
Under review as a conference paper at ICLR 2023

LEARNING TO COOPERATE AND COMMUNICATE
OVER IMPERFECT CHANNELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Information exchange in multi-agent systems improves the cooperation among
agents, especially in partially observable settings. This can be seen as part of
the problem in which the agents learn how to communicate and to solve a shared
task simultaneously. In the real world, communication is often carried out over
imperfect channels and this requires the agents to deal with uncertainty due to
potential information loss. In this paper, we consider a cooperative multi-agent
system where the agents act and exchange information in a decentralized manner
using a limited and unreliable channel. To cope with such channel constraints,
we propose a novel communication approach based on independent Q-learning.
Our method allows agents to dynamically adapt how much information to share
by sending messages of different size, depending on their local observations and
the channel properties. In addition to this message size selection, agents learn to
encode and decode messages to improve their policies. We show that our approach
outperforms approaches without adaptive capabilities and discuss its limitations in
different environments.

1 INTRODUCTION

In multi-agent systems, cooperation and communication are closely related. Whenever a task requires
agents with partial views to cooperate, the exchange of information about one’s view and intent can
help to reduce uncertainty and allows for more well-founded decisions. Communication allows agents
to solve tasks more efficiently, and can even be necessary to achieve acceptable results (Singh et al.,
2019). As an example, consider a safety-critical autonomous driving scenario (Li et al., 2021). By
letting the cars exchange sensor data or abstract details about detected objects in the scene, occluded
objects can be considered in the planning processes of all cars and reduce the risk of collisions.

Multi-agent reinforcement learning (MARL) comprises learning methods for problems where multiple
agents interact with a shared environment (Buşoniu et al., 2010; Hernandez-Leal et al., 2019). The goal
is to find an optimal policy for the agents that maximizes the outcome of their actions with respect to
the environment’s reward signal. Key challenges in MARL include non-stationarity (Papoudakis et al.,
2019), the credit assignment problem (Zhou et al., 2020) and partial observability (Oroojlooyjadid &
Hajinezhad, 2019). We focus on cooperative environments with partial observability.

As communication is essential in cooperative environments, many works include a predefined
information exchange between agents (Melo et al., 2011; Schneider et al., 2021). Additionally, there is
ongoing research to include learnable communication into MARL approaches. Pioneering work gave
first empirical evidence that communication between agents can be learned with deep MARL (Foerster
et al., 2016; Lowe et al., 2017; Sukhbaatar et al., 2016). This enhances the performance on existing
environments and allows to address a new class of problems that require communication between
agents. Building upon these ideas, many researchers proposed methods to improve the performance
and stability of these approaches (Gupta et al., 2020; Jiang & Lu, 2018; Li et al., 2021). While
related work investigates effects of using different fixed message sizes (Li et al., 2022) and multiple
communication rounds (Das et al., 2019), selectively sending messages (Singh et al., 2019), and
sending messages only to other agents in their proximity (Jiang & Lu, 2018), most of these approaches
are designed for communication channels without capacity limitations or message losses. Recent
approaches started to investigate such settings, e.g. by learning central controllers for coordinated

1

Under review as a conference paper at ICLR 2023

access to a communication channel (Kim et al., 2019). To the best of our knowledge, there are no
studies on message size adaptation to improve multi-agent communication over imperfect channels.

In our work, we address this gap by investigating a cooperative MARL setting in which agents
communicate over an unreliable and limited channel. We focus on agents learning when, what and
how much to communicate over imperfect channels in a decentralized manner. The key challenge
here is to determine how to utilize the limited capacity efficiently and cope with the lack of reliability,
in order to maximize the benefit for the cooperative multi-agent problem.

With this paper, we provide a novel approach to address this challenge. Our contributions are as
follows: (i) we propose a novel communication approach that allows for an adaptive message size
selection while learning the message encoders and decoders, (ii) we introduce discrete communication
trained with the pseudo-gradient method, (iii) we analyze the effect of different message types and
message sizes, (iv) we introduce POMNIST, a fast MNIST-based benchmark environment for
communication, (v) we show that agents adapt to the given communication channels in POMNIST
and show limitations of our approach in the traffic junction environment.

2 RELATED WORK

Agents in MARL can exchange information a) with implicit communication, and b) with explicit
messages that are forwarded between the agents. Implicit communication refers to exchange of
information without separate communication actions, e.g. through the agents’ regular actions and
observations (Foerster et al., 2019) or with a joint policy (Berner et al., 2019).

Within the scope of this paper, we focus on explicit communication. This can further be divided into
i) continuous communication with real-valued messages and ii) discrete communication with a finite
set of messages. In the context of deep learning, exchanging continuous messages allows for back-
propagation across different agents (Sukhbaatar et al., 2016). This results in significant performance
improvements in partially observable environments, where agents can benefit from coordination or
the exchange of local information. Recent approaches include restricting communication to agent
groups (Jiang & Lu, 2018) and specific topologies (Du et al., 2021), deciding when to send messages
(Liu et al., 2020; Singh et al., 2019) and estimating the importance of messages with attention (Das
et al., 2019; Li et al., 2021; Rangwala & Williams, 2020).

Discrete communication with finite message sets allows for more fine-grained control of the used
data rate in limited communication scenarios and is the focus of this paper. In order to facilitate
backpropogation for discrete communication, Foerster et al. (2016) regularize continuous messages
with noise during training and discretize them during evaluation. In their experiments, this yields
better results than extending the action space with communication actions. Differentiability can also
be retained by sampling messages from a gumbel-softmax distribution (Jang et al., 2017) instead of a
categorical distribution (Gupta et al., 2020; Lowe et al., 2017). Li et al. (2022) aim to compensate for
the message discretization with skip connections. Their results also suggest that the message size has
a neglectable effect on continuous and a significant effect on discrete communication.

Our work combines learnable communication with deep Q-learning to adaptively select the message
size based on the observations given at each step. We consider an uncoordinated channel of limited
capacity and demonstrate how agents can benefit from message size selection in such settings. Related
works consider limited communication via a centrally controlled channel of limited capacity (Kim
et al., 2019), by pruning messages (Mao et al., 2020) or with regularizations based on the length of
messages (Freed et al., 2020). Hu et al. (2022) show empirically that controlling whether to send
messages improves communication in a slotted p-CSMA channel. It is unclear how and if agents
can choose from different message sizes to improve their communication efficiency in unreliable
channels of limited capacity. We address this research gap with our work.

Although not the focus of this work, efficient use of imperfect channels can also be improved by
coordinating the agents’ access to the channel. For example, Kim et al. (2019) and Wang et al. (2020)
consider this by learning a centralized scheduler for multi-agent communication. The classical commu-
nication literature compromises a multitude of sophisticated mechanisms for medium access control
(Huang et al., 2013; Kumar et al., 2018). We note that such schemes can be used in conjunction with
our adaptive message size selection and leave further exploration of this combination to future work.

2

Under review as a conference paper at ICLR 2023

3 ADAPTIVE COMMUNICATION

In this section, we formulate the cooperative multi-agent problem with message size selection and
describe our adaptive communication approach. Fig. 1 summarizes the information flow in the
multi-agent system with adaptive communication.

3.1 PROBLEM FORMULATION

We consider a network of N agents in a cooperative and partially observable stochastic game (Hansen
et al., 2004). Each agent i ∈ I := {1, ..., N} has a private and partial observation oit ∼ Oi(oit | st)
at time step t based on the state st ∈ S. As none of the agents has direct access to the state, it is
essential to communicate with others in order to make better decisions. However, the agents are not
provided with any prior information on how to communicate. During training, they must learn to
exchange meaningful and beneficial information and correctly decode the incoming messages.

We consider stepwise communication where each agent sends a single message mi
t ∈ Mφ of size

φ ∈ Φ ⊆ N0 to all agents. Note that a message of size zero corresponds to not sending any message.
Each agent can choose a different size φi

t in each step, but we omit superscript and subscripts in
this section for notational simplicity. The message space M can be continuous M = [−1, 1] or
discrete M = {0, 1}. Once all agents have created a message, the messages are transferred using a
given channel. The success of sending a message depends on the channel model, which receives all
messages at the current timestep as input and outputs the set of successfully transmitted messages
Mt ⊆ {m1

t , ...,m
N
t }. In each step, agents receive messages that have been successfully transmitted

in the previous step, except for their own message M i
t−1 := Mt−1 \ {mi

t−1}. Each agent takes an
action ai ∈ A sampled from its stochastic action policy πi based on its observation oit and incoming
messages, ait ∼ πi(ait | oit,M i

t−1). The actions are then applied in the environment which causes
it to transition to the next state based on the transition probabilities, st+1 ∼ P(st+1 | st,at) with
at := (a1t , ..., a

N
t). In parallel to taking an action, each agent chooses a message size φ from the given

set of sizes Φ using its stochastic message size policy πi
Φ conditioned on the current observations and

incoming messages, φ ∼ πi
Φ(φ | oit, M i

t−1). The agent then creates a message mi
t ∈ Mφ of size φ

with a size-specific message encoder mi
t = f i

φ(o
i
t, M

i
t−1). The messages are broadcasted to all other

agents using the given communication channel and have no direct influence on the environment.

Each agent receives individual rewards Ri(st,at) ∈ R depending on the state of the environ-
ment st and the joint action at. The discounted return of agent i for step t is defined as
Gi

t =
∑T

k=t γ
k−tRi(sk,ak) with a time horizon T ∈ N and discount factor γ ∈ [0, 1]. We

consider cooperative environments in this paper. Agents cooperate by choosing actions that increase
the rewards of other agents and by exchanging local information via messages. Each agent i optimizes
their action policy to maximize their return Gi

0. This is complemented with finding message size
policies πΦ = {π1

Φ, . . . , π
N
Φ } and message encoders fΦ =

⋃
i∈I,φ∈Φ{f i

φ} that jointly maximize the

expected mean discounted return of all agents for a given channel, i.e. maxπ,πΦ,fΦ E
[

1
N

∑N
i=1 G

i
0

]
.

3.2 ARCHITECTURE

With adaptive communication (see Fig. 1), we propose a deep MARL architecture to jointly learn
action policies, message size policies and message encoders, only based on the reward signal. Our
approach comprises two modules to learn communication: (a) a message-size selector and (b) a
message encoder. This is complemented with an action selector to perform actions in the environment.
We first describe how the agent’s input is processed and then explain the modules.

Input processing The input consists of the observation from the environment oit and the successfully
transmitted messages from the last step, excluding the agent’s own message M i

t−1. An environment-
specific observation decoder maps the observation to a vector of fixed length. The message decoder
maps all incoming messages to a vector of fixed length by taking the mean of all messages padded
to the same length, including a one-hot encoding of the message’s length. The vectors from the
observation and message decoders are concatenated and processed by a core module. Details
regarding the concrete architecture can be found in the appendix in Sec. A.1. The core’s output xi

t is
the input to the following modules.

3

Under review as a conference paper at ICLR 2023

Agent

agent step

observation

decoder

core

observation

messages

input

 Environment

 Communication Channel

aggregate

to

try to send

successfully

transmitted

dropped

new

observation

agent step

action

message

output

perform

step

X

A
daptive

C
om

m
unication

message

encoder

action
selector

message size
selector

message

decoder

losses

input

output

Figure 1: Overview of the multi-agent system with adaptive communication. At each step, agents
receive an observation and a set of messages. Based on this input, they select an action and create a
message of selected size φ ∈ Φ. Actions are used to perform steps in the environment, messages are
distributed stepwise according to a given channel model. The channel defines whether messages are
dropped or transmitted correctly. The gradients from the action and message size selector losses of
an agent that receives a message are backpropagated to the sender of this message.

Message size selector The message size selector employs independent deep Q-networks (Tampuu
et al., 2017), where each agent i independently and simultaneously learns its own Q-function. In our
case, we want to select the message size that leads to the highest expected discounted returns for the
receiving agents. The message-size-value network Qi(xi

t, φ; θΦ) conditions on the agent’s individual
core output xi

t and returns a value for each message size φ ∈ Φ. It is parameterized by θΦ.

The message size selection cannot have any effect on the rewards of the current step, as the created
messages will be received in the next step. Therefore, we propose to use an offset of one step in
the target for the message-size values. Additionally, the sending agent does not receive its own
message in the next step, the sent message cannot have any effect on this reward either. Based on
these considerations, we define the message-value target of agent i in step t for message size φ as

Di
t(φ) := E

 1

N

 N∑
j=1

Gj
t+1 −Ri(st+1,at+1)

 ∣∣∣∣∣ φi
t = φ

 . (1)

We train the message-size-value network to approximate the target in Eq. 1 by iteratively minimizing
the mean squared error over multiple sampled training episodes for all agents, see Eq. 2.

Li
Φ(θΦ) := E

[(
Qi(xi

t, φ
i
t; θΦ)−Di

t(φ
i
t)
)2]

(2)

The agent’s message selection policy πi
Φ uses Boltzmann softmax exploration with decreasing

temperature η → 0 (Sutton & Barto, 2018) based on the predicted message-size values, i.e. message
size φ ∈ Φ is chosen with a probability proportional to exp(Qi(xi

t, φ; θΦ)/η).

Message encoder After the message size φ is selected, the agent creates its message mi
t using a

message encoder network mi
t = f i

φ(o
i
t, mt−1; ξφ) parameterized by ξφ. For a given set of available

message sizes Φ, the agent learns to encode messages in each message size φ ∈ Φ \ {0}. This is
achieved through a multi-headed neural network instead of separate networks, which allows learning
both shared and private parameters for different message sizes while reducing the complexity of the
model. It should be noted that the agents learn how to form messages for all message sizes during
training, which is the key idea leading to adaptivity in this work. We describe the message types that
define the output of the message encoder in Sec. 3.3.

4

Under review as a conference paper at ICLR 2023

Action selector The action selector represents the agent’s policy πi and is jointly learned with
message selection and encoding, but it is conceptually independent and not the focus of this paper.
We evaluate our approach with (a) an ϵ-greedy action selector based on Q-values that are trained with
the discounted monte carlo return Gi

t as target and (b) a stochastic action selector similar to (Singh
et al., 2019) that is trained via REINFORCE (Williams, 1992), including a learned value baseline and
an entropy bonus loss to encourage exploration. Each action selector has its own loss function Li

π
to maximize the agent’s individual return. This loss is backpropagated through the core to train the
observation and message decoders. Through the message decoder, the gradients are passed to the
messages’ senders if supported by the message type. This enables the sending agents to adapt the
content of their messages to improve the actions of the recipients.

Parameter sharing We employ centralized learning and decentralized execution (Foerster et al.,
2016; Kraemer & Banerjee, 2016; Oliehoek et al., 2008; Rashid et al., 2018) to minimize the mean
losses Li

Φ and Li
π over all agents. During learning, the trainer has access to the reward of all agents

to optimize the message-size policies. These policies are represented by a single model. However,
the execution is performed in a fully decentralized manner. The agents make the decisions for actions
and message size solely based on their individual observations and the incoming messages. We allow
agents to learn different behavior by adding agent-specific features to the observations. This approach
reduces the number of parameters and is computationally more efficient.

3.3 MESSAGE TYPES

Messages are either continuous or discrete and the choice of encoding method can affect the commu-
nication. We refer to the combination of message space and encoding method as a message type. In
this section, we present the message types that we consider in conjunction with our approach.

Discrete communication with Q-values Communication can be seen as an extension to the
agent’s action space. Accordingly, standard RL methods like Q-learning can be applied to learn
communication actions (Foerster et al., 2016). We use the mean discounted return of the receiving
agents equivalent to our message size selection to learn Q-values for each message value. Therefore,
this message type is not differentiable and the agents have to learn how to encode messages purely by
trial and error. To avoid confusion, the loss for this message type is omitted in Fig. 1. This method
does not scale well, as increasing the message size leads to an exponential increase in the number of
messages values and message Q-values that have to be learned.

Continuous communication With this message type, agents send real-valued messages to each
other. As they are used as input to networks representing different agents, real-valued messages
allows gradient flow across agents (Foerster et al., 2016), as indicated on the right side of Fig. 1.
This serves as direct feedback on messages from the recipients to the sender and allows the message
encoder network to learn from this feedback. Since the real-valued messages are the most expressive
message type used in this work, we expect it to achieve the best results and to serve as baseline.

Discrete communication with pseudo-gradient method The exchange of discrete messages with
Q-values limits the agents, since the discrete communication channel is non-differentiable and the
backpropagation algorithm cannot be applied for end-to-end training across agents. The pseudo-
gradient method was first proposed for recurrent neural networks with discrete activations (Zeng
et al., 1993) and later applied to multi-layer neural networks (Goodman & Zeng, 1994). This method
approximates the gradient of the discrete activation function using the true gradient of an analog
activation function as a heuristic hint. In our work, we employ the pseudo-gradient method with
PG(m) := 2 · 1{tanh(m) > 0} − 1 for message features m in the forward pass and directly pass
the gradients to tanh in the backward pass. This allows to benefit from end-to-end backpropogation.

Discrete communication with DRU The discretise/regularise unit (DRU) proposed by Foerster et
al. (Foerster et al., 2016) aims at retaining differentiability with discrete messages. During training,
the DRU regularizes continuous messages m by adding noise DRUtrain(m) = Logistic(N (m,σ2))
from a normal distribution N (m,σ2) with mean m and standard deviation σ. The authors argue that
noise with σ > 2 effectively regularizes the message to a single bit. During execution, the DRU then
discretizes the message using an element-wise threshold DRUexecution(m) = 1{m > 0}.

5

Under review as a conference paper at ICLR 2023

3.4 LIMITED COMMUNICATION CHANNEL

Communication resources are limited in practice. We propose to combine the problem of learning
how to communicate with a limited and lossy communication channel. While greater message sizes
typically yield better performance in an unlimited scenario, always selecting the highest message size
might lead to congestion and dropped packets in real networks. Missing and delayed messages could
have a negative impact on the cooperation. Instead of assuming a perfect communication channel
like most related work, we consider a limited channel with stochastic collisions between messages.

We use a slotted channel model that is parameterized by a channel size C ∈ N defining the available
slots {0, ..., C − 1}. The communication is synchronized with the environment’s steps. If an agent
decides to send a message of size φ ∈ Φ \ {0}, this message is inserted into φ contiguous slots using
a fixed stochastic channel access mechanism. Messages are inserted into the channel independently
and the starting slot is chosen uniformly from {0, φ, 2φ, . . . , ⌊C−φ

φ ⌋φ}. Messages that do not fit
into the communication channel, i.e. φ > C, are dropped. After the insertion of all messages, if two
or more messages shares at least one slot, a collision occurs and all involved messages are dropped.

We have chosen this slot assignment over a completely uniform assignment to reduce the number of
collisions in the channel. However, note that the channel is still highly unreliable and the expected
throughput is way lower than the channel size, depending on the agent’s message sizes. This is
a known phenomenon of early decentralized slotted channel access models with uncoordinated
clients (Tanenbaum & Wetherall, 2011). More details are provided in the appendix in Sec. A.5.

This simple channel model suffices to study the behavior of learning agents with limited and unreliable
communication, as we will show in the experiments section. More sophisticated channels and channel
access mechanisms could be considered in future work.

4 EXPERIMENTS

In this section, we discuss the effectiveness of adaptive communication in different environments. We
conduct all experiments with two Intel® Xeon® Silver 4214 and an NVIDIA® GeForce® RTX 2080 Ti.

4.1 PARTIALLY OBSERVABLE MNIST (POMNIST)

We first evaluate our approach with cooperative digit prediction based on the MNIST dataset (LeCun
et al., 1998). It consists of grayscale images of hand-written digits with 28 × 28 pixels and their
corresponding labels. It is split into train and test sets with 60,000 and 10,000 examples respectively.

agent 0 agent 1

agent 3agent 2

Figure 2: A digit
is split into non-
overlapping views
for four agents.

Environment We introduce the partially observable MNIST (POMNIST) en-
vironment that splits each MNIST sample into partial views of the same size (see
Figure 2). These views are fixed during training and evaluation, and each agent
is assigned to one particular view. Each episode consists of two steps: In the first
step, agents observe their local view and broadcast a message to all other agents.
In the second step, the agents independently predict the digit based on their obser-
vation and the received messages. Agents receive a reward of 1 if their prediction
is correct and -1 otherwise. The agent’s reward in the first step is set to zero. The
mean return can be mapped to accuracy with accuracy = (mean return + 1)/2.

POMNIST allows to construct environments of varying difficulty and reliance on
communication. The higher the number of views and agents, the less information
is included in each agent’s observation. Therefore, they have to increasingly rely
on communication to make correct predictions.

Training We use the Q-value action selector and train our approach for 2000 iterations using the
Adam optimizer (Kingma & Ba, 2015) and learning rate 0.001. The core is a dense layer with a skip
connection. We train with 2048 parallel environments, resulting in a batch size of 2048 for each
agent in each iteration. During training, we randomly draw samples with replacement from the train
set. For testing, we run exactly one episode for each sample in the test set. A complete training run
takes around 2 minutes without communication to 4 minutes with adaptive communication. The
message-size selection begins with an exploration phase until iteration 1200, details are in Sec. A.1.

6

Under review as a conference paper at ICLR 2023

250 500 750 1000 1250 1500 1750 2000
Number of iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n
ag

en
t r

et
ur

n

Continuous
PseudoGradient
Discrete
DRU
NoComm

(a)

{0} {1} {2} {4} {0, 1, 2, 4}
Message sizes

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
ag

en
t r

et
ur

n

Continuous
PseudoGradient
Discrete
DRU

(b)

{1} {2} {4} {0, 1, 2, 4}
Message sizes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
nu

m
be

r o
f d

ro
ps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
ea

n
th

ro
ug

hp
ut

(c)

Figure 3: Results for training (a) and testing (b, c) in POMNIST with 4 agents and channel size 8.
(a) shows mean return during training, (b) is mean return of different message types with fixed and
adaptive message sizes, and (c) shows channel metrics for pseudo-gradient messages. Each line
and bar shows the mean over 5 runs, the transparent area and the whiskers represent the standard
deviation. The black dots in (c) show the metrics’ values for a random message size selection.

Results A single agent with full view achieves a mean return of 0.979± 0.002 on the test set. We
consider a configuration with one horizontal and one vertical split, resulting in 4 agents. The mean
return on the test set for 4 agents without communication is 0.633± 0.003. We focus on message
sizes Φ ⊆ {0, 1, 2, 4} and explain this selection in the appendix, see Sec. A.2.

To investigate how adaptive communication performs in limited channels and how it compares to fixed
message sizes, we consider a case example with a channel of size 8. Fig. 3a shows the mean return of
our adaptive approach with message sizes Φ = {0, 1, 2, 4} during training for different message types.
Confirming our initial expectations, the continuous messages show the best performance, followed by
discrete communication with the pseudo-gradient method. The DRU shows the lowest performance.

Fig. 3 (b) and (c) show the results on the test set after training. Fig. 3b shows that adaptive com-
munication achieves higher returns than the approaches with fixed message sizes. For the analysis
of the channel metrics in Fig. 3c, we focus on the pseudo-gradient message type as it achieved the
highest return among the discrete communication methods. The left bars show the mean number of
dropped messages in each step and the right bars show the throughput. The throughput is defined as
the average number of slots occupied by messages that are not colliding. The number of dropped
messages increases proportionally to the message size for single message sizes. The throughput
increases from message size 1 to 2, but then decreases from 2 to 4 due to the high number of collisions
in the channel. It can be seen that the number of drops and the throughput for adaptive communication
are comparable with the results for message size 1. When compared to a random selection of message
sizes in {0, 1, 2, 4}, shown as black dots, we can see that adaptive communication decreases the
number of drops on average and increases the throughput. It is noticeable that the standard deviations
for the mean number of drops and throughput in Fig. 3c are considerably higher for adaptive commu-
nication. This can be seen as an indication that individual runs might learn different strategies for the
message size selection, while still outperforming the approaches with single message sizes.

0 250 500 750 1000 1250 1500 1750 2000
Number of iterations

0

2

4

6

8

10

12

M
ea

n
th

ro
ug

hp
ut

inf
64
32
16
8
4

Figure 4: Mean throughput during
training with different channel sizes.
Each line shows the mean over 5
runs, the transparent area represents
the standard deviation.

Next, we analyze the effect of different channel sizes by ex-
periments with adaptive message sizes Φ = {0, 1, 2, 4} using
the pseudo-gradient method. Fig. 4 visualizes the through-
put during training and Tab. 1 shows the performance metrics
on the test set. In all cases, the agents are able to increase
the throughput with adaptive communication, compared to
the exploration phase. When using an unlimited channel, the
throughput quickly reaches the highest value after the initial
exploration phase. As expected, this leads to the highest return.
By introducing the limited communication channel, the prob-
ability of a successful transmission decreases with the channel
size. This can be observed both from the increasing number
of dropped messages and from the decreasing throughput. The
limited communication ability is also reflected in the decreased
mean return, proportional to the channel size.

7

Under review as a conference paper at ICLR 2023

Table 1: Performance metrics for pseudo-gradient messages with different channel sizes over 5 runs.

Channel size C inf 32 8 4

mean return 0.94 ±0.00 0.88 ±0.00 0.83 ±0.01 0.80 ±0.03

of drops 0.00 ±0.00 0.63 ±0.05 1.23 ±0.23 1.36 ±0.42

pos listening 0.26 ±0.01 0.17 ±0.01 0.14 ±0.00 0.13 ±0.03

pos signaling 0.66 ±0.05 0.75 ±0.02 0.83 ±0.03 0.69 ±0.07

throughput 11.84 ±1.12 6.55 ±0.35 2.60 ±0.10 1.55 ±0.29

mean msg size 2.68 ±0.31 2.16 ±0.14 1.62 ±0.29 1.39 ±0.15

The positive listening metric (see Sec. A.3) quantifies the impact of communication on an agent’s
behavior. As expected, this impact is highest for the unlimited channel, since the agents send
messages of higher sizes more frequently and are able to share more information. The positive
signaling metric (see Sec. A.4) quantifies the correlation between an agent’s outgoing messages and
its actions. Interestingly, positive signaling increases with decreasing channel size, except for channel
size 4. As the agents send fewer messages as the channel size decreases, this could lead to them
sending messages that are more specific to their local information. However, upon inspection of our
data, we see that the agents restrict themselves to sending messages of size 1 and 2 with channel size
4. These message sizes might not be enough to encode specific situations, which could explain the
decrease in the positive signaling for channel size 4. We observe that even in an unlimited channel,
the mean throughput is below 12 instead of its maximum value of 16. The mean message size in Tab.
1 shows that the agents do not always send messages of the maximum size 4. This could indicate that
agents learn to judge the relevance of their local information, and that they avoid confusing other
agents by sending shorter messages when this local information cannot contribute to the success of
the team. We also hypothesize that the agents encode information in the selected message sizes. The
following ablations support this such that the agents perform better with adaptive message sizes and
zero content compared to randomly selected sizes.

none random zeros adaptive
Communication method

0.60

0.65

0.70

0.75

0.80

0.85

0.90

M
ea

n
ag

en
t r

et
ur

n

Figure 5: Mean agent
return of the pseudo-
gradient method with ab-
lations over 5 runs.

We show an ablation study of our approach in Fig. 5. The bar none
is the baseline with message size Φ = {0}. The others are adaptive
communication with message sizes Φ = {0, 1, 2, 4}, C = 8 and the
following modifications: random selects random message sizes but learns
the message encoders, zeros learns the message size selection but the
encoders always return zero, adaptive is our approach that jointly learns
the message size selection and message encoder. The increased return
from none to random shows the benefit of learning message encoders and
the increment from random to adaptive shows the benefit of the adaptive
message size selection. Surprisingly, sending messages with content zero
of different sizes outperforms the random mode. This indicates that the
message size itself can be used to share information between the agents.
As there are four different message sizes, selecting a message size can be
seen as discrete communication with 2 bits of information. However, the
information about a message’s size is lost when messages are dropped.

4.2 TRAFFIC JUNCTION

Agent

Figure 6: Traffic junc-
tion with two agents
that control two cars.

The traffic junction environment by Sukhbaatar et al. (2016) has been used
in several works with slight changes (Das et al., 2019; Singh et al., 2019) to
study communication in MARL. We use the version by Singh et al. (2019).

Environment In the traffic junction environment (see Fig. 6), agents control
cars that move along predefined routes in a gridworld. Their goal is to
reach the end of the route without colliding with other agents. The cars are
controlled by a discrete action that is either gas or break. Action gas advances
the car to the next cell in its route, action break leaves the car where it is.
If the current number of cars is lower than a predefined number of agents,
new cars spawn with probability p at the beginning of each lane. When a car
spawns, it is assigned a predefined route that starts at this position. An active

8

Under review as a conference paper at ICLR 2023

car is removed when it reaches the end of the route. The reward for agent i with an active car at step
t is defined as −0.01τi − 10Ct

i , where τi is the number of steps the car of agent i has been active
for and Ct

i is the number of cars that are involved in a collision with agent i at step t. Agents that
control an active car observe their last action, the route id and information about the agent’s position,
including the number of cars at this position. They do not observe positions of other agents and need
to communicate to prevent collisions. We focus on a two-lane scenario with one route each and up to
5 agents with spawn probability p = 0.3. Each episode ends after 20 steps.

Training Our configuration is based on Singh et al. (2019). We use the stochastic action selector
and train for 2000 iterations with 128 parallel environments using the Adam optimizer and learning
rate 0.001. The core is extended by a gated recurrent unit (Cho et al., 2014). A curriculum increases
p from 0.1 to 0.3 between training iterations 250 and 1250. A training run takes around 30 minutes
without communication to 1 hour with adaptive communication. Details are in Sec. A.1.

Results The performance in traffic junction is measured in terms of a success rate that is defined
as the percentage of episodes without any crashes. Singh et al. (2019) report a success rate of up to
30.2± 0.4 without communication and 93.0± 3.7 when agents communicate their continuous-valued
hidden state of size 128. We consider message sizes Φ ⊆ {0, 32, 128} and discrete communication
with the pseudo-gradient method. We reproduce the results for the baseline without communication
with a mean success rate of 30.27 ± 1.34. In an unlimited channel, we slightly outperform the
baseline with a mean success rate of 97.04 ± 1.75. The results with communication are shown
in Tab. 2, we focus on the highlighted parts. Communication greatly improves the success rate
compared to the baseline without communication, even with messages of size 32 in a limited channel.
The success rate for message size 128 under a limited channel declines compared to message size 32,
while showing an increasing number of drops. This suggests that reliable communication is critical
in this environment. Our approach achieves a higher mean success rate than random message size
selection, but the standard deviation of its success rate, throughput and mean message size are very
high. We conclude that our approach is unstable in this environment. We think this could be improved
with alternative formulations of the message-size value, e.g. by reducing the variance of the target.

Table 2: Results for pseudo-gradient messages. Mean over 5 runs with 2048 evaluation episodes.

channel size C 512 512 512 512 ∞
message sizes Φ {32} {128} {0, 32, 128} {0, 32, 128} {128}
selection method fixed fixed adaptive random fixed

success rate 87.35 ±1.41 64.67 ±1.17 82.78 ±9.71 63.17 ±1.37 97.04 ±1.75

of drops 0.48 ±0.01 1.54 ±0.01 0.64 ±0.49 0.63 ±0.01 0.00 ±0.00

throughput 78.63 ±0.47 175.78 ±0.53 93.69 ±40.68 98.69 ±0.71 391.54 ±5.47

mean msg size 32.00 ±0.00 128.00 ±0.00 55.97 ±35.86 53.37 ±0.08 128.00 ±0.00

5 CONCLUSION

With this work, we investigate communication over unreliable and limited channels in MARL. We
propose an adaptive communication mechanism that allows agents to choose different message
sizes depending on their local observations and incoming messages. We introduce the POMNIST
environment and show that adaptive communication achieves higher returns than non-adaptive
approaches in a limited and unreliable channel. We compare different message types and find that
continuous communication performs best, followed by discrete communication with the pseudo-
gradient method. The traffic junction environment indicates limitations and open challenges of
adaptive communication. Although our approach is better than random message size selection, it
is unstable and on average inferior to choosing fixed-size messages in this environment. Future work
could investigate the applicability of adaptive communication to different domains and improve its
stability, e.g. with alternative formulations of the message-size selection target. Possible extensions
with respect to the communication channel include shared medium access control mechanisms and the
consideration of more sophisticated channel models. Another possible direction is the interpretation of
the message content. A comparison with traditional machine learning methods would also be valuable.

9

Under review as a conference paper at ICLR 2023

Reproducibility Statement We provide our implementation with the supplementary material
together with a README file that describes how to set up and run our code. The included experiment
configuration files allow readers to reproduce all experiments that are reported in the main paper and
the appendix. Additional details regarding the used models and training procedure are in Sec. A.1.

REFERENCES

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
arXiv preprint arXiv:1912.06680 [cs.LG], 2019.

Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent reinforcement learning: An
overview. Innovations in multi-agent systems and applications-1, pp. 183–221, 2010.

Kyunghyun Cho, B van Merrienboer, Caglar Gulcehre, F Bougares, H Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for statistical machine translation. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734,
2014.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Mike Rabbat, and Joelle
Pineau. Tarmac: Targeted multi-agent communication. In International Conference on Machine
Learning, pp. 1538–1546, 2019.

Yali Du, Bo Liu, Vincent Moens, Ziqi Liu, Zhicheng Ren, Jun Wang, Xu Chen, and Haifeng
Zhang. Learning correlated communication topology in multi-agent reinforcement learning. In
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems,
pp. 456–464, 2021.

Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 2137–2145, 2016.

Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson, Matthew
Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent reinforcement
learning. In International Conference on Machine Learning 29, pp. 1942–1951, 2019.

Benjamin Freed, Rohan James, Guillaume Sartoretti, and Howie Choset. Sparse discrete communica-
tion learning for multi-agent cooperation through backpropagation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 7993–7998, 2020.

R.M. Goodman and Zheng Zeng. A learning algorithm for multi-layer perceptrons with hard-limiting
threshold units. In Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp.
219–228, 1994.

Shubham Gupta, Rishi Hazra, and Ambedkar Dukkipati. Networked multi-agent reinforcement
learning with emergent communication. In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 1858–1860, 2020.

Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 4, pp. 709–715, 2004.

Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
reinforcement learning. Autonomous Agents and Multi-Agent Systems, 33(6):750–797, 2019.

Diyi Hu, Chi Zhang, Viktor K. Prasanna, and Bhaskar Krishnamachari. Intelligent communication
over realistic wireless networks in multi-agent cooperative games. In 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pp. 1627–1629, 2022.

10

Under review as a conference paper at ICLR 2023

Pei Huang, Li Xiao, Soroor Soltani, Matt W. Mutka, and Ning Xi. The evolution of MAC protocols in
wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(1):101–120,
2013.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Proceedings of the 5th International Conference on Learning Representations (ICLR), pp. 1–13,
2017.

Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-agent cooperation.
In Advances in Neural Information Processing Systems 31, pp. 7254–7264, 2018.

Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taeyoung Lee, Kyunghwan Son,
and Yung Yi. Learning to schedule communication in multi-agent reinforcement learning. In
Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.

Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

Arun Kumar, Ming Zhao, Kai-Juan Wong, Yong Liang Guan, and Peter Han Joo Chong. A compre-
hensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities.
IEEE Access, 6:76228–76262, 2018.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Sheng Li, Yutai Zhou, Ross Allen, and Mykel J Kochenderfer. Learning emergent discrete message
communication for cooperative reinforcement learning. In International Conference on Robotics
and Automation (ICRA), pp. 5511–5517, 2022.

Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng, and Wenjun Zhang. Learning dis-
tilled collaboration graph for multi-agent perception. Advances in Neural Information Processing
Systems 34, 2021.

Yen-Cheng Liu, Junjiao Tian, Nathaniel Glaser, and Zsolt Kira. When2com: Multi-agent perception
via communication graph grouping. In Proceedings of the IEEE/CVF Conference on computer
vision and pattern recognition, pp. 4106–4115, 2020.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems 30, pp. 6379–6390, 2017.

Ryan Lowe, Jakob N. Foerster, Y-Lan Boureau, Joelle Pineau, and Yann N. Dauphin. On the pitfalls
of measuring emergent communication. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS), pp. 693–701, 2019.

Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni. Learning agent communication
under limited bandwidth by message pruning. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(04):5142–5149, 2020.

Francisco S Melo, Matthijs TJ Spaan, and Stefan J Witwicki. Querypomdp: Pomdp-based commu-
nication in multiagent systems. In European Workshop on Multi-Agent Systems, pp. 189–204.
Springer, 2011.

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate Q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Afshin Oroojlooyjadid and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. arXiv preprint arXiv:1908.03963 [cs.LG], 2019.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V. Albrecht. Dealing with
non-stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737
[cs.LG], 2019.

11

Under review as a conference paper at ICLR 2023

Murtaza Rangwala and Ryan Williams. Learning multi-agent communication through structured
attentive reasoning. In Advances in Neural Information Processing Systems 33, pp. 10088–10098,
2020.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pp. 4295–4304, 2018.

Stefan Balthasar Schneider, Haydar Qarawlus, and Holger Karl. Distributed online service coor-
dination using deep reinforcement learning. In IEEE International Conference on Distributed
Computing Systems (ICDCS), pp. 539–549, 2021.

Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar. Learning when to communicate at scale in
multiagent cooperative and competitive tasks. In Proceedings of the 7th International Conference
on Learning Representations (ICLR), 2019.

Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication with
backpropagation. In Advances in Neural Information Processing Systems 29, pp. 2244–2252, 2016.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PLOS ONE, 12(4):e0172395, 2017.

Andrew S. Tanenbaum and David Wetherall. Computer networks, 5th Edition. Pearson, 2011. ISBN
0132553171.

Rundong Wang, Xu He, Runsheng Yu, Wei Qiu, Bo An, and Zinovi Rabinovich. Learning efficient
multi-agent communication: An information bottleneck approach. In Proceedings of the 37th
International Conference on Machine Learning (ICML), pp. 9908–9918, 2020.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8(3):229–256, 1992.

Zheng Zeng, Rodney M. Goodman, and Padhraic Smyth. Learning Finite State Machines With
Self-Clustering Recurrent Networks. Neural Computation, 5(6):976–990, 1993.

Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. Learning implicit credit
assignment for cooperative multi-agent reinforcement learning. In Advances in Neural Information
Processing Systems 33, pp. 11853–11864, 2020.

12

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 TRAINING AND ARCHITECTURE DETAILS

The input of the model consists of the agent’s observation and the received messages. Environment-
specific observation decoders map observations to a vector of length 128. The observation decoder
for POMNIST is a multi-layer convolutional neural network. The first convolutional layer convolves
the input with 16 filters of size 3× 3 with stride length of 1 followed by a rectifier nonlinearity. The
second layer convolves 32 filters of the same size and stride length. This is followed by a 2 × 2
max-pooling layer. The last layer is a fully connected layer with 128 rectifier units, followed by
a dropout layer with drop probability 0.5. The observation decoder for traffic junction is a single-
layer fully connected network with 128 rectifier units. The message decoder maps all incoming
messages to a vector of fixed length. It takes the mean of all messages padded to the same length,
including a one-hot encoding of the message’s length. First, each message m of size φ is padded with
zeroes to the maximum message size maxΦ. Then we append a mask that indicates the size of the
message as a one-hot encoding of φ. The output of the message decoder is the mean of these vectors
m⊕ 0maxΦ−φ ⊕ one-hot(φ). In practice, we define one-hot(0) := 0 to indicate empty or dropped
messages and mask them during aggregation.

The vectors from the observation and message decoders are concatenated and processed by a core
network. The input size of the core network lcore depends on Φ and is given as lcore = 128+maxΦ+
|Φ|. In POMNIST, we also append an one-hot encoding of the agent’s id, i.e. lcore is extended by
N . The core module of POMNIST is a fully connected layer with lcore rectifier units and a skip
connection. We append a single-layer gated recurrent unit with lcore hidden features for traffic junction.
The output of the core network is the input to the following networks.

The message-size selector is a single-layer feedforward network with |Φ| neurons to predict the
message-size values. For exploration, we use exponential ϵ-decay from 1 to 0.01 between iterations
400 to 1200. The message encoder is a multi-headed network with a shared layer of lcore neurons and a
separate head for each message size φ ∈ Φ, both followed by tanh activation functions. As mentioned
in Sec. 3.2, the action selector is conceptually independent from the rest of the architecture and can
be trained using different reinforcement learning algorithms. For POMNIST, we use a single-layer
feedforward network to predict the Q-value for each action and an ϵ-greedy action selector with
ϵ = 0.01. For traffic junction, we use a stochastic policy that determines the action probabilities with
a single-layer feedforward network followed by a softmax. We train this network with REINFORCE
and use a separate linear layer to predict the state-value baseline. We encourage exploration by adding
an entropy bonus to the loss that is weighted by a factor that decays linearly from 2 to 0.1 over the
first 1400 iterations and is 0.1 thereafter.

We jointly train these networks by minimizing αLi
Φ + (1 − α)Li

π over all agents. The mixing
coefficient α is set to 0.5 in POMNIST and 0.1 in traffic junction to mitigate the instability. In traffic
junction, we use gradient clipping with a maximum 2-norm of 0.1. For both environments, we use
the Adam optimizer with learning rate 0.001 and a discount factor of 1.

A.2 POMNIST ENVIRONMENT CONFIGURATION

Number of agents The most influential parameters in the POMNIST environment are the number of
splits along the horizontal and vertical axes. They determine the number of agents in the environment.
The full view of size 28 × 28 is divided according to the number of splits along each axis and we
assign one agent to each view. For example, with 0 vertical and 1 horizontal splits, we get two agents
with views of size 28× 14 each. The more splits, the higher the number of agents and the smaller the
view of each agent. The results for different splits without communication are shown in Tab. 3. As
expected, the agents’ performance decreases with an increasing number of splits. Note that random
guessing corresponds to a mean return of 1 · 0.1− 1 · 0.9 = −0.8. Even the agents with (3, 3) splits
learn a policy that is much better than random guessing. We decided to continue with (1, 1) splits,
as the computational overhead of sending messages will be lower than for 8 or 16 agents and the
return is already much lower than the return of the baseline (0, 0). We show that agents can use
communication to improve their return in the following.

13

Under review as a conference paper at ICLR 2023

Table 3: Mean return and standard deviation without communication over 5 runs with different splits.

(vertical, horizontal) splits (0, 0) (0, 1) (1, 0) (1, 1) (1, 3) (3, 1) (3, 3)
number of agents 1 2 2 4 8 8 16

mean agent return 0.978 0.863 0.909 0.633 0.125 0.029 −0.315
± 0.001 0.001 0.001 0.003 0.012 0.004 0.011

Message sizes Next, we have to choose the message sizes Φ for our four agents. Higher message
sizes allow them to encode and transmit more information, but also require more resources. This can
be problematic in limited and unreliable channels. We hypothesize that the benefit of higher message
sizes depends on the considered environment and that the resulting performance saturates with an
increasing message size.

With continuous messages as our baseline, this performance saturation is already visible for relatively
small message sizes in POMNIST. Tab. 4 shows the mean evaluation performance after training with
selected message sizes between 0 and 256. While the return increases by more than 0.2 between
message sizes 0 and 1, the step-wise improvements diminish with greater message sizes. While
the difference between 2 and 4 is still greater than 0.03, doubling the message size from this point
on results in improvements smaller than 0.01. Based on these results, we choose message sizes
Φ ⊆ {0, 1, 2, 4} for our main experiments. Message size 0 represents not sending any message.
Agents can choose this size to keep the channel free if they do not have valuable information to share.
Message size 1 allows for a minimum of coordination and message sizes 2 and 4 are a trade-off
between a comparably small message size and a high return.

We hypothesize that this saturation effect will also depend on the concrete message type. A continuous
messages of size 1 with a 32-bit float can carry significantly more information than a 1-bit discrete
message. While this is true in theory, the experiments in our main paper show that agents can perform
well even with discrete messages of small sizes.

Table 4: Mean return and standard deviation over 5 runs with fixed-sized continuous messages, i.e.
|Φ| = 1, on the test dataset after training for 2000 iterations.

Φ {0} {1} {2} {4} {8} {16} {32} {64} {128} {256}
return 0.633 0.867 0.923 0.957 0.966 0.969 0.972 0.972 0.974 0.974
± 0.003 0.008 0.007 0.001 0.001 0.001 0.000 0.002 0.000 0.002

The optimal choice of message sizes depends on the used hardware and environment-specific factors,
e.g. balancing the training overhead and the diminishing improvements in return for higher message
sizes. Therefore, this design choice should be made on a case-by-case basis.

Next, we analyze how the return changes depending on the number of received messages with
four agents. Tab. 5 shows the mean agent return for message sizes 1, 2 and 3 when an unlimited
communication channel only forwards messages from certain agents and blocks all other messages.

Table 5: Mean return and standard deviation over 5 runs with fixed-sized continuous messages and
different sender subsets on the test dataset after training for 2000 iterations.

senders {} {0} {0, 1} {0, 1, 2} {0, 1, 2, 3}
Φ = {1} 0.632±0.004 0.774±0.003 0.835±0.003 0.858±0.012 0.856±0.007

Φ = {2} 0.634±0.001 0.792±0.002 0.877±0.008 0.916±0.005 0.923±0.001

Φ = {4} 0.636±0.002 0.8±0.001 0.9±0.003 0.946±0.002 0.957±0.001

The gradual increment in the reward for an increasing number of transmitted messages is similar
to Tab. 4. There is a big improvement from not transmitting any messages {} to transmitting one
message {0}, but the benefit of transmitting more messages diminishes with the number of senders.

14

Under review as a conference paper at ICLR 2023

Especially for message size 1 (Φ = {1}), the difference between transmitting 3 messages from agents
{0, 1, 2} and 4 messages from all agents {0, 1, 2, 3} is neglectable. This suggests that the messages
contain redundant information and it might not be necessary or even beneficial to receive messages
from all agents at all times. Although the agent’s return increases slightly from 3 to 4 sending agents
for message sizes 2 and 4, the higher utilization might lead to additional collisions and thus reward
detonations in imperfect channels.

A.3 POSITIVE LISTENING METRIC

In order to quantify the impact of communication on an agent’s behavior, we use a positive listening
metric (Lowe et al., 2019). We define positive listening as the rate at which an agent makes a wrong
decision and corrects it after receiving messages. We compute this metric in POMNIST by exploiting
the two-step execution explained in Sec. 4.1. The messages are considered at the second step of the
decision making, while in the first step the agent takes only its observation into account. According
to this, we measure the effect of messages by comparing the chosen action in the first and second
step. It should be noted that the models used for the computation of this metric must satisfy the
condition 0 ∈ Φ and have no internal state, i.e. the agents are trained to make the decision without
any messages.

A.4 POSITIVE SIGNALING METRIC

To quantify positive signaling in discrete action and message spaces, Lowe et al. suggest to use the
mutual information between selected actions and sent messages (Lowe et al., 2019):

I(A;M) :=
∑

a∈A,m∈M
p(a,m) log

p(a,m)

p(a)p(m) (3)

They treat the action space A and discrete message space M as random variables that take on values
a ∈ A and m ∈ M with probabilities p(a) and p(m) respectively. In practice, these probabilities are
approximated empirically by normalizing the action and message frequencies.

In adaptive communication, agents can choose from different message sizes φ ∈ Φ. Messages
for each size are chosen independently and the entropy of the corresponding message distributions
can differ. Additionally, messages of certain sizes could be solely sent in conjunction with certain
actions. As the mutual information is non-negative and bound by the minimum entropy of actions
and messages, i.e. 0 ≤ I(A;M) ≤ min{H(A), H(M)}, we can normalize the mutual information
across different message sizes.

Based on these considerations, we express positive signaling jointly for all messages sizes as

PS :=
∑

φ∈Φ\{0}

p(φ)

1− p(0)

I(Aφ;Mφ)

min{H(Aφ), H(Mφ)}
(4)

where p(φ) is the probability of choosing a message of size φ ∈ Φ and Mφ is the set of messages
with this size. The random variable Aφ conditions actions on message size φ. If 0 ̸∈ Φ, we define
p(0) := 0. Note that empty messages of size {0} are excluded from the metric, i.e. an agent that
communicates only when taking a specific action in a specific state and stays silent otherwise will
have a positive signaling value of 1 instead of 0.

Note that our positive signaling metric is defined for discrete messages. As continuous messages
can take any value in range [−1, 1]φ, they are often unique. This would lead to mutual information
and positive signaling values of 1 while not allowing for any conclusions regarding the usage of the
message space with respect to the taken actions. Positive signaling metrics for continuous messages
could e.g. be based on clustering methods.

A.5 COMMUNICATION CHANNEL

In this section, we provide further details regarding the communication channel introduced in Sec. 3.4.

15

Under review as a conference paper at ICLR 2023

First, we describe an example to illustrate why the expected throughput (see Sec. 4.1) is usually
lower than the channel size with the given model. Recall that the starting position for a message of
size φ is chosen randomly from {0, φ, 2φ, . . . , ⌊C−φ

φ ⌋φ} with channel size C and that the message
occupies φ slots. We call this channel model stochastic channel with spacing. Consider 4 agents that
try to send messages of size 4 simultaneously in a channel of size C = 8. The message of an agent is
then placed into slots {0, 1, 2, 3} or {4, 5, 6, 7}, each with probability 0.5. It is transmitted correctly
without collisions iff the messages of all remaining agents are placed into the other slots. With four
agents, these are 2 · 4 = 8 events with probability 0.54. The probability of successfully transmitting
any message is therefore 8 · 0.54 = 0.5. As all messages have size 4, the throughput is 0.5 · 4 = 2.

When 4 agents send messages with random sizes φ ∈ Φ = {0, 1, 2, 4} over a channel of size 8,
we empirically get a throughput of 2.297 over 1 million steps. The drop probabilities for different
message sizes are shown in Tab. 6. The table also includes the drop probabilities for the stochastic
channel, where a message of size φ is randomly placed into {0, 1, 2, . . . , C − φ} and occupies φ
slots. The results show that this channel access scheme results in a lower throughput of 1.579 and
higher drop probabilities for higher message sizes.

Table 6: Message drop probabilities for individual message sizes and throughput using a random
message size selection in different channel models.

Channel model Drop probabilities Throughput
φ = 0 φ = 1 φ = 2 φ = 4

stochastic with spacing 0 0.524 0.578 0.756 2.297 slots
stochastic 0 0.512 0.682 0.886 1.579 slots

Based on these results, we decided to use the stochastic channel with spacing for our main experiments.
Further experiments, e.g. comparing the learned behavior for different channel models, are left for
future work. An active placement of messages in the channel could also be investigated, e.g. agents
could listen on the channel and decide when to send messages to avoid collisions.

A.6 MESSAGE SIZES

0 250 500 750 1000 1250 1500 1750 2000
Number of iterations

1.0

1.5

2.0

2.5

3.0

M
ea

n
ch

os
en

 m
es

sa
ge

 si
ze

inf
64
32
16
8
4

Figure 7: Mean chosen message size
during training with different chan-
nel sizes. Each line shows the mean
over 5 runs, the transparent area rep-
resents the standard deviation.

In this section we take a closer look at the mean message
sizes at the experiments with 4 agents and message sizes
Φ = {0, 1, 2, 4}. Fig. 7 shows the mean message size dur-
ing training. We observe that, for small channel sizes 4 and 8,
the agents do not exploit the channel and decrease their mes-
sage sizes to avoid collisions. However, with higher channel
sizes (C ≥ 16), the agents first try to exploit the resources and
the mean message size increases from the random selection.
As expected, they learn to decrease their message size to avoid
collisions later in the training. Therefore, the mean message
size decreases and converges to a message size that is higher
than the random selection. The message sizes after training
for 2000 iterations are reported on Tab.1 on the main paper for
different channel sizes.

16

	Introduction
	Related work
	Adaptive communication
	Problem formulation
	Architecture
	Message types
	Limited communication channel

	Experiments
	Partially Observable MNIST (POMNIST)
	Traffic junction

	Conclusion
	Appendix
	Training and architecture details
	POMNIST environment configuration
	Positive listening metric
	Positive signaling metric
	Communication channel
	Message Sizes

