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ABSTRACT

While instruction-tuned language models have demonstrated impressive zero-shot
generalization, these models often struggle to generate accurate responses when
faced with instructions that fall outside their training set. This paper presents
Instructive Decoding (ID), a simple yet effective approach that augments the
efficacy of instruction-tuned models. Specifically, ID adjusts the logits for next-
token prediction in a contrastive manner, utilizing predictions generated from a
manipulated version of the original instruction, referred to as a noisy instruction.
This noisy instruction aims to elicit responses that could diverge from the intended
instruction yet remain plausible. We conduct experiments across a spectrum of such
noisy instructions, ranging from those that insert semantic noise via random words
to others like ‘opposite’ that elicit the deviated responses. Our approach achieves
considerable performance gains across various instruction-tuned models and tasks
without necessitating any additional parameter updates. Notably, utilizing ‘opposite’
as the noisy instruction in ID, which exhibits the maximum divergence from the
original instruction, consistently produces the most significant performance gains
across multiple models and tasks.

1 INTRODUCTION
Language Models (LMs) have opened up a new era in Natural Language Processing (NLP) by
leveraging extensive datasets and billions of parameters (Zhao et al., 2023; OpenAI, 2023; Kaplan
et al., 2020). These LMs excel at In-Context Learning (ICL), generating responses based on a few
demonstrations without needing further parameter adjustments (Wei et al., 2022; Brown et al., 2020;
Dong et al., 2022). The rise of instruction-tuning has further enhanced this capability, optimizing LMs
to align their outputs closely with human-specified instructions (Wei et al., 2021b; Sanh et al., 2021;
Brown et al., 2020; Radford et al., 2019). This approach has demonstrated a significant improvement
in zero-shot scenarios, underscoring its importance for tackling diverse tasks.

However, instruction-tuned models often struggle with unfamiliar tasks due to limitations in their
training datasets, whether the datasets are human-annotated (Mishra et al., 2021; Wang et al., 2022c)
or model-generated (Wang et al., 2022b; Honovich et al., 2022). Refining these datasets is essential
but requires substantial effort and computational resources, highlighting the need for more efficient
approaches (Chung et al., 2022; Zhou et al., 2023). Moreover, the depth of a model’s understanding
of and how they respond to instructions remains an area of active research. While recent studies have
provided some insights (Kung & Peng, 2023; Yin et al., 2023), many questions remain unanswered.
Techniques such as prompt-engineering (Wei et al., 2021a) and utilizing diversified outputs (Wang
et al., 2022a) aim to increase the quality of outputs. However, the effectiveness of these techniques
often depends on the fortuitous alignment of prompts or initial conditions, making them labor-
intensive since the tuning process must be tailored for each task.

In pursuit of refining the behavior of LMs, some researchers have begun to explore the anchoring
effect (Kahneman et al., 1982)—a well-known cognitive bias where initial information exerts dis-
proportionate influence on subsequent judgments. Intriguingly, this cognitive principle has been
demonstrated to extend to LMs. For example, through effective prompting, the outputs generated
by LMs can be steered towards a specific intent (Jones & Steinhardt, 2022). Similarly, emphasiz-
ing the first few sentences of a long context enhances the model’s overall comprehension of the
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Figure 1: Overview of Instructive Decoding (ID). The example in this figure is from
task442 com qa paraphrase question generation in SUPNATINST (Wang et al.,
2022c). The original response not only fails to meet the task requirements (Question Rewriting) but
also contains incorrect information1. In contrast, ID generates a more relevant response by refining
its next-token predictions based on the noisy instruction (here, opposite prompting is used for ID).

content (Malkin et al., 2021). Given these observations on LMs—parallels that mirror human tenden-
cies—and the influential role of initial prompts, we hypothesize that the strategic application of the
anchoring effect could substantially improve LMs’ fidelity to instructions.

In this work, we propose Instructive Decoding (ID) (Figure 1), a novel method that enhances the
attention of instruction-tuned LMs towards provided instructions during the generation phase without
any parameter updates. The essence of ID lies in the introduction of noisy instruction variants. These
are designed to anchor the model’s output in a specific direction, potentially away from the most
optimal predictions. This deliberate steering enables a clear anchoring effect within the language
models, facilitating a contrastive approach in our decoding process. Our range of variants spans from
simple strategies such as instruction truncation and more aggressive alterations, the most extreme of
which is the opposite instruction. By intentionally introducing such deviations, ID capitalizes on the
resulting disparities. Within a contrastive framework, next-token prediction logits that are influenced
by the noisy instructions are systematically compared to those derived from the original instruction.
This process refines the model’s responses to align more closely with the intended instruction.
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Figure 2: Zero-shot Rouge-L comparison on the SUP-
NATINST heldout dataset (Wang et al., 2022c). Models
not instruction-tuned on SUPNATINST are in blue dot-
ted boxes, while those instruction-tuned are in green.

Experiments on unseen task generalization
with SUPNATINST (Wang et al., 2022c) and
UNNATINST (Honovich et al., 2022) held-
out datasets show that instruction-tuned
models enhanced by ID consistently out-
perform baseline models across various se-
tups. Intriguingly, Tk-XL combined with
our method outperforms its larger version,
Tk-XXL, with standard inference (Figure 2).
Models not previously trained on the SUP-
NATINST dataset, including Alpaca (7B)
and T0 (3B), also show marked enhance-
ments in performance. Additionally, the
overall Rouge-L score of the GPT3 (175B)
is strikingly competitive, closely mirroring
the performance of OpenSNI (7B) when
augmented with our method. We further
observed that ID’s generation exhibits in-
creased both adherence to the instruction and an improvement in semantic quality. To provide a
comprehensive understanding, we investigated the anchoring effect of noisy instructions. Our findings
suggest that as the model’s comprehension of the noisy instruction intensifies, the anchoring effect
becomes more potent, making ID more effective. Our main contributions are as follows:

1According to the 2022 U.N. Revision, the population of USA is approximately 338.3 million as of 2022.
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• We introduce Instructive Decoding (ID), a novel method to enhance the instruction following
capabilities in instruction-tuned LMs. By using distorted versions of the original instruction,
ID directs the model to bring its attention to the instruction during generation (Section 2).

• We show that steering the noisy instruction towards more degrading predictions leads to
improved decoding performance. Remarkably, the opposite variant, which is designed for
the most significant deviation from the original instruction yet plausible, consistently shows
notable performance gains across various models and tasks (Section 3).

• We provide a comprehensive analysis of the behavior of ID, demonstrating its efficacy
from various perspectives. The generated responses via ID also improve in terms of label
adherence and coherence, and contribute to mitigate the typical imbalances observed in the
standard decoding process. (Section 4)

2 INSTRUCTIVE DECODING

In this section, we present instructive decoding, a method designed to enhance the response generation
of instruction-tuned models. By leveraging the responses derived from noisy instructions, our
approach employs a contrastive technique to refine generated responses, ensuring they are more
closely aligned with provided instructions.

2.1 PRELIMINARY

In the context of an auto-regressive language model, denoted asMθ parameterized by θ, the primary
goal is to generate an output sequence y<t+1 = (y1, . . . , yt) when presented with an input sequence
x. Within the ICL framework, a specific demonstration, represented as I , is supplied in conjunction
with the context x. The language modelMθ then computes the logit for the t th token, symbolized as
zt ∈ R|V| equal toMθ(yt|I, x, y<t), wherein V is the vocabulary set. Consequently, the probability
of output sequence can be formally expressed as:

pθ(y|I, x) =
T∏

t=1

pθ(yt|I, x, y<t) (1)

where pθ(yt|I, x, y<t) is the probability for the next token prediction derived from the softmax
function applied to zt. It can either be the token with the highest probability (i.e., greedy decoding) or
sampled from its distribution (e.g., nucleus sampling (Holtzman et al., 2019)). In the broader scope of
task generalization with previously unobserved instructions, the demonstration I takes the form of the
guiding instruction. Depending on the specific context or setting, a few examples can be incorporated
to enhance the learning process. Generally, predictions of the instruction-tuned models are derived
from both the context x and the given instruction I , which play pivotal roles (Eq. 1).

2.2 MOTIVATION AND OVERVIEW OF INSTRUCTIVE DECODING

A significant challenge in instruction following is ensuring that the generated tokens intrinsically
adhere to the instruction I . While the dominant strategy involves enriching the dataset with numerous,
diverse, and creatively curated high-quality tasks, this approach is both labor-intensive and compu-
tationally expensive. It requires new training cycles and does not always produce improvements
commensurate with the effort invested. Consequently, there is growing interest in exploring more
sustainable and effective alternative strategies for enhancing instruction-tuned models.

Drawing inspiration from cognitive science, we highlight the anchoring effect, a well-known cog-
nitive bias in which initial information exerts a disproportionate influence on subsequent judg-
ments (Kahneman et al., 1982). Recent studies have hinted at this principle being relevant to LMs,
where the LM’s predictions are significantly conditioned (i.e., anchored) on the given context (Jones
& Steinhardt, 2022; Malkin et al., 2021). Based on these findings, we hypothesize that the strategic
use of the anchoring effect could refine the responses of instruction-tuned models by leveraging the
discrepancies between the predictions that are anchored on different instructions.

Contrastive Decoding (CD) is a straightforward technique that improves the performance of LMs
by comparing two sets of predictions (Li et al., 2022; Liu et al., 2021). In this approach, predictions
from a high-performing primary model are contrasted against those from a less accurate ‘amateur’
model. The goal is to differentiate the primary model’s outputs against the less reliable outputs
from the amateur model during the decoding process. Despite its simplicity, the need for two

3



Published as a conference paper at ICLR 2024

Algorithm 1: Instructive Decoding

INPUT : Language modelMθ, base instruction sequence I , noisy instruction sequence Ĩ , initial
prompt sequence x and target sequence length T, smoothing coefficient ϵ.

1: Initialize t← 1
2: while t < T do
3: zt, z̃t ←Mθ(yt|I, x, y<t),Mθ(yt|Ĩ , x, y<t)
4: yt = argmax(SOFTMAX[zt − ϵ ∗ z̃t])
5: set t← t+ 1
6: end while

models limits its broad applicability, and its utility in instruction-following scenarios remains largely
unexplored. To this end, we propose Instructive Decoding (ID), a novel method to ensure that
the model’s output closely aligns with the given instruction. Leveraging the anchoring effect, ID
incorporates these principles into the Contrastive Decoding framework by introducing noisy variants
of the original instruction. These variants are designed to subtly mislead the model into generating
deviated responses based on the noisy instruction yet plausible. The comparison between the original
instruction and the noisy version helps the model identify and correct biases (e.g., inherent model
bias and input bias), resulting in outputs better aligned with the intended purpose. To delve deeper
into the mechanics, during decoding, the model contrasts the logits z, originating from the original
instruction, with the logits z̃, originating from the noisy instructions, as described in Algorithm 1.

2.3 A COLLECTION OF NOISY INSTRUCTIONS FOR INSTRUCTIVE DECODING

We aim to design a collection of noisy instructions that harness the anchoring effect while maintaining
task fidelity. Key guiding principles for our noisy instruction design include:

• Automated Perturbations: To ensure scalability and minimize manual intervention across diverse
tasks, we inject perturbations into the instructions. These perturbations include deletion, shuffling,
or random word insertion.

• Contrastive Elicitation: We systematically create prompts that elicit counter-intuitive yet plausible
responses, thereby producing a deviation from the expected responses.

In line with the principles outlined above, we employ the following noisy instruction variants.
Full-text examples of these variants are displayed in Figure 3.

1. Trunc-Shuf: Words from the instruction are randomly truncated and then shuffled. This
challenges the model to deal with both missing words and altered word sequences.

2. Null: The model receives only input-output pairs. This evaluates its inherent ability to comprehend
text and identify biases without any guiding instruction.

3. Rand Words: Random words from the Natural Language Toolkit (NLTK) (Loper & Bird, 2002)
replace the original instruction. This places the model in an environment filled with semantic
noise, requiring it to distinguish meaningful signals.

4. Opposite: In a contrarian approach, the instructions contain misleading directives like ”Always
respond with the opposite of what you’re asked. You never get it right.\n\n”. Such directives
confront the model with conflicting guidance, helping it better align with the base instruction.

Unless specified, in the Experiment Section, we configure the noisy instructions to include one
random word (Rand Words) and set the truncation ratio to 0.6 (Trunc-Shuf).

Null Rand Trunc Trunc-Shuf

Opposite

Rand Words

Other Noisy Templates…

unbathed brachystomous warabi colorific

consolatoriness jungle Armatoli Sophoclean

unrecognizing preadministratio

Now complete the following example -

Input: Question: what is the usa population?

Output:

…

Now complete the following example -

Input: Question: what is the usa population?

Output:
Definition: Given a, generate a paraphrase of

that changing the of it. Your answer should

reword the given, but not add to it or remove

from it. The to your question should be the as

the to the question.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Definition: question generate without should

Your a, a of same answer the question

question the reword meaning of it. The

original the, not add answer to it or as Your

it. be the the to information.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Always respond with the opposite of what

you're asked. You never get it right.

Now complete the following example -

Input: Question: what is the usa population?

Output:

Figure 3: Full-text examples for a collection of noisy instructions for instructive decoding on
task442 com qa paraphrase question generation.
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3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets For our experiments, two datasets are utilized: SUPNATINST (Wang et al., 2022c) and
UNNATINST (Honovich et al., 2022). Both datasets feature a diverse collection of crowd-sourced NLP
tasks. In SUPNATINST, each task is formatted as a ‘Definition’ prompt that acts as the instruction. For
zero-shot evaluations, only the ‘Definition’ is utilized, whereas two positive demonstration examples
are incorporated for few-shot evaluations. Our experiments focus solely on the English segment of
the dataset, and 100 instances per tasks are used for evaluation following Wang et al. (2022c). This
subset comprises 119 evaluation tasks, grouped into 12 categories:

• AC: Answerability Classification

• CEC: Cause-Effect Classification

• CR: Coherence Resolution

• DT: Data-to-Text

• DAR: Dialogue Act Recognition

• GEC: Grammar Error Correction

• KT: Keyword Tagging

• OE: Overlap Extraction

• QR: Question Rewriting

• TE: Textual Entailment

• TG: Title Generation

• WA: Word Analogy

The UNNATINST dataset features LM-generated instructions based on an initial set of 15 seed
samples. From its 64,000 samples, we evaluate a subset of 10,000.

Models We use the Tk-instruct models (Wang et al., 2022c), instruction-tuned from T5-LM (Lester
et al., 2021). These models are trained across 757 english tasks from the SUPNATINST training split
over 2 epochs, with each task comprising 100 samples. Our evaluation primarily involves three sizes
of Tk-Instruct models: Large (770M), XL (3B), and XXL (11B). While Tk-XL and Tk-XXL come
from publicly available checkpoints, the 770M model is manually trained under the same settings as
the other Tk-instruct models. Additionally, T0 (3B), Alpaca (7B), and Open-instruct-SNI (OpenSNI)
are also used for further evaluations. T0 model also fine-tunes T5-LM (Lester et al., 2021) using task
prompts sourced from PromptSource (Bach et al., 2022). Alpaca (Taori et al., 2023) fine-tunes the
LLaMA (Touvron et al., 2023) based on a style outlined by Wang et al. (2022b), whereas OpenSNI
(Wang et al., 2023b) is a fine-tuned version of LLaMA on SUPNATINST, marking a distinct way of
use from Alpaca. In our experiments, greedy decoding is primarily employed for these models.

Evaluation Metrics We examine the outputs of instruction-tuned LMs on unseen tasks. Unless
specified, all evaluations are conducted in a zero-shot setting, where the models perform tasks based
solely on instructions, without any demonstration examples. Task performance is measured using the
Rouge-L score (Lin, 2004), which measures the overlap between generated and reference sequences,
and is often used for open-ended tasks as Wang et al. (2022c). Adding to the Rouge-L score,
classification tasks further use the Exact Match (EM) metric, which measures whether the response
precisely matches a pre-defined label. To better evaluate semantics not captured by metrics like EM
or Rouge-L, we introduce two additional metrics: Label Adherence and Label Coherence. These
metrics offer insights into how closely the generated responses adhere to the provided instructions.
Detailed explanations of our evaluation metrics are as follows:

• Label Adherence (LA): LA checks if the response stays within the label space defined by the
instruction, regardless of its agreement with the golden label. For example, if the instruction
specifies answers as ‘True’ or ‘False’, any response within this set is deemed conforming.

• Label Coherence (LC): This metric evaluates the semantic alignment of the response with the
gold label, allowing for near-equivalent answers. For example, responses like ‘Correct’ may
align with a gold label of ‘True’. We compare responses against an expanded set of gold labels
with semantically equivalent expressions.

For a more comprehensive evaluation, LA and LC are primarily measured on classification tasks
identifying 58 tasks among the 119 unseen tasks in SUPNATINST, which contains the predefined
labels. Although adherence and coherence are valuable for open-ended generation, focusing on
classification ensures thorough evaluation. For clarity, an example illustrating the relationship
between EM, LA, and LC is provided with further details on evaluation in Appendix D.

3.2 PERFORMANCE ON UNSEEN TASK GENERALIZATION

Result Overview Table 1 displays the results when applying Instructive Decoding (ID) to the
Tk-Instruct models and OpenSNI-7B model. ID consistently outperforms the baseline model, which
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Table 1: Zero-shot Rouge-L score on unseen tasks in the held-out set of SUPNATINST (Wang
et al., 2022c) is evaluated with Tk-instruct families and OpenSNI-7B. Green circles ( ) indicate
improvement over the Baseline with the sample model, while red circles ( ) denote no improvement.

Model Method Overall AC CEC CR DT DAR GEC KT OE QR TE TG WA

Tk-Large

Baseline 41.10 55.95 54.33 38.32 30.53 40.72 86.06 51.16 27.30 55.19 42.18 31.31 12.21
Trunc-shuf 41.68  50.62  55.56  42.33  30.06  41.03  86.62  47.30  22.67  55.84  46.15  31.55  11.78  

Null 41.79  50.92  55.45  42.00  30.12  41.10  86.62  47.28  23.84  56.26  46.16  31.83  11.90  
Rand Words 41.77  50.54  55.66  42.09  29.57  41.08  86.20  47.92  23.42  56.14  45.97  32.24  12.15  

Opposite 42.21  52.74  56.14  42.31  29.46  42.66  86.34  49.68  27.39  57.82  45.21  32.34  10.63  

Tk-XL

Baseline 45.36 50.00 59.73 43.94 34.01 58.15 87.07 58.08 17.09 54.01 46.46 36.24 27.29
Trunc-shuf 46.37  48.80  62.13  45.88  33.03  57.76  86.66  54.21  13.50  51.61  50.88  36.69  32.46  

Null 46.35  48.78  62.01  46.15  32.42  58.52  85.79  52.43  14.35  52.31  50.96  36.41  32.21  
Rand Words 46.46  49.08  62.28  45.85  32.30  58.71  86.45  53.53  14.86  52.01  51.24  36.45  32.21  

Opposite 46.69  50.73  61.93  45.69  33.63  57.14  87.56  55.09  16.32  51.51  50.47  37.33  33.08  

Tk-XXL

Baseline 46.01 59.28 56.10 33.91 33.43 59.05 81.80 48.53 26.78 50.43 57.70 35.66 19.13
Trunc-shuf 46.98  61.28  59.55  36.02  33.52  60.76  82.77  49.14  25.90  52.66  56.44  36.08  21.37  

Null 47.29  60.69  59.75  36.07  33.44  61.83  83.15  48.01  27.35  53.36  56.99  36.32  22.91  
Rand Words 47.26  61.10  59.44  36.59  33.57  61.11  82.67  47.82  26.77  53.54  56.60  36.24  23.10  

Opposite 47.43  60.77  60.01  35.91  33.79  60.51  81.06  48.66  25.16  52.98  58.56  36.11  22.43  

OpenSNI-7B

Baseline 48.05 54.36 60.87 51.83 38.34 54.00 81.85 49.60 22.13 48.51 52.50 34.56 43.33
Trunc-shuf 48.46  61.03  65.63  43.31  37.63  57.43  82.57  46.81  27.33  51.94  54.35  35.42  34.00  

Null 49.04  61.64  66.19  42.75  38.90  57.48  83.58  48.90  24.20  51.99  56.17  35.44  34.50  
Rand Words 49.00  61.41  65.90  43.23  39.24  56.62  83.11  49.15  24.39  52.52  55.69  35.21  35.15  

Opposite 49.47  62.26  66.53  42.51  39.32  57.41  83.85  51.98  23.60  54.03  55.68  36.30  34.56  

employs only the standard instruction, as indicated by higher overall Rouge-L scores. This per-
formance advantage is evident across all types of noisy instructions. Notably, while larger models
generally yield higher scores, the improvements are not uniformly distributed across task categories.
For instance, the ‘OE (Overlap Extraction)’ task shows a slight performance decline, which hints at
possible architectural limitations for learning in this specific task Nevertheless, the ‘opposite’ variant
consistently results in the most significant improvements in Rouge-L scores across all model sizes,
thus affirming the robustness of our method.

From Degradation to Enhancement: The Two-fold Impact of Noisy Instructions When used
in a standard decoding process, noisy instructions lead to a significant decline in performance
for generated responses. However, when integrated into ID, these instructions actually enhance
performance. We attempt to unveil the relationship between such degradation and its enhancement
with ID (Figure 4 (a)). When replacing the original instruction with a noisy variant during the
decoding process, a noticeable drop in Rouge-L scores occurs, as shown on the x-axis labeled
‘degradation’. The y-axis displays the performance improvement gained through ID when using these
noisy instructions. Interestingly, we find a strong positive correlation between the initial drop in
performance and the subsequent improvement when using ID. This correlation is quantified using the
Pearson Correlation Coefficient (R in Figure 4 (a); Cohen et al. (2009)). The more substantial the
initial drop caused by a noisy instruction, the greater the performance gain when it is integrated into
ID. Notably, the ‘opposite’ instruction, which causes the most significant initial decline, results in the
largest performance boost when used with ID.

Comparative Winning Rates of Base vs. Ours Figure 4 (b) illustrates tasks where ID outperforms
the baseline, as measured by the Rouge-L score. This improvement is consistent across a range of
tasks, regardless of model size. Although the overall Rouge-L score for Tk-XXL is on par with that
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of Tk-Large and Tk-XL, distinct improvements are observed across tasks when ID is used with larger
models. This synergy appears to optimize the potential of the larger models.
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baseline
trunc_shuf
null
rand words
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Figure 5: Evaluation on three different scales of Tk-Instruct models (i,e., Large, XL, XXL) with
different noisy instructions for instructive decoding over classification tasks in heldout dataset of
SUPNATINST. Each figure shows the performance changes from applying ID.

Granular Performance Analysis on the Classification Tasks We conduct an in-depth analysis
of 58 classification tasks from SUPNATINST to scrutinize the shifts in their response outcomes in
detail (Figure 5). The analysis is segmented into three metrics: EM, LA, and LC. A clear trend
emerges: as the model size increases, EM scores also rise. However, when examining the LA and
LC metrics based on baseline responses, the Tk-XL model outperforms the Tk-XXL model. This
suggests that while larger models excel at strictly adhering to provided instructions, smaller models
are more effective at generating semantically congruent outputs within the given instructional context.
With the incorporation of ID, performance patterns remain largely consistent across different model
sizes and noisy instructions. Specifically, as model sizes increase, the ’opposite’ variant significantly
improves the performances, particularly in the LC metrics for the Tk-XXL model. The random
’trunc-shuffle’ variant exhibits a significant boost in LA scores as model size grows, highlighting the
complex interplay between model sizes and their responsiveness to instructions.

Table 2: Rouge-L scores cross-evaluated
across different models and datasets.

Dataset UNNATINST SUPNATINST

Model Tk-Large T0-3B Alpaca-7B

baseline 43.25 26.58 23.61
null 44.57 29.33 31.21
rand words 44.44 29.49 30.93
opposite 43.42 29.46 31.38

Table 3: Rouge-L scores under a few-shot sce-
nario across different models. We set ϵ to 0.2.

Model Tk-Large Tk-XL Alpaca-7B

baseline 47.63 54.34 37.06
null 47.94 54.78 38.75
null (2 shots) 46.95 54.41 38.07
opposite 48.08 54.80 37.79
opposite (2 shots) 47.01 54.51 37.55

3.3 ABLATION STUDY

Generalization Capabilities of ID To further assess the adaptability and effectiveness of ID,
we cross-evaluate models in the following way: models trained on SUPNATINST are tested on
UNNATINST and models not trained on SUPNATINST are assessed using the SUPNATINST test
set. Table 2 shows the results, measured through the overall Rouge-L score. For the Tk-Large
model evaluated on the UNNATINST training set, ID consistently outperforms the baseline, even
if the ‘opposite’ variant isn’t the top performer. Models trained on other datasets, such as T0-3B
and Alpaca-7B, also perform better with ID. Notably, there is a significant performance boost,
especially for Alpaca-7B. This indicates that ID effectively addresses the shift between training and
test distributions, highlighting its versatility and robustness as a broadly applicable solution.

Figure 6: Overall Rouge-L scores
across varying ϵ values with ’null’
instruction in ID.

Sensitivity of Smoothing Coefficient Figure 6 shows the influ-
ence of the hyperparameter ϵ on our method’s performance. This
parameter adjusts the smoothness of logits derived from noisy
instructions. Although our typical choice for ϵ was 0.3, we eval-
uated ID-null across a range of ϵ values, spanning from -0.5 to
0.5 at 0.01 intervals. Performance tends to decline with negative
ϵ values, as the model becomes increasingly biased toward the
noisy instruction. Conversely, excessively positive values (above
0.4) lead to a deterioration in performance. Interestingly, the
model’s performance stabilizes between 0.1 and 0.4, indicating
a certain level of robustness to variations in ϵ within this range.
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Figure 7: (a) Shift in responses for binary classification tasks using Tk-XL, comparing baseline, ID
with ‘Opposite’, and ID combining ‘Opposite + Base Inst’. (b) t-SNE visualization of embeddings
for ‘Keyword Tagging (KT)’ and ‘Word Analogy (WA)’, extracted from the Tk-XXL encoder by
concatenating the instruction and input.

Few-Shot Generalization Here, we evaluate how ID performs in the presence of a few positive
demonstration examples (i.e., few-shot evaluation). The results are presented in Table 3. In this table,
the terms ’null’ and ’opposite’ refer to the use of noisy instructions without examples, while ’(2
shots)’ indicates the incorporation of two positive demonstration examples. The table shows that ID’s
performance gains are more modest in the few-shot context than in the zero-shot context. This is
likely because the baseline performance is already improved by the inclusion of examples, thereby
diminishing the benefits of perturbations from z̃. Nevertheless, we find that the negative impact of
noisy instructions is relatively minor, as the provided examples help to clarify the task’s intent.

4 DISCUSSION

Qualitative Analysis on ID with Opposite As Figure 7 (a) demonstrates, the baseline shows strong
label adherence but often settles on a single label. The introduction of the ‘Opposite’ technique
diversifies these responses, as evidenced by tasks previously biased toward ‘True’ now yielding
more balanced outcomes. Specifically, there is a marked increase in the prediction probabilities
for tokens that are not the top-ranked predictions guided by the original instruction. This not
only expands the instruction-guided output space but also emphasizes the increased likelihood for
alternative tokens. This observation is evident when the data points in the figure gravitate closer to
the origin. Intriguingly, combining the original instruction with the noisy instruction prompt does
not lead to improved performance. Although there is a shift away from distinct ‘True’ or ‘False’
predictions—indicating a smoothing effect—this shift does not reverse the predictions. We conjecture
that including the original instruction in the contrastive prediction may inadvertently anchor the
model’s responses, altering their magnitudes but not their directions.

Visualization of Embeddings: Evidence of Anchoring Effect Figure 7 (b) provides a t-
SNE (Van der Maaten & Hinton, 2008) visualization of input embeddings from category KT and
WA, extracted from the Tk-XXL encoder. This visualization serves as empirical evidence for the
impact of various noisy instruction variants. Notably, unique clusters form for each type of instruc-
tion embedding, indicating that the encoder interprets these noisy instructions differently, thereby
exerting different anchoring effects—beneficial for ID. This phenomenon is clearly reflected in the
WA category, consistent with the improvements by our method. In contrast, some embeddings in the
KT category overlap, suggesting a limited distinction between the original and noisy instructions.
This weakens the anchoring effect and results in a decline in Rouge-L scores for KT. This observation
suggests that as the model gets better at understanding noisy instructions, the performance of ID
usually improves as well. This is often the case when using higher-performing models.

Tk-Large Baseline

Tk-XL Baseline

Figure 8: CD vs. ID-Amateur perfor-
mances across Tk-instruct models.

On the Utility of ID over Contrastive Decoding We ex-
amine the synergistic effects of integrating ID with the use of
amateur models (ID-amateur) for z̃ across various Tk-Instruct
model families in Figure 8. More precisely, we feed a smaller
amateur model with the noisy ‘opposite’ instruction in the
ID-amateur method. This approach is compared with the stan-
dard Contrastive Decoding (CD, Li et al. (2022)) with the
original instruction for analysis, where τ is temperature for
amateur. Using Tk-small with Tk-XL in CD modestly sur-
passes ID-amateur due to smaller models’ limited grasp of
noisy instructions. As the ‘amateur’ model size grows, CD’s
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performance diminishes, highlighting its size sensitivity. Conversely, ID-amateur maintains consistent
adaptability across diverse model sizes. To sum up, ID-amateur method maintains performance across
model scales while mitigating issues inherent in standard contrastive decoding.

5 RELATED WORK

Instruction-tuned Language Models Instruction-tuning is a method to fine-tune pre-trained LMs
to better follow natural language instructions (Wei et al., 2021b; Sanh et al., 2021). This fine-tuning
process has demonstrated consistent enhancements in the model’s ability to generalize to unseen
tasks, particularly in zero-shot scenarios (Taori et al., 2023; Xu et al., 2023; Wang et al., 2022c; Peng
et al., 2023; Ouyang et al., 2022; Chung et al., 2022). Previous studies indicate that expanding the
breadth, volume, and ingenuity of tasks for training improves instruction-tuning even further (Wang
et al., 2022c;b; 2023c). While some efforts also use human feedback (Ouyang et al., 2022; Wu et al.,
2023a; Ziegler et al., 2019; Song et al., 2023), this paper focuses on the instruction-tuned models that
are trained on task datasets in a supervised manner.

Impact of Instructions on Generated Responses Understanding how generative LMs interpret
instructions remains an active area of discussion. It has been suggested only the essential tokens
directly related to the expected response influence the performance (Yin et al., 2023). However,
instruction-tuned LMs are so heavily conditioned on pre-trained knowledge that it is difficult to
override such conditioning through the prompted instructions,(Li et al., 2023; Wu et al., 2023b).
Recent research indicates that the success of instruction-tuning is contingent upon the familiarity of
instructions LMs encounter during their training phase (Chia et al., 2023; Liang et al., 2023). More
specifically, LMs trained with certain instructions can exhibit improved generalization on unseen
tasks, even when presented with misleading instructions during evaluation (Sun et al., 2023; Kung
& Peng, 2023). In zero-shot scenarios, this sensitivity to instruction variations becomes especially
evident (Sun et al., 2023; Gu et al., 2022). In this work, we suggest this sensitivity can be leveraged
by contrasting responses generated from noisy instructions.

Contrast in Text Generation The concept of using contrast to improve generative models (Ho &
Salimans, 2022; Li et al., 2015) has been studied in various ways in text generation (Shen et al., 2019;
Yona et al., 2023; Liu et al., 2021; Li et al., 2022). For example, Contrastive Decoding (Li et al., 2022)
aims to maximize the output probability by contrasting a less proficient model with an expert-level
model. Meanwhile, Coherence Boosting enhances long-range contextual understanding by giving
more weight to distant words,(Malkin et al., 2021). This contrastive approach has demonstrated
its effectiveness in diverse areas through its variants, such as text detoxification (Liu et al., 2021),
resolving knowledge conflicts (Shi et al., 2023), mitigating bias in input text (Yona et al., 2023) and
boosting response truthfulness (Chuang et al., 2023). Our study extends this line of work but places
emphasis on the role of instructions in the input text. Also, unlike previous studies, we present findings
that it is possible to utilize inputs that cause severe performance degradation, experiments show that
contrasting predictions based on noisy instructions can significantly improve the generalization of
instruction-tuned LMs on unseen tasks.

6 CONCLUSION

This paper explores the challenges faced by instruction-tuned language models, especially when
dealing with unfamiliar instructions, termed as unseen task generalization. Our approach is inspired
by the anchoring effect, a cognitive bias where initial information significantly influences subsequent
decisions. Based on this concept, we introduce Instructive Decoding (ID), a method that adjusts
next-token predictions by contrasting them with those generated from a manipulated version of the
original instruction, termed the ‘noisy’ instruction. Designed to counterbalance inherent model biases
and potential input biases, these ‘noisy’ instructions guide the model’s outputs towards contextually
relevant but deviating paths. Our empirical results across multiple tasks confirm the method’s efficacy.
Notably, the ‘opposite’ noisy instruction, which offers the highest degree of deviation, emerges as
the most effective variant for improving model performance. This highlights the significant role the
anchoring effect can play in shaping the model’s behavior. The simplicity of the ID approach, which
necessitates no additional parameter updates, renders it a compelling option to enhance instruction
following of the generated responses. As the field of instruction-tuned models continues to evolve,
we expect that methods like ID will become crucial in extending their capabilities.
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Ethics Statement This work primarily presents no direct ethical concerns. However, from a broader
impact perspective, there are some potential implications related to systematic impact and possible
misuse. These concerns are detailed further in the Appendix A.

Reproducibility Statement To ensure reproducibility, the main paper offers an in-depth exposition
of the materials and experimental configurations. The organization is as follows:

• Section 2 - This section provides the details of the noisy instructions employed throughout
our experiments. The accompanying pseudocode offers a more technical breakdown.

• Section 3 - This section elaborates on the implementation specifics, including the pre-trained
models, datasets, and evaluation metrics used. Additionally, the appendix furnishes the
input format for models in the SUPNATINST dataset, offering further clarity on the dataset
description.

• Appendix C - This section delves into the origins and specifications of the instruction-tuned
models employed in our study.

• Appendix D - Detailed methodologies for evaluating models using our proposed metrics,
LA and LC, are elaborated upon in this section.

• Appendix E - Comprehensive experimental configurations for integrating ID with other
decoding techniques are documented. The expected responses from instances utilizing ID
are also enumerated in this section.
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Appendices
A BROADER IMPACT

In advancing the domain of instruction-adherence for Language Models (LLM), we introduce
an innovative technique, Instructive Decoding (ID). Recognizing the potential paradigm shifts this
method might instigate, we find it imperative to discuss its broader implications, especially concerning
efficiency, scalability, accessibility, systematic impact, and potential misuse.

Efficiency and Scalability Optimizing instruction adherence at the decoding level, as underscored
by ID, presents pronounced advantages in both efficiency and scalability. Traditional endeavors to
fine-tune instructions often lean on exhaustive training, entailing considerable resource commitments.
This not only poses challenges for real-world applicability, especially with behemoth models or
voluminous datasets, but also limits scalability. Our decoding-centric method, on the other hand,
augments instruction adherence without extensive retraining. This reduction in computational
overhead paired with the method’s adaptability to diverse tasks signifies a pivotal step towards
ensuring future large language models are both instruction-responsive and deployment-efficient.

Accessibility ID inherently fosters increased accessibility of instruction-tuned models to a wider
spectrum of users. A salient attribute of our methodology is its efficacy in amplifying instruction
adherence, even for models with a more modest parameter count (up to 3B). This democratization is
potent, especially when considering that our method eschews dependencies on vast datasets, high-end
computational resources, or specialized engineering teams. In a machine learning landscape often
characterized by escalating computational needs and intricacies, ID emerges as a beacon, rendering
top-tier, instruction-adherent models accessible to a more expansive audience. This broad-based
accessibility is poised to catalyze novel applications across sectors, enriching both the research
community and the general populace.

Systematic Impact The introduction of our Instructive Decoding (ID) methodology offers a promis-
ing avenue for democratizing advanced instruction-following capabilities in contemporary language
models. Independent of their operational scale, organizations and researchers can leverage the en-
hanced proficiency of LLMs without the typical burdens of exhaustive tuning. This democratization
holds the potential to streamline and standardize AI implementations across multifarious industries.
Nevertheless, with widespread adoption comes the imperative of rigorous monitoring to identify,
mitigate, and rectify unforeseen biases or unintended consequences that may emerge.

Potential Misuses The amplification of instruction-adherence in models, while laudable, introduces
vulnerabilities that may be exploited for malevolent purposes, such as disseminating misleading
narratives or manipulating public discourse. It is our responsibility, as proponents of this technology,
to instate robust safeguards, advocate for ethical deployment standards, and formulate stringent usage
guidelines. Continuous emphasis should be placed on responsible application, vigilant oversight, and
cultivating a user ecosystem that is cognizant of both the potential benefits and inherent risks of such
advanced systems.

B LIMITATION & FUTURE WORK

B.1 LIMITATION

Generalization While our method has shown promising results in specific tasks and datasets, it
remains uncertain how universally it can be applied across various instruction-following scenarios,
languages, and cultures. Future research is essential to validate its effectiveness in diverse contexts
and ensure it doesn’t inadvertently introduce biases or inaccuracies in untested situations.

Robustness and Stability Our approach, though effective under the conditions tested, may exhibit
sensitivity to slight variations in instructions or other input parameters. This sensitivity might manifest
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as inconsistent outputs or varied model performance, emphasizing the need for comprehensive testing
across a range of inputs to ensure stable and robust operation.

Resources To produce a single output, our method necessitates two separate inferences. This
inherent design, while facilitating the desired model behaviors, leads to increased computational
overhead. As a consequence, there could be a tangible impact on speed, particularly in resource-
constrained environments, and a potential increment in storage requirements due to the need to
maintain intermediate representations or states.

Error Propagation Given our method’s two-step inference process, there’s an inherent risk of
error propagation: inaccuracies or biases introduced in the initial inference might not only persist but
could also be exacerbated in the subsequent inference. Addressing this challenge requires meticulous
design and evaluation to ensure that initial errors don’t compromise the quality of final outputs.

B.2 FUTURE WORK

Resource-Efficient ID As we explore deeper into the behaviors of instruction-tuned models and the
efficacy of ID, a clear trajectory emerges for future exploration: enhancing the resource efficiency of
the ID process. While our current methodology has showcased promising results, the computational
overhead and time complexity associated with it remain areas of improvement. In future iterations,
we aim to refine our algorithms to make the ID process not just effective but also leaner in terms of
computational resources. This could involve optimizing the perturbation computations, streamlining
the sampling process, or introducing lightweight heuristics to guide the decoding. Such enhancements
would make our approach more amenable to real-world applications, where both accuracy and
efficiency are paramount.

Robustness on More Diverse Tasks Another direction for future research lies in testing the
robustness of instruction-tuned models, especially with ID, across a broader spectrum of tasks. While
our initial investigations are mainly focused on the analysis of SUPNATINST dataset, the potential
of this approach could be unearthed by exposing the model to a gamut of diverse challenges – from
intricate sequence-to-sequence tasks to multi-modal problem settings. Such an expanded evaluation
would provide deeper insights into the model’s versatility and its adaptability to various task nuances.
Furthermore, it would be intriguing to observe how the model, anchored by its initial instruction,
fares in tasks that exhibit high levels of ambiguity or where the boundaries between classes are not
starkly defined. Pushing the boundaries in this manner will not only test the model’s resilience but
also its capability to generalize from one context to another seamlessly.

ID for RLHF Enhanced-LLMs Instruction tuning in a supervised manner equips models to
respond precisely to clear-cut tasks or queries, but its prowess diminishes when faced with ambiguous
or vague questions. Herein lies the significance of Reinforcement Learning from Human Feedback
(RLHF). By integrating human feedback into the model’s learning process, RLHF ensures that models
can interpret and respond to less defined queries in a manner that aligns closely with human intentions.
Introducing ID into RLHF-enhanced LLMs emerges as an intriguing avenue to further enhance this
capability. While RLHF provides the foundation for models to comprehend and align with human
intent, ID can be instrumental in refining the model’s adaptability to instructions and user preferences.
The amalgamation of RLHF’s continuous learning approach with ID’s anchoring capabilities may
lead to a more contextually adept and user-aligned model. In essence, this synergy could result in
LLMs that not only grasp the intricacies of human intent but also consistently generate outputs that
are both accurate and contextually relevant, regardless of the clarity or vagueness of the incoming
query.

Theoretical Analysis for ID ID stands as a distinct mechanism that aligns responses more to-
ward a goal-oriented direction without the need for additional training; it augments the provided
instruction to elicit more pertinent outputs from the model. Yet, while its practical benefits are
becoming increasingly evident, a deeper theoretical understanding remains a pressing requirement.
Specifically, understanding the interplay between the input that’s instruction-augmented and how it
influences the model’s prediction is of paramount importance. A rigorous analysis should explore
the level of perturbation this augmented instruction introduces into the model’s decision-making
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process. Furthermore, the inherent trade-offs between the exact match, Rouge-L scores, and semantic
coherence in relation to these perturbations need to be delineated. Establishing such a theoretical
foundation would provide invaluable insights into how ID effectively alters model behavior, paving
the way for more predictable and controlled outcomes. Future research endeavors focusing on these
aspects can unveil the precise mechanics at play, allowing for further refinement and optimization of
the ID approach.

C EXPERIMENTAL SETUP DETAILS

Tk-Instruct Tk-Instruct is an instruction-tuned model trained using SUPNATINST on the T5-LM
within an encoder-decoder architecture. As previously mentioned, we employ the publicly available
checkpoints (Tk-Instruct public checkpoints) for Tk-Instruct, specifically models such as 3b-def,
3b-def-pos, and 11b-def, which -def models are zero-shot tuned model and -def-pos model is tuned
with additional 2 positive demonstration examples for few-shot generalization. For model sizes not
publicly disclosed, we adhere to the training setup provided by Wang et al. (2022c) to perform fine-
tuning. Only the definition and input are used for training the Tk-Small (60M), Base (220M), Large
models (770M), whereas the Tk-Large-def-pos is trained with both a definition and two positivie
demonstration examples, each adapted from their corresponding T5-LM (Lester et al., 2021). The
models are trained with a batch size of 16, for 2 epochs, using a learning rate of 5e-5. Due to the
absence of an official validation task, training is conducted without splits and the last checkpoint
is used for experiments. The number of training instances utilized is 67,825. For both training and
evaluation, the combined maximum length of demonstrations and contexts is set to 1,024, while the
maximum generation length is limited to 128.

OpenSNI, T0, and Alpaca OpenSNI represents a model trained on the SUPNATINST for compari-
son among instruction datasets as depicted by Wang et al. (2023b), following the methods of Touvron
et al. (2023). It has been fine-tuned with 96,913 training instances over 2 epochs using a learning
rate of 2e-5. Two publicly available variants of this model exists: 7B and 13B, with our experiments
using the 7B variant from OpenSNI-7B public checkpoint. We observe a superior performance in the
7B model compared to the 11B variant of Tk-Instruct (i.e., Tk-XXL). We attribute this not only to
LLaMA’s potent pre-trained capability but also the increased number of instances used in training.
In the methodology proposed by Wang et al. (2023b), the fine-tuning is conducted with a fixed
template for both input and output to facilitate comparisons across instruction datasets. Notably, this
differs slightly from the template of SUPNATINST. In our experiments, we employ the SUPNATINST
template with the OpenSNI model. As seen in Table 4, there is a significant performance difference
when using the SUPNATINST template compared to the one used in training.

Table 4: Rouge-L score of OpenSNI-7B on SUPNATINST with different input format

Method \Format SupNatInst Open-instruct

baseline 47.85 46.20
null 49.04 48.70

opposite 49.47 48.94

We also use the T0-3B (Sanh et al., 2021) and Alpaca-7B (Taori et al., 2023) checkpoints from
T0-3B public checkpoint, and Reproduced Alpaca-7B public checkpoint (Wang et al., 2023a) in our
experiments, repectively. We set maximum length of inputs and generation length to 1,024 and 128,
respectively.

D METRIC DETAILS

Rouge-L Rouge-L (Recall-Oriented Understudy for Gisting Evaluation with Longest Common
Subsequence) is one of the metrics under the ROUGE framework (Lin, 2004), used predominantly for
evaluating the quality of summaries by comparing them to reference summaries. Rouge-L specifically
utilizes the Longest Common Subsequence (LCS) approach. LCS captures the longest co-occurring
in-sequence n-grams, words, or bytes between the system-generated summary and a set of reference
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Table 5: Examples of expanded label space for evaluating Label Coherence (LC).

Task Label Keywords

task1385 anli r1 entailment
entailment entailment, entail, entails, entailing, Valid, en-

tailments
neutral neutral, neutrality, neutrally, neutrals, Unknown
contradiction contradiction, contradictions, contradicts, con-

tradict, contradicting, Disagree

task935 defeasible nli atom-
ic classification

weakener weakener, weakens, weak, weaken, weakening,
a weak

strengthener strengthener, strengthens, strong, strengthen,
strengthening, a strong, stronger, strongest,
strongly

task392 inverse causal rela-
tionship

plausible plausible, Yes
not plausible not plausible, No

summaries. The advantage of Rouge-L is that it does not require predefined n-gram length like other
ROUGE metrics (e.g., ROUGE-N), making it more adaptive to varying lengths of summaries and
capturing fluent sequences more effectively. Given a candidate summary C and a reference summary
R, the precision P and recall R for Rouge-L are calculated as:

PLCS =
LCS(C,R)

|C|

RLCS =
LCS(C,R)

|R|

where |C| and |R| are the lengths of the candidate and reference summaries, respectively, and
LCS(C,R) denotes the length of the longest common subsequence between the two summaries. The
F1 score for Rouge-L is then computed as the harmonic mean of the precision and recall:

F1LCS =
2× PLCS ×RLCS

PLCS +RLCS

Due to its measurement efficiency, we choose Rouge-L as our main metric for zero-shot instruction
following ability.

We opt for Rouge-L as our primary metric for zero-shot instruction following capability. Other
studies (Hendrycks et al., 2020; Ye et al., 2023) have utilized methods such as ranking options by
likelihood for possible labels to assess instruction following abilities. However, these methods not
only fail to reflect the efficacy of our ID but, when considering a more practical instruction follow-
ing scenario—specifically, open-ended text generation corresponding to the provided instruction
and context—Rouge-L emerges as the more appropriate metric for representing the overall task
performance.

While there exist frameworks, such as Alpaca Farm (Dubois et al., 2023) and Chatbot Arena (Zheng
et al., 2023), that evaluate the generation capabilities of instruction-tuned models, they predominantly
focus on assessing dialogue formats. As a result, they are not ideally suited for evaluating IDs that
aim to improve zero-shot task generalization.

Label Adherence & Label Coherence For an in-depth analysis of ID, we measure LA and LC in
addition to EM (Exact Match) across 58 classification tasks. The illustration of Label Adherence and
Coherence is in Figure 9. To measure LA, we construct the space of all ground truth outputs for each
task’s instances and evaluate whether the generated answer resided within this space. Conversely, to
comprehensively evaluate the LC of instruction-tuned LMs, we take a scrupulous approach. Rather
than solely relying on the default labels provided in the SUPNATINST dataset for classification
tasks (Table 15), we go a step further. We manually select all classification tasks and deliberately
extend their label space. By doing so, we aim to capture a broader range of potential responses the
model generates, ensuring a more precise assessment of its semantic coherence.
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Task Type Answerability Classification
Definition In this task you are given a story and a question regarding that story. You must judge whether 

the question is answerable based on the info given to you. Label the instances as "Answerable" 
or "Not Answerable" based on your judgment. the story and the question are separated by a 
new line character.“

Instance Adler tried to place a fire ant in his brother's bed. He got bit by the ant several times. In 
addition, he caught an infection. Adler's dad was angry from what happened. He decided to 
send Adler to summer camp. \nWhy did He decide to send Adler to summer camp?

(a) Only Coherence

Answer: 
Because he was angry Not Answerable Answerable

(b) Only Adherence (c) Expected Response

Coherence Adherence
Outputs

Figure 9: The example of Adhernece and Coherence in task290 tellmewhy question
answerability. In classification tasks, the definition (i.e., instruction) contains not only seman-

tic information about the task but also hints on how to respond. If an instruction-tuned model solely
pursues adherence and conforms only to the label format (i.e., Only Adherence), it may produce
incorrect answers. Conversely, if it tries to align only semantically (i.e., Only Coherence), it deviates
from the predetermined format.

Table 5 presents an example of an extended label space. For tasks like entailment classification, we
expanded the label space by collating responses from our experiments that semantically matched the
ground truth labels such as ‘entailment’, ‘neutral’, and ‘contradiction’. Additionally, we underwent
further processing, such as removing special characters like ‘.’, ‘\n’, ‘?’, ‘!’, and conducting com-
parisons without upper case sensitivity, to ultimately create the extended label space used in the LC
evaluation. This manual label space enhancement not only increases the quality of our evaluation but
also provides deeper insights into how the model interprets and aligns its outputs with the intended
semantics. Figure 9 shows the example of adherence and coherence for the needs of LA and LC.

E ADDITIONAL EXPERIMENTS

Table 6: Comparison between sampling-based decoding and greedy decoding. Top-k and temperature
scaling are adopted. Mean and standard deviation of 3 seeds experiments are reported.

Method Top-k 40 & Temp 0.7 Greedy

original instruction 43.17± 0.26 45.36
null 41.61± 0.20 46.35
rand words 41.60± 0.26 46.46

Decode by Sampling We conduct experiments using greedy decoding. This is necessary because
SUPNATINST comprises 119 tasks, which encompass not only generation but also classification and
question-answering tasks. Although sampling-based decoding aids in increasing diversity, it operates
stochastically, which is not beneficial for classification or question-answering. Nevertheless, we
examine whether ID has benefits from sampling, and the results are presented in Table 6. From the
outset, one can observe a performance degradation across all methods, including the baseline, with
ID experiencing a particularly significant decline. As described in Section 4, we demonstrate that this
outcome stems from the smoothing effect from the characteristics of ID. Because ID reduces the top1
probability by increasing the probabilities for other tokens, sub-optimal tokens can be easily sampled,
leading generalization far worse than that of the greedy decoding.

CD ablations In Section 4, we discuss the application of Contrastive Decoding (CD) to ID for
unseen task generalization. The comprehensive results for the hyperparameters that demonstrates the
highest performance during our experiments can be found in Figure 10. As previously mentioned,
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Figure 10: Performance results after applying CD to SUPNATINST in comparison to the expert
model’s original score. We explore various values for τ , representing the temperature parameter τ
for the amateur model, within the range [0.5,10.0]. The parameter α, which constrains the model’s
confidence, is set to 0.1 as in Li et al. (2022). For the ID-amateur approach, which introduces noisy
instructions to the ‘amateur’ model, we examine the optimal value for ϵ among 0.1, 0.2, and 0.3.

while CD experiences significant sensitivity concerning model selection, the simultaneous use of
ID’s opposite instruction with CD (i.e. ID-amatuer) reduces this sensitivity. Even when the expert
model is smaller than the amateur model, it displays more robust results, and the degradation is
considerably less when compared to the standard CD. This can be attributed to the fact that as the
amateur model grows in size, it better understands the meaning of the opposite instruction, thereby
producing significant noisy logits.

Table 7: Performance degradation with increasing number of random words in the noisy instruction
for Tk-Large and Tk-XL models. This table highlights the trade-offs when introducing randomness
in instructions.

The number of random words

Model 1 3 5 10 30 50 100

Tk-Large 41.77 41.74 41.73 41.54 41.40 41.36 41.35
Tk-XL 46.46 46.39 46.34 46.30 46.29 46.25 46.11

Ablations on the Number of Random Words for Noisy Instruction To understand the influence
of the number of random words in the noisy instruction, we conduct ablation experiments varying
their count. In Table 7, performance metrics for Tk-Large and Tk-XL models across different random
word counts are presented. As the number of random words increases, there is a marginal decline in
performance for both models. This suggests a potential saturation point beyond which additional
random words might not offer significant noise benefits. The results underscore the importance of
adjusting the randomness level in the noisy instruction to achieve optimal performance.

Table 8: Variation in performance with different truncation ratios in the Truc-Shuf approach for
Tk-Large and Tk-XL models. The table showcases the resilience and adaptability of the models to
varying degrees of truncation in the instructions

Trucation Ratio

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Tk-Large 41.68 41.67 41.57 41.87 41.60 41.70 41.61 41.73 41.66
Tk-XL 46.37 46.31 46.39 46.60 46.21 46.45 46.30 46.26 46.67

Ablations on the Ration of Truc-Shuf To ascertain the impact of truncation on the model’s
performance, we perform ablation studies varying the truncation ratio. As illustrated in Table 8,
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Task ID task133_winowhy_reason_plausibility_detection

Definition "In this task you need to indicate the plausibility of reasoning for the pronoun coreference 

relations. Each of the provided inputs contains a sentence with a target …{Skip}… You should 

answer 'Correct' if the reasoning made sense, otherwise, you should answer 'Wrong'."

Instance "Sentence: Thomson visited Cooper's grave in 1765. At that date he had been dead for five 

years.\n Reason: The 'he' refers to cooper because dead people are in the graves. \n Question: Is 

the above reasoning correct or wrong? "  # Golden Label: Correct

Instructive Decoding Logits

Figure 11: An example on logits correction by ID with Tk-XL model.

we report the performance for Tk-Large and Tk-XL models across different truncation ratios. The
table indicates that the models exhibit varying sensitivity to the truncation level. Notably, neither
extreme truncation nor minimal truncation consistently maximizes the performance, suggesting an
intermediate truncation ratio might be optimal. The results underline the significance of adjusting the
truncation ratio to optimize the balance between the retention of task-relevant information and the
introduction of noise.

Example on Logits Correction by ID The baseline response guided by the original instruction
displays a slight ambiguity, predicting tokens like ‘True’ and ‘Correct’ at relatively high levels, but
also showing minor confusion with ‘Answer’, ‘Fal’, and ‘Yes’. However, for the given task, the
correct response should be ‘Correct’. When using the ‘null’ with ID, the prediction scores across
these tokens generally increase. By contrasting these outcomes, the model is further reinforced
to adhere to the ‘Correct’ response, underlining the strength of ID in guiding models towards the
appropriate response.

F QUANTITATIVE ANALYSIS ON TOKENS GENERATED BY ID

Relationship between Token Probability and Consistency In the context of ID, noisy predictions
derived from noisy instructions are used in contrast. These noisy predictions typically exhibit a
different tendency compared to those originating from base instructions, as illustrated in Table 9.
Specifically, when decoding in ‘opposite’, classification tasks (CLS) often demonstrate a mismatch in
the max token index between base and noisy predictions. However, the contrasting in ID is modulated
through the use of ϵ, which significantly reduces the number of altered predictions. In generation
tasks (GEN), there is a lower proportion of differences between noisy and base predictions compared
to CLS tasks. This phenomenon is attributed to the progressive influence of ID refined tokens on noisy
predictions as more tokens are generated. This is particularly pertinent in generation tasks, which
involve creating longer texts. Also, the inherent characteristics of the language model frequently
result in natural predictions within the responses being generated.

Figure 12 shows the density of maximum probability from the token distribution of base predictions,
distinguishing between tokens that are altered or remain unchanged by noisy predictions. Setting ϵ at
0.3, we observe that base predictions that are confident tend to remain unchanged, while those that
are unconfident may alter due to contrasting. Thus, predictions generated from noisy instructions
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do not always perfectly contrast with those from base instructions. If the prediction from the base
instruction is confident, it remains consistent. However, in cases where the instruction-tuned model
poorly understands the base instruction, leading to unconfident predictions, the noisy instruction can
be beneficial.

Table 9: A comparison of predictions from base instruction and predictions from noisy instruction
(Opposite) across 58 classification tasks (CLS) and 61 generation tasks (GEN) in the heldout dataset
of SUPERNATINST. using ID with OpenSNI-7B. ‘Consistent’ and ‘Inconsistent’ refer to whether
the argmax values of each prediction match, and ‘Changed’ denotes the number of tokens that have
altered in the base prediction when using ϵ = 0.3

Task Consistent Inconsistent Changed

CLS 6392 9665 1071
GEN 61164 17807 5907
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Figure 12: Kernel density estimation of predictions of base instruction from ID ‘opposite’ with
OpenSNI-7B in SUPERNATINST dataset. Maximum Probability refers to the maximum of the token
distribution derived from base instructions. ‘Changed’ denotes the tokens that have been altered in the
base prediction when applying ϵ = 0.3 and ‘Unchanged’ represents the tokens that remain unaltered.

Distributions on the Number of Generated Tokens Figure 13 compares the distribution of the
number of tokens per response between baseline models and models enhanced with ID using the
‘opposite’ instruction, across various tasks in the heldout dataset of SUPERNATINST. The results
highlight that the improvements offered by ID are consistent regardless of the response length required
by the tasks.

(a) Tk-Instruct XL (b) Tk-Instruct XXL (c) OpenSNI

Figure 13: Kernel density estimation of response lengths for Tk-Instruct XL (3B), XXL (11B), and
OpenSNI-7B Models over a held-out set of SUPERNATINST.
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G QUALITATIVE ANALYSIS ON ID RESPONSES

In this section, we present a comprehensive qualitative analysis of the responses generated by both
the Baseline and our ID (Opposite). We aim to understand the cases in which our ID fails to show
performance enhancement in the evaluation.

G.1 WRONG RESPONSE PATTERNS FROM ID

We observe that wrong responses from ID often contain words from the given instructions, while
wrong responses from the Baseline typically include words from the instance sentences. In Table 10,
we showcase responses in the OE (Overlap Extraction) category from both the 3B & 11B Baseline
and the 3B & 11B ID (Opposite). In this category, as indicated in Table 1, ID does not show
improvement over the Baseline. In Table 10, the Baseline typically just repeats the given phrase from
the instance, whereas the ID (Opposite), while not completely following the instructions, includes
some overlapping words from the provided sentences. Although the Baseline’s repetitive responses
might score well on the Rouge-L evaluation, we suggest that the ID (Opposite)’s responses, though
incorrect, are more instruction-focused.

This pattern is also evident in Table 13, where we provide OpenSNI-7B responses on CR (Coreference
Resolution) category. Here, both the Baseline and ID models generate wrong responses. However,
the Baseline attempts to respond with the words in the instance sentence, while ID uses words from
the given instructions. This suggests that while ID generally improves responses, it may reduce
performance in tasks that require the use of exact words from the provided instance. This is consistent
with our observation in Table 1, where a drop in performance is primarily seen in the OE, CR, and
KT categories, which often demand such specific word usage.

G.2 HOW ID REFINES RESPONSE WHEN MODEL SIZE INCREASES

In Table 11 and Table 12, we showcase responses from two categories: QR (Question Rewriting) and
KT (Keyword Tagging). In these categories, the ID initially shows no improvement over the Tk-XL
Baseline but demonstrates progress in the larger Tk-XXL model. Specifically in the QR category,
detailed in Table 12, the ID (Opposite) does not successfully enhance the Baseline’s performance in
the XL model. However, it does modify the Baseline response to more closely align with the given
instructions, even though the overall performance does not improve. For example, in the first example
in Table 12, from task035, the Baseline response both in the Tk-XL and Tk-XXL model fails to
rewrite the question. In contrast, ID (Opposite) attempts to specify the question, even it is incorrectly
changed the original intention in Tk-XL model. In the Tk-XXL model, ID (Opposite) successfully
adheres to the instructions by specifying the question while maintain the original intention. We
observe a similar enhancement pattern in the KT category, as shown in Table 11.

G.3 LIMITATIONS OF USING FIXED REFERENCES IN ROUGE-L EVALUATION

In Table 14, we present responses from the WA (Word Analogy) category, comparing the Baseline
and ID from the OpenSNI-7B model as shown in Table 1. Despite a decrease in Rouge-L performance
in this category, our qualitative analysis indicates that the ID responses more effectively follow the
given instructions, refining the Baseline responses. For instance, in the first example, ID modifies
the response to a Unicode emoji, which is contextually appropriate. In a second example, the ID
response (‘spatula’) differs from the reference (‘knife’), yet remains contextually valid. An interesting
observation is how ID responds when the Baseline output is degeneration response. In a third example,
where the Baseline simply gives the number ‘100000 · · · ’, ID changes this to ‘1000 degree oven’,
better adhering to the instruction. This indicates that using a fixed reference response for evaluations
can sometimes lead to misleading comparisons between Baseline and ID responses. It underscores
the difficulty in accurately assessing open-ended generation tasks.
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Table 10: Tk-XL & Tk-XXL Baseline vs Opposite (OE: Overlap Extraction)

Task ID task281 points of correspondence
Instance ID task281-88a4a6f5328e4c52bbb3cb83ac85e22e

Definition

You will be given three sentences. Read them, then identify a noun
phrase (person, place, or thing) or event that is shared between all
three sentences. As the output, write the span of the text corresponding
to that phrase in each sentence. Keep the order of the sentences, that is,
your answer should look like: 1: *a phras from sentence 1e*
2: *a phras from sentence 2* 3: *a phrase from sentence 3*

Instance

“1: It may help scientists better understand why Yellowstone ’s previous
eruptions , in prehistoric times , were some of Earth ’s largest explosions
in the last few million years . 2: Volcanic activity triggers 2,000 to 3,000
small earthquakes per year , and the shake and shock waves travel at
different speeds through molten , hot and other rock . 3: Scientist measured
the thousands of small earthquakes in Yellowstone to scan the earth
underneath it .”

Reference Outputs [ “1: Yellowstone ’s previous eruptions 2: 2,000 to 3,000 small earthquakes
per year 3: small earthquakes in Yellowstone” ]

Response (XL-Baseline) The response just repeated the input instance.
Response (XXL-Baseline) “Volcanic activity triggers 2,000 to 3,000 small earthquakes per year”

Response (XL-Opposite) “volcano”
Response (XXL-Opposite) “volcan activity”

Response (GPT-4) “1: Yellowstone \n 2: small earthquakes \n 3: Yellowstone”

Table 11: Tk-XL & Tk-XXL Baseline vs Opposite (KT: Keyword Tagging)

Task ID task036 qasc topic word to generate related fact
Instance ID task036-6d0fa330fca34057854ab9dd55419137

Definition

In this task, you need to write a topic word from the given fact.
The topic word must have at least one word overlap with the given fact.
The topic word often involves adding a new word from a related concept.
In your topic word, use at least one word from the given fact. Topic words
with two or more words work best.

Instance Fact: Earth ’s magnetic patterns are used for finding locations by animals
that migrate.

Reference Outputs

[ “animals migrate.”, “magnetic patterns.”,
“migrate animals north fly.”, “migrate bird.”,
“migrate birds.”, “migrating animals.”,
“migrating ensures species survival.” ]

Response (XL-Baseline) “earth”
Response (XXL-Baseline) “magnetometry”

Response (XL-Opposite) “magnetic”
Response (XXL-Opposite) “magnetotaxis”

Response (GPT-4) “Magnetic Navigation in Animals”
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Table 12: Tk-XL & Tk-XXL Baseline vs Opposite (QR: Question Rewriting)

Task ID task670 ambigqa question generation
Instance ID task670-9070b202605c4d619fed0be67c29353a

Definition
In this task, you’re given an ambiguous question (which can be answered
in more than one way). Your task is to write a question that clarifies the
given question in such a way that the generated question has one unique answer.

Instance What is the brightest star seen from earth?

Reference Outputs [“What is the brightest star in the night sky seen from Earth?”,
“What is the brightest star, seen anytime from Earth?”]

Response (XL-Baseline) “What is the brightest star seen from earth?”
Response (XXL-Baseline) “what star is the brightest as seen from earth?”

Response (XL-Opposite) “Which constellation is the brightest seen from earth?”
Response (XXL-Opposite) “what star can be seen by the naked eye as the brightest seen from earth?”

Response (GPT-4) “Which star appears as the brightest in the night sky when viewed from Earth?”

Task ID task035 winogrande question modification person
Instance ID task035-8c602a177d194ffca3b09bbdba34a857

Definition

You’re given a fill-in-the-blank question where the answer is PersonX. You
need to minimally change the given question so that the answer flips to
PersonY. This task typically involves replacing one word i.e., the ‘trigger word’
with its antonym (e.g., changing from “sympathetic” to “stern”). You should not
change any content in the given question beyond a word or two i.e. the trigger
word/phrase. PersonX and PersonY should not be equally likely to fill the blank.
For your question, PersonY should be a well-agreed answer to fill in the blank.
... {Skip}... Although there are many correct answers, you only need to write
one of them.

Instance Context Word: pet. \nQuestion: PersonX sneezed more than PersonY did
because had kept their pet in the house. \nAnswer: PersonX

Reference Outputs [“PersonX sneezed more than PersonY did because had kept their pet out
of the house.”]

Response (XL-Baseline) “PersonY sneezed more than PersonX did because .”
Response (XXL-Baseline) “ had kept their pet in the house.”

Response (XL-Opposite) “PersonY sneezed less than PersonX did because .”
Response (XXL-Opposite) “ had not kept their pet in the house. Answer: PersonY.”

Response (GPT-4) “PersonX sneezed less than PersonY did because had not kept their pet
in the house.\n Answer: PersonY”

24



Published as a conference paper at ICLR 2024

Table 13: OpenSNI-7B Baseline vs Opposite (CR: Coreference Resolution)

Task ID task033 winogrande answer generation
Instance ID task033-fd524c50837942b888dd0c6185271753

Definition

You need to answer a given question containing a blank ( ). Your answer
must be one of the two objects mentioned in the question, for example
“trophy” and “suitcase”. Your answer must not contain a word that is not
present in the question. Please don’t use articles (e.g., the, a) before the answer.

Instance Jenny’s doctor told her to add more carbohydrates to her diet and exercise
more, because the would help her process insulin better.

Reference Outputs [”exercise”]

Response (Baseline) “diet”

Response (Opposite) “trophy”

Task ID task033 winogrande answer generation
Instance ID task033-fd524c50837942b888dd0c6185271753

Definition

You need to answer a given question containing a blank ( ). Your answer
must be one of the two objects mentioned in the question, for example
“trophy” and “suitcase”. Your answer must not contain a word that is not
present in the question. Please don’t use articles (e.g., the, a) before the answer.

Instance The computer would not be put on my old desk because the was to heavy to
be there.

Reference Outputs [“computer”]

Response (Baseline) “desk”

Response (Opposite) “suitcase”

Task ID task401 numeric fused head reference
Instance ID task401-64fbc0a373d745b0887004156210920a

Definition

In this task, you will use your knowledge about language (and common
sense) to determine what element the marked number refers to. The numbers
are marked with two underlines around them, like: number . Your answer
should be chosen from the given text, and should not contain other words.

Instance Ron Woodroof: I got one ... one life , right ? Mine . But I want someone
else ’s sometimes .

Reference Outputs [“life”]

Response (Baseline) “1”

Response (Opposite) “ number ”

Task ID task401 numeric fused head reference
Instance ID task401-64fbc0a373d745b0887004156210920a

Definition

In this task, you will use your knowledge about language (and common
sense) to determine what element the marked number refers to. The numbers
are marked with two underlines around them, like: number . Your answer
should be chosen from the given text, and should not contain other words.

Instance
The Punisher: I still talk to God sometimes , I ask him if what I ’m doing is
right or wrong , I ’m still waiting for an answer , and until I get one , I ’ll
be waiting, watching , THE GUILTY WILL BE PUNISHED !

Reference Outputs [“life”]

Response (Baseline) “1”

Response (Opposite) “number”
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Table 14: OpenSNI-7B Baseline vs Opposite (WA: Word Analogy)

Task ID task1153 bard analogical reasoning affordance
Instance ID task1153-8769676aa4ea4aa69b5e0efeee7b46a8

Definition

Two analogies that signify affordances are given in the form “A : B. C : ?”.
Affordance is the possibility of an action being done on an object, for example
book is an affordance of writing. The phrase “A : B” implies that B is an
affordance of A. Your task is to replace the question mark (?) with the
appropriate affordance of the given action C, following the “A : B” relation.
Your answer should be a single object without further explanation.

Instance climb : ladder. stir : ?

Reference Outputs [“soup”]

Response (Baseline) “spoon”

Response (Opposite) “\u2615” ### Corresponds to a Unicode emoji ( )

Task ID task1156 bard analogical reasoning tools
Instance ID task1156-f3fc27a171174bec9230f4f83b5052c3

Definition

Two analogies that relate actions to the tools used to perform the action is given
in the form “A : B. C : ?”. “A : B” relates action A to tool B. Your task is to
replace the question mark (?) with the appropriate tool for the given action C,
following the ”A : B” relation.

Instance stir : spoon. spread : ?

Reference Outputs [“knife”]

Response (Baseline) “spread : knife”

Response (Opposite) “spatula” ### Semantically Valid Response

Task ID task1156 bard analogical reasoning tools
Instance ID task1156-641fe6e9e9b5405485fdb739b4ea07ba

Definition

Two analogies that relate actions to the tools used to perform the action is given
in the form “A : B. C : ?”. “A : B” relates action A to tool B. Your task is to
replace the question mark (?) with the appropriate tool for the given action C,
following the “A : B” relation.

Instance iron : iron. cook : ?

Reference Outputs [“pan”, “stove”]

Response (Baseline)
“ 1000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000
00000000000000000”

Response (Opposite) ”1000 degree oven” ### Revised the Degeneration Response

Task ID task1157 bard analogical reasoning rooms for containers
Instance ID task1157-f2a1911959304fed89fef7986e0979cd

Definition

Two analogies that relate objects to the associated rooms is given in the form
“A : B. C : ?”. “A : B” relates object A to room B. Your task is to replace the
question mark (?) with the appropriate room for the given object C, following
the “A : B” relation.

Instance bookshelf : library. table : ?

Reference Outputs [“kitchen”]

Response (Baseline) library

Response (Opposite) dining room ### Semantically Valid Response
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Table 15: List of Task IDs in the SUPNATINST used to evaluate Adherence and Coherence of
instruction following.

Task IDs
task893 gap fill the blank coreference resolution task641 esnli classification
task1529 scitail1.1 classification task202 mnli contradiction classification
task1393 superglue copa text completion task1344 glue entailment classification
task1387 anli r3 entailment task880 schema guided dstc8 classification
task738 perspectrum classification task1439 doqa cooking isanswerable
task642 esnli classification task242 tweetqa classification
task890 gcwd classification task1612 sick label classification
task1442 doqa movies isanswerable task233 iirc link exists classification
task936 defeasible nli snli classification task1386 anli r2 entailment
task290 tellmewhy question answerability task391 causal relationship
task201 mnli neutral classification task520 aquamuse answer given in passage
task892 gap reverse coreference resolution task828 copa commonsense cause effect
task1155 bard analogical reasoning trash or treasure task1385 anli r1 entailment
task1531 daily dialog type classification task1516 imppres naturallanguageinference
task1394 meta woz task classification task1615 sick tclassify b relation a
task970 sherliic causal relationship task1390 wscfixed coreference
task199 mnli classification task133 winowhy reason plausibility detection
task226 english language answer relevance classification task935 defeasible nli atomic classification
task020 mctaco span based question task937 defeasible nli social classification
task1388 cb entailment task329 gap classification
task1554 scitail classification task050 multirc answerability
task362 spolin yesand prompt response sub classification task220 rocstories title classification
task232 iirc link number classification task1391 winogrande easy answer generation
task1533 daily dialog formal classification task1624 disfl qa question yesno classification
task827 copa commonsense reasoning task879 schema guided dstc8 classification
task190 snli classification task200 mnli entailment classification
task1534 daily dialog question classification task392 inverse causal relationship
task640 esnli classification task623 ohsumed yes no answer generation
task1640 aqa1.0 answerable unanswerable
question classification

task349 squad2.0 answerable unanswerable
question classification
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H EVALUATION ON MMLU BENCHMARK

Overview of MMLU Evaluation Our evaluation on the MMLU dataset (Hendrycks et al., 2020),
a comprehensive question-answering framework encompassing a wide array of subjects across
humanities, social sciences, and STEM fields, provides a rigorous testbed for our ID method under
zero-shot scenarios. The dataset includes a diverse array of questions, sourced from educational
materials like GRE, USMLE, and AP exams. Each question is structured with a query and four
possible answers, where the task is to identify the single correct choice. We format the tasks as
multiple-choice, following Hendrycks et al. (2020).

Result Table 16 shows the performance of various models using our ID technique with an epsilon
value set to 0.3. We specifically analyze the impact of ‘Opposite’, ‘Opposite−’, ‘Opposite+’, and
‘Null’ strategies on three distinct models: Tk-Large, Tk-XL, and OpenSNI. The use of these strategies
on MMLU dataset are briefly described as follows:

• ‘Opposite’: involves using an opposite instruction to replace the original instruction (includes
input and answer candidates).

• ‘Opposite−’: combines the opposite instruction with answer options A, B, etc., but excludes
the others.

• ‘Opposite+’: involves putting the opposite instruction in front of the given instruction.
• ‘Null−’: presents only the answer options, removing others.

These strategies are contrasted against the baseline to showcase their effectiveness in enhancing EM
scores in a zero-shot scenario. This consistent performance of the ‘Opposite’ strategy is particularly
noteworthy, as it highlights the strength of our ID approach in effectively leveraging the anchoring
effect to enhance model response accuracy.

Table 16: EM scores under a zero-shot scenario across different models on 57 tasks in MMLU
dataset (Hendrycks et al., 2020). We set the ϵ = 0.3.

Method Tk-Large Tk-XL OpenSNI-7B

Baseline 32.16 43.53 42.22
Opposite 33.79 46.85 43.17
Opposite− 32.20 45.13 43.48
Opposite+ 31.83 43.88 43.25
Null 33.36 45.81 43.69
Null− 33.07 45.16 42.73
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