
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

TAPE: Tailored Posterior Difference for
Auditing of Machine Unlearning

Anonymous Author(s)
∗

ABSTRACT

Increasing studies focus on machine unlearning as it upholds users’

right to be forgotten, under which individuals can request the re-

moval of their specified samples from trained models. However,

the auditing of machine unlearning processes remains significantly

underexplored. Although some existing methods offer unlearning

auditing by leveraging backdoors, these backdoor-based approaches

are inefficient and impractical, as they necessitate involvement in

the initial model training process to embed the backdoors. In this

paper, we propose a TAilored Posterior diffErence (TAPE) method

to provide unlearning auditing independently of original model

training. We observe that the process of machine unlearning inher-

ently introduces changes in the model, which contains information

related to the erased data. TAPE leverages unlearning model differ-

ences to assess how much information has been removed through

the unlearning operation. Firstly, TAPE mimics the unlearned pos-

terior differences by quickly building unlearned shadow models

based on first-order influence estimation. Secondly, we train a Re-

constructor model to extract and evaluate the private information

of the unlearned posterior differences to audit unlearning. Existing

privacy reconstructing methods based on posterior differences are

only feasible for model updates of a single sample. To enable the

reconstruction effective for multi-sample unlearning requests, we

propose two strategies, unlearned data perturbation and unlearned

influence-based division, to augment the posterior difference. Ex-

tensive experimental results indicate the significant superiority of

TAPE over the state-of-the-art unlearning verification methods,

at least 4.5× efficiency speedup and supporting the auditing for

broader unlearning scenarios.

CCS CONCEPTS

• Security and privacy; • Computing methodologies→Ma-

chine learning;
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1 INTRODUCTION

Rising concerns over personal data privacy have led to the enact-

ment of stringent privacy regulations and laws, such as the General

Data Protection Regulation (GDPR) [26]. These legal frameworks

guarantee individuals the “right to be forgotten”, granting the right

to request the removal of their data when participating in machine

learning (ML) services. This right has sparked significant interest

in the research community, giving rise to the concept of “machine

unlearning” — a field that explores methods for erasing the influ-

ence of user-specified samples from trained ML models [5, 27, 42].

Although many unlearning techniques are proposed, most of them

focus on developing unlearning optimization algorithms while ig-

noring the provision of unlearning auditing.

Research Gap. There are a few works provided unlearning execu-

tion verification based on backdoor techniques [16, 17, 36]. How-

ever, the backdoor-based methods have two oblivious disadvan-

tages: (1) they are inefficient in practice as they are required to

backdoor the model in the original model training period; (2) they

cannot provide exact verification for genuine samples.

First, the efficacy of backdoor-based unlearning verification

schemes hinges on model backdooring during the initial model

training process [16, 17], as shown in Figure 1(a), which is impracti-

cal and inefficient. Users are unlikely to foresee the need to unlearn

specific samples at the outset, making it unreasonable to incor-

porate tailored backdoors for specified samples during the initial

training phase. Furthermore, involving the model training process

in this way introduces inefficiencies, as it would be more effective

to design an audit method that focuses solely on the machine un-

learning operation and remains independent of the initial training

process.

Second, the backdooring method can only build the connection

between backdoored samples and models, but the backdoored sam-

ples and erased genuine samples are distinct datasets [10, 31]. These

two datasets behave differently during model training, especially

in approximate unlearning [9, 28], where the model accuracy on

backdoored samples diminishes much faster than that on genuine

samples [31, 39]. It indicates that the removal of backdoors can

only verify whether the backdoored samples are unlearned from

the model rather than genuine samples.

Research Question. Based on the research gap, we pose the re-

search question: “When an unlearning request is uploaded and pro-
cessed, can we provide a practical audit service that verifies data
removal and assesses the effectiveness of unlearning?” Specifically,
for practicality, the audit should only involve the unlearning pro-

cess, and for effectiveness, it should rigorously determine whether

the specified data has been unlearned and evaluate how much

information has been erased from the model.

Motivation. ML models learn patterns and relationships from the

training dataset, which are embedded in the model’s parameters

and behavior [13, 21]. The process of machine unlearning inevitably

1
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Figure 1: (a) The backdoor-based verification and (b) The

motivation of auditing unlearning effectiveness based on

the posterior difference. The scheme (b) only involves the

unlearning process rather than the initial model training.

results in two versions of the model: one before and one after un-

learning [6]. The difference between these models encapsulates the

privacy information of the erased samples [6, 19, 44]. Our approach

to audit unlearning effectiveness is based solely on analyzing these

model differences, as illustrated in Figure 1(b). Auditing unlearning

effectiveness based on model differences offers two key advantages.

First, this method is practical and efficient, as it focuses exclusively

on the unlearning operations without requiring involvement in the

initial model training process. Second, auditing based on model

differences supports broader unlearning scenarios and requests be-

cause unlearning for either genuine or backdoored samples results

in model differences. By contrast, backdoor-based methods are only

effective for backdoored samples as they can only build connections

between backdoored samples and models.

Our Work. In this paper, we address the research question by for-

malizing the machine unlearning auditing problem and introducing

an approach called TAPE, designed to audit unlearning effective-

ness solely based on the unlearning process. TAPE contributes

one method and two strategies to effectively train a Reconstructor

model to evaluate how much private information is unlearned to

audit this unlearning update. As a preparatory step, TAPE mimics

unlearning posterior differences as input data for the Reconstructor

by proposing an unlearned shadow model establishment method

based on first-order influence estimation. While existing privacy

reconstruction methods are effective for single samples, they are

impractical for multiple samples–a common scenario in unlearning

requests. To address this, we leverage the fact that the unlearning

user knows and uploads the erased data, allowing us to design

two strategies to ensure our method is suitable for multi-sample

scenarios. Specifically, we design the unlearned data perturbation

strategy to augment the posterior difference for a better recon-

struction effect of unlearned samples. Additionally, we develop

an unlearned influence-based division strategy, which transforms

the reconstruction task from dealing with multiple samples as a

single posterior difference to reconstructing each sample individu-

ally based on multiple divided posterior differences, significantly

enhancing the overall reconstruction effectiveness.

We conduct extensive experiments on four representative datasets

and four mainstream unlearning benchmarks to evaluate the pro-

posed method, in which the results indicate the superiority of TAPE

over the start-of-the-art auditing methods [16, 17] in terms of both

efficiency and efficacy. From the efficiency perspective, our TAPE

method achieves at least 4.5× speedup on all datasets and at most

75× speedup on the CelebA dataset than backdoor-based methods,

as TAPE only involves the unlearned process. In contrast, backdoor-

based methods must backdoor the service model during the initial

training process, which is computationally expensive. From the ef-

ficacy perspective, our TAPE provides effective auditing of genuine

samples for both exact and approximate unlearning algorithms,

while the verification of backdoor-based methods only targets back-

doored samples.

Our contributions are summarized as follows:

• This paper is the first to investigate the auditing for machine

unlearning involves only the unlearning process, which is much

different from existing backdoor-based methods that rely on

backdooring the model during the initial training process. More-

over, our auditing study is feasible for genuine unlearned samples

rather than only backdoor-marked samples.

• We propose a TAPE method based on the posterior difference to

auditing unlearning. TAPE introduces a novel method to quickly

establish unlearned shadow models that mimic the posterior dif-

ferences and incorporates two posterior augmentation strategies

to facilitate auditing the unlearning of multiple samples.

• We conduct extensive experiments on both exact and approx-

imate unlearning methods across representative datasets and

various model architectures. The findings validate significant

improvements in efficiency and broader applicability to adap-

tive unlearning scenarios compared with the state-of-the-art

unlearning verification methods.

• The source code and the artifact of TAPE is released at https:

//anonymous.4open.science/r/TAPE-30D0, which creates a new

tool for measuring the effectiveness of machine unlearning meth-

ods, shedding light on the design of future unlearning auditing

methods.

2 RELATEDWORK

Few studies paid attention to the problem of providing unlearn-

ing audits to prove whether users’ data are removed and how

much information is unlearned [37]. The backdoor-based solutions

[11, 16, 17, 36] provided data removal verification for machine un-

learning. These studies mixed backdoored samples to users’ data for

backdooring servers’ service ML models during the model training

process. Then, they inferred whether the users’ data was unlearned

by testing if the backdoor disappeared from the service models

[16, 17]. However, these backdoor-based methods have two oblivi-

ous limitations.

First, these methods rely on the original ML model training

process, which is impractical in real-world scenarios due to users

being unaware of which samples will need to be unlearned in the

future, as well as the high computational costs involved. Second,

these methods only build the connection between the backdoored

samples and models, while the backdoored dataset and genuine

dataset are still separate from the models’ perspective [39, 43]. The

backdoored and the erased genuine datasets perform differently

during model training, as the corresponding experimental results

are shown in Figure 2. The removal of backdoor triggers can actu-

ally only verify whether the backdoored samples are unlearned as

2
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Figure 2: Approximate unlearning process on genuine un-

learned data 𝐷𝑢 and backdoored data 𝐷𝑏 on MNIST. During

unlearning, the backdoor accuracy drops to 0% at the blue

Vertical line. Meanwhile, the model accuracy on genuine un-

learned data 𝐷𝑢 and test data is still around 80%.

the backdoored samples and unlearned genuine samples perform

differently during the approximate unlearning training process [28].

When the accuracy of backdoored samples drops to 0%, the model

accuracy on genuine unlearned data and test data is still around

80%. These results are consistent with current backdoor studies

[10, 31, 40]. We present more detailed discussion in Appendix A.

3 PRELIMINARY AND PROBLEM STATEMENT

To facilitate the understanding of the unlearning auditing prob-

lem, we first introduce the main process of unlearning. A detailed

introduction about the and threat model is presented in Appendix B.

Machine Unlearning. The unlearning process usually includes

the following phases. (1) The server trained a model with param-

eters 𝜃𝑡 derived from dataset 𝐷 . (2) The unlearning user uploads

the unlearning requested dataset 𝐷𝑢 to the server for unlearning.

(3) The server conducts an unlearning algorithm U to remove

𝐷𝑢 ’s contribution from 𝜃𝑡 and results in an unlearned model with

parameters 𝜃𝑢,𝐷\𝐷𝑢
, also denoted as 𝜃𝑢 .

Most existing backdoor-based unlearning verification methods

tried to solve data removal verification but can only answer if

the backdoored samples are unlearned. Answering whether the

backdoored data is or not deleted is insufficient for trustworthy

unlearning auditing. We should assess the unlearning effectiveness

of themodel, i.e., howmuch private information about the requested

unlearning samples is removed from the model.

Problem Statement (Unlearning Effectiveness Audit).

Given the described unlearning scenario, the potential for unlearning
execution spoofing by the server, and the capabilities of the unlearn-
ing user, auditing unlearning effectiveness necessitates a method for
unlearning users to evaluate the extent to which information about
𝐷𝑢 has been unlearned from 𝜃𝑡 to 𝜃𝑢 .

It is important to note that the problem statement inherently

includes the issue of data removal verification. If one can effectively

measure how much information related to the erased samples has

been unlearned, this measurement can serve as the basis for de-

termining whether the data has been properly unlearned. We try

to conduct unlearning auditing based on the unlearning updated

posterior difference as it contains essential information about the

erased samples. To achieve the auditing goals, we need to mimic

the unlearning posterior difference and extract and quantify the

unlearned information from it. We utilize the model’s output layer

results of the original and unlearned models on the user’s local

dataset to generate the posterior difference. We define the unlearn-

ing posterior difference as follows.

Posterior Difference. The unlearning user first queries the trained

ML model 𝜃𝑡 before unlearning with all samples of 𝐷𝑙𝑜𝑐𝑎𝑙 and

concatenates the received outputs to form a vector 𝑌𝑡,𝑙𝑜𝑐𝑎𝑙 . Then,

the user queries the unlearned model 𝜃𝑢 with samples in the 𝐷𝑙𝑜𝑐𝑎𝑙

and creates a vector 𝑌𝑢,𝑙𝑜𝑐𝑎𝑙 . In the end, the user sets the posterior

difference, denoted by 𝛿 , to the difference of both outputs:

𝛿 = 𝑌𝑡,𝑙𝑜𝑐𝑎𝑙 − 𝑌𝑢,𝑙𝑜𝑐𝑎𝑙 . (1)

Note that the dimension of 𝛿 is the product of 𝐷𝑙𝑜𝑐𝑎𝑙 ’s cardinality

and the number of classes of the target dataset. For example, in

this paper, CIFAR-10 and MNIST are 10-class datasets, while we

just identify the gender attributes of CelebA, which is a binary

classification. As we set the local dataset 0.5% of CIFAR-10 and

MNIST, and 0.06% of CelebA, this indicates the dimension of 𝛿 is

2500 for CIFAR-10, 3000 for MNIST, and 1210 for CelebA.

Unlearned Information Reconstruction to Assess How Much

Information is Unlearned. To assess the unlearning effective-

ness, we employ a reconstructor model to extract the unlearned

information from the posterior difference. We employ the cosine

similarity between the reconstructed and original unlearned sam-

ples to assess how much information of the unlearned information

can be recovered from the unlearning update:

Rec. Similarity: sim(𝑋𝑢 , 𝑋𝑢 ) =
𝑋𝑢 · 𝑋𝑢
∥𝑋𝑢 ∥ · ∥𝑋𝑢 ∥

. (2)

Here, 𝑋𝑢 · 𝑋𝑢 is the dot product of the reconstructed vectors 𝑋𝑢

and original unlearned samples vectors 𝑋𝑢 . ∥𝑋𝑢 ∥ and ∥𝑋𝑢 ∥ are
the Euclidean norms of the two vectors. A higher reconstruction

similarity means more information about the erased samples is

unlearned from the model.

4 TAPE METHODOLOGY

4.1 Overview of the TAPE

We illustrate the overview methodology process in Figure 3, which

includes two main steps.

Unlearned Shadow Model Building. In this step, we propose a

method to quickly build the unlearned shadow models with only

the user’s samples. Our method utilizes the first-order influence

estimation function to effectively estimate the unlearning influence

and remove it from the original model, thus quickly mimicking the

unlearned model to generate the posterior differences.

Reconstructor Training. We then train a reconstructor model

to evaluate how much information about the erased samples is

unlearned. An unlearned data perturbation strategy and an un-

learned influence-based division strategy are proposed to augment

the posterior differences for reconstruction for multiple samples.

Both strategies are implemented utilizing the advantage that the

unlearning user knows and prepares the unlearned samples.

3
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posterior difference augment strategies are proposed to make the reconstruction suitable for multi-sample unlearning.

4.2 Constructing Unlearned Shadow Model to

Mimic Posterior Difference

The unlearning user possesses a local dataset 𝐷𝑙𝑜𝑐𝑎𝑙 , including the

unlearned data 𝐷𝑢 , which was once used to train the ML service

model. Now, the user wants to unlearn 𝐷𝑢 from the ML service

model and verify the unlearning effectiveness. As the unlearning

verification is executed on the unlearning user side, the user can uti-

lize the local dataset 𝐷𝑙𝑜𝑐𝑎𝑙 to construct unlearned shadow models

to mimic posterior differences. Many existing machine unlearning

algorithms rely on the assistance of the remaining dataset 𝐷\𝐷𝑢 .

Only VBU [28] can implement unlearning with solely the unlearned

samples; however, it is only suitable for Bayesian models.

Constructing Unlearned Shadow Model. We propose a method

based on the influence function theory [1, 3, 22] in ML to quickly

approximate an unlearned shadow model with only the unlearned

data 𝐷𝑢 . Specifically, when we remove 𝐷𝑢 from a trained model

𝜃𝑡 for unlearning, the empirical risk minimization (ERM) can be

written as:

L𝐷\𝐷𝑢
(𝜃 ) = 1

𝑛 −𝑚
∑︁

𝑥 ∈𝐷\𝐷𝑢

ℓ (𝑥 ;𝜃 ), (3)

where 𝑛 is the size of 𝐷 ,𝑚 is the size of 𝐷𝑢 , and ℓ (𝑥 ;𝜃 ) is the loss.
Similar to [3], we evaluate the effect of up-weighting a group of

training samples on model parameters. Note that in this case, the

updated weights must still form a valid distribution. Specifically,

if a group of training samples is up-weighted, the weights of the

remaining samples should be down-weighted to preserve the sum

to one constraint of weights in the ERM formulation. We assume

that the weights of samples in 𝐷𝑢 have been up-weighted all by 𝜖

and use
𝑚
𝑛 to denote the fraction of up-weighted training samples.

This results in a down-weighting of the rest of the training data

by 𝜖 = 𝑚
𝑛−𝑚 𝜖 , to preserve the empirical weight distribution of the

training dataset. Then, the ERM can be translated as:

L𝜖
𝐷\𝐷𝑢

(𝜃 ) = 1

𝑛
(

∑︁
𝑥 ∈𝐷\𝐷𝑢

(1 − 𝜖)ℓ (𝑥 ;𝜃 ) +
∑︁
𝑥 ∈𝐷𝑢

(1 + 𝜖)ℓ (𝑥 ;𝜃 )). (4)

In the above equation, if 𝜖 = 0, we get the original loss function

L∅ (𝜃 ) (none of the training data points are unlearned) and if 𝜖 = −1,
we get the loss function L𝐷\𝐷𝑢

(𝜃 ) (specified samples are removed).

Let 𝜃𝜖
𝐷\𝐷𝑢

denote the optimal parameters for L𝜖
𝐷\𝐷𝑢

minimiza-

tion, and 𝜃∗ denote the optimal parameters trained on 𝐷 . The un-

learned shadowmodels can be approximately achieved by removing

the estimated data influence from the trained model as follows,

𝜃𝜖
𝐷\𝐷𝑢

= 𝜃𝑡 −
𝜖

𝑛 −𝑚
∑︁

𝑥𝑢 ∈𝐷𝑢

∇ℓ (𝑥𝑢 ;𝜃𝑡 ), (5)

where 𝜖 ∈ [−1, 0] is used for unlearning, 𝑚 is the size of the

erased dataset and 𝑛 is the size of the training dataset. Δ𝜃 ≃
− 𝜖
𝑛−𝑚

∑
𝑥𝑢 ∈𝐷𝑢

∇ℓ (𝑥𝑢 ;𝜃𝑡 ) is the estimaed data influence at current

trained model 𝜃𝑡 . We omit the proof of the shadow model estima-

tion in Eq. (5) as it is similar to the proofs in [3, 22]. Constructing

the unlearned shadow model based on Eq. (5) only relies on the

unlearned samples and is convenient for the user to implement.

Mimicking Posterior Difference.With the above method to con-

struct unlearned shadow models, then, we can easily achieve the

mimicked posterior differences. For instance, assuming the local

dataset 𝐷𝑙𝑜𝑐𝑎𝑙 contains𝑚 samples 𝑋1, 𝑋2, ..., 𝑋𝑚 , we can construct

𝑚 unlearned shadow models 𝜃𝐷\𝑋1
, 𝜃𝐷\𝑋2

, ..., 𝜃𝐷\𝑋𝑚
for each sam-

ple, where \𝑋 means unlearning the sample 𝑋 . Based on these

unlearned shadow models, we can mimic the corresponding un-

learned posterior,𝑌\𝑋1,𝑙𝑜𝑐𝑎𝑙 , 𝑌\𝑋2,𝑙𝑜𝑐𝑎𝑙 , ..., 𝑌\𝑋𝑚,𝑙𝑜𝑐𝑎𝑙 , using the local

dataset. The posterior difference can be calculated through Eq. (1),

denoted as 𝛿1, 𝛿2, ..., 𝛿𝑚 , as shown in Figure 3. Together with the cor-

responding shadow unlearning set’s ground truth information, the

training data for the reconstructor model to evaluate the unlearned

information is derived.

4.3 Reconstructor Model Training with Two

Strategies for Multiple Samples Auditing

Reconstructor Training for Unlearning Effectiveness Assess-

ment. Like [34], we employ the autoencoder (AE) architecture to
construct the Reconstructor, which includes an encoder and a de-

coder, as shown in Figure 3(b). Its goal is to learn an efficient en-

coding for the posterior differences 𝛿 . The encoder encodes the

posterior difference into a latent vector 𝜇, and the decoder decodes

the corresponding latent vector to reconstruct the unlearned sam-

ples. We employ mean squared error (MSE) as the loss function to

4
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train the Reconstructor,

LAE = | |𝑋𝑢 − 𝑋𝑢 | |22, (6)

where 𝑋𝑢 = AE(𝛿𝑢 ) is the reconstructed sample for 𝑋𝑢 .

Existing studies [2, 19, 34] showed effective reconstruction for

a single sample for the updated model difference. However, they

are infeasible for reconstructing multiple samples. For unlearning

effectiveness auditing, the unlearning user has the knowledge of the

unlearned samples. With this advantage, we design two strategies:

one augments posterior differences by perturbing unlearned data

before unlearning and one augments posterior differences by indi-

vidually dividing the posterior difference after unlearning, enabling

evaluate how much information is unlearned for multiple samples.

Unlearned Data Perturbation before Unlearning. Many un-

learning methods directly compare the posterior difference between

𝑌𝑡,𝐷𝑢
and 𝑌𝑢,𝐷𝑢

to evaluate the unlearning effectiveness. Usually,

they treat a degradation of the accurate prediction probability as

a sign of successful unlearning for the unlearned model [5, 42].

However, not all unlearning operations will cause a significant

degradation of posterior probability on the unlearned samples. The

model performance will remain, especially when there are some

samples in the remaining dataset that are similar to the erased

samples. It will also hinder the audit of unlearning effectiveness.

We propose an unlearned data perturbation method to augment

posterior difference, assisting the unlearning effectiveness verifi-

cation. Specifically, we hope to introduce a perturbation Δ𝑝 to the

unlearned sample 𝑋𝑢 to augment the unlearned posterior for the

reconstructor, so that it can effectively evaluate how much infor-

mation is unlearned. At the same time, unlearning the perturbed

specified data should maintain the unlearned model’s utility on

the remaining dataset. Since our final purpose is to improve the

reconstructed information, we can formalize the unlearned data

perturbation as follows to find the suitable perturbation.

min

Δ𝑝
LAE (𝑋𝑢

′
, 𝑋𝑢 + Δ𝑝 )

s.t. Δ𝑝 ∈ arg min

𝜃\(𝑋𝑢+Δ𝑝 )

∑︁
𝑥 ∈𝐷𝑟

ℓ (𝑥 ;𝜃\(𝑋𝑢+Δ𝑝 ) )
(7)

where 𝑋𝑢
′
= AE(𝛿\(𝑋𝑢+Δ𝑝 ) ), meaning that the samples are recon-

structed based on the posterior difference that unlearns the per-

turbed data𝑋𝑢 +Δ𝑝 . We define the constraint that Δ𝑝 : ∥Δ𝑝 ∥∞ ≤ 𝛼

to ensure that the perturbed data will not be too different from the

original data. We can combine these two losses together and treat

them as two objectives, thus can be optimized with two-objective

optimization methods [15, 32, 35]. During the perturbation opti-

mization process, we fix the trainedmodel 𝜃𝑡 and the reconstruction

model AE. We only update the perturbation Δ𝑝 of 𝑋𝑢 to induce an

augmented unlearned posterior difference 𝛿\(𝑋𝑢+Δ𝑝 ) , which im-

proves the reconstruction effect. To find an effective perturbation,

we can employ the restars technique, which is inspired from [12, 33],

and we provide the corresponding algorithm in Appendix C.

Unlearning Influence-based Division after Unlearning. The

unlearning influence-based division strategy utilizes the conve-

nient properties of the first-order data influence estimation. After

achieving the overall posterior differences for multiple samples

𝛿\𝐷𝑢
, the user can quickly estimate the basic data influence for

each integrated sample 𝑥𝑢 ∈ 𝐷𝑢 , and we divide the overall poste-

rior difference according to the weight of each sample’s influence.

We assume the divided posterior difference of the integrated sample

obeys a Gaussian distribution:

𝛿\𝑥𝑢 ∼ N(
𝛿\𝐷𝑢∑

𝑥𝑢∈𝐷𝑢
∇ℓ (𝑥𝑢 ;𝜃𝑡 )

· ∇ℓ (𝑥𝑢 ;𝜃𝑡 ), 𝜎2),

s.t. 𝛿\𝐷𝑢
=

∑︁
𝑥𝑢∈𝐷𝑢

𝛿\𝑥𝑢 ,
(8)

where we keep the divided posterior difference values as the mean

and add a random deviation to it; meanwhile, we keep the sum

of all the split slice posterior differences

∑
𝑥𝑢 ∈𝐷𝑢

𝛿\𝑥𝑢 equal to the

overall posterior difference 𝛿\𝐷𝑢
. Thus, we ensure every reconstruc-

tion has a unique divided posterior difference without additional

change or noise in the original 𝛿\𝐷𝑢
. This operation changes the

reconstruction task for multiple samples based on the same 𝛿\𝐷𝑢
as

reconstructing every single sample of 𝐷𝑢 based on multiple divided

posterior differences.

5 PERFORMANCE EVALUATION

5.1 Settings

Datasets.We conducted experiments on four widely adopted public

datasets: MNIST [8], CIFAR10 [23], STL-10 [7], and CelebA [25].

These datasets offer a range of objective categories with varying

levels of learning complexity, and the corresponding statistics are

listed and introduced in Appendix D.

Models. In our experiments, we select a 5-layer multi-layer per-

ceptron (MLP) connected by ReLU, a 7-layer convolutional neural

network (CNN), and ResNet-18. Specifically, we use two 5-layer

MLP models, one as the encoder and one as the decoder, to consist

of the reconstructor for MNIST. We use two 7-layer CNNs to consist

of the reconstructor for CIFAR10, STL-10, and CelebA. The main

structure of the ML service model is implemented with a ResNet-

18. Moreover, to align with existing backdoor-based verification

methods, we also train a Verifier model using a 5-layer MLP model,

which is trained after reconstruction. The Verifier model training

algorithm is presented in Appendix E.

Metric.We use three metrics, model accuracy, reconstruction simi-

larity, and verifiability, to measure the ability previously defined

for the unlearning auditing scheme. Moreover, we use the running

time to assess the methods’ efficiency. We briefly summarize the

metric as follows.

• Accuracy. Model accuracy evaluates functionality preservation

and shows whether the auditing methods influence the utility of

the service model.

• Reconstruction Similarity. It evaluates howmuch information

about the specified samples is unlearned by reconstructed cosine

similarity, as introduced in Eq. (2).

• Verifiability. Verifiability is used to measure the data removal

verification by calculating the correct classifying rate of the

Verifier, which is defined in Eq. (9) in Appendix F.

• Running Time. It is used to assess the efficiency, which records

the running time of the entire process of each method.

Compared Unlearning Verification Benchmarks. There are

mainly three data removal verification solutions [16, 17, 36], all

based on backdooring methods. We only compare our method with

MIB [17] because MIB is the most popular and has the best veri-

fication effect among these three methods. Note that since these

5
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Figure 4: Auditing for different unlearning methods. TAPE

consistently achieves significant efficiency improvement and

a better unlearning auditing effect for a single sample (SS)

than for multiple samples (MS).

methods can only support verifying the backdoored samples, most

of the evaluation for MIB is verifying for unlearning only back-

doored samples; our method is verifying for unlearning genuine

samples.

Unlearning Benchmarks. The evaluation for unlearning ver-

ification methods is conducted on four mainstream unlearning

algorithms: SISA [5], HBU [14], VBU [28] and RFU [41].

5.2 Evaluations of Unlearning Auditing based

on Various Unlearning Benchmarks

Setup.We demonstrate the evaluation of unlearning auditing meth-

ods on four mainstream unlearning benchmarks in Figure 4. We

evaluate unlearning scenarios of both single-sample (SS) where

the Erased Sample Size (ESS) is 1 and multi-sample (MS) where

ESS=20. Since the MIB method is unable to verify only for unlearn-

ing genuine samples, we here evaluate the verification of MIB for

backdoored multi-samples (B-MS), 𝐷𝑏 ← (𝑋𝑏 + trigger, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡 ),
which add a white block patch as the trigger at the right bottom of

chosen images and change the corresponding labels for the back-

dooring target. When evaluating TAPE, to keep the setting similar

to MIB, we add the perturbation with the same limit distance as the

trigger patch to the genuine unlearned samples but do not change

the labels for backdooring,𝐷𝑢,𝑝 ← (𝑋𝑢 +Δ𝑝 , 𝑌𝑢 ), which is achieved
through the unlearned data perturbation (UDP) method.

Evaluations of Auditing Efficiency. The first row of Figure 4

shows the running time of TAPE and MIB across different unlearn-

ing algorithms on MNIST, CIFAR-10, and CelebA. TAPE signifi-

cantly outperforms MIB in terms of running time, as TAPE only

involves the unlearning training process. The greatest speedup is

observed on CelebA. Additionally, TAPE takes more time for single-

sample unlearning auditing compared to multi-sample unlearning

auditing, as training the reconstructor model on a single-sample

level for a local dataset requires more time.

Evaluations of Unlearning Auditing Effect. The second row,

which depicts reconstruction similarity, illustrates the evaluation

results of how much information about the specified samples has
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Figure 5: Evaluations of impact about different ESS. Here, we

evaluate the unlearning verification of genuine samples (GS)

rather than backdoored samples for MIB.

Table 1: Evaluation Results on CIFAR10 and STL-10

CIFAR10, ESS = 20 STL-10, ESS = 2

Original MIB [17] TAPE Original MIB TAPE

Running time (s) 644 673 113 781 809 74.90

Model Acc. 81.62% 79.13% 81.62% 68.99% 67.26% 68.99%

Rec. Sim. - - 0.973 - - 0.174

Unl. Verifiability 0.00% 0.00% 97.44% 0.00% 0.00% 84.40%

been unlearned. As MIB is unable to measure the extent of informa-

tion unlearned from the model, it is omitted in this row. Among all

unlearning methods (SISA, VBU, RFU, and HBU), TAPE achieves

better reconstruction similarity for single-sample unlearning than

for multi-sample unlearning. This suggests that unlearning a single

sample tends to reveal more information about the erased sample

in the unlearning posterior difference.

The third row shows the comparisonwithMIB by the verifiability

of data removal verification. All methods have a high verifiability

result. It indicates that all unlearning methods are effective in these

evaluations to answer if the samples are unlearned from the model.

However, we should note that in the experiments, MIB only verifies

the backdoored samples 𝐷𝑢,𝑏 , while TAPE can verify the genuine

samples 𝐷𝑢,𝑝 , which has kept the original labels.

We also demonstrate an overall evaluation for MIB and TAPE on

SISA [5] in Table 1. Here, we evaluate auditing genuine samples for

both MIB and TAPE instead of setting backdoored samples for MIB.

TAPE achieves effective auditing results as analyzed in Figure 4.

However, the MIB cannot successfully verify the unlearning of any

genuine samples in the Unl. Verifiability of Table 1. Moreover, since

the TAPE scheme is independent of the original model training

process, it will not influence the model utility of the original ML

service model, keeping the same model accuracy as the “Original”.

We present additional experimental results in Appendix G.1.

5.3 Ablation Study of Erased Samples Size (ESS)
Setup. Figure 5 illustrates the impact of ESS when providing un-

learning auditing on MNIST, CIFAR10 and CelebA. The largest
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Figure 6: Ablation study about the unlearned data perturbation (UDP) and unlearning influence-based division (UID) strategies

of TAPE on MNIST. The legends stand for the entire TAPE, TAPE without (w/o) the UDP strategy, TAPE w/o the UID strategy,

and TAPE w/o both strategies.

ESS is 100 in this experiment, which is around 0.2% of training

datasets in MNIST and CIFAR10. In practice, 0.2% data might be

very large for unlearning, which has been analyzed in [4, 6]. To

illustrate a better comparison, we verify the unlearning of genuine

perturbed samples 𝐷𝑢,𝑝 for both MIB and TAPE. The ablation study

is conducted based on another representative unlearning method,

VBU [28], to demonstrate the scalability of our method for different

unlearning methods. Due to the page limitation, we present the

impact on the efficiency of ESS in Appendix G.2.

Impact on Unlearning Auditing. Figure 5 shows the evaluation

of both auditing how much information is unlearned (the first row)

and data removal status verification (the second row) on MNIST,

CIFAR10 and CelebA. When ESS = 1, TAPE can effectively provide

the auditing of unlearning information and data removal status

on all datasets. By contrast, MIB cannot support the data removal

verification of genuine samples (black dotted line in the second

row in Figure 5). Moreover, both two evaluation metrics have a

decreasing trend when ESS increases.

5.4 Ablation Study of Two Strategies

We conduct an ablation study to evaluate our two designed strate-

gies, unlearned data perturbation (UDP) and unlearning influence-

based division (UID).

Setup.We conduct the experiments on MNIST in four situations.

“TAPE” means the entire scheme with the two strategies. “TAPE

w/o UDP” means TAPE without the UDP strategy while keeping

the UID strategy, and “TAPE w/o UID” means that we remove the

UID strategy of TAPE while keeping the UDP strategy. The “TAPE

w/o both” means we remove both strategies of TAPE for auditing.

Impact on Efficiency. We present the efficiency evaluation in

the first sub-figure of Figure 6. Since the UDP strategy introduces

𝑅 = 10 restarts training to find perturbations for erased samples,

it consumes around 10 seconds in TAPE. Compared with UDP,

UID almost does not consume computational time, as the main

time consumption is the unlearned shadow model building and

reconstructor training.

Impact on Auditing Unlearning Effectiveness. The second sub-

figure in Figure 6 shows the reconstruction similarity of different

methods. All methods achieve a high reconstruction similaritywhen

ESS = 1, which shows the effectiveness of TAPE in single-sample

unlearning auditing even without the two strategies. However,

when the posterior difference contains information of multiple sam-

ples, ESS > 1, if we don’t have the UID strategy, the reconstruction

similarity drops dramatically, showing as “TAPE w/o UID” and

“TAPE w/o both”. The UID plays a vital role in the reconstruction

of multiple samples. While the UDP strategy also enhances the

reconstruction quality, as shown in “TAPE w/o UDP”, its impact

is not as substantial as the UID strategy. By contrast, in the third

sub-figure in Figure 6, the UDP strategy impacts the verifiability of

data removal than the UID strategy, showing as “TAPE w/o UDP”

and “TAPE w/o UID”. These results show the significant improve-

ment of the two strategies in benefiting unlearning auditing of how

much information is unlearned and data removal status.

5.5 Detailed Ablation Study of UDP

We additionally evaluate the impact of unlearned data perturba-

tion. We find that only perturbation without changing the labels as

backdoor-based methods already significantly improves the infor-

mation reconstruction and assists the verifiability of data removal.

Setup. In this experiment, we keep all other parameters fixed while

only changing the perturbation limitation value 𝛼 . As introduced

in Section 4.3, the UDP outputs 𝐷𝑢,𝑝 ← (𝑋𝑢 + Δ𝑝 , 𝑌𝑢 ), and the per-

turbation is limited as ∥Δ𝑝 ∥∞ ≤ 𝛼 . We set the perturbation limit

distance value from 0 to 25 on MNIST and CIFAR10, 0 to 75 on STL-

10, and 0 to 150 on CelebA, which is determined by the data size. We

only perturb the unlearned data but do not change the correspond-

ing labels to ensure the utility of the genuine samples. To better

illustrate the impact of 𝛼 , we keep a copy of original data 𝐷𝑢 in

the remaining dataset, which is the hardest scenario for unlearning

effectiveness auditing. The unlearning method employed here is the

approximate unlearning method VBU. We evaluate our method in

both single-sample (SS) and multi-sample (MS) unlearning requests.

For the MIB method, we evaluate in the backdoored single-sample

(B-SS) scenario, and we control the backdooring trigger patches

with the sample distance limitation value as our methods to en-

sure they can be compared. The experimental results on MNIST,

CIFAR10, STL-10, and CelebA are presented in Figure 7.

Impact on Efficiency. The first column illustrates the running time

of TAPE and MIB, which clearly demonstrates the improvement of

TAPE in terms of efficiency. The reason is that the verification mod-

els of TAPE are trained independently of the original ML service

model training process, which significantly shortens the running

7
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Figure 7: Evaluations of the impact of the unlearned data perturbation limit. “SS” stands for single-sample unlearning scenario,

and “MS” means multi-sample unlearning scenario. “B-SS” means backdoored single-sample scenario, and “B-MS” means

backdoored multi-sample unlearning scenario.

time for verification. During the experiment, we fix 𝑅 = 10 restarts.

The perturbation limitation has no significant impact on running

time, as the running time remains consistent across different per-

turbation limits.

Impact on Unlearning Auditing Effect.With larger perturba-

tions, we augment the unlearning posterior difference, increasing

the reconstruction similarity and enabling more information about

the erased samples to be extracted. The trend is indicated in un-

learning single samples (the green line) and multi-samples (the blue

line) on all three datasets. Moreover, the results in the second row

in Figure 7 also clearly confirm our previous analysis: auditing for

a single sample achieves a much better result than auditing for

multiple samples, which is reflected in the significant gap between

the two scenarios.

In TAPE, a larger perturbation of unlearned data makes data

removal verification easier. In the third row in Figure 7, it is obvi-

ous that the verifiability increases as the perturbation limitation

increases. When the perturbation limitation is less than 5, it is hard

to distinguish if the samples 𝐷𝑢,𝑝 are unlearned because the re-

maining dataset contains a similar original sample 𝐷𝑢 . However,

when the perturbation limitation increases larger than 5, the TAPE

verifiability will greatly improve for genuine single-sample and

multi-sample unlearning. MIB performs similarly when verifying

the unlearning of backdoored multiple samples (B-MS). However,

MIB fails to verify the unlearning of a single sample, as only one

sample cannot backdoor the original ML service model.

6 SUMMARY AND FUTUREWORK

In this paper, we propose a TAPE scheme to investigate the auditing

of unlearning effectiveness based on unlearning posterior differ-

ences, involving only the unlearning process. TAPE contributes

a method to build unlearned shadow models to mimic the poste-

rior difference quickly. Moreover, two strategies are introduced to

augment the posterior difference, enabling the audit of unlearning

multiple samples. The extensive experimental results validate the

significant efficiency improvement compared with backdoor-based

methods and the effectiveness of auditing genuine samples in both

exact and approximate unlearning manners.

The auditing method proposed in this paper significantly ad-

dresses the limitations of existing unlearning verification methods.

It effectively audits genuine samples for both exact and approximate

unlearning methods in single-sample and multi-sample unlearning

scenarios. Additionally, it eliminates the need for involvement in

the original model training process. Future work could continue

this line of inquiry, developing more efficient unlearning audit-

ing methods to guarantee and support the right to be forgotten in

MLaaS environments.
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Table 2: An overview of machine unlearning auditing methods.

Unlearning

Auditing

Methods

Involving Processes Auditing Data Type Unlearning Methods Unlearning Scenarios

Original training

and unlearning

Only unlearning

process

Backdoored (marked)

samples

Genuine

samples

Exact

unlearning

Approximate

unlearning

Single

sample

Multi

samples

MIB [17]

Athena [36]

Verify in the dark [16]

Verifi [11]

TAPE (Ours)

: the auditing method is applicable; : the auditing method is not applicable.

A DIFFERENCE FROM EXISTING STUDIES

Our TAPE approach is significantly different from existing unlearn-

ing verification methods [11, 16, 17, 36] in terms of the involving

processes, auditing data type, unlearning scenarios, and unlearning

methods, as depicted in Table 2. First, the significant difference is

that the auditing of our method only involves the unlearning pro-

cess, while the backdoor-based methods must involve both the orig-

inal training and unlearning processes to ensure the service model

first learns the backdoor. Second, most existing auditing methods

are based on backdooring techniques and need to backdoor or mark

samples for verification [11, 16, 17, 36]. As we analyzed in the above

subsection, they can only validate the backdoored samples and are

only applicable to the exact unlearning methods as exact unlearn-

ing methods guarantee the deletion from the dataset level. Our

method does not mix any other data to the training dataset, and

the auditing is based on the posterior difference, which is suitable

for genuine samples in both exact and approximate unlearning

methods. Third, backdoor-based auditing methods are only feasible

for multi-sample unlearning scenarios because just using a single

sample makes it hard to backdoor the model [24, 29, 39, 43], hence

failing to provide unlearning verification for a single sample.

B MLAAS SCENARIO AND THREAT MODEL

Our problem is introduced in a simple machine unlearning as a

service (MLaaS) scenario for ease of understanding. Under the

MLaaS scenario, there are two main entities involved: an ML server

that collects data from users, trains models, and provides the ML

service, and users that contribute their data for ML model training.

The ML Server’s Ability. To uphold the “right to be forgotten”

legislation and establish a privacy-protecting environment, the ML

server is responsible for conducting machine unlearning operations.

However, it is challenging to audit the unlearning effect for users

to confirm that the unlearning is processed and prevent the spoof

of unlearning from the ML server. In alignment with common

unlearning verification settings [16, 17], we assume the ML server

is honest for learning training but may spoof users for unlearning,

i.e., it reliably hosts the learning process but may deceive users

during unlearning operations by pretending unlearning has been

executed when it has not. It is reasonable for the ML server to

pretend to execute unlearning operations to avoid the degradation

of model utility. Moreover, this assumption is more plausible than

assuming the server will forge an unlearning update [37]. Forging

an unlearning update would require the server to simulate the

disappearance of specified data and the corresponding resulting in

model utility degradation, which demands significant effort without

any benefit, making it an unlikely motivation.

The Unlearning Users’ Ability. We consider the scenario where

the unlearning user has only black-box access to the ML service

model, which is one of the most challenging scenarios [19, 34]. In

unlearning scenarios, the unlearning user possesses a local dataset,

including the erased samples, which constitutes the entire training

dataset for the ML service model [20, 42]; however, the user has

no access to the entire dataset. This just allows the user to query

the model with their own data in a black-box access to obtain the

corresponding posteriors and design the unlearning requests with

specific data for unlearning verification purposes. Furthermore,

we assume the unlearning user knows the unlearning algorithms,

which is confirmed by both server and users, commonly used in

other works [18]. However, even if the unlearning user knows the

algorithms, without the remaining dataset, the user still cannot

achieve the corresponding unlearning results of most unlearning

algorithms. To relax the difficulty, we consider the unlearning user

to be able to establish the same ML model as the current target

ML service model with respect to model architecture. This can be

achieved through model hyperparameter stealing attacks [30, 34,

38]. The unlearning user leverages this knowledge to simulate the

unlearned shadowmodels andmimic the behavior of theML service

model based on the designed unlearning requests, thereby deriving

the posterior differences necessary for training the reconstruction

model to evaluate the unlearning effectiveness.

C UNLEARNING DATA PERTURBATION (UDP)

ALGORITHM

Algorithm 1 demonstrates how to use the R restarts to find the sat-

isfied perturbation for the unlearning data to augment the posterior

difference for auditing.

D DATASETS

The statistics of all datasets used in our experiments are listed and

introduced in Table 3. MNIST, CIFAR10, and STL-10 are bench-

mark datasets utilized for 10-class image classification tasks, offer-

ing a range of objective categories with varying levels of learning

complexity. Our experiment on CelebA is to identify the gender

attributes of the face images. The task is a binary classification

problem, different from the ones on MNIST, CIFAR10 and STL-10.

We also introduce them below
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Algorithm 1: Unlearning Data Perturbation (UDP)

Input: Trained model 𝜃∗, reconstruction model AE, unlearned data

𝑋𝑢 , perturbation limit 𝛼 , local dataset 𝐷𝑙𝑜𝑐𝑎𝑙

Output: The perturbed unlearning data, 𝑋 ′𝑢 = 𝑋𝑢 + Δ𝑝

1 procedure UDP(𝜃∗, AE, 𝑋𝑢 , 𝛼 , 𝐷𝑙𝑜𝑐𝑎𝑙):
2 for 𝑟 ← 1 to 𝑅 restarts do
3 Δ

𝑝
𝑟 ← N(0, 1) ▷ Initialize random perturbation.

4 for 𝑖 ← 1 to𝑚 optimization steps do
5 𝑋

𝑝

𝑢,𝑖
← 𝑋𝑢 + Δ𝑝

𝑟 ▷ Add the perturbation to data.

6 𝜃\(𝑋𝑝

𝑢,𝑖
) ← 𝜃∗ − 𝜖

𝑛−1 ∇ℓ (𝑋
𝑝

𝑢,𝑖
;𝜃∗) ▷ According to

Eq. (5).

7 𝛿
𝑝

𝑢,𝑖
← 𝜃∗ (𝐷𝑙𝑜𝑐𝑎𝑙 ) − 𝜃\(𝑋𝑝

𝑢,𝑖
) (𝐷𝑙𝑜𝑐𝑎𝑙 ) ▷ Calculate

posterior difference according to Eq. (1).

8 ∇LAE ← ∇LAE (AE(𝛿𝑝𝑢,𝑖 ), 𝑋
𝑝

𝑢,𝑖
) ▷ According to Eq. (7).

9 Δ
𝑝
𝑟 ← Δ

𝑝
𝑟 − 𝜂∇LAE (AE(𝛿𝑝𝑢,𝑖 ), 𝑋

𝑝

𝑢,𝑖
) ▷ Update

perturbation with limitation ∥Δ𝑝
𝑟 ∥∞ ≤ 𝛼 .

10 Choose the optimal Δ
𝑝
𝑟 with minimal value in LAE as Δ

𝑝∗
.

11 return 𝑋 ′𝑢 = 𝑋𝑢 + Δ𝑝∗

Table 3: Dataset statistics.

Dataset Feature Dimension #. Classes #. Samples

MNIST 28×28×1 10 70,000

CIFAR10 32×32×3 10 60,000

STL-10 96x96x3 10 5000

CelebA 178×218×3 2 (Gender) 202,599

• MNIST. MNIST contains 60,000 handwritten digit images

for the training and 10,000 handwritten digit images for the

testing. All these black and white digits are size normalized,

and centered in a fixed-size image with 28 × 28 pixels.

• CIFAR10. CIFAR10 dataset consists of 60,000 32x32 colour

images in 10 classes, with 6,000 images per class. There are

50,000 training images and 10,000 test images.

• STL-10. STL-10 dataset consists of 13,000 color images with

5,000 training images and 8,000 test images. STL-10 has

10 classes of airplanes, birds, cars, cats, dear, dogs, horses,

monkeys, ships, and trucks with each image having a higher

resolution of 96x96 pixels. Compared to the above two

datasets, STL-10 can be considered as a more challenging

dataset with higher learning complexity.

• CelebA. CelebA is a large-scale face attributes dataset with

more than 200,000 celebrity images, each with 40 attribute

annotations, and the size of each image is 178×218.

E THE VERIFIER TRAINING PROCESS

This Verifier aims to identify if the recovered samples are unlearned

samples. Specifically, we first construct a verification dataset 𝐷𝑣𝑒𝑟𝑖. .

For each instance in the unlearned dataset, and the reconstructor

model reconstructs based on the posterior difference of the instance,

and we set the corresponding label equal to 1. We add it as the

postive sample (AE(𝛿\𝑥𝑢 ), 𝑥𝑢 ; 1) into 𝐷𝑣𝑒𝑟𝑖. For each instance in the

local dataset that is not part of the unlearned dataset, we set a

negative label for the instance and the reconstructed sample pair,

Algorithm 2: Verifier Model Training (VMT)

Input: Reconstruction model AE, posterior differences 𝛿 , local
dataset 𝐷𝑙𝑜𝑐𝑎𝑙 , unlearned dataset 𝐷𝑢

Output: The Verifier Model V
1 procedure VMT(AE, 𝛿 , 𝐷𝑙𝑜𝑐𝑎𝑙 , 𝐷𝑢):
2 Initialize a verification dataset 𝐷𝑣𝑒𝑟𝑖.

3 for 𝑥𝑢 in 𝐷𝑢 , 𝑥𝑖 in 𝐷𝑙𝑜𝑐𝑎𝑙 \𝐷𝑢 do

4 𝐷𝑣𝑒𝑟𝑖. adds the positive sample (AE(𝛿\𝑥𝑢 ), 𝑥𝑢 ; 1)
5 𝐷𝑣𝑒𝑟𝑖. adds the negative sample (AE(𝛿\𝑥𝑢 ), 𝑥𝑖 ; 0)
6 Initialize a Verifier model V
7 Train V on the constructed 𝐷𝑣𝑒𝑟𝑖. using a cross entropy loss

8 return the trained V

i.e. (AE(𝛿\𝑥𝑢 ), 𝑥𝑖 ; 0). These samples are added to the verification

dataset too. A verifier model is then initialized and trained on this

constructed dataset using a cross-entropy loss. The Verifier model

training algorithm is presented in Algorithm 2.

F METRICS AND REQUIREMENTS FOR

AUDITING

Data Removal Verifiability. Existing backdoor-based unlearning

verification methods can only provide the data removal verifiability

based on the backdoor attack success rate [16, 17]. We also train a

Verifier (a classifying model) to identify the reconstructed data of

the unlearned samples and the reconstructed data of the samples

that still remain. We propose Verifiability to evaluate the accuracy

of the Verifier, which calculates the correct classifying rate as

Verifiability: 𝑉 =
1

𝑚

∑︁
𝑥𝑢 ∈𝐷𝑢

I(Verifier(𝛿𝑢 , 𝑥𝑢 ) = 1), (9)

where𝑚 is the size of the unlearned dataset𝐷𝑢 and I is the indicator
function that equals 1 when its argument is true (Verifier(𝛿𝑢 , 𝑥𝑢 ) =
1) and 0 otherwise.

G ADDITIONAL EXPERIMENTS

G.1 Overview Evaluation of TAPE

We first demonstrate the overview evaluation results of different un-

learning auditing methods on MNIST, CIFAR10, STL-10 and CelebA,

presented in Table 4. The upper half of Table 4 demonstrates the

evaluations of the single-sample unlearning auditing, and the lower

half of Table 4 presents the evaluations of the multi-sample un-

learning auditing. The bolded values indicate the best performance

among the compared methods. We fill a dash when the method

does not contain the evaluation metrics.

Setup. We measure auditing methods based on the four above-

introduced evaluation metrics in single-sample and multi-sample

unlearning scenarios. In single-sample verification, the Erased Sam-

ple Size (ESS) is equal to 1 and ESS = 20 for the multi-sample

scenario. On STL-10, we set ESS = 2 for the multi-sample scenario,

as STL-10 only contains 5000 training samples, which is much

smaller than other datasets. The evaluation here is tested based

on the retraining-based unlearning method SISA [5]. To better il-

lustrate the functionality preservation and efficiency, we record
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Table 4: Overall Evaluation Results on MNIST, CIFAR10, STL-10, and CelebA.

Single-Sample

Unlearning Auditing

MNIST, ESS = 1 CIFAR10, ESS = 1 STL-10, ESS = 1 CelebA, ESS = 1

Original MIB [17] TAPE Original MIB TAPE Original MIB TAPE Original MIB TAPE

Running time (s) 620 637 143 651 672 135 781 815 79.81 1546 1622 32.76

Model Utility (Acc.) 99.14% 98.31% 99.14% 81.62% 79.45% 81.62% 68.99% 67.54% 68.99% 96.93% 96.05% 96.93%

Rec. Sim. - - 0.965 - - 0.974 - - 0.175 - - 0.977

Unl. Verifiability 0.00% 0.00% 99.43% 0.00% 0.00% 98.76% 0.00% 0.00% 84.00% 0.00% 0.00% 97.64%

Multi-Sample

Unlearning Auditing

MNIST, ESS = 20 CIFAR10, ESS = 20 STL-10, ESS = 2 CelebA, ESS = 20

Original MIB [17] TAPE Original MIB TAPE Original MIB TAPE Original MIB TAPE

Running time (s) 613 638 113 644 673 113 781 809 74.90 1570 1663 21.43

Model Acc. 99.05% 98.73% 99.05% 81.62% 79.13% 81.62% 68.99% 67.26% 68.99% 97.01% 96.88% 97.01%

Rec. Sim. - - 0.933 - - 0.973 - - 0.174 - - 0.970

Unl. Verifiability 0.00% 0.00% 98.67% 0.00% 0.00% 97.44% 0.00% 0.00% 84.40% 0.00% 0.00% 94.57%

the performance of solely training the original model, shown as

“Original” in Table 4.

Evaluation of Efficiency. Since TAPE does not involve the original

model training process, it consumes much less running time than

MIB and “Original”. The “Original” is training the original model

before unlearning, and the MIB method needs to backdoor the

model during the initial model training process before unlearning.

Specifically, TAPE achieves more than 4.5× speedup in efficiency

on MNIST, 5× speedup on CIFAR10, 10× speedup on STL-10, and

50× speedup on CelebA. On CelebA, the best speedup is up to 75×.
Evaluation of Functionality Preservation. The effect of func-

tionality preservation ismeasured bymodel accuracy. In both single-

sample and multi-sample unlearning auditing, our TAPE always

achieves better functionality preservation than MIB. The highest

accuracy preservation is around 2%, achieved on CIFAR10. The

reason is that the MIB method needs to mix backdoored samples

into the training dataset, and the backdoored samples with modi-

fied labels will negatively influence model utility. On the contrary,

the TAPE scheme is independent of the original model training

process; hence, our method will not influence the model utility of

the original ML service model, keeping the same model accuracy

as “Original”, demonstrating better functionality preservation.

Evaluation of Unlearning Auditing Effect.We use reconstruc-

tion similarity to measure how much information about the spec-

ified samples is unlearned. The MIB method is unable to provide

such an assessment of unlearned information for evaluation of un-

learning effectiveness. Hence, we fill a dash of MIB in this metric.

Reconstruction for a single sample always achieves better results

than for multiple samples, which confirms our previous analysis

and existing works [2, 34]. The unlearned posterior difference of

a single sample contains more information about such a sample

than a posterior difference of multiple samples, as information from

multiple samples is interwoven together in one posterior difference.

To align with existing unlearning verification methods, we pro-

pose the verifiability metric to evaluate the data removal status,

which is defined in Eq. (9). Since the erased sample size is small and

only genuine unlearned samples are evaluated in this experiment,

the MIB cannot successfully verify the unlearning of any genuine

samples in Table 4. In both single-sample and multi-sample unlearn-

ing scenarios, TAPE provides effective data removal verification
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Figure 8: Running time about different 𝐸𝑆𝑆 .

(accuracy larger than 95% on MNIST, CIFAR10, and CelebA). More-

over, data removal status verification for a single sample always

achieves better results than for multiple samples.

G.2 Impact on Efficiency of Erased Samples Size

(ESS)
Impact on Efficiency. The main components of the running time

of TAPE are building unlearned shadow models and training the

reconstructor. The running time of these two processes is highly

related to the size of the user’s local dataset. In our experiments, we

randomly select 0.5% samples on MNIST and CIFAR10 and choose

0.06% samples on CelebA as the local dataset.

Figure 8 shows the running time of TAPE and MIB on the three

datasets. The running time of TAPE has no significant relationship

with the ESS because the running time of TAPE (shadow model

building and reconstructor training) highly depends on the size of

the user’s local dataset. For MIB, the running time has no obvious

variations when ESS increases. This is because the MIB verifica-

tion preparation is accompanied by the original model training,

which is heavily related to the size of training datasets. TAPE has a

much more efficient running time compared with MIB, as TAPE is

independent of the original model training.
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