
SCOPE: Optimizing Key-Value Cache Compression in Long-context
Generation

Anonymous ACL submission

Abstract

Key-Value (KV) cache has become a bottleneck001
of LLMs for long-context generation. Despite002
the numerous efforts in this area, the optimiza-003
tion for the decoding phase is generally ignored.004
However, we believe such optimization is cru-005
cial, especially for long-output generation tasks006
based on the following two observations: (i)007
Excessive compression during the prefill phase008
which requires specific full context, impairs the009
comprehension of the reasoning task; (ii) Devi-010
ation of heavy hitters1 occurs in the reasoning011
tasks with long outputs. Therefore, SCOPE, a012
simple yet efficient framework that separately013
performs KV cache optimization during the pre-014
fill and decoding phases, is introduced. Specifi-015
cally, the KV cache during the prefill phase is016
preserved to maintain the essential information,017
while a novel strategy based on sliding is pro-018
posed to select essential heavy hitters for the019
decoding phase. Memory usage and memory020
transfer are further optimized using adaptive021
and discontinuous strategies. Extensive exper-022
iments on LONGGENBENCH show the effec-023
tiveness and generalization of SCOPE and its024
compatibility as a plug-in to other prefill-only025
KV compression methods. 2026

1 Introduction027

Large Language Models (LLMs) (Dubey et al.,028

2024; Jiang et al., 2023; Yang et al., 2024a; Team029

et al., 2024; Achiam et al., 2023; Anthropic, 2024)030

have demonstrated powerful abilities for process-031

ing long-context tasks. When LLMs infer on these032

long-context tasks, the Key-Value (KV) cache occu-033

pies a larger amount of GPU memory and becomes034

a substantial bottleneck (Waddington et al., 2013;035

Luohe et al., 2024; Yuan et al., 2024; Fu, 2024). For036

example, an RTX 3090 server struggles to handle037

1According to Zhang et al. (2023), “heavy hitters” refer to
the KV cache of pivotal tokens, a small subset of the entire
KV cache, that effectively captures the critical information.

2The code is available in https://anonymous.4open.
science/r/SCOPE-7235

...

... ...

...

... ...

...

... ...

Current-Query
Current-EvictedPrevious-Selected

Previous-Evicted
Attention Weight

t=0

t=n

t=T

t=0

t=n

t=T

t=0

t=n

t=T

Prefill-Only

Unified

Separating

...
...

...
...

...
...

Dense Info
Sparse Info

2K+4K
DP

P D
2K+0.5K

2K+0.5K
P D

Cache Budget at t=T

Cache Budget at t=T

Cache Budget at t=T

0 1

Cache Budget at 0<t≤T > =

Figure 1: Illustration of three paradigms for compres-
sion during the decoding phase on a task with 4K input
and 4K output. Separating the prefill and decoding
phases facilitates the preservation of the essential infor-
mation KV cache from the prefill phase while allowing
for efficient allocation of the KV cache generated during
the decoding phase.

the KV cache for a 64K context in LLaMA3.1- 038

8B, which has a 128K context window. Therefore, 039

compressing the KV cache while maintaining the 040

performance is crucial. 041

LLM inference process involves the prefill phase 042

and the decoding phase. For tasks with long inputs 043

and short output (Kamradt, 2023; Bai et al., 2024) 044

(e.g., long-form QA or sentence retrieve), effective 045

compression of the KV cache during the prefill 046

phase is crucial. However, for tasks with both long 047

inputs and long outputs (Liu et al., 2024b,c) (e.g., 048

lengthy text summarization and multi-question an- 049

swering), KV cache compression holds equal im- 050

portance in both the prefill and decoding phases. 051

Previous methods fall into two categories: (1) 052

1

https://anonymous.4open.science/r/SCOPE-7235
https://anonymous.4open.science/r/SCOPE-7235

The Prefill-Only Compression method compresses053

the KV cache only during the prefill phase while054

retaining all KV cache generated during the decod-055

ing phase. (2) The Unified Compression method056

treats both phases as a unified process. For Prefill-057

Only Compression, methods like SnapKV (Li et al.,058

2024) and PyramidKV (Cai et al., 2024), retain-059

ing all KV cache generated during the decoding060

phase, leading to linear cache growth with the out-061

put length and memory pressure , especially for062

long outputs, as shown in Figure 1. For Unified063

Compression, such as H2O (Zhang et al., 2023)064

and PyramidInfer (Yang et al., 2024b), prioritizes065

retaining the KV cache generated during decoding066

while discarding the earlier KV cache influenced by067

recent tokens typically receiving higher attention068

weights (Zhao et al., 2021; Song et al., 2024). This069

poses substantial challenges for reasoning tasks070

that rely on understanding the whole input content071

. There has been no dedicated exploration of KV072

cache compression strategies for handling lengthy073

outputs.074

In this paper, we first unravel two essential obser-075

vations that serve as the foundation for our explo-076

ration: (i) excessive compression during the prefill077

phase significantly affects the ability of LLM to078

reason through the query; (ii) heavy hitters deviate079

during the decoding phase in long-text generation,080

leading to skewed KV cache allocation. Build-081

ing upon the insight, we introduce SCOPE, a082

simple yet efficient framework that Separately per-083

forms KV Cache Optimization during the Prefill084

and dEcoding phases. To our knowledge, we are085

the first to decouple the prefill and decoding phases086

to compress the KV cache independently. Specif-087

ically, we first maintain the KV cache generated088

during the prefill phase to ensure an understanding089

of long content. Then, we allocate heavy hitters090

using the sliding way in the decoding phase to091

optimize the memory of the KV cache. Building092

on the intuitive slide strategy, we further optimize093

memory-usage and memory-transfer, introducing094

adaptive strategy and discontinuous strategy.095

To thoroughly validate our framework, we select096

LONGGENBENCH (Liu et al., 2024c) as the bench-097

mark for our experiments over two mainstream098

LLMs. SCOPE can achieve comparable perfor-099

mance to the full KV cache when the overall com-100

pression rate is 35%. Additionally, our framework101

is seamlessly compatible with other compression102

methods in the prefill phase.103

The contributions of this work are as follows:104

1). A simple yet efficient framework SCOPE is 105

proposed to address the deviation of heavy hitters 106

inspired by the observations and insights from an 107

inference perspective. 2). Three strategies are de- 108

veloped to mitigate the deviation during the decod- 109

ing phase. 3). Empirically, extensive experiments 110

and analytical evaluations validate the effectiveness 111

and generalizability of SCOPE. 112

2 Pilot Observation 113

2.1 KV Cache in Inference Perspective 114

Each request for an LLM involves two distinct 115

phases (Zhou et al., 2024). The first phase, known 116

as prefill, processes the complete input prompt to 117

generate the initial output token. The second phase, 118

termed decoding, iteratively produces the remain- 119

ing output tokens, one at a time. We conduct pilot 120

experiments through the lens of each phase in the 121

inference process. 122

Prefill Phase: Existing work focusing on the prefill 123

phase is grounded in the notion that attention is 124

naturally sparse in typical tasks (Singhania et al., 125

2024; Tang et al., 2024; Wu et al., 2024). For 126

PassageRetrieval-en and HotpotQA within Long- 127

Bench, a 20% compression ratio during the prefill 128

phase still maintained performance nearly identical 129

to that of the full cache, demonstrating the model’s 130

ability to effectively retrieve and understand con- 131

text even with significant compression, as shown 132

in Figure 2a. However, when tasks require specific 133

full context, such as reasoning tasks, attention is 134

not always highly sparse (Chen et al., 2024), even 135

if the output is short. As illustrated in Figure 2a, the 136

same 20% compression rate during the prefill phase 137

resulted in nearly 95% degradation in accuracy 138

on the GSM8k+ task within LONGGENBENCH. 139

Although sufficient performance is achieved on 140

conventional tasks using KV cache compress dur- 141

ing the prefill phase, the performance is notably 142

poor on reasoning tasks when the compression ra- 143

tio reaches a modest threshold, leaving room for 144

targeted optimization through compression during 145

the decoding phase.

Observations (i): For tasks that require specific
full context, such as reasoning tasks, excessive
compression during the prefill phase significantly
compromises performance.

146
Decoding Phase: We analyze the distribution of 147

heavy hitters during the prefill and decoding phases 148

2

(a) (b) (c)

Figure 2: (a) Performances across various compression ratios during the prefill phase on three tasks under the full
decoding cache condition. (b) Position distribution of the heavy hitters, selected by top 15% attention scores, at
decoding steps 1, 300, and 500 across layers 0, 13, and 31. (c) Attention heatmaps for layer 13 of a GSM8k+ sample
in LONGGENBENCH and details of the correspondence between attention scores and generated token positions.
The complete case employed in the probing experiment is presented in Appendix 6.

as the decoding length increased in Figure 2b.149

Across all three layers, the retained heavy hitters150

predominantly originate from the KV cache gener-151

ated during the decoding phase. This phenomenon152

has also been mentioned by several recent studies153

and can be attributed to the inherent properties of154

the attention mechanism, wherein tokens near the155

end often receive higher attention weights (Zhao156

et al., 2021; Song et al., 2024). This is particu-157

larly harmful for multi-question answering tasks,158

like LONGGENBENCH, as addressing such queries159

needs careful consideration of the question context.160

Previous prefill-only or unified compression strate-161

gies may overlook this distinction. In long-output162

tasks, as the output length increases, the deviation163

becomes more pronounced, making it imperative to164

preserve the heavy hitters identified during the pre-165

fill phase while providing appropriate management166

for those emerging in the decoding stage.167

Observations (ii): During the decoding phase of
long text generation, the use of the greedy algo-
rithm may lead to a deviation in heavy hitters.

2.2 KV Cache Budget Reallocation168

Building on the empirical observations from our169

pilot experiments, we derive the following insight:170

Insight: It is crucial to allocate the budget of the
KV cache during the prefill and decoding phases
separately.

This insight inspires the design of SCOPE,171

which decouples compression into the prefill and172

decoding phases to effectively allocate the KV 173

cache budget, preserving all KV cache generated 174

during the prefill phase and enabling more effec- 175

tive reallocation of the KV cache budget. While 176

numerous studies have explored the heavy hitters 177

during the prefill phase, to our knowledge, no prior 178

work has specifically investigated this aspect of 179

the decoding phase. We dive deeper into the spar- 180

sity in the KV cache during the decoding to design 181

strategy, selecting essential heavy hitters dynam- 182

ically. To gain deeper insights, following prior 183

works (Xiao et al., 2024b; Cai et al., 2024), we 184

analyze the attention heatmaps, comparing the at- 185

tention weights between the prefill and decoding 186

phases, as shown in Figure 2c. The leftmost and 187

rightmost plots represent the prefill and decoding 188

phases, respectively. For tasks that require simul- 189

taneous reasoning for multiple questions, it is es- 190

sential to recognize the position of the current pre- 191

diction. This information can be captured by heavy 192

hitters identified using a greedy algorithm, as illus- 193

trated in Figure 2c. Thus, it remains necessary to 194

allocate a portion of the KV cache budget specifi- 195

cally for heavy hitters. Furthermore, owing to the 196

autoregressive nature of LLMs, it remains essential 197

to retain the recent tokens, which exhibit stronger 198

correlations with current tokens. 199

3 Method 200

3.1 Revisiting KV Cache Compression 201

Initialization KV cache compression essentially 202

involves adjusting the cache based on the given KV 203

cache budget, where we allocate a cache pool, de- 204

noted as Φ, consisting of Φp and Φd, which stores 205

3

the KV cache generated during the prefill and de-206

coding phases, respectively. The cache pool is up-207

dated at each step t, denoted as Φt. The widely rec-208

ognized function for selecting heavy hitters based209

on the greedy algorithm is denoted as ΨK(Att),210

which represents the selection of the Top-K KV211

caches from the given attention weights Att.212

Prefill Phase Given the input prompt tensor P ∈213

RM×D, represented as P = {P1,P2, . . . ,PM},214

where Pi denote i-th token embeddings, and M215

represent the number of input tokens and D is the216

model’s hidden dimension. The key and value ten-217

sors are computed as follows:218

KPVP = PWK ,PWV , (1)219

where WK ,WV ∈ RD×D are the weights matri-220

ces for the key and value projections, respectively.221

The KV pairs are denoted as KPVP . The atten-222

tion weights AttP is caculated by P and KPVP .223

The most effective and widely adopted approach,224

as established through early explorations (Zhang225

et al., 2023; Yang et al., 2024b; Li et al., 2024), two226

import hyperparameters α1 and α2 are introduced,227

where α1 represents the length of prefill essential228

history window and α2 represents the length of229

prefill local window during the prefill phase. The230

length of the total reserved KV cache is α1 + α2,231

which also corresponds to the size of the cache pool232

Φp during the prefill. For compression during the233

prefill phase is:234

K0V0 = Ψα1(AttP [: −α2]) ·KPVP [−α2 :],
(2)235

where · denotes concatenation and the function236

Ψα1(AttP) selects the KV cache with the Top-α1237

attention weights from AttP [: −α2].238

K0V0 is stored in Φp
0. Maintain an essential his-239

tory window α1 to retain KV with higher attention240

weights for the current query and a local window241

α2 to reserve the KV of recently generated tokens,242

ensuring both contextual continuity and retention243

of attention. Notably, the compression is only exe-244

cuted once, at t = 0, marking the end of the prefill245

phase before transitioning into the decoding phase.246

Decoding Phase During the decoding phase, the247

KV cache from the prefill phase is employed and248

updated to sequentially generate tokens. At each249

time step t, keys and values are computed only for250

the new token tensor Xt,t∈{1,T} as follows:251

KtVt = XtWK ,XtWV , (3)252

KtVt is concatenated with previously retained KV 253

cache, which is stored in Φ, to obtain the current 254

retained KV pairs. This is then computed with the 255

current query Xt to compute the attention Attt. 256

The main difference from previous KV compres- 257

sion methods lies in the distribution of Φp and Φd 258

within the cache pool Φ. The Prefill-Only Com- 259

pression method does not compress the KV cache 260

generated during the decoding phase. Instead, it 261

involves a linear growth of the KV cache with each 262

newly generated token. Φt
p remains constant, and 263

at each step t, it stores the originally preserved 264

KV0. Φt
d stores the KV cache at each time step t 265

during the decoding phase, from K1V1 to KTVT , 266

which leads to a significant increase of memory 267

consumption as the length grows. The Unified 268

Compression method in the decoding phase will 269

apply the Ψα1 (Attt[: −α2]) at each t to update 270

cache pool Φ. As the number of generated to- 271

kens increases, the attention mechanism tends to 272

assign higher weights to tokens at the end, meaning 273

that the Top-α1 KV caches returned by Ψ are all 274

generated during the decoding phase, while those 275

from the prefill phase are discarded. As t increases, 276

Φp
t grows larger, while Φd

t becomes smaller. This 277

results in more information being retained in Φd 278

within Φ, while the information in Φp decreases, 279

leading to potential essential information loss that 280

may be needed in future decoding steps. 281

3.2 SCOPE 282

The primary goal of SCOPE is to mitigate the de- 283

viation of heavy hitters, thereby ensuring a more 284

balanced allocation of Φp and Φd. Motivated by 285

the findings in §2.1, where excessive compression 286

during the prefill phase hinders performance on rea- 287

soning tasks, the cache pool Φp is constant at each 288

t, i.e., we reserved all compressed KV Cache gen- 289

erated during the prefill phase. The operation on 290

Φp in SCOPE is the same as that in the previously 291

unified compression method. 292

It is necessary to leverage the sparsity of the 293

KV cache generated during decoding to enable ef- 294

ficient allocation. Three strategies for the decoding 295

phase are developed: Slide, Adaptive, and Dis- 296

continuous, all of which update only Φd. The 297

adaptive strategy optimizes memory based on the 298

slide strategy, and the discontinuous strategy opti- 299

mizes computation on top of the adaptive one. We 300

will introduce them one by one below in detail. For 301

each strategy, Python-style pseudocode is provided 302

in Figure 5 to facilitate comprehension of details. 303

4

Figure 3: Illustration of three strategies of SCOPE. The prefilled cache pool Φp
t is constant at each t. The slide

strategy updates the decoding cache pool at each decoding step while the size of the decoding cache pool is constant.
The adaptive strategy incrementally increases the size of the decoding cache pool at regular intervals of T−β2

β1
. The

discontinuous strategy, built upon the adaptive strategy, executes ΨK(Att) at intervals of the same time period.

Slide We compress the KV cache in the decoding304

phase by sliding the decoding essential history win-305

dow β1 and the decoding local window β2, where306

β1 helps identity the position of the current pre-307

diction and β2 stores global information strongly308

correlated with previous tokens other as discussed309

in §2.2.310

The slide strategy starts from t > M + β1 + β2,311

applying the function Ψβ1 (Attt[α1 + α2 : −β2])312

to restrictively update only Φd while keeping Φp313

constant. This is achieved by limiting the selecting314

function Ψ to operate on Attt starting from α1 +315

α2, thus excluding the attention weights from the316

prefill phase. It can be completely independent of317

the KV cache pool during the prefill phase Φp.318

Adaptive We can optimize the β1 of slide319

strategy to adaptively increase its size from a320

memory-usage perspective. When the length of321

the tokens generated during decoding is relatively322

short, a long decoding essential history window323

β1 is unnecessary, it is unnecessary to place all324

these KV caches in the Φd
t . β1 can be adaptively325

increased as needed. A function of time steps t and326

the maximum length T is proposed to adaptively327

adjust the length of the decoding essential history328

window β1, where T ≫ β1 + β2. It starts with a329

base size β2 and grows linearly with time step t:330

β̂1 =
(t− β2) · β1

T − β2
if t > β2, (4)331

The budget size of Φd
t also increases adaptively and332

is given by β2+
(t−β2)·β1

T−β2
when t < T , which helps333

optimize memory usage, as the ratio (t−β2)
(T−β2)

is less 334

than 1. As t reaches T , the size of Φd
t becomes 335

β1 + β2. This adjustment aligns with the autore- 336

gressive token-by-token encoding characteristic of 337

LLMs, ensuring more efficient use of resources. In 338

addition, ΨK(Att) begins execution earlier than 339

the sliding strategy. The adaptive strategy opti- 340

mizes the budget of Φd
t and reduces unnecessary 341

overhead while still retaining enough historical con- 342

text for an effective generation without introducing 343

additional hyperparameters. 344

Discontinuous We further optimize the adap- 345

tive strategy from a memory-transfer perspective 346

to ensure by reducing the frequency of execu- 347

tion of ΨK(Att). The top-K selection operation 348

ΨK(Att) would be executed a total of T − β2 349

times using previous strategies, which potentially 350

leads to frequent GPU I/O due to the update op- 351

eration of Φd at each step. Motivated by the char- 352

acteristic that consecutive queries tend to select 353

similar keys (Zhao et al., 2024; Tang et al., 2024), 354

we make the update operation, i.e., Top-K selec- 355

tion ΨK(Att) discontinuous. This strategy opti- 356

mizes the times of execution frequency of selection 357

operation ΨK(Att), with ζ occurring once every 358

interval of T−β2

β1
, whereas previous strategies exe- 359

cute at each step t. This interval is consistent with 360

the growth of β̂1 in the adaptive strategy. The fre- 361

quency can be reduced to T−β2
T−β2
β1

= β1 using this 362

strategy, thereby alleviating the memory I/O pres- 363

sure caused by frequent updates to Φd. 364

5

Table 1: Performance of our proposed SCOPE using three strategies and baselines on the LONGGENBENCH
benchmark with LLaMA-3.1-8B-Instruct. The best results among all methods are in bolded. The prefill compression
ratio averages around 60%. Table 6 shows the results on Mistral-7B-Instruct-v0.3.

Method LONGGENBENCH-4K LONGGENBENCH-8K
GSM8K+ MMLU+ CSQA+ Avg. GSM8K++ MMLU++ CSQA++ Avg.

Full Cache 42.50 54.85 71.67 56.34 26.50 51.01 64.92 47.48

Decoding Compression Ratio=25.0% Decoding Compression Ratio=12.5%

StreamingLLM 10.83 30.00 43.67 28.17 10.67 27.87 44.92 27.82
H2O 37.33 46.02 69.50 50.95 18.17 48.21 59.58 41.99
PyramidInfer 33.02 45.25 70.75 49.67 23.00 47.21 58.75 42.99
SCOPE (Slide) 38.83 46.96 70.75 52.18 20.17 49.87 66.17 45.40
SCOPE (Adaptive) 35.00 49.12 70.75 51.62 22.00 49.08 63.58 44.89
SCOPE (Discontinuous) 35.17 47.13 72.50 51.60 24.33 48.33 64.83 45.83

Decoding Compression Ratio=12.5% Decoding Compression Ratio=6.25%

StreamingLLM 10.83 30.00 43.67 28.17 10.67 28.03 44.92 27.82
H2O 28.17 44.04 65.25 45.82 16.17 45.94 55.08 39.06
PyramidInfer 30.83 45.23 70.75 48.94 18.33 45.07 60.63 41.34
SCOPE (Slide) 39.00 47.60 73.50 53.37 16.83 48.14 62.25 42.41
SCOPE (Adaptive) 35.33 47.19 72.08 51.53 19.00 47.08 61.83 42.64
SCOPE (Discontinuous) 39.67 46.73 72.75 53.05 19.83 46.54 66.00 44.12

4 Experiments365

4.1 Datasets366

We develop two open-sourced datasets,367

LONGGENBENCH-4K ({subtask}+) and368

LONGGENBENCH-8K ({subtask}++), where369

multiple reasoning tasks must be handled370

simultaneously3, each containing three sub-371

tasks synthesized from GSM8K (Cobbe et al.,372

2021), MMLU (Hendrycks et al., 2021), and373

CSQA (Hendrycks et al., 2021). These subtasks374

are designed to address long-input challenges with375

output lengths of 4K and 8K, respectively.4 To376

validate the effectiveness of SCOPE on general377

long-output tasks, we select the En.Sum task from378

∞BENCH (Zhang et al., 2024), with an average379

output length of 1.1K. For the detailed statistics380

of datasets and additional details corresponding to381

each subtask, refer to Appendix B.382

4.2 Baselines383

To validate the effectiveness of SCOPE, we384

compare it with Full Cache and representa-385

tive unified compression methods, including386

StreamingLLM (Xiao et al., 2024b), which keeps387

the KV of early and recent tokens; H2O (Zhang388

et al., 2023), which balances recent and Heavy389

Hitter (H2) tokens based on cumulative attention390

scores; and PyramidInfer (Yang et al., 2024b),391

which reduces the cache in deeper layers using392

sparse attention patterns. To validate modularity,393

3Prompt template is provided in Appendix B.
4The selected examples have output lengths of 4K and 8K,

ensuring no premature cessation of the response.

we apply SCOPE in combination with SnapKV (Li 394

et al., 2024) and PyramidKV (Cai et al., 2024) dur- 395

ing the decoding phase, as detailed in §4.4. 396

4.3 Implementation Details 397

We build SCOPE using two open-sourced LLMs, 398

specifically LLaMA-3.1-8B-Instruct and Mistral- 399

7B-Instruct-v0.3. Based on the preliminary exper- 400

iments (Figure 2a), we set the the size of Φp, i.e., 401

α1 + α2 to 2048 for LongGenBench-4K and 4096 402

for LongGenBench-8K, corresponding to approx- 403

imately 60% of the input length. α2 is set to 8 404

following previous works (Cai et al., 2024; Li et al., 405

2024). β1 + β2 are set to 512 and 1024 in two con- 406

figurations, corresponding to different compression 407

ratios for outputs of 4K and 8K. β2 is set to 256 to 408

accommodate the CoT length in answers, avoiding 409

performance loss from overly short sequences. For 410

a fair comparison, the total budget of KV cache 411

during both the prefill and decoding phases is con- 412

sistent across all methods. More details can be 413

found in the Appendix C. 414

4.4 Results 415

Comparison with Baselines Table 1 presents a 416

comprehensive analysis of our proposed SCOPE 417

and baselines. SCOPE (with three strategies) 418

achieves the best results under both decoding com- 419

pression methods, and the discontinuous strategy, 420

optimized for memory-usage and memory-transfer, 421

delivers outstanding performance. On the chal- 422

lenge GSM8K+/GSM8K++ tasks, SCOPE high- 423

lights the importance of preserving the KV cache 424

6

generated during the prefill process, while other425

compression methods lead to marked performance426

degradation. This ensures that the understanding427

of the problem statement remains intact, achieving428

comparable performance to the full cache with-429

out compromising comprehension. StreamingLLM430

poses challenges on LONGGENBENCH, where431

vital information may lie within the middle of432

the input, consistent with the findings in prior433

study (Zhang et al., 2023). This inevitably results434

in the loss of crucial information if only the first435

few tokens and local tokens are preserved. Perfor-436

mance between PyramidInfer and H2O shows no437

notable difference, indicating that the layer-wise438

sparsity feature is not prominent for tasks with long439

outputs.440

Plug-in to Prefill-Only Methods Table 2 shows441

the results of seamlessly integrating our decod-442

ing phase compression strategy with prefill-only443

compression methods. Some strategies even out-444

perform the full cache results, despite compress-445

ing 35%5 of the KV cache. This validates the446

sparsity of the KV cache generated during the de-447

coding phase in multi-QA tasks and demonstrates448

the effectiveness of our proposed strategies. Pyra-449

midKV (Cai et al., 2024), a variant of SnapKV,450

adjusts the budget allocation across layers without451

observing improvements in the preliminary experi-452

ments, consistent with the empirical finding (§4.4).453

Actually, the retained KV cache during the pre-454

fill phase can be regarded as “attention sinks”,455

which bears a resemblance to the principle of456

StreamingLLM. We extend this concept to broader,457

more realistic long-output scenarios.458

5 Analysis and Discussion459

5.1 Mitigating the Loss of Essential H2460

The unified compression method, such as H2O, suf-461

fers from the loss of crucial KV cache generated462

during prefill, which is essential to understanding463

the context due to the deviation of heavy hitters.464

In Figure 4a, we show the relationship between465

prediction position and performance. The perfor-466

mance of H2O drops markedly in later predictions,467

while all three of our strategies mitigate this de-468

cline, validating the effectiveness of preserving the469

prefill KV cache.470

5The average input-output length is 7.4K in the GSM8K+
task. With budgets Φp of 2K and Φd of 0.5K, the total reserved
KV cache size is 2.5K, leading to a full compression ratio of
about 35%.

Table 2: The plug-in experiment results of LLaMA3.1-
8B on the GSM8K+ task from LONGGENBENCH-4K.
The results exceeding the full cache are in bold .

Decoding Phase
Strategy

Prefill Phase
Full Cache SnapKV PyramidKV

Full Cache 42.50 31.0 29.50

Decoding Compress Ratio=25.0%

Slide 43.00 25.17 26.50
Adaptive 39.33 31.33 30.83
Discontinuous 42.17 31.33 29.83

Decoding Compress Ratio=12.5%

Slide 42.33 22.33 23.50
Adaptive 36.67 30.83 30.83
Discontinuous 36.00 29.83 29.83

5.2 Influence on β1 + β2 and ΨK(Att) 471

KV cache budget during the decoding phase β1+β2 472

and selection algorithm ΨK(Att) are the key hy- 473

perparameters within the SCOPE framework. The 474

budget β1+β2, i.e., the compression ratio is scaled 475

using two mainstream top-K selection algorithms 476

as illustrated in Figure 4b. Unlike the prefill phase, 477

where performance on the GSM8k+ task signif- 478

icantly drops as the compression ratio increases, 479

compressing to 25% during the decoding phase 480

only results in a 15% performance decline. It vali- 481

dated that compression in both phases is better than 482

solely focusing on extreme compression during pre- 483

fill and the necessity of optimizing the KV cache 484

separately for the prefill and decoding phases. Us- 485

ing the Top-K selection strategy based on cumula- 486

tive attention yields better results than the Top-K 487

selection strategy based on the observation window. 488

For tasks like LONGGENBENCH, predictions still 489

require reviewing and capturing the correspond- 490

ing question, making a short observation window 491

insufficient. 492

5.3 Efficiency on Memory Usage and Transfer 493

Our adaptive and discontinuous strategies building 494

on slide strategy improve memory efficiency, as ex- 495

plored in Table 3. Compared to the full cache and 496

prefill-only compression methods, both our method 497

and the unified compression approach effectively 498

reduce memory usage pressure by storing less KV 499

cache overall. Our adaptive strategy further opti- 500

mizes performance by dynamically adjusting the 501

budget. However, this introduces frequent updates 502

to the stored KV cache pool, leading to increased 503

I/O transfer and latency. The optimized strategy 504

effectively mitigates this issue by executing com- 505

putations discontinuously. 506

7

(a) (b) (c)

Figure 4: (a) Accuracy distribution of different question positions. (b) Accuracy across different cache compression
ratios during the decoding phase using two Tok-K selection algorithms while the KV cache during the prefill phase
is compressed to a 60% ratio. Top-K (Observation Window) (Li et al., 2024; Cai et al., 2024), is computed within a
fixed-size local window of recent key-value pairs while Top-K (Cumulative Attention) (Zhang et al., 2023; Yang
et al., 2024b), attention is computed globally across all key-value pairs. (c) Results on En.Sum task from ∞BENCH,
with the condition β1 + β2 = 512.

Table 3: Efficiency analysis on Peak KV memory and
latency (Lat.) for LLaMA3.1-8B with a prefill compres-
sion ratio of 60% and a decoding compression ratio of
12.5%.

Method Peak KV Mem. Tokens/s

Full Cache 15.6(100%) 36.57
SnapKV 12.5(80.1%) 38.28
PyramidKV 12.5(80.1%) 36.90

StreamingLLM
5.8(37.1%)

22.02
H2O 21.78
PyramidInfer 22.38

SCOPE (Slide)
5.8(37.1%)

18.28
SCOPE (Adaptive) 18.28
SCOPE (Discontinuous) 25.92

5.4 Generalization of SCOPE507

Results of our proposed SCOPE and baselines on508

∞BENCH are shown in Figure 4c. All three of our509

strategies outperform the full cache setting, thor-510

oughly validating the generalization of SCOPE. It511

is effective not only for multi-QA tasks but also for512

summarization tasks, demonstrating that traditional513

tasks may also be well-suited to the separation of514

prefill-decoding KV cache budget allocation.515

6 Related Work516

KV Cache Compression KV cache compres-517

sion methods focus on leveraging the sparsity518

in attention to address memory bottlenecks,519

complementing other efficient techniques (Kwon520

et al., 2023; Dao, 2024; Wang et al., 2024; Liu521

et al., 2024d). While recent work has optimized522

the prefill phase by adjusting the compression523

budget (Yang et al., 2024b; Feng et al., 2024;524

Cai et al., 2024), phase-specific optimization525

remains unexplored. Our approach tailors526

KV cache compression to the distinct charac-527

teristics of each phase, offering a novel perspective.528

529

Long-context Tasks Recent advancements in 530

LLMs have focused on enhancing the capabilities 531

for long-context tasks. Previous evaluations of 532

long-context tasks have mainly concentrated on 533

tasks with long inputs, and numerous benchmarks 534

have been proposed, such as Needle-in-a-Haystack 535

(NIAH) (Kamradt, 2023), LongBench (Bai et al., 536

2024) and ∞BENCH (Zhang et al., 2024) for com- 537

prehensive understanding tasks, where the output 538

is generally short for most sub-tasks. Most re- 539

search on KV cache compression has been con- 540

ducted within the context of these benchmarks, 541

where the focus has been primarily on optimiz- 542

ing the prefill phase. In this work, we leverage 543

LONGGENBENCH, which focuses on long-input 544

and long-output tasks (Liu et al., 2024c), to opti- 545

mize KV cache compression in scenarios where 546

the output can be as long as 8K tokens. 547

7 Conclusion 548

In this paper, we propose SCOPE, a framework 549

that optimizes KV cache usage for long-context 550

generation in LLMs. We observe that excessive 551

compression during the prefill phase harms rea- 552

soning capabilities while the deviation of heavy 553

hitters during decoding. To resolve these issues, 554

SCOPE preserves essential KV cache during the 555

prefill phase and employs a sliding strategy to ef- 556

ficiently manage the KV cache generated during 557

decoding. Additionally, we introduce adaptive and 558

discontinuous strategies to further optimize mem- 559

ory usage and transfer. Our extensive experiments 560

demonstrate that SCOPE achieves near-full KV 561

cache performance with only 35% of the original 562

memory while remaining compatible with existing 563

prefill compression methods. 564

8

Limitations565

SCOPE separates the prefill and decoding phases566

for long-text generation tasks, while a Top-K al-567

gorithm is used to select the heavy hitters in both568

the prefill and decoding phases. We discuss the569

following limitations:570

Prefill Phase We employ the widely recognized571

top-K algorithm during the prefill phase, and fu-572

ture work could explore chunking or other tech-573

niques (Song et al., 2024; Xu et al., 2024) to574

further enhance the estimation of previous to-575

kens. As discussed in §4.4, the retained KV cache576

during the prefill phase can be regarded as an577

“attention sinks”. Enhancing the quality of this578

overall “attention sinks” is a potential direction579

for future research. Moreover, our phase-level580

approach is orthogonal to other KV reuse meth-581

ods (Xiao et al., 2024a; Lee et al., 2024; Liu et al.,582

2024a) and could be integrated with these tech-583

niques to further optimize memory management584

and computation efficiency.585

Decoding Phase The execution of Top-K at each586

decoding step is time-costly due to the frequent587

GPU I/O. Though we optimize the operation fre-588

quency in the discontinuous strategy, we can also589

reduce the I/O size to lower latency. Specifically,590

by leveraging the PD-separated framework, opti-591

mizing I/O for just Φd would be more efficient,592

as the size of Φp is constant, while we currently593

update the entire Φ.594

Modality Although SCOPE has shown advan-595

tages for long-output tasks in the text modality,596

there is potential for our method to be applied to597

long-output tasks in vision, such as multi-image598

generation, where the KV cache required for stor-599

ing each image is substantial.600

Dataset Our experiments demonstrate the effec-601

tiveness of SCOPE on two well-established bench-602

marks: LONGGENBENCH and ∞BENCH. In both603

benchmarks, our strategies consistently outperform604

the baseline, highlighting the generalization of605

SCOPE. While these results are robust, we also606

expect to evaluate SCOPE on more diverse and607

challenging benchmarks in the future, further vali-608

dating its scalability and broader applicability.609

References 610

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 611
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, 612
Diogo Almeida, Janko Altenschmidt, Sam Altman, 613
Shyamal Anadkat, et al. 2023. Gpt-4 technical report. 614
arXiv preprint arXiv:2303.08774. 615

Anthropic. 2024. The claude 3 model family: Opus, 616
sonnet, haiku. Accessed: 2024-07-09. 617

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, 618
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao 619
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, 620
and Juanzi Li. 2024. LongBench: A bilingual, mul- 621
titask benchmark for long context understanding. 622
In Proceedings of the 62nd Annual Meeting of the 623
Association for Computational Linguistics (Volume 624
1: Long Papers), pages 3119–3137, Bangkok, Thai- 625
land. Association for Computational Linguistics. 626

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu 627
Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao 628
Chang, Junjie Hu, et al. 2024. Pyramidkv: Dynamic 629
kv cache compression based on pyramidal informa- 630
tion funneling. arXiv preprint arXiv:2406.02069. 631

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang 632
Zhou, Jianyu Zhang, Niklas Nolte, Yuandong Tian, 633
Matthijs Douze, Leon Bottou, Zhihao Jia, et al. 2024. 634
Magicpig: Lsh sampling for efficient llm generation. 635
arXiv preprint arXiv:2410.16179. 636

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 637
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 638
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 639
Nakano, et al. 2021. Training verifiers to solve math 640
word problems. arXiv preprint arXiv:2110.14168. 641

Tri Dao. 2024. Flashattention-2: Faster attention 642
with better parallelism and work partitioning. In 643
The Twelfth International Conference on Learning 644
Representations. 645

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 646
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 647
Akhil Mathur, Alan Schelten, Amy Yang, Angela 648
Fan, et al. 2024. The llama 3 herd of models. arXiv 649
preprint arXiv:2407.21783. 650

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and 651
S Kevin Zhou. 2024. Ada-kv: Optimizing kv cache 652
eviction by adaptive budget allocation for efficient 653
llm inference. arXiv preprint arXiv:2407.11550. 654

Yao Fu. 2024. Challenges in deploying long-context 655
transformers: A theoretical peak performance analy- 656
sis. arXiv preprint arXiv:2405.08944. 657

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 658
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 659
2021. Measuring massive multitask language under- 660
standing. In International Conference on Learning 661
Representations. 662

9

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-663
sch, Chris Bamford, Devendra Singh Chaplot, Diego664
de las Casas, Florian Bressand, Gianna Lengyel, Guil-665
laume Lample, Lucile Saulnier, et al. 2023. Mistral666
7b. arXiv preprint arXiv:2310.06825.667

Greg Kamradt. 2023. Llms need needle in a haystack:668
Test-pressure testing llms. Accessed: 2024-11-20.669

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying670
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-671
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient672
memory management for large language model serv-673
ing with pagedattention. In Proceedings of the 29th674
Symposium on Operating Systems Principles, pages675
611–626.676

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong677
Sim. 2024. {InfiniGen}: Efficient generative infer-678
ence of large language models with dynamic {KV}679
cache management. In 18th USENIX Symposium680
on Operating Systems Design and Implementation681
(OSDI 24), pages 155–172.682

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat683
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,684
Patrick Lewis, and Deming Chen. 2024. SnapKV:685
LLM knows what you are looking for before gener-686
ation. In The Thirty-eighth Annual Conference on687
Neural Information Processing Systems.688

Chin-Yew Lin. 2004. ROUGE: A package for automatic689
evaluation of summaries. In Text Summarization690
Branches Out, pages 74–81, Barcelona, Spain. Asso-691
ciation for Computational Linguistics.692

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang,693
and Minyi Guo. 2024a. Clusterkv: Manipulating llm694
kv cache in semantic space for recallable compres-695
sion. arXiv preprint arXiv:2412.03213.696

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-697
jape, Michele Bevilacqua, Fabio Petroni, and Percy698
Liang. 2024b. Lost in the middle: How language699
models use long contexts. Transactions of the700
Association for Computational Linguistics, 12:157–701
173.702

Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen703
Chu. 2024c. LongGenBench: Long-context gen-704
eration benchmark. In Findings of the Association705
for Computational Linguistics: EMNLP 2024, pages706
865–883, Miami, Florida, USA. Association for707
Computational Linguistics.708

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong,709
Zhaozhuo Xu, Vladimir Braverman, Beidi Chen,710
and Xia Hu. 2024d. KIVI: A tuning-free asymmet-711
ric 2bit quantization for KV cache. In Forty-first712
International Conference on Machine Learning.713

Shi Luohe, Hongyi Zhang, Yao Yao, Zuchao Li, and714
hai zhao. 2024. Keep the cost down: A review on715
methods to optimize LLM’s KV-cache consumption.716
In First Conference on Language Modeling.717

Prajwal Singhania, Siddharth Singh, Shwai He, So- 718
heil Feizi, and Abhinav Bhatele. 2024. Loki: 719
Low-rank keys for efficient sparse attention. In 720
The Thirty-eighth Annual Conference on Neural 721
Information Processing Systems. 722

Woomin Song, Seunghyuk Oh, Sangwoo Mo, Jaehyung 723
Kim, Sukmin Yun, Jung-Woo Ha, and Jinwoo Shin. 724
2024. Hierarchical context merging: Better long 725
context understanding for pre-trained LLMs. In 726
The Twelfth International Conference on Learning 727
Representations. 728

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, 729
Baris Kasikci, and Song Han. 2024. QUEST: Query- 730
aware sparsity for efficient long-context LLM in- 731
ference. In Forty-first International Conference on 732
Machine Learning. 733

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan 734
Burnell, Libin Bai, Anmol Gulati, Garrett Tanzer, 735
Damien Vincent, Zhufeng Pan, Shibo Wang, et al. 736
2024. Gemini 1.5: Unlocking multimodal under- 737
standing across millions of tokens of context. arXiv 738
preprint arXiv:2403.05530. 739

Daniel Waddington, Juan Colmenares, Jilong Kuang, 740
and Fengguang Song. 2013. Kv-cache: A scalable 741
high-performance web-object cache for manycore. 742
In 2013 IEEE/ACM 6th International Conference on 743
Utility and Cloud Computing, pages 123–130. IEEE. 744

Zhenglin Wang, Jialong Wu, Yilong Lai, Congzhi 745
Zhang, and Deyu Zhou. 2024. Seed: Accelerating 746
reasoning tree construction via scheduled speculative 747
decoding. arXiv preprint arXiv:2406.18200. 748

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao 749
Peng, and Yao Fu. 2024. Retrieval head mechanisti- 750
cally explains long-context factuality. arXiv preprint 751
arXiv:2404.15574. 752

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan 753
Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, 754
and Maosong Sun. 2024a. InfLLM: Training-free 755
long-context extrapolation for LLMs with an effi- 756
cient context memory. In The Thirty-eighth Annual 757
Conference on Neural Information Processing 758
Systems. 759

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 760
Han, and Mike Lewis. 2024b. Efficient stream- 761
ing language models with attention sinks. In 762
The Twelfth International Conference on Learning 763
Representations. 764

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, 765
Xudong Lu, Aojun Zhou, Amrita Saha, Caiming 766
Xiong, and Doyen Sahoo. 2024. Think: Thinner 767
key cache by query-driven pruning. arXiv preprint 768
arXiv:2407.21018. 769

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 770
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 771
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2 772
technical report. arXiv preprint arXiv:2407.10671. 773

10

https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://github.com/gkamradt/LLMTest_NeedleInAHaystack
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=poE54GOq2l
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/2024.findings-emnlp.48
https://aclanthology.org/2024.findings-emnlp.48
https://aclanthology.org/2024.findings-emnlp.48
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=8tKjqqMM5z
https://openreview.net/forum?id=8tKjqqMM5z
https://openreview.net/forum?id=8tKjqqMM5z
https://openreview.net/forum?id=raABeiV71j
https://openreview.net/forum?id=raABeiV71j
https://openreview.net/forum?id=raABeiV71j
https://openreview.net/forum?id=ulaUJFd96G
https://openreview.net/forum?id=ulaUJFd96G
https://openreview.net/forum?id=ulaUJFd96G
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=KzACYw0MTV
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=bTHFrqhASY
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin774
Zhang, and Hai Zhao. 2024b. PyramidInfer: Pyra-775
mid KV cache compression for high-throughput776
LLM inference. In Findings of the Association for777
Computational Linguistics: ACL 2024, pages 3258–778
3270, Bangkok, Thailand. Association for Computa-779
tional Linguistics.780

Jiayi Yuan, Hongyi Liu, Shaochen Zhong, Yu-Neng781
Chuang, Songchen Li, Guanchu Wang, Duy Le,782
Hongye Jin, Vipin Chaudhary, Zhaozhuo Xu, Zirui783
Liu, and Xia Hu. 2024. KV cache compression,784
but what must we give in return? a comprehen-785
sive benchmark of long context capable approaches.786
In Findings of the Association for Computational787
Linguistics: EMNLP 2024, pages 4623–4648, Mi-788
ami, Florida, USA. Association for Computational789
Linguistics.790

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zi-791
hang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen792
Thai, Shuo Wang, Zhiyuan Liu, and Maosong793
Sun. 2024. ∞Bench: Extending long context794
evaluation beyond 100K tokens. In Proceedings795
of the 62nd Annual Meeting of the Association796
for Computational Linguistics (Volume 1: Long797
Papers), pages 15262–15277, Bangkok, Thailand.798
Association for Computational Linguistics.799

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong800
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-801
dong Tian, Christopher Ré, Clark Barrett, et al. 2023.802
H2o: Heavy-hitter oracle for efficient generative803
inference of large language models. Advances in804
Neural Information Processing Systems, 36:34661–805
34710.806

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn807
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,808
Tianqi Chen, and Baris Kasikci. 2024. Atom: Low-809
bit quantization for efficient and accurate llm serv-810
ing. Proceedings of Machine Learning and Systems,811
6:196–209.812

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and813
Sameer Singh. 2021. Calibrate before use: Improv-814
ing few-shot performance of language models. In815
International conference on machine learning, pages816
12697–12706. PMLR.817

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-818
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,819
Zhihang Yuan, Xiuhong Li, et al. 2024. A survey on820
efficient inference for large language models. arXiv821
preprint arXiv:2404.14294.822

11

https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://doi.org/10.18653/v1/2024.findings-acl.195
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://aclanthology.org/2024.findings-emnlp.266
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814

A Discussion823

SCOPE is the first framework to compress the824

KV cache from a phase-level perspective. Un-825

like token-level eviction methods such as H2O,826

SCOPE introduces a phase-aware paradigm, differ-827

entiating between the prefill and decoding phases.828

During prefill, we adopt a token-eviction strategy829

similar to H2O, while in the decoding phase, we830

propose three tailored eviction strategies. This831

phase-level granularity enables finer control over832

the KV cache, addressing the limitations of token-833

level methods and improving efficiency in long-834

context inference tasks. As discussed in §4.4, our835

approach is orthogonal to existing token-level tech-836

niques, offering a new direction for memory opti-837

mization in large language models.838

SCOPE can be integrated with the KV cache839

reuse methods seamlessly. While methods like840

InfLLM (Xiao et al., 2024a) retain all KV data841

across CPU and GPU, our approach selectively842

keeps only the most critical KV data on the GPU,843

improving memory efficiency. This selective reten-844

tion can be integrated with block-level unit selec-845

tion of InfLLM, enabling phase-level operations846

for finer-grained token and unit lookups. Moreover,847

our strategy is orthogonal to other KV reuse tech-848

niques, such as those proposed by Lee et al. (2024)849

and Liu et al. (2024a). By combining phase-level850

eviction with these methods, our approach provides851

a flexible framework for optimizing memory and852

computation, demonstrating the broader applica-853

bility of phase-level strategies in KV compression854

and reuse.855

B Dataset Details856

For LONGGENBENCH, We utilize the script6 from857

the official repository from the LONGGENBENCH858

benchmark to construct the version used in our eval-859

uation. The specific setting is provided in Table 4.860

For ∞BENCH, we use the 103 examples of En.Sum861

from the official repository7.862

6https://github.com/Dominic789654/LongGenBench
7https://github.com/OpenBMB/InfiniteBench

Type GSM8K MMLU CSQA
K T K T K T

LONGGENBENCH-4K 30 20 30 53 40 30
LONGGENBENCH-8K 60 10 60 53 80 15

Table 4: Configuration details for the experiment. The
table shows the number of questions in one query (K)
and the number of iteration times (T).

Prompt Template in LONGGENBENCH

{System Prompt}

Examples:
{CoT Question_1}...{CoT Question_8}
{CoT Answer_1}...{CoT Answer_8}

Following Question:
{CoT Question9}...{CoT Question36}

"""

863

C Experimental Details 864

C.1 Environment and Evaluation Metrics 865

Experiments are conducted on NVIDIA A100 866

(80GB) and RTX 3090 (24GB) GPUs, with inte- 867

gration of Flash Attention 2 (Dao, 2024). The effi- 868

ciency results, obtained on an RTX-3090 (24GB) 869

with a batch size of 8 using eager attention. For 870

each subtask in LONGENBENCH, the evaluation 871

metric used is Accuracy. The evaluation metric 872

used is ROUGE-L-Sum (Lin, 2004). 873

C.2 Budget Setup 874

All predictions are generated through greedy de- 875

coding for a fair comparison. In the LONGGEN- 876

BENCH-4K benchmark, we evaluate on the 877

GSM8K+, MMLU+, and CSQA+ datasets. The 878

total cache budget during the prefill phase is set 879

to 2048, which corresponds to approximately 60% 880

of the average input length. During the decoding 881

phase, the total cache budget is set to 2048+512 (de- 882

coding compression ratio = 12.5%) and 2048+1024 883

(decoding compression ratio = 25%). In the 884

LONGGENBENCH-8K benchmark, we evaluate 885

the GSM8K++, MMLU++, and CSQA++ datasets. 886

The total cache budget in the prefill phase is set to 887

4096 since the number of questions in the multi-QA 888

task doubles. Consequently, the reserved budget is 889

also doubled for simplicity. During the decoding 890

phase, the total cache budget is set to 4096+512 (de- 891

coding compression ratio = 6.25%) and 4096+1024 892

12

https://github.com/Dominic789654/LongGenBench
https://github.com/OpenBMB/InfiniteBench

Table 5: Performance comparison for LONGGEN-
BENCH-4K(GSM8k+) and ∞BENCH(En.Sum) datasets
with total budgets in prefill and decoding.

Method Performance Total Budget

in Prefill in Decoding

LONGGENBENCH-4K(GSM8k+)

StreamingLLM 11.83 2560 2560
H2O 32.83 2560 2560

SCOPE (Slide) 39.00 2048 2048+512=2560
SCOPE (Adaptive) 35.33 2048 2048+512=2560
SCOPE (Discontinuous) 39.67 2048 2048+512=2560

∞BENCH(En.Sum)

StreamingLLM 16.93 2560 2560
H2O 17.64 2560 2560

SCOPE (Slide) 18.44 2048 2048+512=2560
SCOPE (Adaptive) 18.36 2048 2048+512=2560
SCOPE (Discontinuous) 18.17 2048 2048+512=2560

(decoding compression ratio = 12.5%). These set-893

tings apply to all experiments presented in Tables 1,894

2, and 6. For the En.sum dataset in ∞BENCH, due895

to the large input size (average length > 170K),896

truncation occurs when using the backbone. This897

truncation is fair for the input information. In all898

experiments on this dataset, the settings are as fol-899

lows: prefill total cache = 2048, and decoding total900

cache = 2048+512 (decoding compression ratio901

50%). This is because the average output length902

for En.sum slightly exceeds 1K.903

To ensure a fair comparison, we conducted pre-904

liminary experiments under the setting where meth-905

ods like H2O and StreamingLLM utilize the en-906

tire cache during the prefill phase. While this907

setup might initially appear disadvantageous to our908

proposed SCOPE—since our method intentionally909

uses less cache by excluding the decoding cache910

during prefill—our approach still demonstrates su-911

perior performance compared to the baselines. As912

presented in Table 5, the result highlights the ef-913

fectiveness of our decoding strategies and validates914

the benefits of separating the prefill and decoding915

phases, as opposed to employing a unified cache.916

C.3 Baselines917

We compare the following representative compres-918

sion methods and full cache to validate the effec-919

tiveness of our proposed SCOPE.920

Unified Compression StreamingLLM (Xiao921

et al., 2024b) keeping the KV of the first few to-922

kens and recent tokens based on the attention sink923

phenomenon; H2O (Zhang et al., 2023), retains924

a balance of recent and Heavy Hitter (H2) tokens925

based on cumulative attention scores; PyramidIn-926

fer (Yang et al., 2024b), by leveraging the sparse927

attention across layers, reduces the cache in the 928

deeper layers, thereby using less budget. §4.4 929

shows the results of the SCOPE along with these 930

unified compression baselines. 931

Prefill-Only Compression SnapKV (Li et al., 932

2024), using an observation window to capture at- 933

tention signals and a pooling strategy to compress 934

KV cache in prefill phase. PyramidKV (Cai et al., 935

2024), is a variant of SnapKV that adjusts the bud- 936

get allocation across layers. Both methods retain all 937

KV cache generated during the decoding phase. To 938

demonstrate the modularity of SCOPE, we apply it 939

in combination with SnapKV during the decoding 940

phase, as presented in §4.4. 941

The open-source version of PyramidInfer8 is not 942

integrated with Flash Attention 2. To ensure a fair 943

comparison with our framework and other base- 944

lines, we reproduce its core ideas based on the 945

implementations of H2O and PyramidKV. During 946

the prefill phase, the retained budget follows the 947

configuration of PyramidKV. During the decoding 948

phase, an additional budget is allocated to maintain 949

the window and recent context, again distributed 950

linearly across layers. Although the budget is al- 951

located linearly across layers, the total budget re- 952

mains consistent with that of other baselines. In 953

our reproduction of StreamingLLM, we allocated 954

half of the total token budget to the start and the 955

other half to the end, ensuring the preservation of 956

the task instruction and the question. 957

8https://github.com/mutonix/pyramidinfer

13

https://github.com/mutonix/pyramidinfer

Table 6: Performance of our proposed SCOPE using three strategies and baselines on the LONGGENBENCH
benchmark with Mistral-7B-Instruct-v0.3. The best results among all methods are in bolded. The prefill
compression ratio averages around 60%.

Method LONGGENBENCH-4K LONGGENBENCH-8K Avg.GSM8K+ MMLU+ CSQA+ GSM8K++ MMLU++ CSQA++

Full Cache 16.50 27.49 59.92 12.00 28.67 50.33 32.49

Decoding Compression Ratio=25.0% Decoding Compression Ratio=12.5%

StreamingLLM 12.67 18.30 57.92 11.33 13.5 47.67 26.89
H2O 7.00 25.44 47.25 6.83 16.20 37.41 23.36
PyramidInfer 6.37 25.35 48.50 6.67 17.52 38.75 23.86
SCOPE (Slide) 8.33 17.02 56.67 4.00 17.38 45.25 24.78
SCOPE (Adaptive) 14.83 25.38 58.50 7.50 19.29 50.33 29.31
SCOPE (Discontinuous) 14.50 27.13 58.50 9.26 19.73 50.33 29.91

Decoding Compression Ratio=12.5% Decoding Compression Ratio=6.25%

StreamingLLM 12.67 18.30 57.92 11.33 13.5 47.67 26.89
H2O 8.00 21.11 41.67 5.17 16.07 34.83 21.14
PyramidInfer 7.75 24.46 41.50 5.67 17.38 44.75 23.59
SCOPE (Slide) 8.17 13.51 47.75 4.67 13.98 39.25 21.22
SCOPE (Adaptive) 14.50 19.18 58.88 4.17 15.37 50.33 27.07
SCOPE (Discontinuous) 13.83 18.95 58.88 4.50 15.27 50.33 26.96

14

Python-style Pseudocode for SCOPE Implement

1 # Pseudocode for Prefill and Decoding Phases with Three Strategies: Slide , Adaptive , Discontinuous
2
3 #
4 class CachePool:
5 def __init__(self):
6 self.prefill_cache = (key , value)
7 self.decoding_cache = (key , value)
8
9 def total_cache(self):

10 return self.prefill_cache + self.decoding_cache
11
12 # Prefill phase
13 def prefill_phase(input_tokens , model , alpha1 , alpha2):
14 kv_cache = CachePool ()
15 input_query , input_key , input_value = compute_qkv(input_tokens , model)
16 attention_scores = compute_attention(input_query , input_key)
17 selected_key , selected_value = select_top_k_cache(attention_scores [:-alpha2], k=alpha1)
18 compressed_key = [selected_key , key[-alpha2 :]]
19 compressed_value = [selected_value , value[-alpha2 :]]
20 kv_cache.prefill_cache = compressed_key , compressed_value # Update prefill_cache
21 return kv_cache
22
23 # Decoding phase with SCOPE
24 def decoding_phase(output_tokens , model , kv_cache , beta1 , beta2 , strategy):
25 for step in range(1, len(output_tokens)):
26 token = output_tokens[step]
27 current_query , current_key , current_value = compute_qkv(token , model)
28 kv_cache.decoding_cache.append(current_key , current_value)
29 attention_scores = compute_attention(query , kvcache.total_cache) # Attention in total_cache
30
31 if strategy == "Slide":
32 # Retain a sliding window of size decoding_window_len
33 if step > max_prompt_len + beta1 + beta2:
34 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=beta1)
35 compressed_key = [selected_key , key[-beta2 :]]
36 compressed_value = [selected_value , value[-beta2 :]]
37 kv_cache.decoding_cache = compressed_key , compressed_value # Update decoding_cache
38
39
40 elif strategy == "Adaptive":
41 # Dynamically adjust beta1 based on decoding progress
42 if step > max_prompt_len + beta2:
43 adaptive_beta1 = beta1 * (step - beta2) // (len(output_tokens)-beta2)
44 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=

↪→ adaptive_beta1) # Use adaptive_beta1
45 ... # Update decoding_cache
46
47 elif strategy == "Discontinuous":
48 # Jump to noncontinuous
49 if step > max_prompt_len + beta2:
50 adaptive_beta1 = beta1 * (step -beta2) // (model.max_new_token -beta2)
51 jump_interval = (len(output_tokens) - beta2) // beta1 # Interval between jumps
52 if step % jump_interval == 0: # Noncontinuous
53 selected_key , selected_value = select_top_k_cache(attention_scores[alpha1+alpha2:-beta2], k=

↪→ adaptive_beta1) # Use adaptive_beta1
54 ... # Update decoding_cache
55
56 return kv_cache

Figure 5: Pseudocode for SCOPE Implement.

15

Probe Case

<<SYS>>
Answer each question step by step, adhering to the format shown in the examples provided. Start each response with 'Answer_' and introduce the final
response with 'The answer is'. Do not repeat the question. Ensure that you respond to all the questions presented, regardless of their number.
<</SYS>>

Examples:
Question_1:
There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the
grove workers plant today?

Question_2:
If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Question_3:
Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Answer_1:
There are 15 trees originally.
Then there were 21 trees after some more were planted.
So there must have been 21 − 15 = 6.
The answer is 6.

Answer_2:
There are originally 3 cars.
2 more cars arrive.
3 + 2 = 5.
The answer is 5.

Answer_3:
Originally, Leah had 32 chocolates.
Her sister had 42.
So in total they had 32 + 42 = 74.
After eating 35, they had 74 − 35 = 39.
The answer is 39.

Following Question:
Question_4:
Janet's ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her friends every day with four. She sells the
remainder at the farmers' market daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers' market?
Question_5:
A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?
Question_6:
Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This increased the value of the house by 150%.
How much profit did he make?
Question_7:
James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?
Question_8:
Every day, Wendi feeds each of her chickens three cups of mixed chicken feed, containing seeds, mealworms and vegetables to help keep them healthy.

She gives the chickens their feed in three separate meals. In the morning, she gives her flock of chickens 15 cups of feed. In the afternoon, she gives
her chickens another 25 cups of feed. How many cups of feed does she need to give her chickens in the final meal of the day if the size of Wendi's flock
is 20 chickens?
Question_9:
Kylar went to the store to buy glasses for his new apartment. One glass costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?
Question_10:
Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as Seattle. How many sheep do Toulouse, Charleston, and
Seattle have together if Seattle has 20 sheep?
Question_11:
Carla is downloading a 200 GB file. Normally she can download 2 GB/minute, but 40% of the way through the download, Windows forces a restart to
install updates, which takes 20 minutes. Then Carla has to restart the download from the beginning. How load does it take to download the file?

"""

Figure 6: The probe case used in the pilot observation.

16

	Introduction
	Pilot Observation
	KV Cache in Inference Perspective
	KV Cache Budget Reallocation

	Method
	Revisiting KV Cache Compression
	SCOPE

	Experiments
	Datasets
	Baselines
	Implementation Details
	Results

	Analysis and Discussion
	Mitigating the Loss of Essential H2
	Influence on 1+2 and K(Att)
	Efficiency on Memory Usage and Transfer
	Generalization of SCOPE

	Related Work
	Conclusion
	Discussion
	Dataset Details
	Experimental Details
	Environment and Evaluation Metrics
	Budget Setup
	Baselines

