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Abstract. Aleatoric uncertainty estimation is a critical step in medical
image segmentation. Most techniques for estimating aleatoric uncertainty
for segmentation purposes assume a Gaussian distribution over the neu-
ral network’s logit value modeling the uncertainty in the presence of a
class at that location. However, in many cases of segmentation, such as
heart ultrasound or chest X-ray segmentation, there is no uncertainty
about the presence of a specific structure but rather about the precise
outline of that structure. For this reason, we propose to explicitly model
the location uncertainty by reframing the usual pixel-by-pixel segmenta-
tion task into a contour regression problem. This allows for modeling the
uncertainty of contour points using a more appropriate multivariate dis-
tribution. Also, since countour uncertainly is often anisotropic, we use a
multivariate skewed Gaussian distribution. In addition to being directly
interpretable, our uncertainty estimation method outperforms previous
methods on three datasets using two different image modalities.

Keywords: Uncertainty estimation · Medical image segmentation · Deep
learning.

1 Introduction

Segmentation is a key task in medical image analysis. Most state-of-the-art meth-
ods tackle segmentation with pixel-wise encoder-decoder type neural networks
and achieve results within inter-expert variability for multiple tasks [?,?,?]. But
recent work has shown the advantage of tackling the task of segmenting organs
(e.g. heart, lungs) using a point based contouring approach [?,?]. Moreover, this
approach is more interpretable as it is closer to how humans label data.

While point based approaches have improved various aspects of the segmen-
tation pipeline, the crucial aspect of uncertainty has not yet been addressed.
Uncertainty estimation methods can help identify out of distribution input data
and/or inaccurate results.It is widely documented that uncertainty can be of
epistemic or aleatoric nature [?]. While epistemic uncertainty is the uncertainty
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in the model [?], aleatoric uncertainty is the uncertainty in the data [?]. Most
pixel-wise segmentation methods estimate aleatoric uncertainty per pixel by
modeling a normal distribution over each output logit [?]. When segmenting
organs of regular shape and location, there is no uncertainty in the presence of
the organ but rather its precise delineation.

In this work, we therefore propose a novel method to estimate aleatoric un-
certainty of contouring regression for segmentation by modeling each contour
points with an interpretable bivariate normal distribution. As will be shown,
our method also benefits from extending the standard normal distribution to a
skew-normal distribution to allow the model to predict asymmetrical uncertainty.
In turn, we show that the advantages of point-based segmentation approaches
extent to uncertainty estimation.

Our contributions summarize as follows:

– we model assymetric uncertainties through outlines in segmentation tasks
by model contour uncertainty using skew-normal distributions.

– We show how to convert regression uncertainty into a pixel-wise uncertainty
map to allow a fair comparison with state-of-the-art methods.

– Our method outperforms classical segmentation uncertainty estimations in
a rigorous evaluation using three datasets and two modalities.

2 Related work

2.1 Uncertainty Estimation

Both epistemic and aleatoric uncerainty are important to predict and decorrelate
to assess the model performance and data quality, both of which are required
to use image segmentation models in clinical settings. As previously mentioned
epistemic uncertainty refers to the uncertainty in the model itself and is ex-
pressed by posing weights as a distribution instead of a point estimate. Many
methods can be used to estimate epistemic uncertainty such as Bayesian neural
networks [?], MC dropout [?,?] and ensembles [?]. In most cases, estimating epis-
temic uncertainty is task agnostic as it can be estimated by computing multiple
forward passes.

Aleatoric uncertainty on the other hand pertains to the uncertainty in the
data. This type of uncertainty must be modeled by assuming a distribution
from which the data is drawn from. For regression, a common practice is to
assume the data is iid from a normal distribution. To model aleatoric uncer-
tainty, the model parameterized by θ must output the distribution parameters:
fθ(x) = (µ(x), σ(x)). The resulting loss function, derived by maximizing the
log-likelihood for both µ and σ, is given by [?]

LN1
=

1

N

N∑
i=1

1

2
log σ(xi)

2
+

1

2σ(xi)
||µ(xi)− yi||2, (1)

where yi is the target value of xi (for simplicity µ(xi) = µi).
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Other methods attempt to model the aleatoric uncertainty by adding test-
time augmentation [?,?]. The model is given multiple examples of the same data,
and an uncertainty distribution can be estimated from the different outputs.

Some methods estimate uncertainty without explicitly modeling uncertainty
(neither epistemic nor aleatoric). Some methods include training with custom
losses [?] or adding an auxiliary confidence network [?]. Other methods, learn
representations to predict uncertainty based on encoded prior [?] or to sample
the representation space [?,?]. The latter however requires a dataset containing
multiple annotations per image to obtain optimal results.

2.2 Segmentation as Regression

Posing segmentation as a regression problem provides multiple advantages. This
task involves regressing a fixed number [say K] 2D points along the contour.
This task is quite common in human pose estimation [?] and medical landmark
regression [?]. The simplest way to do this is to regress 2K values with a standard
CNN. This, however, achieves sub-optimal results due to the loss of spatiality in
the flatten layer. A better approach involve a convolutional encoder and graph
decoder [?] and heatmap regression [?]. In this work, we focus on the latter as
it offers a direct way of estimating spatial uncertainty. One effective approach is
that by Nibali et al. in which they propose the differentiable spatial to numer-
ical transform (DSNT) to extract numerical coordinates from a heatmap in a
differentiable operation [?].

Given a heatmap Z ∈ Rm×n of the size of the input image, two coordinate
maps are defined I ∈ Rm×n and J ∈ Rm×n where Ii,j = 2j−(n+1)

n and Ji,j =
2i−(m+1)

m . The heatmap is normalized to obtain Ẑ = ϕ(Z) (ϕ(·) is a 2D flat
softmax) so it can represent a probability mass function for each coordinate c:

P (c = [Ii,j ,Ji,j ]) = Ẑi,j . (2)

Then, the mean of the heatmap can be found as the expected value of c,

DSNT (Ẑ) = E[cx] = µ =
[
⟨Ẑ, I⟩F , ⟨Ẑ,J⟩F

]
(3)

where ⟨·, ·⟩F is the Frobenius inner product. The operation is differentiable and
allows for sub-pixel accuracy. The variance of Ẑ in x direction can be computed
as follows (the y variance is found similarly):

V ar[cx] = E[(cx − E[cx])
2)

= ⟨Ẑ, (I − µx)⊙ (I − µx)⟩F
(4)

where ⊙ is the Hadamar product. Nibali et al.’s work uses the variance to regu-
larize the heatmaps with a loss between the output variance and a target variance
set as a hyperparamters. The following section will explain how we use the DSNT
layer to learn the variance to express uncertainty.
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3 Method

figures/figure.png

Fig. 1: a) Example of uncertainty over-estimation due to symmetric gaussian. b)
Example of skewed distributions and skewed uncertainty map.

3.1 Contouring Uncertainty

Segmentation datasets typically comes with N pairs of data each containing
an image xi ∈ RH,W (we assume a one-channel input for simplicity) with its
associated segmentation mask yi. In this work, yi is a polygon Q made of Kq

contour vertices. Note that yi can comprise several polygons Q associated with
several regions of different classes (i.e the two lungs, right and left ventricles,
etc.). The procedure for extracting the vertices from the segmentation masks
will be explained in section ??.

To model the uncertainty of a contour Q, the uncertainty for each 2D vertex
point must be modeled. This can be achieved using equation 1. This, however,
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assumes no covariance between the uncertainty along the horizontal and vertical
axis. Instead, one should model the uncertainty of the entire contour using a
2Kq dimensional multivariate Gaussian [?]. This would consider the covariance
between all points. This, however, is ineffective in practice as it requires pre-
dicting a 2Kq × 2Kq covariance matrix which is unstable for neural networks. A
good compromise is to model each contour point with a bivariate Gaussian. The
networks must therefore take the following from fθ(x) = (µ,Σ) with µ ∈ RKq×2

and Σ ∈ RKq×2×2. The resulting loss function is

LN2
=

1

NKq

N∑
i=1

Kq∑
k=1

log |Σ(k)
i |+ (µ

(k)
i − y

(k)
i )T (Σ

(k)
i )−1(µ

(k)
i − y

(k)
i ). (5)

The DSNT layer already offers the possibility of obtaining coordinates and vari-
ance from heatmaps. We add covariance output to the DSNT layer as follows:

cov[c] = E[(cx − E[cx])(cy − E[cy])

= ⟨Ẑ, (I − µx)⊙ (J − µy)⟩F .
(6)

While modeling the uncertainty of 2D contour points with a bivariate Gaus-
sian distribution appears logical, it does have some drawbacks. For instance,
this requires the uncertainty to be isotropic at each vertex, which is a strong
assumption. To relax that constrain, we propose extending the modeling distri-
bution to a bivariate skew normal distribution whose PDF is :

SNn(y|ζ,Σ, α) = 2ϕn(y|µ,Σ)Φ1(α
Tω−1(y − ζ)) (7)

where ϕm is a multivariate normal, Φ1 is the cumulative distribution function
of unit normal, Σ = ωΣ̄ω and α ∈ R2 is the skewness parameter. Note that we
now use ζ to denote the location parameter that is different from the mean.

From that point on, the model predicts the skewness parameter for each con-
tour point: fθ(x) = (ζ,Σ, α) with ζ ∈ RK×2, Σ ∈ RK×2×2 and α ∈ RK×2.
Deriving the maximum likelihood estimate for the bivariate skew-normal distri-
bution yield the following loss function:

LSN 2 =
1

NKq

N∑
i=1

Kq∑
k=1

log |Σ(k)
i |+ (ζ

(k)
i − y

(k)
i )T (Σ

(k)
i )−1(ζ

(k)
i − y

(k)
i )

+ logΦ1((α
(k)
i )T (ω

(k)
i )−1(y

(k)
i − ζ

(k)
i )). (8)

3.2 Uncertainty Map

While the estimation of uncertainty provides numerous advantages such as the
quantification of uncertainty per region and of specific anatomical landmark,
there are still situations in which the uncertainty is required to be expressed in
pixels. Indeed, an uncertainty map, in which each pixels represents the uncer-
tainty can be an excellent tool to visualize and compare uncertainty estimation
methods. We therefore need to construct an uncertainty map.
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An observation that can be made about the estimated uncertainty is that
when considering the contour as a whole, not all components of the uncertainty
express in 2D are relevant. As there are a finite number of points along the
contour, a specific point can be moved by a small distance along the contour
without influencing the overall shape of the contour. One the contrary, moving
the pixel along the direction perpendicular to the contour will have a maximal
effect on the shape. This extends to the uncertainty, as the uncertainty expressed
along the contour does not reflect the uncertainty of the shape. However, the
uncertainty perpendicular to the contour better represents the uncertainty of
the shape itself.

Uncertainty perpendicular is the relevant uncertainty
Given a vector v with angle θ that is perpendicular to the contour. We want

to find the standard deviation
This is done by computing the conditional of the rotated covariance matrix.

Σ
′
= RΣRT (9)

where R is a rotation matrix with angle −θ. Conditional of Σ
′
is given by [?]

σ = Σ
′

xx −Σ
′

xy(Σ
′

yy)
−1Σ

′

xy

=
Σ

′

xxΣ
′

yy −Σ
′

xyΣ
′

xy

Σ′
yy

=
|Σ′ |
Σ′

yy

=
|R||Σ||RT |

Σxx sin
2 θ +Σyy cos2 θ − 2Σxy sin θ cos θ

=
|Σ|

Σxx sin
2 θ +Σyy cos2 θ − 2Σxy sin θ cos θ

(10)

Given the perpendicular distribution, we can construct contours that follow
equal probability.

Bivariate normal
Bivaraite skew normal marginal

α̂1 =
α1 + Ω̄−1

11 Ω̄12α2

(1 + αT
2 Ω̄22·1α2)1/2

(11)

Ω̄22·1 = Ω̄22 − Ω̄22Ω̄
−1
11 Ω̄12 (12)

4 Experimental Setup

4.1 Data

Our evaluation was conducted on two heart ultrasound datasets and one chest
X-Ray dataset.
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CAMUS. We used the CAMUS dataset [?] which contains cardiac ultrasounds
from 500 patients. Two-chamber and four-chamber sequences were acquired for
each patient. Manual annotations for the endocardium and epicardium borders
of the left ventricle (LV) and the left atrium were obtained from a cardiologist
for the end-diastolic (ED) and end-systolic (ES) frames. The dataset was split
into 400 training patients, 50 validation patients and 50 testing patients. Con-
tour points where extracted by finding the basal points of the endocardium and
epicardium and subsequently the apex as the farthest points along the edge of
the mask. Nine points where equally spaced between each basal point and apex
for a total of 42 points for both contours.
Proprietary US.
JSRT.The Japanese Society of Radiological Technology (JSRT) dataset con-
sists of 247 chest X-Rays [?]. We used the 120 landmakrs for the lungs and
heart annotation made available in [?]. The set of landmarks contain specific
anatomical points for each structure (4 for the right lung, 5 for the left lung and
4 for the heart) and equally spaced points between each anatomical point. We
reconstructed the segmentation map with 3 classes (background, lungs, heart)
with these landmarks and used the same train-val-test split of 70%-10%-20% as
[?].

4.2 Implementation Details

1. enet / deeplab
2. B-Spline for contours / derivatives
3. US / CHEST reconstructions
4. best validation loss
5. Adam, lr=1e-3, weight decay = 1e-4
6. data augmentation
7. all images to 256x256

4.3 Evaluation Metrics

As well as average class Dice, the following metrics were used to asses the quality
of the uncertainty estimates at both a image and pixel-wise level.
Correlation. The correlation between the the image uncertainty and the Dice
was computed using the absolute value of the Peasion correlation score. We ob-
tained image uncertainty be taking the sum of the uncertainty map and dividing
it by the number of foregroud pixels. Higher correlation values indicated better
uncertainty estimation.
Expected Calibration Error (ECE) Expected calibration error measures
if a classifier’s (by extension segmentation method) confidence represents its
probability of being correct [?].
Uncertinaty error mutual-information. As proposed in [?], uncertainty er-
ror mutual-information measures the degree of overlap between the uncertainty
map and the pixel-wise error map without requiring the uncertainty map to
be thresholded. We report the average uncertainty error mutual information
weighted by the number of erroneous pixels in each image.
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Data CAMUS Proprietary JSRT

Method Dice Corr. ECE MI Dice Corr. ECE MI Dice Corr. ECE MI

Aleatoric
Epistemic
TTA
Edge [?]

Epistemic
TTA
N1

N2

SN 2

Table 1: Uncertainty estimation results for segmentation (top rows) and regres-
sion (bottom rows) methods. Bold values indicate best results.

5 Results

Due its similar construction of the uncertainty, we also compare with the EDGE
method presented in [?]. This method adds decreasing uncertainty around the
contour trough successive dilations and errosions. Note however, that the EDGE
method will always predict equal uncertainty around the contour which is not
the case with our method.

1. Segmentation
(a) aleatoric
(b) epistemic
(c) TTA
(d) EDGE

2. Regression
(a) Epistemic
(b) TTA
(c) Univariate normal 1
(d) Bivarite normal
(e) Bivariate skew-normal

6 Discussion and Conclusion

Although segmentation aleatoric uncertainty modeling with pixel-wise uncer-
tainty is unconstrained, that is each pixel can produce uncertainty independently,
practical results ins previous work and this work have shown that the results are
sub-optimal. This method was originally proposed for multiclass segmentation
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of natural images where the uncertainty should reflect the probability of being
in each class. In many medical image segmentation applications, however, the

Our results show that modeling the uncertainty associated with the location
of the segmentation structure rather than the presence yields better results.
Furthermore, by allowing the distribution to

While this method cannot be applied to all medical image segmentation tasks,
this method is still broad enough to cover many applications, especially related
to segmentation that is later used for downstream tasks such as clinical metric
estimation.

Future work will look to expand this method to more general variations of
elliptical distributions and combine the aleatoric and epistemic uncertainty to
obtain the full predictive uncertainty.
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