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Abstract

There has been great interest in knowledge ex-001
traction from biomedical texts. Part of this002
research involves hedge and negation assertion003
detection as doctors often use these assertions004
during the diagnostic process to specify likeli-005
hood or ruling out other possible diseases and006
conditions. Although natural language process-007
ing has been growing rapidly in the biomedical008
field, available corpora for clinical free-texts009
are still limited with research relying on lim-010
ited available corpora where many are not anno-011
tated. In addressing this issue, we propose this012
ClinScope Corpus, a new clinical text corpus013
focused negation and hedge annotations. Our014
sampling allows for higher concentrations of015
assertion cues along with their scope and medi-016
cal foci to aid in detecting when cues directly017
negate or mark medical entities uncertain.018

1 Introduction019

Knowledge from clinical texts is invaluable for im-020

proving patient care, epidemic detection and man-021

agement, and identifying patients eligible for re-022

search (Frankovich et al., 2011; Chapman et al.,023

2001a,b). However, medical reports often contain024

doctors’ notes in narrative form (Chapman et al.,025

2001b), increasing the difficulty of manual data026

analysis. Through automated data analysis, med-027

ical professionals can quickly reference clinical028

notes and other texts to expedite patient care.029

However, information retrieval techniques com-030

monly do not index or take negation and hedge031

assertion cues into consideration (Chapman et al.,032

2001b). One study showed that approximately half033

the conditions analyzed in clinical reports were034

negated (Chapman et al., 2001a). For hedges, an-035

other study found that most clinical document cat-036

egories have at least one hedge phrase in at least037

half of the associated documents (Hanauer et al.,038

2012). Since these cues are prevalent in clinical039

texts, it is vital that automation algorithms accu-040

rately detect when medical statements are negated 041

or speculations (Lakoff, 1973). 042

Negation cues can be simply defined as words 043

performing predicate denial or negating the mean- 044

ing of the modified expression (Horn, 2001). They 045

can come in multiple forms such as: 1) an affix 046

such as un- in unable, 2) a single word such as not, 047

3) multiple words such as rule out, or 4) contrac- 048

tions, such as don’t. Hedge cues can be one word or 049

multiple words and are used to express uncertainty 050

if the modified expression leans true (positive) or 051

false (negative). Figure 1 shows both type of cues 052

analyzed in this paper and annotations for scope 053

and medical foci, which are medical expressions 054

within the cues’ scopes that the cues directly negate 055

or mark as uncertain. 056

Figure 1: This example1 demonstrates how we annotate
for negation and hedge cues, scopes, and medical foci.

The objective of this paper is to introduce our 057

new annotated clinical text corpus focused on nega- 058

tion and hedges as shown in Figure 11. We al- 059

gorithmically populated this corpus through sen- 060

tence parsing and extraction from MIMIC-III’s 061

notes (Johnson et al., 2016a). This corpus also 062

incorporates algorithmic sampling to increase the 063

concentration of cues in this corpus. Our annota- 064

tions for this dataset include labelling medical foci 065

within scopes to align with the end goal improving 066

identification of whether clinical observations are 067

absent or uncertain. 068

1All provided example sentences are not directly from
MIMIC-III but derived for demonstration purposes. The
dataset itself will have real sentences from MIMIC-III and
requires PhysioNet (Goldberger et al., 2000) access.
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2 Related Work069

2.1 Negation and Hedge Detection070

Earlier negation research began with rule-based071

systems such as NegEx (Chapman et al., 2001b)072

and NegFinder (Mutalik et al., 2001) where both073

used their own dataset and a predefined set of nega-074

tion terms. Morante’s group (Morante, 2010) ex-075

plored negation cues cited in previous works and076

analyzed how negation cues are used in Bioscope077

(Vincze et al., 2008). There has also been other078

work over the years for detecting negation involv-079

ing dependency graphs (Slater et al., 2021), ma-080

chine learning (Morante and Daelemans, 2009b;081

Fancellu et al., 2016; Sergeeva et al., 2019) and082

large language models (LLMs) (van Aken et al.,083

2021), where the last work also focused on hedge084

detection. Some other approaches for detecting085

hedge cues includes work using machine learning086

algorithms (Medlock and Briscoe, 2007; Morante087

and Daelemans, 2009a; Agarwal and Yu, 2010)088

to detect hedge cues in full-text papers from ge-089

nomics and the Bioscope Corpus (Vincze et al.,090

2008). Hanauer’s group (Hanauer et al., 2012)091

also analyzed the use of hedges in clinical doc-092

uments from their institution’s electronic health093

record (EHR) system.094

2.2 Corpora095

Currently, there are not many available clinical096

corpora with clinical notes as many had been pulled097

from public access. The most prevalent corpora098

is the MIMIC dataset which provides the largest099

amount of medical records, albeit not annotated.100

We list some of the clinical corpora below:101

• BioScope Corpus (Vincze et al., 2008) which102

originally included annotated clinical free-103

texts (Pestian et al., 2007) (data now re-104

tracted) and also contains the Genia Cor-105

pus (Ohta et al., 2002) annotated for negation106

and hedges.107

• i2b2 Clinical Records (Uzuner et al., 2011) -108

currently available through n2c2109

• TREC Medical Records (Voorhees, 2013)- re-110

tracted from public use (other later datasets111

may be available)112

• MIMIC-III (Johnson et al., 2016b) and113

MIMIC-IV (Johnson et al., 2023) - largest114

quantity of public un-annotated clinical re-115

ports116

3 Information Extraction Tasks 117

Recent work has vastly moved past negation and 118

uncertainty detection and focused other aspects 119

of clinical texts and tasks (Lee et al., 2020; Shah 120

and Mohammed, 2020; Lin et al., 2021; Lehman 121

and Johnson, 2023; Agrawal et al., 2022; Yang 122

et al., 2022; Eysenbach, 2023). However, the is- 123

sue remains if LLMs, the current state-of-the-art, 124

actually perform well on information extraction, 125

especially with texts containing negated or uncer- 126

tain probabilities of medical concepts. Prior re- 127

search shows there is still a high need for annotated 128

in-domain training data for negation as tested ap- 129

proaches have mixed results in negation detection 130

with limited generalizability for arbitrary clinical 131

text (Wu et al., 2014). Specialized clinical LLMs 132

often perform better than general LLMs even when 133

trained on limited annotated data (Lehman et al., 134

2023; Wornow et al., 2023). Another group found 135

that medical pre-training improves models, but clin- 136

ical language models still suffer from errors (van 137

Aken et al., 2021). When considering our research 138

directions, we performed preliminary experiments 139

on existing algorithms (described in Section 4). 140

4 Experimental Observations on NLP 141

Algorithms 142

We performed analysis of NegEx, van Aken’s 143

group’s best performing clinical language model 144

(van Aken et al., 2021), and GPT-3.5 through Mi- 145

crosoft Azure2 (Boyd, 2023). All algorithms were 146

tested using MIMIC-III data and using individual 147

sentences and full clinical reports. The details of 148

the experiments were omitted to conserve space, 149

but our findings showed that although there were 150

improvements from the initial NegEx algorithms, 151

there is still detection sensitivity issues when it 152

comes to denoting if a medical concept (i.e., dis- 153

ease) is present, absent, or uncertain for both the 154

clinical language model and GPT-3.5. For the per- 155

formance on one report, the clinical model had 63% 156

accuracy while GPT-3 had 61% when analyzing 157

the 51 medical entities in the report (details in Ap- 158

pendix A). We note that the errors can be severe 159

- if the information about the patients’ records is 160

reported incorrectly, this can potentially lead to 161

incorrect treatments and misdiagnoses. 162

2Microsoft Azure was chosen and used with content log-
ging turned off to remain compliant to MIMIC-III’s data use
agreement.
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Figure 2: Flowchart summarizing the steps used to generate the ClinScope corpus.

5 ClinScope Corpus Generation163

The corpus contains 3,150 sentences extracted from164

MIMIC-III’s clinical notes (Johnson et al., 2016a).165

This section details the methods used to sample and166

create this corpus (flowchart available in Figure 2).167

All sentences are also linked back to the original168

reports and ICD-9 codes for traceability.169

5.1 Sampling170

To guide the sampling, we chose three ICD-9 codes171

(disease codes associated with medical reports)172

where we considered the frequency of known cues173

from other works, severity of the diseases, and less174

similarity between the chosen diseases. The end175

result was the selection of these three codes: ICD-9176

codes 4280 (Congestive Heart Failure not other-177

wise specified (NOS)), 51881 (Acute Respiratory178

Failure), and 5849 (Acute Kidney Failure NOS).179

From there, we used an algorithm to parse the180

reports into sentences prior to sampling. We tested181

SciSpacy (Neumann et al., 2019) and our own algo-182

rithm (which uses regular expressions)3 and found183

that our algorithm was comparable or better at han-184

dling section headers, numerical bulleting, medical185

acronyms, and other unique issues found in medical186

notes while being over 45 times faster (4-6 minutes187

for each ICD-9 code vs 4-5 hours for SciSpacy).188

For the initial sample seed, we chose to randomly189

sample 550 sentences from each of the three ICD-190

9 codes with the intention of 500 samples and an191

additional 10% sampling to adjust for sentence192

extraction errors. We justified the size using statis-193

tics (Arya et al., 2012) with full details on the cal-194

culation in Appendix B.195

After annotating the initial set of sentences (an-196

notation described in Section 5.2), we use the con-197

cept of anchors (Halpern et al., 2014) to sample198

an additional 1500 sentences. This is performed199

3Link to algorithm provided after anonymous submission.

through five rounds of sampling through choosing 200

3-5 new anchors for each cue type (negation, posi- 201

tive hedge, negative hedge) for each round. These 202

anchor terms are chosen using frequency and like- 203

lihood of leading to a cue existing in the sentence 204

based on the meaning of the chosen anchor term. 205

For example, but was selected as an anchor as it 206

is linguistically used for contrasting parts of a sen- 207

tence and thus an increased likelihood of negation 208

occurring in the contrast. These anchor terms are 209

then use to select 100 sentences at random for a 210

given ICD-9 code for each of the five rounds. 211

5.2 Annotation 212

We annotated sentences using brat (Stenetorp et al., 213

2012) and customized the annotation tool to notate 214

for the following cues: negation, positive hedge, 215

and negative hedge. We then instruct annotators to 216

only annotate the cues if they affect the probability 217

of the expression being true or false. We specify 218

that positive hedges are denoted as leaning towards 219

the probability of being true while negative hedges 220

lean towards false. We have these distinctions as 221

we find it is informative to medical professionals 222

when the report denotes if the medical observation 223

is likely, unlikely, or absent for making medical 224

decisions. 225

Scope and medical foci are also annotated in this 226

corpus. We follow scope annotations by Morante’s 227

group (Morante and Daelemans, 2009b) with a few 228

changes. For example, we do not annotate the cues 229

as part of their scopes. As brat allows for annotat- 230

ing relationships, we instruct the annotators to add 231

annotations to designate which scope belongs to 232

which cue. In the case that a cue is in the middle 233

of its scope, separating the scope into two parts, 234

the annotators are instructed to connect the frag- 235

ments with the brat tool. For medical foci, the 236

medical terms in the scopes are annotated as foci 237

if their probability of being present/absent is af- 238
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fected by the cue. We provide Example A where239

the positive hedge cue, "suggestive" modifies the240

scope "of mild encephalopathy" where we mark241

"encephalopathy" as a medical focus with a higher242

probability of being true.243

<Suggestive> (Positive Hedge) [of mild
<encephalopathy> (Hedge Focus)]. (A)244

Finally, we must also define what we consider245

as "medical terms" that can be medical foci. We246

considered what can affect a diagnosis and may247

be necessary for doctors to know when diagnosing248

and treating the patients. Thus, we define "medical249

terms" as follows:250

1. Diagnoses like medical conditions/diseases251

2. Signs/Symptoms and causes252

3. Procedures/tests and associated observations253

4. Medical treatments254

Table 1: Preliminary statistics summarizing the results
from the first annotator. This provides the percent of
sentences containing cues (negation, positive hedge,
negative hedge) for the two set of sentences; initial
random sample and anchoring sampling.

Sentence Set Cue Type % of Sentences
First Negation 12.4%
1,650 Pos Hedge 4.6%

Sentences Neg Hedge 2.2%
1,500 Negation 43.9%

Anchored Pos Hedge 21.3%
Sentences Neg Hedge 11.1%

Table 2: Cue Frequency Comparison between Clin-
Scope and Bioscope. We only analyze the statistics
for the clinical texts in BioScope for this comparison.

ClinScope BioScope
Total Sentences 3,150 6,383

# Negation Sentences 27.4% 13.6%
# Negation Cues 1,041 877

# Hedge Sentences 12.5% 13.4%
# Hedge Cues 722 1,189

6 Corpus Analysis 255

We conducted a preliminary analysis (Table 1) of 256

the annotations from one annotator where we will 257

confirm the findings when the other two annotators 258

have completed their work. Although anchors did 259

not guarantee that all the sentences had a cue, an- 260

chor sampling greatly increased the number of sen- 261

tences with cues in the corpus. We compared the 262

results to BioScope as it is one of the few corpora 263

that provided cue frequency analysis (details in Ta- 264

ble 2). Comparing only clinical texts, ClinScope 265

corpus has approximately double the concentra- 266

tion of negation sentences than BioScope with 19% 267

more negation cues in the corpus. Although our 268

corpus has less hedge cues, the percent of sentences 269

is less than 1% difference even though ClinScope 270

is approximately half the total number of sentences 271

as BioScope. Thus, our corpus with less sentences 272

is able to provide more examples of negation cues 273

while maintaining a similar level of hedge cues for 274

use. In addition, anchor sampling led to 26 new 275

negation cues and 32 new positive hedge cues, ap- 276

proximately doubling the number of unique cues 277

for both categories. This also included finding cues 278

that had not been described in previous work (i.e., 279

"off", "c/w" (consistent with)). Finally, anchor sam- 280

pling also increased the number of examples where 281

cues do not lead to negation/uncertainty, such as 282

cases where the cue is in conditional phrases (i.e., 283

phrases using "if" and "unless"), which had not 284

been discussed in previous works. 285

7 Conclusion 286

We provided a new annotated corpus for assertion 287

detection of medical entities with a focus on nega- 288

tion and uncertainty. We employed targeted sam- 289

pling to increase the concentration of sentences of 290

cues in the corpus and cases where the cues do 291

not lead to to negation or speculation of a medical 292

entity. We had also found and included new cues 293

that have not been discussed in previous works. 294

However, we need more annotated corpora as the 295

current state-of-the-art has room for improvement 296

and more public corpora (especially of different 297

sources for improved diversity) for training and im- 298

proving algorithms will help. We plan to complete 299

this work through the use of three annotators and 300

calculating the inter-annotator agreement before re- 301

leasing the dataset on PhysioNet (Goldberger et al., 302

2000), abiding to the data use agreement. 303
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8 Limitations304

We note that since we sampled only MIMIC-III for305

this corpus, our corpus suffers from not having a va-306

riety of reports from different institutions and from307

ICU patients only. Also, different ICD-9 codes308

may lead to different kinds of sentences in their309

reports as we only sampled three codes. We aim310

to increase the size of this corpora with three inter-311

annotator agreement using MIMIC-IV, i2b2, and312

other corpora to improve upon this limitation. We313

also do not annotate presence of medical entities,314

which may prove useful for general medical entity315

detection although there does exist other research316

that focuses on this realm.317

Once completed, our dataset and any future as-318

sociated work should and will be only provided319

in PhysioNet (Goldberger et al., 2000) to abide320

to the data use agreement for using MIMIC-III.321

PhysioNet grants public but restricted access to322

the MIMIC-III data to mitigate the risks of us-323

ing classified patient data regardless if it has been324

de-identified to protect patient privacy. Users are325

prompted to complete the CITI Data or Speci-326

ments Only Research training and sign the data327

use agreement, including providing information328

for intended use. In addition, PhysioNet provides329

original MIMIC-III dataset de-identified prior to330

publishing.331

Since the brat annotation file also includes texts332

from MIMIC-III (due to the way the brat tool anno-333

tates texts), we therefore ensure we meet data use334

agreement requirements by ensuring all data files335

are only provided on this same website. This will336

also restrict the use of the dataset to aligning with337

the original access conditions of MIMIC-III. We338

require that if the algorithm has potential of leak-339

ing the information from our annotated dataset (i.e.,340

data leakage from LLMs), it must also be published341

on PhysioNet.342
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A GPT-3.5 and Clinical Language Model: 566

Detailed Errors Report 567

Table A1: Summary of assertion detection performance
on an example report by GPT-3.5 a clinical language
model (van Aken et al., 2021). The report used was
one classified ICD-9 code 5849 (Acute Kidney Failure
NOS). We checked 51 medical entities (including re-
peated entities) where the models were compared for
presence, absence, and likelihood detection. We listed
the number of missed entities, wrong assertion assign-
ments, and "other" issues (incomplete assertion desig-
nations or errors outside of assertion detection).

Model Missed Wrong Other
Clinical 12 4 3
GPT-3 8 9 3

B Sample Size Justification 568

In MIMIC III, there are over 2 million clinical notes 569

and thus is at least 2 million sentences in size, but 570

the actual number of sentences is unknown. Thus, 571

the sample size is sufficiently large for us to use 572

the following formula for calculating the minimum 573

sample size (Arya et al., 2012): 574

n =
(z2)P (1− P )

d2
(1) 575

The calculation of sample size (n) uses z-score 576

(z), expected prevalence (P ), and for allowable er- 577

ror (d). As we do not know the actual distribution 578

for the number of sentences with negation and un- 579

certainty cues (as we do not know if the reported 580

known negation and uncertainty cues are all the 581

cues in existence), we use P = 0.5, d = 0.05, and 582

z = 1.96 used for 95% confidence level as recom- 583

mended per convention (Macfarlane, 1997). Finite 584

population correction is unnecessary as a sample 585

size of 550 is ≤ 0.0275% of the total MIMIC-III 586

dataset, far less than the 5% minimum requirement. 587

Thus, the result is: 588

n =
(1.962)0.5(1− 0.5)

0.052
= 384.16 (2) 589
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