain and Xnontrain are the feature matrices for all the training
and non-training nodes, respectively. Y denotes the node class labels, and yi is the label for node vi.

Homophily and heterophily Homophily refers to the degree of similarity between connected
neighboring nodes in terms of their features or labels. There are many types of homophily measures
proposed, including edge homophily (Zhu et al., 2020b), node homophily (Pei et al., 2020), and class
insensitive homophily (Lim et al., 2021). In this work, we use the homophily matrix proposed in Lim
et al. (2021), since it can better reflect class-wise homophily. The homophiliy matrix is defined as:

Hc1,c2 =
|(u, v) ∈ E : cu = c1, cv = c2|

|(u, v) ∈ E : cu = c1|
, (1)

for classes c1 and c2, Hc1c2 denotes the proportion of edges between from nodes of class c1 to nodes
of class c2. A homophilous graph has high values on the diagonal entries.

4 PROTOGNN

With the aim of capturing scattered but useful information from distant nodes without diluting the
strong node features, we propose ProtoGNN, which learns the node representations by decoupling
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Figure 2: Overall architecture of ProtoGNN: ProtoGNN disentangles the input graph into two views, one
considering only node features i.e. feature view, the other considering both graph structure and node features i.e.
the structure view. In the feature view, ProtoGNN learns multiple prototype representations for each class from
the node features. In the structure view, a backbone GNN generates node embeddings with the assistance of
information from the feature view. After each GNN layer, generated node embeddings could be augmented by
attending to prototypes. The whole pipeline is trained with a combination of three loss functions.

the feature view and the structural view from the graph and fusing them to produce effective
representations. ProtoGNN can be broken down into the following key components: (1) a feature
view which involves learning multiple prototype representations for each class from only node
features, (2) a structure view that consists of any GNN model, (3) information fusion which combines
information from the two views via the attention mechanism. The whole pipeline is trained with three
loss functions. In the following, we discuss the three stages in details.

Feature View: In order to fully exploit the node features and be able to transfer information to
distant nodes, we learn prototype representations of each class without the structural inductive bias.
This forms the feature view of the graph, wherein nodes are clustered in feature space irrespective of
their topological affinities. The prototype features can then be used to transfer information onto the
structural representations for the model to learn the most effective embeddings adaptively.

In real-world graphs, we observe that the feature distribution for each class of nodes is usually
multi-modal, as illustrated by the feature space visualization in Fig. 1(a). Using a single prototype to
represent multi-modal distributions is insufficient and often inaccurate. Therefore, we design multiple
prototype nodes for each class to enable them to capture different modes in feature distribution. The
embeddings of these prototype nodes are learned via an adapted slot attention mechanism (Locatello
et al., 2020). In the original setting, a fixed number of slots are learnt to represent different objects in
computer vision tasks.

In ProtoGNN, we extend slot attention mechanism to learn the prototypes/clusters of node features of
each class. The learning is done via attention where the class prototypes compete for explanations of
each node, resulting in soft clustering effects such that each slot dominates in certain groups of nodes.

For learning the prototypes, we first transform the node features using an MLP to generate the
node embeddings. These embeddings are averaged and used to initialize the mean µ of a Gaussian
distribution N (µ,Σ) with randomly initialized and learned co-variance Σ. We initialize K prototypes
for each class c, denoted by P c ∈ RK×d, by sampling from the distribution N (µ,Σ). We then
iteratively update the embeddings. In each iteration, we compute a dot product attention (Luong et al.,
2015) between the prototypes and nodes, followed by a softmax operation that normalizes over the
prototypes, such that the assignment scores to each prototype sum up to one for a given node. In this
way, the prototypes will compete for an assignment of nodes which acts as a soft clustering on the
node feature space. Specifically, the attention weights M c

attn for class c is

X = MLP (Xraw), (2)
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M c
attn = Softmax

(
[P cWQ] · [WK(Xc

train)
T ]√

d

)
+ϵ ∈ RK×Nc

train , (3)

where d is the hidden dimension, N c
train is the number of training nodes belonging to class c, WQ

and WK are query and key transformation matrices respectively, and ϵ is a small coefficient added for
numerical stability. Then, we normalize the attention matrix M c

attn over the training node dimension,
so that for each prototype, its assigned weights in all training nodes sum up to one. We then update
the prototype embeddings P c using the weighted average of training node features Xc

train.

P c = Norm(M c
attn)X

c
trainW

V ∈ RK×d (4)

where WV is a parameter matrix. The learning of prototypes serves as a soft clustering of feature
space. It can also be viewed as message passing from training nodes to prototypes via artificially
added edges.

Structure View. We use GNN to learn the structure view representation of nodes. GNN takes both
node features and adjacency matrix as inputs. After each layer of message passing or processing,
GNN produces a structure view node embedding matrix H l ∈ RN×d. Note that we can use any GNN
as a backbone to generate the structure view embeddings.

H l = GNN l(A,H l−1) where H0 = Xraw (5)

Information Transfer/Fusion. Once we have all the class prototypes P from the feature view and
node embeddings H from the structure view, we can then transfer the information from prototype
nodes onto the structure view embeddings. This is done by first computing dot product attention
between prototypes from all classes and all non-training nodes, and then using the softmax function
to normalize over the prototype dimension, so that the weight of all prototypes sum up to one for
each non-training node.

Sattn = Softmax(H l
nontrainP

T ) ∈ RNnontrain×CK (6)

Next, we compute the message to be passed from prototype nodes to non-training nodes by taking the
weighted average of prototype embeddings according to the dot product attention weights. Finally,
we fuse the prototype messages from the feature view with the node embeddings from the structure
view through an aggregation function. We allow the structure view of node embeddings to be taken
from any layer of the GNN, making it an architectural choice.

H l = AGG(H l,Mproto) where Mproto = SattnP (7)

This information transfer process can also be viewed as a message passing from prototype nodes to
non-training nodes. Therefore, the ProtoGNN framework essentially constructs a shortcut between
all the nodes in the graph. This is especially beneficial in the non-homophilous setting where useful
information is less available in the graph local neighborhood. This also helps in some homophilous
settings as well when useful information is distant.

Training. To exploit the full potential of the multiple prototypes of each class, we regularize training
with two additional loss functions besides the cross-entropy loss. First, the cross-view compatibility
loss regularizes by encouraging the structure and feature views to agree. Second, the orthogonality
loss encourages the prototypes to be distinct from each other.

We modify the compatibility loss function from Snell et al. (2017), making it hierarchical in order to
handle multiple prototypes within each class. This is done with the help of an additional aggregation
function. We first compute the similarities between the prototypes of a class and a node embedding
in order to compute the likelihood that the embedding belongs to the class. The similarity scores
with the multiple prototypes are then aggregated into a single score for the class. Multiple choices of
aggregators are possible, e.g. we could compute the average similarities between the embedding and
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the prototypes in the class. We use the max aggregator in order to select the most similar prototype
within the class to the node. The compatibility loss is then computed as follows:

sci = max
k∈K

(
Λ(f(hL

i ), p
c
k)
)

(8)

Lcomp =
1

CNtrain

∑
i∈N

[
scii + log

∑
c′ ̸=c

exp (− sc
′

i )

]
(9)

where Ntrain is the number of training nodes, C is number of classes, ci is the class-label of ith
training node, pck is the kth prototype of class c, hL

i is the node embedding before final classification,
f is an MLP and Λ is a similarity function for which we use dot product. To exploit the full power of
prototypes, we regularize them so that they are distinct from each other. We do that by enforcing the
prototypes to be orthogonal to each other through an orthogonality loss shown to be useful according
to Bianchi et al. (2020).

Lortho =

∥∥∥∥ P cTP c

∥P cTP c∥F
− Id√

d

∥∥∥∥
F

(10)

where ∥·∥F indicates the Frobenius norm. With the α and β as tuning hyperparameters, the full loss
function used for training is

L = Lce + αLcomp + βLortho (11)

Table 1: comparison
H2GCN WR-GAT GLOGNN PROTOGNN

MEAN O(n2) O(n log n) O(dCn) O(KCn)

Complexity. In Tab. 1, we compare the complexity
of ProtoGNN with other baseline models which add
additional edges. Particularly, GloGNN (Li et al.,
2022), though efficient in sparse graphs with small d
(average degree), can go quadratic for dense graphs.
ProtoGNN captures global information with only O(n) additional edges. More specifically, it
contains additional KCn virtual edges, when the graph contains C classes with K prototypes per
class. Note that both K,C ≪ n and hence, it preserves the linear complexity of GNNs.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Datasets We conduct experiments on 10 datasets, including 7 non-homophilous datasets: Penn94,
Pokec, Genius, Twitch-gamers, Cornell5 and Amherst41 released by Lim et al. (2021), and US-
election dataset that we identify to be non-homophilous (Jia & Benson, 2020). We use the original
train/validation/test splits if such splits exist. The train/validation/test split is 60%, 20%, 20% for
US-election, and 50%, 25%, 25% for other datasets. We also evaluate the performance of ProtoGNN
on three popular homophilous datasets: Cora, Citeseer and Pubmed (Pei et al., 2020), with a low
label rate setting so that a labeled node is unlikely to be close to a node that needs to be labeled. The
statistics of the datasets are included in Tab. 2. More details of the datasets are in the appendix.

Baselines ProtoGNN is a generic framework that can be applied onto any of the existing GNN
backbones. We first add ProtoGNN to 4 backbones: (1) GCN (Kipf & Welling, 2016); (2) GCN with
batch normalization, as we observe that batch normalization significantly improves performance in
some datasets; (3) GCNII (Chen et al., 2020), a deeper GNN architecture; (4) LINKX (Lim et al.,
2021), a model specifically designed for non-homophilous graphs. Following Lim et al. (2021)
and Li et al. (2022), we also compare ProtoGNN against 11 other baselines for comprehensive
evaluation, including (1) MLP; (2) general GNNs, including GCN, GAT (Veličković et al., 2017),
MixHop (Abu-El-Haija et al., 2019) and GCNII; (3) baselines designed for non-homophilous graphs,
including H2GCN (Zhu et al., 2020b), WRGAT (Suresh et al., 2021), GPR-GNN (Chien et al., 2020)
ACM-GCN (Luan et al., 2021), LINKX and GloGNN (Li et al., 2022).
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Table 2: Statistics of non-homophilous datasets and Classification performance of ProtoGNN vs backbones
on non-homophilous datasets. Hom. Mat. refers to the homophily matrix described in Sec. 3. 0 and 1 stand
for class labels. We report AUC for Genius (Lim et al., 2021) and accuracy for other datasets with standard
deviation over 3 trials. OOM refers to the out-of-memory error.

Penn94 Pokec Genius Twitch-gamers Cornell5 Amherst41 US-election
#Nodes 41,554 1,632,803 421,961 168,114 18660 2235 3234
#Edges 1,362,229 30,622,564 984,979 6,797,557 790,777 90,954 11,100

Hom. Mat.
GCN 77.08 (0.40) 66.52 (5.16) 87.09 (0.51) 61.78 (0.12) 73.91 (0.32) 81.10 (1.51) 81.71 (2.55)
+ProtoGNN 81.43 (0.26) 73.59 (0.30) 86.78 (1.16) 62.53 (0.32) 80.19 (0.17) 81.03 (0.92) 83.82 (1.34)

GCNBN 82.47 (0.27) 75.45 (0.17) 87.42 (0.37) 62.18 (0.26) 80.15 (0.37) 81.41 (1.70) 82.07 (1.65)
+ProtoGNN 82.97 (0.07) 76.91 (0.03) 87.16 (0.94) 62.62 (0.16) 80.73 (0.48) 81.56 (2.00) 82.74 (1.35)

GCNII 82.92 (0.59) OOM 90.24 (0.09) 63.39 (0.61) 78.85 (0.78) 76.02 (1.38) 82.90 (0.29)
+ProtoGNN 83.19 (0.31) OOM 91.18 (0.13) 65.20 (0.68) 80.08 (0.48) 79.13 (0.74) 84.08 (0.46)

LINKX 84.71 (0.52) 82.04 (0.07) 90.77 (0.27) 66.06 (0.19) 83.42 (0.59) 81.57 (1.04) 84.08 (0.67)
+ProtoGNN 86.23 (0.34) 81.94 (0.10) 90.80 (0.10) 66.42 (0.34) 84.14 (0.13) 82.81 (1.34) 86.97 (1.21)

5.2 EXPERIMENTAL RESULTS

5.2.1 USING PROTOGNN TO ENHANCE EXISTING GNN BACKBONES

We are motivated to design ProtoGNN as a generic framework that is orthogonal to existing GNN
models to boost their performance on heterophilous graphs. We therefore evaluate the effects of
applying ProtoGNN onto various existing GNN backbones. We first apply ProtoGNN on GCN,
one of the most widely used general-purpose GNNs, and observe performance improvement on
5 out of 7 datasets, with substantial gains on Penn94, Pokec, Cornell5, and US-election (Tab. 2).
During experiments on GCN, we find that batch normalisation brings consistent performance boost
to GCN on various non-homophilous datasets. We therefore add ProtoGNN on top of GCN with
batch normalization to evaluate its performance on this GCN variant. GCNBN+ProtoGNN achieves
consistent performance improvement on all datasets except Genius.

We then apply ProtoGNN on GCNII, a deeper GNN model that is capable of retrieving global
information by propagation through the additional layers. Though not designed for heterophilous
graphs, it serves as strong baseline for heterophilous datasets. GCNII+ProtoGNN achieves better
performance than the original GCNII on all datasets, with pronounced improvement on Amherst41.

We next evaluate our framework’s effectiveness on a backbone explicitly designed for heterophilous
graphs. LINKX+ProtoGNN performs consistently better than LINKX on 6 out of 7 datasets, with
substantial enhancement on US-election. Penn94 and Amherst41 datasets. Overall, the results
demonstrate consistent improvement of ProtoGNN on various backbone GNNs and datasets.

5.2.2 COMPARISON AGAINST MORE BASELINES

Table 3: Classification performance comparison against baselines. Notations follow style in Tab.2.

Penn94 Pokec Genius Twitch-gamers Cornell5 Amherst41 US-election
MLP 73.61 (0.40) 62.37 (0.02) 86.68 (0.09) 60.92 (0.07) 68.86 (1.83) 60.43 (1.26) 81.92 (1.01)
GCN 82.47 (0.27) 75.45 (0.17) 87.42 (0.37) 62.18 (0.26) 80.15 (0.37) 81.41 (1.70) 82.07 (1.65)
GAT 81.53 (0.55) 71.77 (6.18) 55.80 (0.87) 59.89 (4.12) 78.96 (1.57) 79.33 (2.09) 84.17 (0.98)

MixHop 83.47 (0.71) 81.07 (0.16) 90.58 (0.16) 65.64 (0.27) 78.52 (1.22) 76.26 (2.56) 85.90 (1.55)
GCNII 82.92 (0.59) OOM 90.24 (0.09) 63.39 (0.61) 78.85 (0.78) 76.02 (1.38) 82.90 (0.29)

H˙2GCN 81.31 (0.60) OOM OOM OOM 78.46 (0.75) 79.64 (1.63) 85.53 (0.77)
WRGAT 74.32 (0.53) OOM OOM OOM 71.11 (0.48) 62.59 (2.46) 84.45 (0.56)

GPR-GNN 81.38 (0.16) 78.83 (0.05) 90.05 (0.31) 61.89 (0.29) 73.30 (1.87) 67.00 (1.92) 84.49 (1.09)
ACM-GCN 82.52 (0.96) 63.81 (5.20) 80.33 (3.91) 62.01 (0.73) 78.17 (1.42) 70.11 (2.10) 85.14 (1.33)

LINKX 84.71 (0.52) 82.04 (0.07) 90.77 (0.27) 66.06 (0.19) 83.46 (0.61) 81.73 (1.94) 84.08 (0.67)
GloGNN++ 85.74 (0.42) 83.05 (0.07) 90.91 (0.13) 66.34 (0.29) 83.96 (0.46) 81.81 (1.50) 85.48 (1.19)

ProtoGNN 86.23 (0.34) 81.94 (0.10) 91.18 (0.13) 66.42 (0.34) 84.14 (0.13) 82.81 (1.34) 86.97 (1.21)

To further evaluate the effectiveness of ProtoGNN, we compare our best results in Tab. 2 against 11
strong baselines following Lim et al. (2021) and Li et al. (2022), including MLP and 4 general-
purpose GNNs: GCN, GAT, MixHop and GCNII. The remaining 6 baselines are GNNs built
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specifically for heterophilous graphs, including H2GCN, WRGAT, GPR-GNN, ACM-GCN, LinkX
and GloGNN++. All ProtoGNN results in Tab. 3 are from LINKX+ProtoGNN, except for Genius
where GCNII+ProtoGNN performs best.

ProtoGNN achieves state-of-the-art on 6 out of 7 datasets compared to all baselines, except on Pokec.
While some methods incur OOM errors when running on large-scale datasets, ProtoGNN does not
suffer OOM due to its linear complexity with respect to backbones.

5.2.3 IMPACT OF SHORTCUT CONSTRUCTION

Figure 3: US 2012 election results
map by county.

An important property of ProtoGNN is introducing shortcuts
between training nodes and non-training nodes via the con-
structed class prototypes. By facilitating the transfer of useful
information from afar, shortcuts become especially helpful on
heterophilous graphs, where useful information is often unavail-
able in local neighbourhoods. We use the US-election dataset to
illustrate the effect of shortcuts. Here, nodes represent counties,
and edges connect bordering counties. Red and blue colors
represent the election outcomes of the counties. As visualized
in Fig. 3, nodes on the east coast and west coast are separated
by a swathe of red counties, but share similar node features
such as income, education and demographics. A shortcut between them via prototypes helps the
message bypass the red counties in middle America, preventing message dilution in traditional
message passing neural networks. Our results in Tab. 2 show that ProtoGNN achieves consistent
performance improvement on US-election when added to all GNN backbones.

Table 4: Classification accuracy on Cora, Citeseer and
Pubmed with 5 labels per class.

CORA CITESEER PUBMED

GCN 69.23 (3.39) 63.03 (4.48) 68.00 (3.75)
+PROTOGNN 71.79 (1.56) 64.00 (3.45) 72.67 (3.88)

To further evaluate the effects of shortcut con-
struction, we consider a generalized scenario
on homophilous graphs where information from
labeled nodes needs to propagate a long dis-
tance to reach most unlabeled nodes. Specifi-
cally, we evaluate our method on Cora, CiteSeer

and Pubmed with only a small number of training labels per class. We use a single prototype for each
class without slot attention and obtain prototype representations by taking the average of training
node features, since the training labels are scarce. Our hypothesis is that information propagation
becomes more challenging with increasing scarcity of useful training information, making the effects
of shortcut construction more pronounced in sparsely-annotated graph datasets. The hypothesis is
confirmed by experiment results. As shown in Tab. 4, GCN+ProtoGNN beats vanilla GCN on all 3
datasets, with substantial improvements on Cora and Pubmed.

5.2.4 ABLATION STUDIES

Figure 4: Effects of the number of
prototypes per class(K).

Number of prototypes per class Motivated by the observa-
tion that node features tend to form clusters in feature space
illustrated in Fig. 1, we assign multiple prototypes per class
to capture the clusters. Our hypothesis is that multi-modal
feature distribution is more accurately represented using mul-
tiple prototypes. We test the hypothesis by varying the number
of prototypes per class in ablative experiments. We train Pro-
toGNN with combinations of different numbers of prototypes
and hidden dimensions. Fig. 4 illustrates ablative experiments
of LINKX+ProtoGNN on Penn94. We observe that: (1) Pro-
toGNN with a single prototype per class outperforms the back-
bone. (2) ProtoGNN with multiple prototypes per class perform
consistently better than their single prototype counterparts. Our
ablative experiments shows the effectiveness of using prototypes, as well as the benefits of using
multiple prototypes per class over using a single one. (3) The optimal number of slots depends on a
number of factors, such as hidden dimension, dataset feature space and backbone model type.
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Table 5: Effects of Compatibility and Orthogonal-
ity losses on Amherst41 and Cornell5 datasets.

Lcomp (α) Lortho (β) AMHERST41 CORNELL5
0 0 81.36 (0.09) 83.05 (0.96)

0.1 0.01 81.88 (0.32) 84.14 (0.13)
0.01 0.1 82.28 (0.73) 83.89 (0.12)
0.01 0.01 82.28 (0.42) 83.76 (0.16)

Loss functions To achieve the full potential of the
soft-clustering objective of our model, we add two
additional losses to learn prototypes effectively. The
compatibility loss enforces similarity in embeddings,
while the orthogonality loss acts as a regularizer con-
straining the model to learn distinct prototype clusters
for each class. In this ablation study, we evaluate the
effect of these losses on model performance. We vary
α and β parameters in Eqn. 11 from the set {0, 0.01, 0.1}, with hidden dimension fixed to 64 and
the number of slots set to 5. Results in Tab. 5 show consistent performance improvements for all
non-zero values of α and β on both datasets, compared to cross-entropy loss alone. This provides
substantial evidence for the usefulness of the additional loss functions.

Table 6: Effects of aggregator func-
tion used in Compatibility loss on
Amherst41 and Cornell5 datasets.
AGG AMHERST41 CORNELL5
MEAN 81.17 (0.91) 82.73 (0.35)
SUM 81.17 (1.73) 83.53 (0.36)
MAX 82.81 (1.34) 84.14 (0.13)

Aggregation operation in Compatibility loss In order to make
the node embeddings similar to prototype representations from
the same class, we design the cross-view compatibility loss Lcomp.
After computing the similarity between a node and each of the
multiple prototypes from the same class, the choice of aggregation
method is critical. We evaluate the effectiveness of using the
aggregation operator on Amherst41 and Cornell5 datasets. Tab. 6
shows the effects of replacing the max aggregator with mean
and sum in computing compatibility loss. On both datasets, max outperforms both sum and mean,
indicating the effectiveness of using max as the aggregation operation. Intuitively, taking the average
of all similarity scores (mean) is sub-optimal. mean tends to make the node embeddings closer
to the average of all prototypes from the same class, undermining the purpose of using multiple
prototypes to represent different clusters. Similar to mean, summing up all similarity scores (sum)
is more powerful yet requires more data to learn. max selects the maximum similarity score to
compute compatibility loss and guides the node embeddings closer to one of the class prototypes,
thus preserving the power of diversity in representation.

Table 7: Effect of Slot Attention on Amherst41
and Cornell5 datasets.

SETTINGS AMHERST41 CORNELL5
PROTOGNN-NAIVE 80.84 (1.94) 83.94 (0.08)

PROTOGNN-SA 82.15 (1.07) 83.25 (0.14)
PROTOGNN 82.81 (1.34) 84.14 (0.13)

Node multi-prototype learning. We adapt slot-
attention mechanism to learn multiple prototypes for
each class. In order to evaluate the effectiveness of
learning prototypes with slot-attention, we ablate the
model against two variants: 1)ProtoGNN-Naive, a
variant where class prototypes are constructed by tak-
ing the average of all training node features from that
class. 2) ProtoGNN-SA, where we adopt the classic self attention mechanism to learn class proto-
types. We show results on Amherst41 and Cornell5 datasets keeping other hyperparameters fixed
in both models. As shown in Tab. 7, we observe that ProtoGNN consistently outperforms both
variants, signifying the effectiveness of using slot attention. Its better performance may be attributed
to the ability to perform soft clustering that enables the multiple prototypes per class to capture the
underlying clusters in feature space, which self-attention and taking the average of node features
cannot do. A detailed comparison between ProtoGNN-SA and ProtoGNN can be found in Appendix.

6 CONCLUSION

In this work, we address the two challenges in heterophilic graphs of efficiently capturing scattered
but useful global information from distant nodes and preserving node feature information from
dilution. For this, we propose ProtoGNN, a prototype-assisted message passing framework that aug-
ments existing GNNs by effectively combining node feature information with structural information.
ProtoGNN exploits strong node features by constructing multiple class prototypes from training
nodes. It then passes the information from prototype nodes to non-training nodes, updating their
structural embeddings learned through GNN backbones. It thus creates shortcuts that bypass the local
graph neighbourhoods and efficiently captures global information. ProtoGNN is a generic framework
that can be applied to any existing GNN backbones. Our extensive experiments demonstrate that
ProtoGNN brings consistent improvements when applied to various GNN backbones, achieving
state-of-the-art results on multiple datasets against strong baselines.
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ETHICS STATEMENT

Our work is a generic framework to improve node representation learning on non-homophilous
graphs. This work applies to GNNs generally and non-homophilous graph structured data specifically.
Its ethical impacts (including positive and negative) depends on the specific domain of the data. We
conduct our experiments on publicly available datasets in compliance with fair-use clauses.

REPRODUCIBILITY STATEMENT

Details of the datasets used can be found in Appendix A.1. For experiments, the settings can be
found in Section 5.1 and details of the hyperparameter settings used for training are specified in
Appendix A.2. To further facilitate reproducibility of this work, we will make the code publicly
available at anonymised repository https://github.com/protognn/protognn.
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A APPENDIX

A.1 DATASET DETAILS

Penn94, Cornell5 and Amherst41 (Lim et al., 2021) are friendship network datasets extracted from
Facebook of students from selected universities from 2005. Each node in the datasets represent a
student, while node label represents the reported gender of the student. Node features include major,
second major/minor, dorm/house, year, and high school.

Pokec (Lim et al., 2021) is a friendship graph dataset from a popular Slovak online social network,
where nodes represent users and edges represent directed friendship relations. Node label represents
the reported gender of user. Node features include geographical region, registration time, and age.

Genius (Lim et al., 2021) is a sub-network from website genius.com, a crowd-sourced website of
song lyrics annotations. Nodes represent users while edges connect users that follow each other.
Node features include expertise scores expertise scores, counts of contributions and roles held by
users. Around 20% of the users are marked with a ”gone” label, indicating that they are more likely
to be spam users. The task is to predict which users are marked.

Twitch-gamers (Lim et al., 2021) is a sub-graph extracted from the streaming platform Twitch. Each
node represents a Twitch account, while edges connect accounts that are mutual followers. Node
features include number of views, creation and update dates, language, life time, and whether account
is dead. The task is to predict whether the account has explicit content.

US-election (Jia & Benson, 2020) is a geographical dataset extracted from statistics of Unite States
election of year 2012. Nodes represent US counties, while edges connect bordering counties. Node
features include income, education, population etc. The task is a binary classification to predict
election outcome.

Cora, Citeseer and Pubmed (Pei et al., 2020) are citation graphs, where each node represents a
scientific paper and two papers are connected when a paper cites the other. Each node is labeled with
the research field and the task is to predict which field the paper belongs to. All three datasets are
homophilous.

A.2 HYPERPARAMETE DETAILS

• MLP: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {2, 3}. Activation function is
ReLU.

• GCN: lr ∈ {.01, .001}, hidden dimension ∈ {4, 8, 16, 32, 64}, except for Pokec, where
hidden dimension ∈ {4, 8, 16}. number of layers ∈ {2}. Activation function is ReLU.

• GAT: lr ∈ {.01, .001}. For Pokec: hidden channels ∈ {4, 8, 12} and gat heads ∈ {2, 4}. For
the remaining datasets: hidden channels ∈ {4, 8, 12, 32} and gat heads ∈ {2, 4, 8}. number
of layers ∈ {2}. We use the ELU as activation.

• MixHop: hidden dimension ∈ {8, 16, 32}, number of layers ∈ {2}.

• GCNII: number of layers ∈ {2, 8, 16, 32, 64}, strength of initial residual connection α ∈
{0.1, 0.2, 0.5}, hyperparameter for strength of the identity mapping θ ∈ {0.5, 1.0, 1.5}.

• H2GCN: hidden dimension ∈ {16, 32}, dropout ∈ {0, .5}, number of layers ∈ {1, 2}.
Model architecture follows Section 3.2 of Zhu et al. (2020b).

• WRGAT: lr ∈ {.01}, hidden dimension ∈ {32}.

• GPR-GNN: lr ∈ {.01, .05, .002}, hidden dimension ∈ {16, 32}.

• ACM-GCN: lr ∈ {.01}, weight decay ∈ {5e−5, 5e−4, 5e−3}, dropout ∈
{0.1, 0.3, 0.5, 0.7, 0.9}, hidden channels ∈ {64}, number of layers ∈ {2}, display step
∈ {1}.

• LINKX: hidden dimension ∈ {16, 32, 64}, number of layers ∈ {1, 2}. Rest of the hyper-
parameter settings follow Lim et al. (2021).

• GloGNN++: lr ∈ {.001, .005, .01} , weight decay ∈ {0, .01, .1}, dropout ∈ {0, .5, .8},
hidden channels ∈ {128, 256}, number of layers ∈ {1, 2}, α ∈ {0, 1}, β ∈ {0.1, 1},
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γ ∈ {0.2, 0.5, 0.9}, δ ∈ {0.2, 0.5}, number of normalization layers ∈ {1, 2}, orders
∈ {1, 2, 3}, display step ∈ {1}.

• ProtoGNN: lr ∈ {.005, .01}, weight decay ∈ {0, 0.001, .0005}, loss coefficients α, β ∈
{0, 0.01, 0.1}, prototypes per class (K) ∈ {1, 3, 5, 10}, hidden dimension ∈ {16, 32, 64}

A.3 TRAINING SETTINGS

We run each experiment with three different splits, and report the mean and standard deviation of the
performance. All experiments are run on a single V100 GPU with 16G memory. We use Adam as the
optimizer and perform grid search to find the best hyper-parameter combination, with details listed in
A.2. We report the baseline results directly if they are already public.

A.4 FEATURE SPACE VISUALIZATION

To illustrate how node features form clusters in feature space, we plot the data points for 7 non-
homophilous datasets, with two shown in Fig. 1. We reduce the node feature dimension to 2,
sample 2000 nodes of the same class from each dataset, and plot them along the reduced dimensions.
Fig. 5 shows the t-sne plots of Pokec, Genius, Cornell5, Amherst41 and US-election datasets. The
plots show the clustering patterns of the nodes in feature space consistently across the most of the
datasets. This observation is the main motivation for our modelling of multiple prototypes per class
for transferring global information across the nodes.

(a) Pokec (b) Genius (c) Cornell5

(d) Amherst41 (e) US-election

Figure 5: Feature space visualization of non-homophilous datasets.

A.5 FURTHER ABLATION STUDY

Self attention is a classic mechanism that can be used to learn the class prototypes. In this ablation
study, we discuss in detail the rationality of using slot attention instead of self attention in our
framework. In principle, slot attention is preferred over self attention because of the following
reasons: Firstly, In slot attention, each slot/prototype will learn to compete for the explanation via the
softmax-based attention mechanism. Therefore, the learning of multiple slots/prototypes serves as
soft clustering of the training nodes. Self attention, on the other hand, does not act as soft clustering.
As shown in Fig. 1(a) and Fig. 6, visualized features for Penn94 and Twitch Gamers do tend to
form clusters in feature space. It is beneficial to be able to capture such clustering information, as
illustrated in Figure 4. Secondly, Slot attention is more efficient. In self attention, an attention score
is computed for every pair of nodes, and thus the number of computations needed is O(n2). However,
in slot attention, we only need to compute the attention score between nodes and slots/prototypes,
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so the number of computations needed is O(nk), where k is the number of prototypes and is much
smaller than the number of nodes n.

We conduct an additional ablation study on self-attention vs slot attention to empirically verify our
claims. We replace slot attention with self-attention in ProtoGNN and document the performance on
7 datasets in the following table. While ProtoGNN-SA with self-attention outperforms the backbone
on most of the datasets, ProtoGNN with slot attention still outperforms it on all 7 datasets.

Table 8: Classification performance comparison against baselines. Notations follow style in Tab.2.

Penn94 Pokec Genius Twitch-gamers Cornell5 Amherst41 US-election
Backbone 84.71 (0.52) 82.04 (0.07) 90.77 (0.27) 66.06 (0.19) 83.46 (0.61) 81.73 (1.94) 84.08 (0.67)

ProtoGNN-SA 83.53 (0.28) 80.25 (0.45) 90.41 (0.24) 66.31 (0.28) 83.25 (0.14) 82.15 (1.07) 84.90 (0.65)
ProtoGNN 86.23 (0.34) 81.94 (0.10) 91.18 (0.13) 66.42 (0.34) 84.14 (0.13) 82.81 (1.34) 86.97 (1.21)

To verify the computation efficiency empirically, we report the average runtime of ProtoGNN with
self-attention and slot attention respectively. ProtoGNN with slot attention (10.14 milliseconds) runs
much faster than ProtoGNN-SA (5.76 milliseconds).

A.6 HOMOPHILY MATRIX FOR HOMOPHILOUS DATASETS

Below are the homophily matrices for three well-known homophilous datasets: Cora, Citeseer and
Pubmed (Yang et al., 2016). High homophily is signified by the high numbers in diagonal cells,
whereas values of non-diagonal cells are mostly less than 0.1. This is different from the homophily
matrices of non-homophilous datasets in Tab. 2, where values of non-diagonal cells are similar or
even higher than diagonal cells.

(a) Cora (b) Citeseer (c) Pubmed

Figure 6: Homophily matrix for three homophilous datasets.
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