
Published as a conference paper at ICLR 2024

DELTA-AI: LOCAL OBJECTIVES FOR AMORTIZED
INFERENCE IN SPARSE GRAPHICAL MODELS

Jean-Pierre Falet*, Hae Beom Lee*, Nikolay Malkin*, Chen Sun,
Dragos Secrieru, Dinghuai Zhang, Guillaume Lajoie†, Yoshua Bengio⋄
Mila – Québec AI Institute, Université de Montréal
Montreal, Quebec, Canada
{jean-pierre.falet, hae-beom.lee, nikolay.malkin}@mila.quebec

ABSTRACT

We present a new algorithm for amortized inference in sparse probabilistic graph-
ical models (PGMs), which we call Δ-amortized inference (Δ-AI). Our approach
is based on the observation that when the sampling of variables in a PGM is seen
as a sequence of actions taken by an agent, sparsity of the PGM enables local
credit assignment in the agent’s policy learning objective. This yields a local con-
straint that can be turned into a local loss in the style of generative flow networks
(GFlowNets) that enables off-policy training but avoids the need to instantiate all
the random variables for each parameter update, thus speeding up training con-
siderably. The Δ-AI objective matches the conditional distribution of a variable
given its Markov blanket in a tractable learned sampler, which has the structure of
a Bayesian network, with the same conditional distribution under the target PGM.
As such, the trained sampler recovers marginals and conditional distributions of
interest and enables inference of partial subsets of variables. We illustrate Δ-AI’s
effectiveness for sampling from synthetic PGMs and training latent variable mod-
els with sparse factor structure.
Code: https://github.com/GFNOrg/Delta-AI.

1 INTRODUCTION

Probabilistic modeling in high-dimensional spaces is challenging due to the combinatorially large
number of possible modes. When the modes are not known a priori and are well-separated from
each other, the convergence of local exploration algorithms such as Markov chain Monte Carlo
(MCMC) is prohibitively slow. In contrast, amortized inference methods, which train models to
perform approximate sampling from the distribution of interest, are potentially scalable to high-
dimensional spaces and come with guarantees on generation time, but may also suffer from mode
collapse issues. Generative flow networks (GFlowNets; Bengio et al., 2021) are a family of methods
that have recently shown success in sampling distributions over high-dimensional discrete spaces.
GFlowNets are amortized sequential samplers that are compatible with local exploration (Zhang
et al., 2022) and allow stable off-policy training (Malkin et al., 2023), helping to overcome the
obstacle of mode collapse.

A major limitation of GFlowNets is that they scale poorly in the length of the generative trajectory,
which equals number of variables if they are sampled one at a time as in Zhang et al. (2022). This
is because the (not necessarily normalized) target density – the GFlowNet’s reward function – takes
as input the instantiated values of all the variables. As a result, the sampling cost scales linearly in
the dimension. In addition, because the learning signal for all steps in a sampling trajectory comes
from the terminal reward, GFlowNets suffer from inefficient credit assignment when trajectories are
long, unless the reward function can be meaningfully decomposed into partial rewards for partially
instantiated variables (Pan et al., 2023).

Motivated by the GFlowNet methodology and its limitations, we propose Δ-amortized inference (Δ-
AI), an algorithm for energy-based probabilistic inference and training that scales well with respect
to the dimension of variables. Δ-AI training recovers the conditional probability distributions in a
Bayesian network that defines the same distribution as a target graphical model. Δ-AI makes use of
known graphical model structure to allow for local credit assignment: updating the parameters of the

∗Equal contribution. †CIFAR AI Chair. ⋄CIFAR Senior Fellow.

1

https://github.com/GFNOrg/delta-ai

Published as a conference paper at ICLR 2024

amortized sampler requires only instantiating a single variable and its Markov blanket, in contrast
to all variables. It can also be seen as a novel training algorithm for GFlowNets of a particular
structure, where the GFlowNet policy performs amortized inference.

We summarize the advantages of Δ-AI as follows. First, Δ-AI enables significantly faster training
than regular GFlowNets and other amortized inference methods because i) each training step can
involve only a small subset of variables, so the sampling cost is negligible, ii) the local training
signal is much stronger than that in regular GFlowNet methods, as it uses the decomposition of the
energy function into terms, each of which is directly matched with the corresponding condition-
als and marginals. Second, the memory cost is very low because computing each gradient update
only involves a small subset of variables (for a sparse graphical model). Lastly, with Δ-AI we can
benefit from flexible probabilistic inference by amortizing many possible sampling orders into a sin-
gle sampler (by learning Bayesian networks with multiple Markov-equivalent structures), allowing
inference over partial subsets of variables.

The paper is structured as follows:

• In §2, we introduce the necessary background on graphical models and present the GFlowNet
approach to amortized inference as motivation.

• In §3, we define and analyze the proposed Δ-AI algorithm.
• In §4, we validate our idea on various synthetic energy-based models, showing that Δ-AI provides

faster wall-clock convergence time compared to algorithms from prior work, with Δ-AI’s conver-
gence time even comparable to or better than that of (training-free) MCMC sampling, noting that
the trade-off gets better if more samples are needed, as with amortized inference in general.

• In §5, we validate Δ-AI on the task of image generation using a latent variable model. We impose
the inductive bias of a graphical model structure on the joint over observed and latent variables
and use Δ-AI as the posterior sampler in an amortized variational expectation-maximization (EM)
procedure.

2 BACKGROUND

2.1 PROBABILISTIC GRAPHICAL MODELS

In this section, we introduce the relevant notation and review the background on probabilistic graph-
ical models (PGMs) that is essential to understand our main methodology. Details and further back-
ground can be found in §B.1 and in Koller & Friedman (2009). Additional related work is in §A.

We consider a collection of random variables 𝑋 = (𝑋𝑣)𝑣∈𝑉 indexed by a set 𝑉 . For concreteness,
we will assume the 𝑋𝑣 are binary, so 𝑋 takes values 𝑥 ∈ X = {0, 1} |𝑉 | . We also assume that 𝑋 has
full support, i.e., its density 𝑝 : X → R is strictly positive. However, the entirety of the following
discussion applies to any discrete spaces, and much of it generalizes to continuous random variables.

Undirected graphical models (Markov networks / factor graphs). Let 𝐺 = (𝑉, 𝐸) be an undi-
rected graph, with each vertex 𝑣 ∈ 𝑉 corresponding to a variable 𝑋𝑣 . 𝑋 is a Markov network with
respect to 𝐺 if it satisfies the local Markov property:

𝑋𝑣 ⊥⊥ 𝑋𝑉\({𝑣}∪N𝐺 (𝑣)) | 𝑋N𝐺 (𝑣) ∀𝑣 ∈ 𝑉,
where N𝐺 (𝑣) denotes the set of neighbours of 𝑣 in 𝐺 and, for 𝑆 ⊆ 𝑉 , 𝑋𝑆 denotes the projection of
𝑋 onto the variables indexed by 𝑆, 𝑋𝑆 = (𝑋𝑣)𝑣∈𝑆 . Markov networks are a natural way to encode
known conditional independences in the joint distribution of the variables 𝑋𝑣 .

A common way to specify of Markov networks is via a decomposition of the joint density into local
factors, each depending on a subset of the variables. If 𝜙1, . . . , 𝜙𝐾 is a collection of functions taking
positive real values, where 𝜙𝑘 depends on 𝑋𝑆𝑘 for some 𝑆𝑘 ⊆ 𝑉 (i.e., 𝜙𝑘 : {0, 1} |𝑆𝑘 | → R>0), then
the normalized product of these factors defines a density:

𝑝(𝑥) = 1
𝑍

𝐾∏
𝑘=1

𝜙𝑘 (𝑥𝑆𝑘), 𝑥𝑆 := (𝑥𝑣)𝑣∈𝑆 . (1)

This is an energy model with energy E(𝑥) = −∑
𝑘 log 𝜙𝑘 (𝑥𝑆𝑘). Note that the normalization constant

𝑍 equals the sum of the product of factors over all 𝑥 ∈ X and can be intractable. Distributions of the
form (1) are equivalent to Markov networks with respect to a certain graph (see §B.1 for review).

Directed graphical models (Bayesian networks). Directed graphical models are a different way
of encoding conditional independences among random variables. If 𝐷 = (𝑉, 𝐴) be a directed acyclic
graph (DAG), where 𝐴 ⊂ 𝑉 ×𝑉 is the set of directed edges, then 𝑋 is a Bayesian network with graph

2

Published as a conference paper at ICLR 2024

structure 𝐷 if its density 𝑝 is the product of the conditionals of each variable given its parents:

𝑝(𝑥) =
∏
𝑣∈𝑉

𝑝(𝑥𝑣 | 𝑥Pa(𝑣)), Pa(𝑣) := {𝑢 : (𝑢, 𝑣) ∈ 𝐴}, (2)

with the conditionals understood to be unconditional marginals if the parent set is empty. Note that
each factor in (2) is normalized, unlike in (1). This property makes the joint distribution easy to
sample: one chooses any topological ordering 𝑣1, 𝑣2, . . . of 𝑉 consistent with the DAG 𝐷 and sam-
ples the 𝑥𝑣𝑖 in order, conditioning each 𝑥𝑣𝑖 on the (previously sampled) parents of 𝑣𝑖 . In a Bayesian
network, every variable is conditionally independent of its non-descendants given its parents.

undirected
graph 𝐺 I-map

##

chordal completion
(e.g., min-fill alg.)��

undirected
chordal graph 𝐺

P-map // immorality-free
DAG 𝐷underlying undir. graph

oo

Figure 1: Summary of the relationships between undirected
graphs defining Markov networks (left) and DAGs defining
Bayesian networks (right). Chordalization strictly relaxes the
conditional independence constraints on a Markov network,
while Markov networks with respect to a chordal graph and
Bayesian networks with respect to its P-map are equivalent.

From Bayesian networks to Markov
networks and back. Any Bayesian
network with respect to a DAG 𝐷 is
also a Markov network, as every condi-
tional in (2) can be considered a factor
in a model of the form (1). However,
the graph structure of the correspond-
ing Markov network (called the moral
graph) may have more edges than the
underlying undirected graph of 𝐷, un-
less 𝐷 has no immoralities (induced sub-
graphs of the form • → • ← •).
Conversely, if 𝑋 is a Markov network
with respect to a graph 𝐺, then 𝑋 is a
Bayesian network with respect to a directed graph with underlying undirected graph 𝐺 if 𝐺 is
chordal (i.e., has no cycle of length greater than 3 as an induced subgraph). Any graph 𝐺 can
be made into a chordal graph 𝐺 by adding edges (a process called triangulation or chordalization),
which relaxes the conditional independence conditions on 𝑋 . In turn, 𝐺 has an immorality-free ori-
entation 𝐷, and 𝑋 is a Bayesian network with respect to 𝐷. 𝐷 is called an I-map for 𝐺 and a P-map
for 𝐺.

These relationships are summarized in Fig. 1 and more details are in §B.1.

2.2 TRAINING AND AMORTIZATION IN PGMS

Maximum-likelihood training of PGMs. The problem of generative modeling consists in opti-
mizing the parameters of a PGM so as to maximize the likelihood of a given dataset of independent
observations of the variables, D = {𝑥 (𝑖) }, 𝑥 (𝑖) ∈ X.

For Bayesian networks, where the conditional distributions 𝑝𝜓
(
𝑥𝑣 | 𝑥Pa(𝑣)

)
depend on a parameter

vector 𝜓, the gradient of the log-likelihood is simply

∇𝜓 log 𝑝𝜓 (D) =
∑︁
𝑖

∇𝜓 log 𝑝𝜓
(
𝑥 (𝑖)

)
=

∑︁
𝑖

∑︁
𝑣∈𝑉
∇𝜓 log 𝑝𝜓

(
𝑥
(𝑖)
𝑣 | 𝑥 (𝑖)Pa(𝑣)

)
. (3)

Generative modeling with energy-based models of the form (1), where the factors 𝜙𝑘 depend on a
parameter vector 𝜓, is more difficult. The gradient of the log-likelihood of a sample is:

∇𝜓 log 𝑝𝜓 (𝑥) =
∑︁
𝑘

∇𝜓 log 𝜙𝑘
(
𝑥𝑆𝑘

)
− ∇𝜓 log 𝑍, ∇𝜓 log 𝑍 = E𝑥∼𝑝𝜓 (𝑥) [∇𝜓 log 𝑝𝜓 (𝑥)] . (4)

Optimizing log 𝑝𝜓 (D) thus consists of minimizing the energy energy for given samples 𝑥 (𝑖) ∈ D
(positive phase – first term in (4)) and maximizing it for samples from the model itself, 𝑥 ∼ 𝑝𝜓 (𝑥)
(negative phase – second term). The latter is complicated by the intractability of sampling the model
exactly, motivating methods that draw approximate samples using MCMC (Hinton, 2002; Tieleman,
2008; Du et al., 2021) or an amortized inference method, such as a GFlowNet (Zhang et al., 2022).

One can also consider the case of generative modeling with latent variables, i.e., where some subset
𝐻 ⊂ 𝑉 of the variables is unobserved. The log-likelihood gradient for a partial observation 𝑥𝑉\𝐻 is

∇𝜓 log 𝑝𝜓
(
𝑥𝑉\𝐻

)
= E𝑥𝐻∼𝑝𝜓 (𝑥𝐻 |𝑥𝑉\𝐻) [∇𝜓 log 𝑝𝜓 (𝑥)] . (5)

Thus the objectives (3) and (4) can be applied to partial observations, as long as one can sample the
conditional distribution over the latents 𝑥𝐻 given the observed values 𝑥𝑉\𝐻 . This can be achieved
using MCMC, importance sampling (Bornschein & Bengio, 2015; Le et al., 2019a), or amortized
estimation of this conditional distribution, known as variational expectation-maximization (EM;

3

Published as a conference paper at ICLR 2024

Dempster et al., 1977; Neal & Hinton, 1998; Koller & Friedman, 2009). A GFlowNet can also
be used as the amortized estimator in variational EM (Hu et al., 2023).

Amortized inference. Complementary to the generative modeling problem in PGMs is that of
amortized inference: given a factorized density 𝑝 of the form (1) with unknown normalization con-
stant, one wishes to approximate 𝑝 by a distribution that can be tractably sampled. One option is
to approximate 𝑝 by a sequential sampler, which iteratively chooses the value of one variable at
a time conditioned on the values of those previously sampled. Training this sampler, as an agent
that proposes action sequences and receives the unnormalized density as a reward, can be seen as a
problem of policy optimization.

Given a density 𝑝 with factors 𝜙𝑘 and corresponding Markov network structure𝐺 = (𝑉, 𝐸), suppose
that 𝐷 = (𝑉, 𝐴) is an I-map for 𝐺, so 𝑝 is also a Bayesian network with respect to 𝐷. If 𝑞\ is any
Bayesian network with respect to 𝐷, with its conditional distributions given by parametric estimators
𝑞\ (𝑥𝑣 | 𝑥Pa(𝑣)), we are interested in fitting the conditionals of 𝑞\ such that the distributions 𝑞\ and
𝑝 are equal. If this is achieved, the sampler 𝑞\ can be used to perform ancestral sampling of the
variables in a fixed topological ordering 𝑣1, 𝑣2, . . . , 𝑣 |𝑉 | .

2.3 AMORTIZED INFERENCE WITH GENERATIVE FLOW NETWORKS

We give some background on generative flow networks (GFlowNets), a group of deep reinforcement
learning (RL) methods whose limitations in non-local credit assignment are a motivation for our
proposed algorithms. Taking an RL view, the training of the conditionals in 𝑞\ to sample from 𝑝
can be seen as a policy optimization problem. Ancestral sampling from 𝑞\ is viewed as a sequence
of actions taken by a sampling agent, which obtains a value of all the variables 𝑥 and receives a
reward of 𝑅(𝑥) = ∏

𝑘 𝜙𝑘 (𝑥𝑆𝑘). The aim of training the policy is to make the likelihood of producing
the sample 𝑥 proportional to the reward: 𝑞\ (𝑥) ∝ 𝑅(𝑥).
GFlowNets, which are a specialized family of reinforcement learning algorithms that train agents
to match a target distribution, have yielded the state of the art in discrete probabilistic modeling
problems (Zhang et al., 2022). However, in Zhang et al. (2022), the target density is unstructured;
the sampler does not take advantage of a known factor structure and learns to sample the variables
in an arbitrary order. Here we summarize, in simplified form, the GFlowNet objectives that can be
used to train a Bayesian network as a sequential sampler that approximates the target distribution.

We describe TB and DB, two losses that achieve this. (We also use SubTB, a variance-reducing
interpolation between TB and DB, in some experiments; see §B.2.)

Trajectory balance. To train 𝑞\ as a GFlowNet with the trajectory balance (TB) objective (Malkin
et al., 2022), one optimizes its parameters jointly with an estimate 𝑍\ of the normalization constant.
The TB objective at a sample 𝑥 is

LTB (𝑥) = (log 𝑍\ + log 𝑞\ (𝑥) − log 𝑅(𝑥))2 . (6)
If (6) is optimized to 0, so 𝑞\ (𝑥) = 1

𝑍\
𝑅(𝑥), for all samples 𝑥, then 𝑞\ is a perfect sampler for 𝑝

and 𝑍\ equals 𝑍 , the true normalization constant of 𝑝. The objective can be optimized by gradient
descent using on-policy samples 𝑥 taken from 𝑞\ itself, in which case it is equivalent in expected gra-
dient to 𝐷KL (𝑞\ || 𝑝) (Malkin et al., 2023; Zimmermann et al., 2023), or at off-policy samples, such
as those drawn from a tempered policy or from a known dataset, as done by Zhang et al. (2022); Zim-
mermann et al. (2023) in order to avoid mode collapse and thus better cover the target distribution.

Detailed balance. The detailed balance (DB) objective (Bengio et al., 2023) is an alternative loss
that typically has lower variance but poorer performance than TB. The DB objective depends on an
individual step in a sampling trajectory, rather than on the complete sample. Recall that 𝑞\ , as an
agent, samples 𝑥 in a topological order: 𝑥𝑣1 , 𝑥𝑣2 , . . . , 𝑥𝑣|𝑉 | . To train 𝑞\ with the DB objective, one
also trains an auxiliary object, a flow function 𝐹\ that outputs a scalar for any partially instantiated
sample. The DB objective at the 𝑖-th step of the sampling trajectory is

LDB
(
𝑥{𝑣1 ,...,𝑣𝑖−1 } , 𝑥𝑣𝑖

)
=

(
log 𝐹\

(
𝑥{𝑣1 ,...,𝑣𝑖−1 }

)
+ log 𝑞\

(
𝑥𝑣𝑖 | 𝑥Pa(𝑣𝑖)

)
− log 𝐹\

(
𝑥{𝑣1 ,...,𝑣𝑖 }

))2
, (7)

with the additional constraint that if 𝑥 is fully instantiated sample, then 𝐹\ (𝑥) = 𝑅(𝑥). If the DB loss
is optimized to 0 for every such transition, then 𝑞\ is a perfect sampler for 𝑝, and the flow function
at the initial state, 𝐹 (𝑥∅), equals the true normalization constant 𝑍 . Just as with TB, one can flexibly
choose the samples at which (7) is optimized by gradient descent.

Pan et al. (2023) found that DB performs strongly if the reward has a multiplicative decomposi-
tion that enables a form of reward shaping called the forward-looking parametrization of flows. In

4

Published as a conference paper at ICLR 2024

our case of interest, the reward 𝑅(𝑥) has a multiplicative decomposition into the factors 𝜙𝑘 (𝑥𝑆𝑘).
Rather than making 𝐹\ a neural network taking a partial sample as input, one can learn 𝐹\ as a
multiplicative correction to a partially accumulated reward �̃�(𝑥{𝑣1 ,...,𝑣𝑖 }), i.e.,

𝐹\
(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
= NN\

(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
· �̃�

(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
, (8)

where NN\ is a neural network. We discuss two ways to define the partially reward �̃� in §B.2.

However, both the TB and DB losses are non-local: they require a fully instantiated sample 𝑥 to
receive a training signal.

3 LOCAL CONSTRAINTS FOR MATCHING MARKOV AND BAYESIAN NETWORKS

In this section, we introduce Δ-AI, which aims to address the limitations of GFlowNets in locality of
credit assignment. We develop a novel GFlowNet-style objective, but whose loss only depends on
a small subset of variables at a time. This is hypothesized to greatly improve training convergence
and decrease resource requirements. We derive Δ-AI by enforcing the equality of local conditional
distributions in a pair of graphical models on the same set of variables.

Setting. We use the notation introduced in §2.1. Let 𝑋 = (𝑋𝑣)𝑣∈𝑉 be a collection of discrete
random variables whose density 𝑝 has a factor structure of the form (1), with factors 𝜙𝑘 depending
on sets of variables 𝑆𝑘 . Let 𝐺 = (𝑉, 𝐸) be the graph with edges between any two variables that
cooccur in a factor, so that 𝑋 is a Markov network with respect to 𝐺.

Let 𝐺 be a chordal completion of 𝐺 and 𝐷 = (𝑉, 𝐴) an immorality-free orientation of 𝐺. By
the results in §2.1, 𝑋 is a Bayesian network with respect to 𝐷, so 𝑝 has a factorization over the
conditionals specified by 𝐷.

Δ-AI constraint. The Δ-AI constraint expresses the equality of the conditional distributions over
one of the variables given its Markov blanket under the two factorizations, 𝑝 determined by the
Markov network and 𝑞 by the Bayesian network. To be precise, suppose that 𝑥, 𝑥′ ∈ X are two
settings of the variables that differ in exactly one variable 𝑢, i.e., 𝑥𝑢 ≠ 𝑥′𝑢 and 𝑥𝑉\{𝑢} = 𝑥′

𝑉\{𝑢} .
Using the factorization for a Markov network (1) and that of a Bayesian network (2), and combining
them appropriately, we have:∏

𝑘:𝑢∈𝑆𝑘

𝜙𝑘
(
𝑥𝑆𝑘

)
𝜙𝑘

(
𝑥′
𝑆𝑘

) =
∏

𝑣∈{𝑢}∪Ch(𝑢)

𝑞
(
𝑥𝑣 | 𝑥Pa(𝑣)

)
𝑞

(
𝑥′𝑣 | 𝑥′Pa(𝑣)

) , Ch(𝑢) := {𝑣 : (𝑢, 𝑣) ∈ 𝐴}. (9)

We remark that the left side depends only on 𝑥{𝑢}∪N𝐺 (𝑢) , while the right side depends only on
𝑥{𝑢}∪N

𝐺
(𝑢) . Thus these constraints are local with respect to the PGM structure. They are nonetheless

sufficient to recover the conditional distributions in the Bayesian network. The correctness and
sufficiency of this constraint are formalized by the following proposition.
Proposition 1. Suppose that 𝑝 : X → R>0 is the density of a Markov network with factors 𝜙𝑘 and
that 𝑞 : X → R>0 is the density of a Bayesian network with respect to an I-map 𝐷 = (𝑉, 𝐴). Then
the following are equivalent: (1) for all 𝑥, 𝑥′ differing in a single variable 𝑥𝑢, (9) holds; (2) 𝑝 = 𝑞.

All proofs can be found in §D. We remark that the proof of Proposition 1, which uses the transitive
closure of the single-variable mutation relation, is similar to the principle of concrete score matching
(Meng et al., 2022), although the motivations are quite different.

From constraints to losses. We return to the problem of fitting a Bayesian network 𝑞\ (· | ·) to a
given factorized model 𝑝, as in §2.2. Proposition 1 gives sufficient local constraints for 𝑞\ to equal
𝑝. We can thus turn these constraints squared log-ratio losses in the style of (6) and (7):

LΔ (𝑥, 𝑢, 𝑥′𝑢) :=

∑︁
𝑘:𝑢∈𝑆𝑘

log
𝜙𝑘

(
𝑥𝑆𝑘

)
𝜙𝑘

(
𝑥′
𝑆𝑘

) − ∑︁
𝑣∈{𝑢}∪Ch(𝑢)

log
𝑞\

(
𝑥𝑣 | 𝑥Pa(𝑣)

)
𝑞\

(
𝑥′𝑣 | 𝑥′Pa(𝑣)

)
2

, (10)

where 𝑥′ is defined as the perturbation of 𝑥 with 𝑥𝑢 changed to the value 𝑥′𝑢. Proposition 1 easily
implies that if LΔ (𝑥, 𝑢, 𝑥′𝑢) = 0 for all 𝑥, 𝑢, 𝑥′𝑢, then 𝑞\ is an amortized sampler for 𝑝.

Training policy and exploration. Just as in GFlowNet training (§2.3), the Δ-AI objective
LΔ (𝑥, 𝑢, 𝑥′𝑢) can be optimized at on-policy samples 𝑥 ∼ 𝑞\ (𝑥) or those drawn from a tem-
pered/dithered policy 𝑞∼

\
or dataset. The variable 𝑢 at which 𝑥 is perturbed is sampled uniformly in

our experiments, although future work should investigate the effect of other perturbation policies.
The full training algorithm is summarized in Algorithm 1.

5

Published as a conference paper at ICLR 2024

Algorithm 1 Δ-amortized inference (basic
form)

Require: factors 𝜙𝑘 , DAG 𝐷, model 𝑞\ , op-
timization/exploration hyperparameters

1: repeat
2: Sample 𝑥 ∼ 𝑞∼

\
(𝑥) (training policy)

3: Sample 𝑢 ∈ 𝑉 , new value 𝑥′𝑢 ≠ 𝑥𝑢
4: \ ← grad update w.r.t. LΔ (𝑥, 𝑢, 𝑥′𝑢)
5: until converged

Local credit assignment. We emphasize that (10) de-
pends only on the values of 𝑥 in the 𝐺-neighbourhood
of 𝑢. The conditionals in this small subset of variables is
given strong local supervision from only the factors that
involve the variable 𝑢. This also significantly reduces
the memory cost, as we do not have to maintain all vari-
ables in the computation graph to compute gradients.

Masked autoencoder for amortizing all conditionals.
The form of the parametric model 𝑞\

(
𝑥𝑣 | 𝑥Pa(𝑣)

)
is not

specified in (10). In our experiments, we use a single
neural network, a masked autoencoder (MAE), to model all the conditionals specified by 𝐷 simul-
taneously, allowing to make use of generalizable structure in the conditionals. To be precise, in
the case of binary (±1) data, 𝑥Pa(𝑣) is encoded as a |𝑉 |-length vector with all units except those
corresponding to variables in Pa(𝑣) set to 0, and the logit of 𝑥𝑣 is read off from the output unit
corresponding to variable 𝑣.

A stochastic loss. If the number of terms on either side of (10) is prohibitively large, e.g., due to 𝑢
having too many children added during chordal completion, an unbiased stochastic estimator of the
gradient can be used. This estimator requires sampling only one child of 𝑢 at a time; see §E.

𝑉! 𝑉" 𝑉# 𝑉$

𝑉% 𝑉& 𝑉' 𝑉(

𝑉! 𝑉" 𝑉# 𝑉$

𝑉% 𝑉& 𝑉' 𝑉(

𝑉! 𝑉" 𝑉# 𝑉$

𝑉% 𝑉& 𝑉' 𝑉(

𝑉! 𝑉" 𝑉# 𝑉$

𝑉% 𝑉& 𝑉' 𝑉(

Figure 2: Generating and amortizing multiple
DAG orders. The conditionals present two I-
maps (DAGs) for the same undirected model 𝑝
are different: for example, the conditional 𝑝(𝑣1 |
𝑣2, 𝑣3) appears in the two DAGs in the second
row, but not in those in the first row. Δ-AI learns
a model 𝑞 that matches the conditionals in the tar-
get distribution 𝑝. If 𝑞 has a structure that allows
taking varying subsets of variables as input, then it
can be trained to match the conditionals appearing
in multiple DAG structures simultaneously, and
the resulting sampler can then be used for sam-
pling in any of these DAGs.

Amortizing over multiple DAG orders. An ad-
vantage of the Δ-AI formulation is that it allows
to perform amortized inference in multiple I-maps
(Bayesian network DAGs 𝐷) simultaneously. In-
deed, the Δ-AI constraint (9) is valid for any I-map
𝐷 for the Markov network𝐺, and the same paramet-
ric model 𝑞\ can be used for multiple DAGs (Fig. 2).
Amortization of DAG orders is especially beneficial
when using on-policy or tempered-policy training. If
the loss is optimized only at variables near the root of
the DAG, then the downstream variables do not need
to be sampled to obtain a loss gradient (a direct con-
sequence of the locality of the credit assignment),
which reduces the overhead of computing ‘rollouts’
of the model to obtain samples for training. If the
DAG order is freely chosen at each training itera-
tion, then a given conditional will be trained as long
as it is near the root of some I-map for the Markov
network. While this procedure increases the number
of functions that 𝑞\ must learn to express, in prac-
tice, it does not substantially slow down convergence
(see Fig. F.2), showing that the shared structure in
the conditionals of 𝑝 may in fact aid learning.

Uses of Δ-AI. Δ-AI allows to solve both problems described in §2.2. If the parameters of the
factors in a graphical model 𝑝, an amortized sampler 𝑞\ can be trained using Δ-AI to match the
conditional distributions of 𝑝, thus amortizing the (generally intractable) sampling from 𝑝. If
the parameters 𝜓 of the factors are unknown, then the parameters of 𝑝𝜓 can be updated using a
maximum-likelihood gradient using samples from 𝑞\ , while 𝑞 can be trained to match the condi-
tional distributions of a 𝑝𝜓 that evolves over the course of training, as we describe next.

Δ-AI in maximum-likelihood training of PGMs. As discussed at the end of §2.1, amortized
inference models can be used to obtain the log-likelihood gradient in generative modeling settings.
We elaborate two such settings in which an amortized model trained using Δ-AI can participate in a
bilevel optimization loop with a generative model.

• In the training of an energy-based model, such as a factorized Markov network 𝑝𝜓 , an amortized
inference model 𝑞\ can be used to draw the samples from 𝑝𝜓 needed in the negative phase in (4).

• In the training of a generative model 𝑝𝜓 on variables 𝑉 with latent variables 𝐻 ⊂ 𝑉 , an amortized
inference model 𝑞\ can be used to obtain the samples of 𝑥𝐻 conditioned on 𝑥𝑉\𝐻 needed in (5).
If 𝑝𝜓 has a known Markov network structure 𝐺, then the conditional distribution of 𝑥𝐻 given
𝑥𝑉\𝐻 is a Markov network with respect to the induced subgraph of 𝐺 on 𝐻 and is therefore also

6

Published as a conference paper at ICLR 2024

100 101 102 103 104

Wall-clock Time (sec)

0.550

0.575

0.600

0.625

0.650

0.675

0.700

NL
L

(a) Ising Lattice, |V|=64
TB
DB
FL-DB

-AI

101 102 103 104 105

Wall-clock Time (sec)

0.55

0.60

0.65

0.70

(b) Ising Lattice, |V|=1024

100 101 102 103

Wall-clock Time (sec)

0.50

0.55

0.60

0.65

0.70 (c) Factor Lattice, |V|=64

101 102 103 104 105

Wall-clock Time (sec)

0.50

0.55

0.60

0.65

0.70
(d) Factor Lattice, |V|=1024

Figure 4: Comparison of Δ-AI and GFlowNets. Δ-AI converges to the target distribution fastest.

a Bayesian network with respect to an I-map for that subgraph. Thus one can train an amortized
inference model 𝑞\ as a sampler of latent variables 𝑥𝐻 using the Δ-AI objectives, where the model
𝑞\ amortizes the dependence on the observed variables 𝑥𝑉\𝐻 by explicitly conditioning on them.

In both cases, one alternately optimizes \ with respect to the Δ-AI objectives and updates 𝜓 using
(3) or (4). The locality of credit assignment also benefits this parameter-learning scenario, in which
both the parameters of both 𝑞\ and 𝑝𝜓 can be optimized after sampling only a single variable and
its Markov blanket. The scheduling of the optimization steps in these bilevel optimization loops
is an important design choice. Past work that used a GFlowNet as the amortized inference model
performed alternating gradient steps with respect to \ and 𝜙 (Zhang et al., 2022) or used adaptive
schedules based on the loss values (Hu et al., 2023). We describe our choices in the experiment
sections below.

Continuous Δ-AI and score matching. A variant of Δ-AI with real-valued variables has connec-
tions to score matching; see §C for discussion and experiments.

4 EXPERIMENTS: SYNTHETIC DATA

In this section, we demonstrate the efficacy and efficiency of Δ-AI on sparse synthetic models in the
case where the parameters of 𝑝𝜓 are known, and study the parameter-learning scenario in §5. We
test the baselines and our method on the three graphical models shown in Fig. 3. See §F.1 for the
detailed experimental setup.

…

(a) Ising ladder

…

… …

(b) Ising lattice

…

… …

(c) Factor lattice
Figure 3: Graphical models. (a) and (b) are UGMs for
Ising models and (c) shows the factor graph model, where
each factor is a small randomly initialized MLP with four
arguments. (a) is chordal and (b,c) are non-chordal.

Δ-AI vs. GFlowNets. We compare Δ-AI
to regular GFlowNet losses: trajectory bal-
ance (TB) and detailed balance (DB). Both
require all variables to be instantiated to
compute a single reward, thus become in-
efficient when there is an excessive number
of variables. We also compare against the
forward-looking parameterization (FL-DB;
see §2.3 and §B.2), which reparametrizes
the flow function with intermediate ener-
gies to accelerate learning. All algorithms
amortize over multiple DAG orders. The
evaluation metric is negative log likelihood (NLL) of ground-truth samples from the target energy
function (long-run Gibbs) with respect to each learned sampler.

Fig. 4 shows that our Δ-AI achieves significantly faster training convergence, because even with the
same parametric model 𝑞\ being learned, the baselines still need all the variables to be instantiated
to receive a reward, resulting in longer wall-clock time and poor credit assignment. On the other
hand, the Δ-AI objective requires only a small subset of variables to be instantiated, which results
in much faster wall-clock time and stronger training signals for those small subsets. These results
demonstrate the superiority of the proposed local objectives.

Δ-AI vs. unstructured amortized inference. In §F.1, we also compare Δ-AI with amortized sam-
plers from past work that do not use the constraint of graphical model structure, finding that they
tend to converge even slower than the structured variants (Fig. F.1).

Δ-AI vs. MCMC. We further compare Δ-AI against MCMC methods: Gibbs sampling and its
variant Gibbs-With-Gradients (GWG; Grathwohl et al., 2021). The goal of this experiment is to
measure the amortization costs and benefits by comparing wall-clock time to generate high-quality
samples. In Fig. 5, the time axis of MCMC baselines means the wall-clock time of running 10k
independent Gibbs chains, and for Δ-AI it is the training time. Note that for this experiment, we
do not amortize multiple DAG orders in Δ-AI. Also note that the energy functions have a peaky

7

Published as a conference paper at ICLR 2024

0 50 100 150 200 250
Wall-clock Time (sec)

0

10

20

30

40

50

M
M

D

(a) Ising Ladder, |V|=64
Gibbs
GWG

-AI

0 100 200 300 400 500
Wall-clock Time (sec)

0

25

50

75

100

125

150 (b) Ising Ladder, |V|=256

0 50 100 150 200 250
Wall-clock Time (sec)

0

10

20

30

40

50
(c) Ising Lattice, |V|=64

0 100 200 300 400 500
Wall-clock Time (sec)

0

25

50

75

100

125

150 (d) Ising Lattice, |V|=256

Figure 5: Comparison against MCMC. (a, b) chordal graph, (c, d) non-chordal graph. Δ-AI provides a
substantial amortization benefit, with training time smaller than the mixing time of MCMC chains.

landscape (see §F.1), so the MCMC baselines have difficulties in traversing all the modes. The
evaluation metric is linear MMD between ground-truth samples (obtained by long-run Gibbs) and
the samples generated from each amortized sampler. We can see from Fig. 5 that after a short period
during which the amortized Δ-AI sampler performs poorly (as the amortization network is close to
initialization), soon Δ-AI achieves significantly lower MMD, showing its superior effectiveness in
traversing all the modes in the peaky distribution.

5 EXPERIMENTS: VARIATIONAL EM ON REAL DATA

Figure 6: Structure of the
PGM used in §5. Grey layers
above the pixel layer are com-
posed of latent variables. Nodes
within the boundaries of a blue
square represent a clique with the
node in the layer above (dashed
lines), except in the pixel layer,
where edges between pixels are
removed to enforce conditional
independence given the latents.
Only three clique windows are
shown for better visibility; in
practice,windows are tiled across
the layers with a specific win-
dow size and stride. The total
number of binary latent variables
in the three layers is 144 + 16 +
4 = 164. The graph contains
only 8.9% of the edges possible
in a model with conditionally in-
dependent pixels.

To demonstrate how Δ-AI can be used to learn a PGM from par-
tial observations, we revisit the problem of latent variable mod-
eling for MNIST images (Deng, 2012). Specifically, we want to
train a generative model 𝑝𝜓 (𝑥𝐻 , 𝑥𝑉\𝐻), where 𝑥𝐻 are latent vari-
ables and 𝑥𝑉\𝐻 are the observed pixel values. To train this model
using variational EM, we learn an amortized variational posterior
𝑞\ (𝑥𝐻 | 𝑥𝑉\𝐻) using Δ-AI or another inference method (E-step)
and learn 𝑝𝜓 by maximizing log 𝑝𝜓 (𝑥𝐻 , 𝑥𝑉\𝐻) on samples from
𝑞\ (M-step). Following past work on discrete probabilistic mod-
eling, the images are discretized by interpreting the pixel values
in [0, 1] as parameters of independent Bernoulli random variables,
from which we sample the pixel values.

We assume a pyramid-shaped graph structure for the latent variable
model, shown in Fig. 6, in which dependencies between variables
are local and sparse, and the observed variables are conditionally
independent given the latents (see §F.2 for details). We define 𝑝𝜓
as a Bayesian network with a DAG structure that is an I-map for
this pyramid-shaped undirected graphical model. The amortized
posterior 𝑞\ , also a Bayesian network, has the same structure as 𝑝𝜓
over the subgraph consisting of latent variables, but has all edges
from latent to hidden variables oriented upward, i.e., conditioning
the generation of latents in 𝐻 on observed variables in 𝑉 \ 𝐻. This
choice of DAG structure for 𝑞\ ensures it is an I-map for 𝑝𝜓 con-
ditioned on 𝑉 \ 𝐻. We amortize 𝑞\ over multiple DAG orders with
the same underlying undirected graph, as described in §3.

Given data 𝑥𝑉\𝐻 , we train 𝑞\ (𝑥𝐻 | 𝑥𝑉\𝐻) to be proportional to
𝑝𝜓 (𝑥𝐻 , 𝑥𝑉\𝐻), using the Δ-AI objective (10) treating 𝑝𝜓 as a factorized model, or using a GFlowNet
objective, using 𝑝𝜓 (𝑥𝐻 , 𝑥𝑉\𝐻) as the reward for 𝑥𝐻 . In both cases, we use a gently exploratory
training policy: 𝑥𝐻 is sampled from a tempered 𝑞\ with a low off-policy exploration rate (see §F.2).

We compare Δ-AI with the following algorithms for approximating the posterior:

(1) GFlowNets: the objectives from §2.3 (TB, DB, FL-DB), trained with reward 𝑝𝜓 (𝑥𝐻 , 𝑥𝑉\𝐻).
(2) Mean-field variational EM: a fully-factorized variational posterior trained using on-policy TB

with the same reward, equivalent to minimizing KL between the amortized and true posteriors.
(3) Wake-sleep: maximizing log 𝑞\ (𝑥𝐻 | 𝑥𝑉\𝐻) using one of the following: (i) Sleep: Uncon-

ditional samples 𝑥 from 𝑝𝜓 – the ‘sleep’ phase of wake-sleep (Hinton et al., 1995); (ii) IW:
Imporance-weighted samples 𝑥𝐻 from the posterior given a dataset example 𝑥𝑉\𝐻 , correspond-
ing to the ‘wake’ phase of reweighted wake-sleep (Bornschein & Bengio, 2015). The samples
are taken from 𝑞\ and weighted by 𝑝𝜓 (𝑥𝐻 ,𝑥𝑉\𝐻)

𝑞\ (𝑥𝐻 |𝑥𝑉\𝐻) normalized over a batch.
(4) Gibbs sampling: sampling the posterior using 𝐾-step Gibbs sampling with respect to 𝑝𝜓 .

8

Published as a conference paper at ICLR 2024

Vanilla VAE
Gibbs
FL-DB

DB
TB

Mean-Field EM
Sleep

IW
-AI

Ground Truth

(a) Unconditional Samples

0.2 0.5 1 2 5 10
Wall-Clock Time (h)

100

125

150

175

200

NL
L

(b) NLL vs. Time

0.2 0.5 1 2 5 10
Wall-Clock Time (h)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

En
tro

py

(c) Classifier Entropy vs. Time

Gibbs
FL-DB
DB
TB
Mean-Field EM
Sleep
IW

-AI

Figure 7: Results on latent-variable modeling of MNIST. (a) Unconditional samples from 𝑝𝜓 . For compar-
ison, samples from a vanilla VAE (NLL ≈ 85, entropy ≈ 0.24), with an encoder and decoder parametrized
using the same neural network architectures as for 𝑞\ and 𝑝𝜓 , respectively, and latent dimension equal to the
number of latent variables in the graphical model, are shown at the top, and ground truth samples are shown at
the bottom. (b) NLL of held-out test data for amortized methods. (c) Mean prediction entropy on unconditional
samples of a pretrained MNIST classifier. All models are trained for 12 hours; mean ± std over 5 runs shown.

Algorithms (1), (2), and (3) use the same model architecture as Δ-AI for the conditionals in 𝑞\ ,
while (4) is not an amortized inference method and involves no learning in the E-step.

We use the NLL of test-set samples under 𝑝𝜓 , estimated using the importance-weighted variational
lower bound (Burda et al., 2016), as the main evaluation metric to assess convergence of the bilevel
objective for the amortized inference algorithms. To assess the quality of generated samples, moti-
vated by out-of-distribution detection methods (Liu et al., 2023), we also measure the mean predic-
tion entropy of a standard pretrained MNIST classifier evaluated on unconditional samples from 𝑝𝜓 .

Unconditional samples from 𝑝𝜓 and evaluation metrics are plotted in Fig. 7. As we move from a
variational factorized posterior with learned structured prior (mean-field EM), to a structured pos-
terior and structured prior (Δ-AI and GFlowNet baselines), the quality of unconditional samples
improves. Wall-clock convergence for Δ-AI is quicker than all other baselines, with the IW variant
closer to Δ-AI than the sleep variant, which is expected to be slower due to the initially poor quality
of samples from 𝑝𝜓 . While they performed well in this setting, wake-sleep variants are limited to
settings with a normalized target density (unlike GFlowNets, MCMC, and Δ-AI) and scale poorly
with the latent dimension. Gibbs sampling of the posterior, the standard non-amortized sampling
algorithm in graphical models, is the third-slowest to converge. Although FL-DB uses the factoriza-
tion of the energy function as an inductive bias for the state flow, it showed the slowest wall-clock
convergence due to the expensive computation of the energy of every partially instantiated state.

Additional results are provided in §F.2; notably, we show that amortizing over multiple orders has
barely any impact on convergence time for Δ-AI, as opposed to learning the conditionals of a single
DAG (Fig. F.2), which not only demonstrates the benefit of parameter-sharing in 𝑞\ , but also Δ-AI’s
unique ability to do inference over partial subsets, which reduces sampling time. We emphasize that
none of the baselines are capable of partial inference over subsets of variables. Δ-AI is therefore ex-
pected to lead to even more considerable improvements in wall-clock convergence time and memory
requirements as the dimensionality of the graphical model is increased.

6 DISCUSSION

We have proposed an objective for amortized sampling in probabilistic graphical models that uses
only local information as a learning signal. In this work, we evaluated our method in settings where
the PGM structure was assumed known; however, in practice, the structure may need to be learned
jointly with training of the amortized sampler by Δ-AI. We note that the related algorithm family of
GFlowNets has successfully been applied to structure learning of Bayesian networks, both with and
without joint inference of the parameters (Deleu et al., 2022; 2023; Nishikawa-Toomey et al., 2022),
but not yet to structure learning of undirected graphical models.

A limitation of Δ-AI is the scaling to graphs for which chordalization results in very large Markov
blankets, making training less efficient. Future work should thus consider methods such as stochastic
losses (§E) or parametrization of small joint conditionals, such as those recovered by belief propaga-
tion in junction trees, rather than only the univariate conditionals specified by the Bayesian network.
A related question is the choice of the subsets of variables to sample when learning from incomplete
observations, which is necessary for learning on very large graphs where instantiating all variables is
prohibitive. Heuristics for variable selection that maximize information gain – estimation of which
can also be amortized – can be considered. Finally, Δ-AI should be applied to continuous spaces
and on real-world data where we can impose the inductive bias of a PGM structure.

9

Published as a conference paper at ICLR 2024

REPRODUCIBILITY

Code is available at https://github.com/GFNOrg/Delta-AI.

ACKNOWLEDGMENTS

The authors are grateful to Zhen Liu for discussions in the initial stages of this project, to Olexa
Bilaniuk for help with code optimization, and to Thomas Jiralerspong for his help during the author
response period.

JF acknowlegdes support from the FRQS/MSSS.

GL acknowledges funding from CIFAR, NSERC, Samsung, and a Canada Research Chair in Neural
Computation and Interfacing.

YB acknowledges funding from CIFAR, NSERC, Intel, and Samsung.

The research was enabled in part by computational resources provided by the Digital Research
Alliance of Canada (https://alliancecan.ca), Mila (https://mila.quebec), and
NVIDIA.

REFERENCES

Barry C. Arnold and D. V. Gokhale. Distributions most nearly compatible with given families of
conditional distributions. Test, 7(2):377–390, 1998.

Matthew J. Beal. Variational algorithms for approximate Bayesian inference, 2003. URL https:
//cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow net-
work based generative models for non-iterative diverse candidate generation. Neural Information
Processing Systems (NeurIPS), 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
GFlowNet foundations. Journal of Machine Learning Research, (24):1–76, 2023.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal
Statistical Society, Series B, 36(2):192–236, 1974.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. International Conference on Learn-
ing Representations (ICLR), 2015.

Yuri Burda, Roger Baker Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
International Conference on Learning Representations (ICLR), 2016.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. Uncertainty in
Artificial Intelligence (UAI), 2022.

Tristan Deleu, Mizu Nishikawa-Toomey, Jithendaraa Subramanian, Nikolay Malkin, Laurent Char-
lin, and Yoshua Bengio. Joint Bayesian inference of graphical structure and parameters with a
single generative flow network. Neural Information Processing Systems (NeurIPS), 2023.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39(1):1–38, 1977.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Yilun Du, Shuang Li, Joshua B. Tenenbaum, and Igor Mordatch. Improved contrastive divergence
training of energy based models. International Conference on Machine Learning (ICML), 2021.

Samuel J. Gershman and Noah D. Goodman. Amortized inference in probabilistic reasoning. Cog-
nitive Science, 36, 2014.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris Maddison. Oops I
took a gradient: Scalable sampling for discrete distributions. International Conference on Ma-
chine Learning (ICML), 2021.

10

https://github.com/GFNOrg/delta-ai
https://alliancecan.ca
https://mila.quebec
https://cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf
https://cse.buffalo.edu/faculty/mbeal/papers/beal03.pdf

Published as a conference paper at ICLR 2024

John M. Hammersley and Peter E. Clifford. Markov random fields on finite graphs and lattices.
1971.

Luke B. Hewitt, Tuan Anh Le, and Joshua B. Tenenbaum. Learning to learn generative programs
with memoised wake-sleep. Uncertainty in Artificial Intelligence (UAI), 2020.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural
Computation, 14:1771–1800, 2002.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and R M Neal. The “wake-sleep” algorithm for
unsupervised neural networks. Science, 268 5214:1158–61, 1995.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural Infor-
mation Processing Systems (NeurIPS), 2020.

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie Everett, Alexandros Graikos, and Yoshua Bengio.
GFlowNet-EM for learning compositional latent variable models. International Conference on
Machine Learning (ICML), 2023.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. An introduction
to variational methods for graphical models. Machine Learning, 37:183–233, 2004.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. International Conference
on Learning Representations (ICLR), 2014.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. Neural Information Processing
Systems (NeurIPS), 2019a.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting
reweighted wake-sleep for models with stochastic control flow. Uncertainty in Artificial Intel-
ligence (UAI), 2019b.

Tuan Anh Le, Katherine M. Collins, Luke B. Hewitt, Kevin Ellis, N. Siddharth, Samuel J. Gershman,
and Joshua B. Tenenbaum. Hybrid memoised wake-sleep: Approximate inference at the discrete-
continuous interface. International Conference on Learning Representations (ICLR), 2022.

Xixi Liu, Yaroslava Lochman, and Zach Chrsitopher. GEN: Pushing the limits of softmax-based
out-of-distribution detection. Computer Vision and Pattern Recognition (CVPR), 2023.

Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia),
34(6):248:1–248:16, October 2015.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, Andrei
Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from partial episodes
for improved convergence and stability. International Conference on Machine Learning (ICML),
2023.

Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black.
AMASS: Archive of motion capture as surface shapes. International Conference on Computer
Vision (ICCV), 2019.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. Neural Information Processing Systems (NeurIPS),
2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. GFlowNets and variational inference. International Conference on Learning
Representations (ICLR), 2023.

11

Published as a conference paper at ICLR 2024

Christian Mandery, Ömer Terlemez, Martin Do, Nikolaus Vahrenkamp, and Tamim Asfour. Uni-
fying representations and large-scale whole-body motion databases for studying human motion.
IEEE Transactions on Robotics, 32(4):796–809, 2016.

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Gen-
eralized score matching for discrete data. Neural Information Processing Systems (NeurIPS),
2022.

Radford M Neal and Geoffrey E Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio, and Laurent
Charlin. Bayesian learning of causal structure and mechanisms with GFlowNets and variational
bayes. arXiv preprint arXiv:2211.02763, 2022.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of GFlowNets with
local credit and incomplete trajectories. International Conference on Machine Learning (ICML),
2023.

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank Wood,
and Yee Whye Teh. Tighter variational bounds are not necessarily better. International Conference
on Machine Learning (ICML), 2018.

Lawrence K. Saul, T. Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid belief net-
works. Journal of Artificial Intelligence Research, 4:61–76, 1996.

Vaidotas Simkus, Benjamin Rhodes, and Michael U. Gutmann. Variational Gibbs inference for
statistical model estimation from incomplete data. Journal of Machine Learning Research, (24):
1–72, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Neural Information Processing Systems (NeurIPS), 2019.

Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. Learning stochastic inverses. Neural
Information Processing Systems (NIPS), 2013.

Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the likelihood
gradient. International Conference on Machine Learning (ICML), 2008.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. International Conference
on Machine Learning (ICML), 2022.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A. Naesseth. A
variational perspective on generative flow networks. Transactions on Machine Learning Research
(TMLR), 2023.

12

Published as a conference paper at ICLR 2024

A OTHER RELATED WORK

Amortized inference in graphical models has been proposed as a model for human reasoning (Ger-
shman & Goodman, 2014). PGMs are the setting for many early variational inference methods (Saul
et al., 1996; Beal, 2003; Jordan et al., 2004) and for related problems, e.g., recovering tractable joints
from unary conditionals such as those appearing in the Δ-AI objective (Arnold & Gokhale, 1998)
and fitting conditionals over latent variables using approximate samples (Stuhlmüller et al., 2013;
Simkus et al., 2023). Amortized inference is an ingredient in the training of structured generative
models using variational EM (§2.1) and wake-sleep algorithms (Hinton et al., 1995; Bornschein &
Bengio, 2015; Le et al., 2019b; Hewitt et al., 2020; Le et al., 2022). Beyond PGMs, amortized infer-
ence is used in weakly structured spaces, notably in variational autoencoders (Kingma & Welling,
2014; Burda et al., 2016; Rainforth et al., 2018); score-based models and diffusion models (Song &
Ermon, 2019; Ho et al., 2020) can also be seen as performing amortized posterior inference.

B EXTENDED BACKGROUND

B.1 GRAPHICAL MODELS

Equivalence of factor models and Markov networks. A distribution of the form (1) is a Markov
network with respect to a certain graph 𝐺 = (𝑉, 𝐸). This graph is defined by the condition that
𝑢𝑣 ∈ 𝐸 if 𝑢 and 𝑣 cooccur in some factor’s set of arguments 𝑆𝑘 (i.e., ∃𝑘 : {𝑢, 𝑣} ⊆ 𝑆𝑘). Remarkably,
the converse is also true: the Hammersley-Clifford theorem (Hammersley & Clifford, 1971; Besag,
1974) states that if 𝑋 is a Markov network with respect to 𝐺, then its density has a factorization
of the form (1), with each factor 𝜙𝑘 depending on a set of variables that forms a maximal clique
(complete subgraph) in 𝐺.

Conditional independences in Bayesian networks. The kinds of conditional independences that
can expressed by a Bayesian network structure are distinct from those that can be expressed by
a Markov network structure. For example, consider the DAG 𝐷 = 1→ 2← 3 . Any Bayesian
network with this structure has 𝑋1 and 𝑋3 marginally independent, but not necessarily conditionally
independent given 𝑋2. No Markov network structure can encode these constraints: 𝑋1 and 𝑋3
must be in different connected components (since they are marginally independent), implying their
independence given 𝑋2 as well.

We proceed to review the conversion from Bayesian to Markov networks and vice versa, elucidating
the relationships that were summarized in Fig. 1.

From Bayesian networks to Markov networks. If 𝑋 is a Bayesian network with respect to the
graph 𝐷 = (𝑉, 𝐴), then every conditional in (2) can be considered a factor in a model of the form (1).
Thus 𝑋 is also a Markov network with respect to the graph 𝐺 = (𝑉, 𝐸) that has an edge between two
variables if they cooccur in some conditional (i.e., (𝑢, 𝑣) ∈ 𝐸 if (𝑢, 𝑣) ∈ 𝐴, (𝑣, 𝑢) ∈ 𝐴, or (𝑢, 𝑤) ∈ 𝐴
and (𝑣, 𝑤) ∈ 𝐴 for some 𝑤 ∈ 𝑉). Equivalently, 𝐺 is constructed by forming a clique out of every
variable together with its parents.

The underlying undirected graph of 𝐷 equals 𝐺 – the above procedure introduces no extra edges
– if and only if 𝐷 has no immoralities (induced subgraphs of the form • → • ← •). Under these
conditions, the set of distributions that are Bayesian networks with respect to 𝐷 coincides with the
set of distributions that are Markov networks with respect to 𝐺.

From Markov networks to Bayesian networks. Conversely, suppose that 𝑋 is a Markov net-
work with respect to 𝐺 = (𝑉, 𝐸). Recall that an acyclic orientation of 𝐺 is a DAG 𝐷 = (𝑉, 𝐴)
whose underlying undirected graph is 𝐺. It can be shown that 𝐺 has an acyclic orientation with no
immoralities if and only 𝐺 is chordal.

Any graph 𝐺 can be converted into a chordal graph 𝐺, known as a chordal completion of 𝐺, by
adding extra edges. Although the optimal such chordalization is in general intractable to compute,
the min-fill heuristic can be used to find chordal completions.

The set of distributions that are Markov networks with respect to 𝐺 is a subset of those that are
Markov networks with respect to 𝐺. The chordal completion 𝐺 has an acyclic, immorality-free
orientation 𝐷, which is called a P-map for 𝐺 and an I-map for 𝐺. Any Markov network with respect
to 𝐺 is also a Bayesian network with respect to its P-map 𝐷. Consequently, any Markov network
with respect to the original graph 𝐺 is a Bayesian network with respect to its I-map 𝐷.

13

Published as a conference paper at ICLR 2024

Sampling a P-map for a chordal factor graph. Let 𝐺 be a chordal graph (note that any graph
can be chordalized by inserting additional edges, for example, using the min-fill algorithm). We
summarize how to find a P-map, i.e., an orientation of the edges of 𝐺 that has no immoralities.

First, the order-maximal cliques are found using a maximum cardinality search algorithm. Let 𝐶 be
the resulting set of maximal cliques. For maximal cliques 𝑖, 𝑗 , let 𝑆𝑖 𝑗 = |𝐶𝑖 ∩ 𝐶 𝑗 | be the number of
shared vertices, and let 𝐽 = (𝐶, 𝑆) be the weighted graph with a node corresponding to each clique
and an edge of weight 𝑆𝑖 𝑗 between every pair of cliques 𝑖 and 𝑗 . A junction tree, or clique tree, can
be found by first sampling a maximum spanning tree for 𝐽 and then directing its edges away from
any chosen root clique.

Finally, the orientation of 𝐽 is used to derive an orientation of 𝐺, by traversing the tree 𝐽 in a
topological order, visiting the unvisited nodes within each clique in an arbitrary order, and orienting
edges of 𝐺 towards any newly visited nodes.

The arbitrary choices made in this procedure – in the choice of maximum spanning tree, the choice
of root clique, and the choice of ordering the unvisited nodes within each clique – can be varied to
produce multiple P-maps for the same chordal graph.

B.2 GENERATIVE FLOW NETWORKS

Subtrajectory balance. We describe an interpolation between the TB loss (6) and DB loss (7),
known as SubTB (Madan et al., 2023), as it applies to our setting.

SubTB requires learning the same estimators as the DB loss: the flow function 𝐹\ , in addition to the
conditionals. For a sequence of sampled values 𝑥𝑣1 , 𝑥𝑣2 , . . . , 𝑥𝑣|𝑉 | , the objective is decomposed over
sub-ranges:

LSubTB,𝑖: 𝑗 (𝑥) =
(
log 𝐹\

(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
+

𝑗∑︁
𝑘=𝑖+1

log 𝑞\
(
𝑥𝑣𝑘 | 𝑥Pa(𝑣𝑘)

)
− log 𝐹\

(
𝑥{𝑣1 ,...,𝑣 𝑗 }

))2

,

LSubTB (𝑥) =
∑

0≤𝑖< 𝑗≤ |𝑉 | _
𝑗−𝑖LSubTB,𝑖: 𝑗 (𝑥)∑

0≤𝑖< 𝑗≤ |𝑉 | _ 𝑗−𝑖
.

Notice that 𝑗 = 𝑖 + 1 recovers DB and 𝑖 = 0, 𝑗 = |𝑉 | recovers TB. The hyperparameter _ controls
the tradeoff between the losses for large 𝑗 − 𝑖 (closer to TB) and small 𝑗 − 𝑖 (closer to DB), although
values of _ close to 1 are typical.

The forward-looking parametrization (8) is also applicable to SubTB.

Defining partial energies. We experimented with two ways of defining the partial reward �̃� for
partially instantiated variables. A natural way to define �̃� accumulates the product of the factors all
of whose arguments are present in the partial sample:

�̃�
(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
=

∏
𝑘:𝑆𝑘⊆{𝑣1 ,...,𝑣𝑖 }

𝜙𝑘
(
𝑥𝑆𝑘

)
. (11)

The partial reward signal is accumulated gradually as the arguments of more factors 𝜙𝑘 are ‘filled
in’, providing a learning signal for partial samples.

However, we found that this option performs poorly in practice, possibly due to the parametrization
of NN\ in (8) as a head on the masked autoencoder (cf. §3) that also predicts the logits of condition-
als in 𝑞\ . Such a model must learn to be sensitive to whether any given factor is fully instantiated
(all entries nonzero – either +1 or −1), and we attribute the failure to this dependence being difficult
to learn.

An alternative option, which works better in practice and is tested in our experiments, takes advan-
tage of the factors – always MLPs or bilinear functions, in our experiments – being able to take
arbitrary real-valued inputs, not just the discrete values in the sample space. Therefore, not-yet-
sampled variables can simply be set to zero (the value corresponding to a masked input). We simply
define

�̃�
(
𝑥{𝑣1 ,...,𝑣𝑖 }

)
=

∏
𝑘

𝜙𝑘

(
𝑥
[𝑣1 ,...,𝑣𝑖]
𝑆𝑘

)
, (12)

where 𝑥 [𝑣1 ,...,𝑣𝑖] denotes the masked sample that is the input the masked autoencoder, with 0 indi-
cating absence of a value for all not-yet-sampled variables. Thus the factors for which not all values
have been instantiated are computed with inputs of 0 for the missing variables.

14

Published as a conference paper at ICLR 2024

C Δ-AI WITH CONTINUOUS VARIABLES

C.1 CONTINUOUS Δ-AI AND SCORE MATCHING

Beyond the discrete spaces considered in this paper, it is interesting to consider the generalization of
Δ-AI to continuous sample spaces, where the variables take real values. Recall that for two densities
𝑝 and 𝑞 on R𝑑 , the Fisher divergence is defined as

E𝑥∼𝑞 (𝑥) ∥∇𝑥 log 𝑞(𝑥) − ∇𝑥 log 𝑝(𝑥)∥2 = E𝑥∼𝑞 (𝑥)
∑︁
𝑖

(
𝜕 log 𝑞(𝑥)

𝜕𝑥𝑖
− 𝜕 log 𝑝(𝑥)

𝜕𝑥𝑖

)2
. (13)

The objective of score-based generative models (e.g., Song & Ermon (2019)) optimizes (13) with
respect to 𝑝 (or its score ∇ log 𝑝) against a fixed distribution 𝑞 – typically the data distribution
convolved with noise, which can be tractably sampled if a dataset is available. This is distinct from
our motivation of matching 𝑞 to an intractable distribution 𝑝. However, we have the following result.

Proposition 2 (informal). In a PGM over real-valued variables, the expected Δ-AI objective (10)
over 𝑥 sampled from 𝑝, 𝑢 chosen uniformly at random, and additive perturbations 𝑥′𝑢 = 𝑥𝑢 + ℎ
approaches the score matching objective as ℎ→ 0.

Prop. 2 has implications for training generative models over continuous-valued data with known
graphical model structure. It can motivate the use of scores in place of the perturbation ratios in (10)
when working in continuous spaces: the scores share with the perturbation ratios the property of
being independent of the variables outside the Markov blanket of 𝑢.

0

12

5 4

8 7

3

6

9

11

12

10

15

1417
192123

13 16
18 20 22

Figure C.1: Illustration of the joint positions in the human poses dataset. Each human pose is specified by
24 joints, as illustrated above, according to the SMPL body model (Loper et al., 2015). Each joint is specified
by 3-dimensional joint angles of range [−𝜋, 𝜋], and connected to a set of other adjacent joints. The overall
adjacency graph forms a tree, such that the graph is already chordal.

0 20 40 60 80
Wall-clock Time (min)

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 M
M

D

Single DAG order
-AI

TB
DB
FL-DB

0 20 40 60 80
Wall-clock Time (min)

0.0

0.1

0.2

0.3

0.4

0.5 Amortizing multiple DAG orders
-AI

TB
DB
FL-DB

Figure C.2: Experimental results on the Poses dataset. We report mean and standard deviation over 3 runs.

C.2 EXPERIMENT ON POSES DATASET

We further validate Δ-AI on a real-world dataset with continuous variables. This is a fully-observed
setting with no latent variables.

Dataset. We use the AMASS dataset (Mahmood et al., 2019), which is a large collection of record-
ings of real human poses. For this experiment, we focus on the KIT subset (Mandery et al., 2016),

15

Published as a conference paper at ICLR 2024

and sample 100,000 instances from this subset. 20% is held-out as a test set. Each human pose is
specified by 24 “joints”, each of which represent a body part (neck, spine, left knee, right knee, etc.)
that can take be articulated relative to adjacent body parts. See Figure C.1 for the illustration. Each
joint orientation is specified by a 3-dimensional axis-angle representation in [−𝜋, 𝜋]3. The overall
graph forms a tree, which is chordal.

Factor graph and amortized sampler. We assume that the data-generating factor graph has as ad-
jacency matrix the structural connectivity of the joints in the dataset (i.e. if two joints are connected
together by a body-part, such as the left wrist and left elbow, then these two variables will share an
edge in the factor graph structure). Each factor takes 6 variables (2 joints × 3 angles) as input, and
each factor is parameterized by a separate 3-layer multilayer perceptron with ReLU activations. The
amortized sampler outputs the parameters of a Truncated Gaussian random variable (truncated to the
range [−1, 1] to model the conditional distributions in the factor graph. We found that optimizing
truncated Gaussian distributions was more stable than Beta. We jointly train the sampler to approx-
imate the factor graph distribution using Δ-AI and the factor parameters (the energy function) using
(4).

Baselines and evaluation metric. We consider the same set of baselines as in Figure 4: TB, DB,
and FL-DB. Note that for all the baselines, the sampling is done using the same sparse graphical
model constraints (each variable is sampled conditioned only on their parents) for fair comparison.
The evaluation metric is linear MMD between the test data and the generated samples from the
amortized sampler.

Results. Figure C.2 shows that Δ-AI outperforms all the baselines by significant margin in terms
of wall-clock convergence on the MMD. This tendency holds regardless of whether we learn to
sample according to a single DAG I-map of the factor graph (Figure C.2, Left), or we amortizing
multiple DAG orders using the same neural network (Figure C.2, Right).

D PROOFS

Proposition 1. Suppose that 𝑝 : X → R>0 is the density of a Markov network with factors 𝜙𝑘 and
that 𝑞 : X → R>0 is the density of a Bayesian network with respect to an I-map 𝐷 = (𝑉, 𝐴). Then
the following are equivalent: (1) for all 𝑥, 𝑥′ differing in a single variable 𝑥𝑢, (9) holds; (2) 𝑝 = 𝑞.

Proof of Proposition 1. Part 1: (1)⇐= (2). Suppose that 𝑞 = 𝑝, i.e., the conditional distributions 𝑞
specified by the Bayesian network are the conditionals of the distribution 𝑝.

As stated before, the Δ-AI constraint stems from an equivalence of the Markov and Bayesian net-
work factorizations.

Suppose that 𝑥, 𝑥′ ∈ X are two settings of the variables that differ in exactly one variable 𝑢, i.e.,
𝑥𝑢 ≠ 𝑥

′
𝑢 and 𝑥𝑣 = 𝑥𝑣 for all 𝑣 ∈ 𝑉 \ {𝑢}. Using the Markov network factorization (1), we have

𝑝(𝑥)
𝑝(𝑥′) =

1
𝑍

∏
𝑘 𝜙𝑘

(
𝑥𝑆𝑘

)
1
𝑍

∏
𝑘 𝜙𝑘

(
𝑥′
𝑆𝑘

) =
∏
𝑘

𝜙𝑘
(
𝑥𝑆𝑘

)
𝜙𝑘

(
𝑥′
𝑆𝑘

) =
∏
𝑘:𝑢∈𝑆𝑘

𝜙𝑘
(
𝑥𝑆𝑘

)
𝜙𝑘

(
𝑥′
𝑆𝑘

) , (14)

where the last equality uses that 𝑥 and 𝑥′ differ only at 𝑢, while the factor 𝜙𝑘 is independent of 𝑥𝑢
unless 𝑢 ∈ 𝑆𝑘 .

On the other hand, using the Bayesian network factorization (2), we have
𝑝(𝑥)
𝑝(𝑥′) =

∏
𝑣∈𝑉 𝑝

(
𝑥𝑣 | 𝑥Pa(𝑣)

)∏
𝑣∈𝑉 𝑝

(
𝑥′𝑣 | 𝑥′Pa(𝑣)

) =
∏
𝑣∈𝑉

𝑝
(
𝑥𝑣 | 𝑥Pa(𝑣)

)
𝑝

(
𝑥′𝑣 | 𝑥′Pa(𝑣)

) =
∏

𝑣∈{𝑢}∪Ch(𝑢)

𝑝
(
𝑥𝑣 | 𝑥Pa(𝑣)

)
𝑝

(
𝑥′𝑣 | 𝑥′Pa(𝑣)

) . (15)

The last equality similarly uses that the numerator and denominator can differ only if the conditional
of 𝑥𝑣 given its parents depends on 𝑥𝑢, which occurs if and only if 𝑣 = 𝑢 or 𝑣 is a child of 𝑢. The
Δ-AI constraint (9) expresses precisely the equality of the two expressions (14) and (15).

Part 2: (1) =⇒ (2). Conversely, we must show that if the equality holds for all 𝑥, 𝑥′ differing in a
single variable, then 𝑝 = 𝑞. Because the left side equals of the equality equals 𝑝 (𝑥)

𝑝 (𝑥′) by (14), and

its right side equals 𝑞 (𝑥)
𝑞 (𝑥′) by (15), the equality, together with positivity of all densities, implies that

𝑝 (𝑥)
𝑞 (𝑥) =

𝑝 (𝑥′)
𝑞 (𝑥′) .

16

Published as a conference paper at ICLR 2024

The transitive closure of the relation ∼ on X defined by 𝑥 ∼ 𝑥′ if 𝑥 and 𝑥′ differ at a single variable
is the trivial equivalence relation, i.e., any 𝑥, 𝑥′ ∈ X are lined by a chain 𝑥 = 𝑥1 ∼ 𝑥2 ∼ · · · ∼ 𝑥𝑛 = 𝑥′
such that each 𝑥𝑖 , 𝑥𝑖+1 differ in a single variable. It follows that for any 𝑥, 𝑥′ ∈ X, 𝑝 (𝑥)

𝑞 (𝑥) =
𝑝 (𝑥′)
𝑞 (𝑥′) .

Therefore, the two densities are proportional, which implies that they are equal. □

Proposition 2 (informal). In a PGM over real-valued variables, the expected Δ-AI objective (10)
over 𝑥 sampled from 𝑝, 𝑢 chosen uniformly at random, and additive perturbations 𝑥′𝑢 = 𝑥𝑢 + ℎ
approaches the score matching objective as ℎ→ 0.

Proof of Proposition 2. We assume the log-density log 𝑝 is continuously differentiable. Let 𝑒𝑖 be
the unit vector along coordinate 𝑖. The Δ-AI objective is then

E𝑥∼𝑝 (𝑥)E𝑖

(
log

𝑝(𝑥 + ℎ𝑒𝑖)
𝑝(𝑥) − log

𝑞\ (𝑥 + ℎ𝑒𝑖)
𝑞\ (𝑥)

)2
= E𝑥∼𝑝 (𝑥)E𝑖

(
𝜕 log 𝑝(𝑥)

𝜕𝑥𝑖
ℎ − 𝜕 log 𝑞\ (𝑥)

𝜕𝑥𝑖
ℎ +𝑂 (ℎ2)

)2

= ℎ2

(
E𝑥∼𝑝 (𝑥)E𝑖

(
𝜕 log 𝑝(𝑥)

𝜕𝑥𝑖
− 𝜕 log 𝑞\ (𝑥)

𝜕𝑥𝑖

)2
+𝑂 (ℎ)

)
=
ℎ2

𝑑

(
E𝑥∼𝑝 (𝑥) ∥∇𝑥 log 𝑝(𝑥) − ∇𝑥 log 𝑞\ (𝑥)∥2 +𝑂 (ℎ)

)
.

We see that the Δ-AI objective, normalized by 𝑑

ℎ2 , approaches the gradient of the Fisher information
(13) as ℎ→ 0. □

E STOCHASTIC LOSSES FOR SQUARED-SUM OBJECTIVES

Proposition 3. Suppose 𝑛 > 1. Let 𝑆 =
∑𝑛
𝑖=1 𝑓𝑖 and 𝐿 = 1

2 (𝑔 + 𝑆)
2, where 𝑔 and each 𝑓𝑖 are

functions of \. Let

𝐿𝑖 :=
1
2
(𝑔 + 𝑛 𝑓𝑖)2, 𝐿𝑖, 𝑗 :=

𝑛

2
(�̄� + (𝑛 − 1) 𝑓𝑖 + 𝑓 𝑗)2

with �̄� and 𝑓𝑖 indicating that gradients are blocked, i.e., 𝜕�̄�
𝜕\

= 0 and 𝜕 𝑓𝑖
𝜕\

= 0. Then

𝜕𝐿

𝜕\
= E𝑖

[
𝜕𝐿𝑖

𝜕\

]
+ E𝑖≠ 𝑗

[
𝜕𝐿𝑖, 𝑗

𝜕\

]
, (16)

where E𝑖 [] is a uniform average over indices 𝑖 in {1, . . . , 𝑛} and E𝑖≠ 𝑗 [] is a uniform average over
all pairs of different indices in {1, . . . , 𝑛}.

Proof. The gradient of 𝐿 is:
𝜕𝐿

𝜕\
= (𝑔 + 𝑆)

(
𝜕𝑔

𝜕\
+ 𝜕𝑆
𝜕\

)
= 𝑔

𝜕𝑔

𝜕\
+ 𝑔 𝜕𝑆

𝜕\
+ 𝑆 𝜕𝑔

𝜕\
+

∑︁
𝑖

𝑓𝑖
𝜕 𝑓𝑖

𝜕\
+

∑︁
𝑖≠ 𝑗

𝑓𝑖
𝜕 𝑓 𝑗

𝜕\
(17)

Let us now show that we recover the same terms from the gradient of the right side of (16):

E𝑖

[
𝜕𝐿𝑖

𝜕\

]
= E𝑖

[
(𝑔 + 𝑛 𝑓𝑖)

𝜕𝑔

𝜕\

]
= 𝑔

𝜕𝑔

𝜕\
+ 𝑆 𝜕𝑔

𝜕\
,

E𝑖≠ 𝑗

[
𝜕𝐿𝑖, 𝑗

𝜕\

]
= E𝑖≠ 𝑗

[
𝑛(𝑔 + (𝑛 − 1) 𝑓𝑖 + 𝑓 𝑗)

𝜕 𝑓 𝑗

𝜕\

]
= 𝑔

𝜕𝑆

𝜕\
+

∑︁
𝑗

𝑓 𝑗
𝜕 𝑓 𝑗

𝜕\
+

∑︁
𝑖≠ 𝑗

𝑓𝑖
𝜕 𝑓 𝑗

𝜕\
,

which exactly recovers the five terms in (17). □

17

Published as a conference paper at ICLR 2024

Figure F.1: Wall-clock training convergence on synthetic experiments with unstructured GFlowNet samplers
from Zhang et al. (2022).

F EXTENDED EXPERIMENT DETAILS AND RESULTS

F.1 SYNTHETIC EXPERIMENTS

Energy models. In the synthetic experiments, we use either Ising models or factor graph models.

• The Ising model is a Markov random field, a distribution over 𝐷-dimensional binary vectors.
Each element in a vector has a value of either −1 or +1. The following energy model E specifies
the distribution over those binary vectors 𝑥:

𝑝(𝑥) ∝ exp(−E(𝑥)), E(𝑥) = 𝜎 · (−𝑥⊤𝐽𝑥 − 𝑥⊤𝑏) (18)
where 𝐽 is a symmetric interaction matrix and 𝑏 is a unary potential vector. 𝜎 > 0 controls the
sharpness of the energy function. Note that 𝐽 is sparse according to our assumption of sparse
graphical model (see Fig. 3a and Fig. 3b). Each non-zero element of 𝐽 and 𝑏 has a value of either
−1 or +1. In Figure 4 (a,b) we set 𝜎 = 0.2, and in Figure 5 we set 𝜎 = 2 (when |𝑉 | = 64) and
𝜎 = 1 (when |𝑉 | = 256).

• In the factor graph model, each factor is defined as a tiny MLP which has 1 hidden layer whose
dimension is 10. Each MLP takes 4 arguments as an input and outputs a single scalar (see Fig. 3c).
The parameters of those MLPs are randomly initialized with the spherical Gaussian distribution
N(0, 𝜎2𝐼). We use 𝜎 = 0.5 in Figure 4 (c,d).

Generating ground-truth Gibbs samples. We use NLL and MMD as an evaluation metric, which
are based on the ground-truth samples from the target energy function. Therefore, it is crucial to have
accurate ground-truth samples for correct evaluation. We generate those ground-truth samples by
running 10k independent Gibbs chains for 10k steps. When the target energy functions are too peaky
(in Fig. 5), we further anneal the energy function for the additional first 10k steps (i.e., initially we
let the energy function be smooth and gradually lower the temperature during the first 10k steps) to
prevent those chains from being attracted by only a few dominant modes.

18

Published as a conference paper at ICLR 2024

Model architecture and training details. For all the GFN baselines and our method, the amorti-
zation network is an MAE of the following form: {Linear(512) → LayerNorm→ ReLU} × 3→
Linear(|𝑉 |). The other training details are as follows.

• Δ-AI vs. GFNs (Fig. 4). We consider |𝑉 | ∈ {64, 1024}. Each model is trained for total 200k
iterations.
– Baseline GFNs: Batchsize is set to 1k. We periodically sample a new DAG (every 50 iteration)

to amortize over random DAG orders. Learning rate of the parameters of the amortized sampler
is set to 10−3 and that of the partition function estimator is set to 10−1. Those learning rates
are step-wisely decayed by 0.1 at 40k, 80k, 120k, 160k, and 180k-th iteration. For the training
policy, we use 𝜖-uniform policy such that the sampling probability 𝑝 is defined as 𝑝 = (1 −
𝜖) · 𝑝on + 𝜖 · 𝑝uniform, where 𝑝on and 𝑝uniform are on- and uniform policy, respectively. We use
𝜖 = 0.1.

– Δ-AI: We periodically sample a set of sub-DAGs (every 50 iteration) to amortize over random
DAG orders. For instance, when there are 64 variables (or nodes), we sample 16 sub-DAGs
for each node (see Fig. 2), resulting in total 64 × 16 = 1024 batchsize. Learning rate of the
parameters of the amortized sampler is set to 10−3, with the same learning rate scheduling
as the baseline GFNs. For the training policy, we simply use the tempered off-policy with
temperature set to 2.

• Δ-AI vs. MCMCs (Fig. 5). We consider |𝑉 | ∈ {64, 256}.
– Baseline MCMCs: We run 10k parallel Gibbs chains in this experiment. At each evaluation

step, we collect all those 10k samples and measure the MMD between the ground-truth samples.
– Δ-AI: In this experiment, we do not amortize DAG orders because the flexibility of inference

is not the focus of this experiment. Note that when the DAG order is fixed, we cannot use
the efficient on-policy training as discussed in §3. However, we can simply only periodically
sample the full dimensional on-policy samples to avoid the cost (e.g., every 10 iteration). Due
to the peaky energy landscape, we found that gradually annealing the energy function for the
first 10k steps helps stabilize the training. Also, for the first 10k steps, we use high temperature
(e.g., 10) for better exploration and gradually lower the temperature to 1 (on-policy). We train
total 10k steps, with the batchsize set to 10k and learning rate set to 10−3. Learning rate is
step-wisely decayed at 2k, 4k, 6k, 8k, and 9k-th step.

Δ-AI vs. any-order GFlowNets. In past work, GFlowNets have been used as amortized samplers
for unstructured energy-based models (Zhang et al., 2022). In that work, the GFlowNet sampler
selects values for the variables in arbitrary order: while the models in §2.3 simply train the con-
ditionals in the Bayesian network needed to sample the variables in a topological order, there, the
generative policy selects both a variable and its value.

Fig. F.1 shows the training convergence on the synthetic experiments in the same way as Fig. 4.
Among the baselines, TB shows the fastest and most stable convergence, whereas DB and SubTB
show relatively unstable convergence, suggesting that the flow function is harder to train than for-
ward transition probabilities. As a result, while FL variants (FL-DB and FL-SubTB) outperform DB
and SubTB, they still underperform TB. Δ-AI shows much faster convergence.

All experiments are run with 5 random seeds, and the mean ± std regions are shown in the plots.

F.2 LATENT VARIABLE MODELING OF MNIST

Pyramid graph structure. We expand on the specific pyramid-shaped graph structure used for
the latent variable model in Fig. 6, which is used for all experiments. The first hidden layer has
dimensions 6× 6, the second 2× 2, and the third is a single variable node. Each latent variable node
is composed of 4 bernoulli random variables which are fully-connected. Each variable node in the
first hidden layer form a clique with a window of 8× 8 variable nodes in the pixel-layer below. This
clique window reduces to 4 × 4, then 2 × 2, for the second and third hidden layers respectively. All
edges in 𝑉 \ 𝐻 are removed such that pixels are conditionally independent given 𝑥𝐻 .

The resulting graph has 4608 edges between X and H (3.6% of all possible edges) and 7990 edges
in the induced subgraph on 𝐻 (59.8% of all possible edges).

Model architecture and training details. The model architecture in all experiments that involves
an amortized sampler 𝑞\ (all except the Gibbs baseline) is a masked autoencoder (MAE), as de-
scribed in §3. It consists of a shared trunk (3 fully-connected layers with ELU activations), and one
output head (a linear layer) for each variable in 𝑉 . Layer normalization and residual connections are

19

Published as a conference paper at ICLR 2024

0 2 4 6 8 10 12
Wall-Clock Time (h)

100

125

150

175

200
NL

L

(b) NLL vs. Time
Single DAG
Multiple DAGs

0 2 4 6 8 10 12
Wall-Clock Time (h)

0.25

0.50

0.75

1.00

1.25

En
tro

py

(c) Classifier Entropy vs. Time
Single DAG
Multiple DAGs

Figure F.2: Comparison of Δ-AI trained for full inference on a single full DAG vs. partial inference on
multiple DAGs. All DAGs are I-maps for the underlying undirected pyramid-shaped graphical model (see
Appendix F.2).

Vanilla VAE
Gibbs
FL-DB

DB
TB

Mean-Field EM
Sleep

IW
-AI

Ground Truth

(a) Reconstructions

Figure F.3: Reconstructions from Δ-AI and all baselines in § F.2. The samples are compared to the ground-
truth samples (bottom) that were used as input, and to a vanilla VAE (top).

used in the shared trunk. All layers are of dimension 512. We used this MAE to amortize condi-
tionals, and used a separate vector of learnable parameters of size |𝑉 | to infer the marginal for each
variable.

We tuned the following hyperparameters:

• Learning rate for 𝑞\ and 𝑝𝜓 in [10−4, 10−3] for the conditionals, with the learning rate for the
marginals fixed to the learning rate for the conditionals multiplied by a factor of 100.

• Temperature (only applicable to Δ-AI and the GFlowNet baselines, which use tempered sam-
ples for greater exploration) in [1.5, 2, 3, 4]. Tempered samples were drawn with probability
𝜖 ∈ [0.05, 0.1, 0.2, 0.5]. In practice, we found Δ-AI to benefit from very light use of tempered
sampling, with 𝜖 = 0.05 and temperature 4. The GFlowNet baselines did best with larger values
of epsilon.

Training of the bilevel objective was done in an alternating fashion: 𝑞\ for 100 iterations, followed
by 𝑝𝜓 for 100 iterations. For the Gibbs variant, the number of steps was set to 1; any larger number
was prohibitively slow.

Mini-batch gradient descent was used along with the Adam optimizer. A step-wise learning rate
decay (reducing the learning rate by half) was scheduled at 40%, 70%, and 90% of the total number
of training iterations.

Batch size was 1148 for all experiments (which is the number of latents, 164, multiplied by 7). In
the case of the Δ-AI variant that learns multiple orders by doing partial inference over subsets, an I-
map for the sub-graph consisting of a variable and its Markov blanket was sampled for each variable
(totalling 164 I-maps), and 7 samples were drawn from each I-map. For all other experiments
pertaining to full inference, a single I-map for the full graphical model was sampled, and 1148
full samples were drawn. In the case of the Δ-AI variant trained for full inference on a single
DAG (Fig. F.2), each of the 164 variables were perturbed 7 times in 7 different samples. For the
experiments learning multiple DAG orders, a new DAG I-map (or set of DAG I-maps in the case of
Δ-AI trained on partial instantiations) was sampled every 10 iterations. For the importance-weighted

20

Published as a conference paper at ICLR 2024

variant, we used 7 independent importance-weighted samples per ground-truth sample (and reduced
the batch-size by a factor of 7 to maintain the final batch-size equal to the other baselines).

We estimated NLL using the importance-weighted variational lower bound, with 100 independent
importance-weighted samples per ground-truth sample. A standard pretrained MNIST classifier
was used to compute the prediction entropy on unconditional samples from 𝑝𝜓 . This classifier is
a convolutional neural network with two convolution layers (10 channels, kernel size of 5, stride
1, followed by 20 channels, kernel size of 5, stride 1), each followed by a max-pooling layer and a
ReLU activation, followed by two ReLU linear layers. Dropout (probability of 0.5) was applied after
the convolutional block and between the two fully connected layers. Test accuracy was 0.9887.

21

