
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE TRANSFORMER PROGRAMS:
BRIDGING THE GAP BETWEEN PERFORMANCE
AND INTERPRETABILITY IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Balancing high performance with interpretability in increasingly powerful
Transformer-based models remains a challenge. While mechanistic interpretabil-
ity aims to specify neural network computations in explicit, pseudocode-like for-
mats, existing methods often involve laborious manual analysis or struggle to
fully elucidate learned internal algorithms. Recent efforts to build intrinsically
interpretable models have introduced considerable expressivity and optimization
challenges. This work introduces Adaptive Transformer Programs, an enhanced
framework building upon RASP language and Transformer Programs to create
more robust and interpretable models. The proposed method increases expressiv-
ity by redesigning two primary attention modules to improve categorical and nu-
merical reasoning capabilities. To overcome optimization hurdles, we introduce a
novel reparameterization scheme that enhances the exploration-exploitation trade-
off during training. We validate our approach through extensive experiments on
diverse tasks, including in-context learning, algorithmic problems (e.g., sorting
and Dyck languages), and NLP benchmarks such as named entity recognition and
text classification. Results demonstrate that Adaptive Transformer Programs sub-
stantially narrow the performance gap between black-box Transformers and inter-
pretable models, enhancing transparency. This work advances the development
of high-performing, transparent AI systems for critical applications, addressing
crucial ethical concerns in AI development.

1 INTRODUCTION

Balancing high performance with model interpretability has emerged as a central challenge in arti-
ficial intelligence. The introduction of Transformer architectures (Vaswani et al., 2017) and the rise
of large language models (LLMs) (Brown et al., 2020) have significantly advanced natural language
processing. However, these powerful models often operate as “black boxes,” making it difficult to
understand their decision-making processes. This issue is especially critical in fields like healthcare,
finance, and law, where AI-driven decisions can have profound impacts. Addressing this challenge
within the context of Transformers and LLMs is both timely and essential.

Various interpretability techniques have been proposed to illuminate how AI models make decisions,
each offering unique insights yet presenting distinct challenges. Behavioral approaches, such as
those by Ribeiro et al. (2020); Warstadt et al. (2020), probe model responses to diverse inputs,
providing an external view of model behavior but lacking access to internal reasoning mechanisms.
Attribution methods like Integrated Gradients (Sundararajan et al., 2017) and SmoothGrad (Smilkov
et al., 2017) quantify the influence of input features on predictions but often fail to capture underlying
causal relationships. Concept-based interpretabilities (Kim et al., 2018; Belinkov, 2022) adopt a
top-down approach to unraveling a model’s decision-making processes but risk introducing biases
through subjective concept selection. Mechanistic interpretability efforts (Elhage et al., 2021; Nanda
et al., 2023) delve into the internal computations of models but struggle with scalability as model
complexity grows. These limitations underscore the necessity for inherently interpretable models
that offer transparent decision-making processes without sacrificing performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Advancements such as RASP, Tracr, and Transformer Programs represent significant strides toward
inherently interpretable Transformer models. RASP (Weiss et al., 2021) introduces a programming
language that allows users to define Transformer operations in a human-readable format, effectively
mapping neural computations to symbolic logic. Building on this, Tracr (Lindner et al., 2024) serves
as a compiler that translates RASP programs into actual Transformer weights, bridging the gap be-
tween high-level specifications and low-level implementations. Transformer Programs (Friedman
et al., 2024) take this a step further by proposing a method to train Transformers that can be directly
translated into discrete, interpretable programs. While these innovations move us closer to trans-
parent AI systems, challenges in expressivity and optimization persist. Our work addresses these
challenges by introducing novel enhancements to Transformer Programs.

In this paper, we introduce three key innovations that enhance the expressivity and optimization
of Transformer Programs (Friedman et al., 2024) while preserving interpretability. First, we pro-
pose a seamless transition mechanism between Gumbel-Softmax and Sparsemax, improving the
exploration-exploitation trade-off during training by allowing the model to dynamically adjust its at-
tention distributions. Second, we develop an uncertainty-aware attention mechanism that integrates
categorical and score-based attention through Jensen-Shannon Divergence, enabling the model to
handle varying levels of uncertainty in data processing. Third, we enhance the numerical mechanism
by incorporating positional encodings. These contributions not only extend the functional capacity
of Transformer Programs but also maintain their inherent interpretability, addressing limitations in
previous approaches.

Our extensive validation on diverse tasks, including in-context learning, algorithmic problems
(Weiss et al., 2021), and NLP benchmarks, demonstrates the effectiveness of our Adaptive Trans-
former Programs. Experimental results show a substantial improvement in bridging the perfor-
mance gap between black-box Transformers and interpretable models while offering enhanced trans-
parency. This work not only advances the state-of-the-art in interpretable AI but also paves the way
for the responsible and ethical integration of AI systems in critical applications, potentially trans-
forming how we develop and deploy AI in high-stakes environments.

2 BACKGROUND

Transformer Architecture and Circuits. The Transformer architecture (Vaswani et al., 2017) has
revolutionized sequential data processing, achieving unprecedented performance across NLP tasks.
It processes token sequences w = {w1, w2, . . . , wN} from a vocabulary V , converting each into a
high-dimensional embedding. The initial representation x0 ∈ RN×d combines learned token em-
beddings with positional encodings, crucial for capturing sequential information. The architecture
consists of L layers, each refining the input representation through two main components: Multi-
Head Attention (MHA) and Multilayer Perceptron (MLP). The output of layer i is computed as:

xi = xi−1 + MLPi(xi−1 + MHAi(xi−1)), (1)

where MHA allows the model to attend to different positions within the sequence:

MHA(x) =

H∑
h=1

softmax

(
xW h

Q(xW
h
K)⊤

√
dk

)
xW h

V W
h
O. (2)

Recent research has focused on understanding Transformers through the lens of “Transformer cir-
cuits” (Elhage et al., 2021), viewing them as a residual stream architecture where each component
reads from and writes to a running representation:

xi = xi−1 + f(xi−1Win)Wout (3)

This approach has yielded insights into emergent behaviors, such as induction heads for in-context
learning (Olsson et al., 2022). While offering insights into attention heads and neurons, their ap-
proach to interpretability is limited by the complexity of modern models. This has led to efforts to
bridge the gap between symbolic reasoning and neural network models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Bridging Transformers and Programs. Bridging the gap between Transformers and symbolic
programs has emerged as a promising direction for enhancing interpretability. RASP (Weiss et al.,
2021) offers a programming language designed to express Transformer computations in a human-
readable format. Its key select function, analogous to attention in Transformers, which takes se-
quences of keys k ∈ KN and queries q ∈ QM , along with a boolean predicate p : Q×K → {0, 1}, to
produce an attention matrix A ∈ {0, 1}M×N . This is followed by an aggregate operation, akin
to value aggregation in Transformers. Building on RASP, Lindner et al. (2024) introduced Tracr, a
compiler that converts RASP programs into Transformer weights. This led to Learning Transformer
Programs (Friedman et al., 2024), a method for training Transformers that can be automatically con-
verted into discrete, human-readable programs. This approach advances neural-symbolic integration
by combining neural network expressiveness with symbolic transparency. However, a key challenge
remains in implementing effective discrete optimization to ensure both accuracy and interpretability
in the learned programs.

Discrete Optimization. Discrete optimization is crucial for training interpretable models with dis-
crete representations like Transformer Programs. The Gumbel-Softmax estimator (Jang et al., 2017)
enables differentiable sampling from discrete distributions, generating one-hot encoded vectors ap-
proximating discrete selections. This allows gradient-based optimization in Transformers. While
effective, it has limitations in finding optimal solutions and promoting sparsity, crucial for inter-
pretability. This paper explores alternative methods, including Sparsemax (Martins & Astudillo,
2016), and introduces a novel smooth transition mechanism addressing these limitations, leading to
more effective, interpretable program learning.

3 ADAPTIVE TRANSFORMER PROGRAMS

3.1 OVERVIEW

Our approach builds upon the Transformer Programs framework (Friedman et al., 2024), which
introduces two key constraints for interpretable Transformers: a disentangled residual stream and
rule-based modules.

The disentangled residual stream encodes each program variable in a dedicated, orthogonal sub-
space, preventing the entanglement often seen in standard Transformers (Vaswani et al., 2017) and
facilitating clear reading and writing mechanisms. When reading, each module accesses specific
variables using projection matrices parameterized by one-hot indicator vectors. Formally, if the
residual stream encodes m categorical variables, each with cardinality k, resulting in input em-
beddings x ∈ {0, 1}N×mk, then each projection matrix W ∈ Rmk×k is defined by an indicator
π ∈ {0, 1}m: W = [π1Ik; . . . ;πmIk]

⊤, where Ik is the k × k identity matrix. Writing involves
concatenating new information to maintain separation: xi = [xi−1;h(xi−1)], where i denotes the
layer and h is an attention head.

Transformer Programs enforce interpretable, rule-based mappings between input and output vari-
ables. Categorical attention heads compute attention patterns using boolean predicate matrices and
employ hard attention for aggregation. The attention pattern is determined using a boolean pred-
icate matrix Wpredicate ∈ {0, 1}k×k, defining mappings between query and key values. This re-
sults in an attention score matrix S ∈ {0, 1}N×N where S = xWQWpredicate(xWK)⊤. Hard
attention ensures each query attends to a single key, producing a categorical output variable:
Ai = One-hot (argmaxj Si,j). Additional modules include factored categorical embeddings, lim-
ited numerical attention, and feed-forward layers as lookup tables.

While effective, the original framework’s use of Gumbel-Softmax reparameterization (Jang et al.,
2017) faces challenges in finding optimal solutions and promoting sparsity. Our work addresses
these challenges through three main contributions: (1) a Smooth Transition Mechanism for discrete
optimization, (2) Uncertainty-Aware Categorical Attention, and (3) Position-Aware Numerical At-
tention. These enhancements improve both interpretability and performance, leading to Adaptive
Transformer Programs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 SMOOTH TRANSITION MECHANISM FOR DISCRETE OPTIMIZATION

Our Smooth Transition Mechanism facilitates effective discrete optimization in Transformer Pro-
grams (Friedman et al., 2024) by gradually shifting from exploration to exploitation during training.
The inherently discrete nature of Transformer Programs, with modules containing discrete parame-
ters like predicate matrices and gate vectors, poses challenges for traditional gradient-based meth-
ods. To address this, differentiable relaxation techniques have been employed, with the Gumbel-
Softmax estimator (Jang et al., 2017) being widely adopted:

z̃i =
zi + gi

τ
(4)

ysoft,i = softmaxi(z̃) =
exp(z̃i)∑
j exp(z̃j)

. (5)

where gi is Gumbel noise, τ is temperature, zi is raw logit, and z̃i is perturbed and scaled logit.
However, Gumbel-Softmax (Jang et al., 2017) often yields sub-optimal programs due to local optima
and fails to encourage sparsity, hindering interpretability and efficiency.

To address these limitations, we introduce a Smooth Transition Mechanism combining Gumbel-
Softmax and Sparsemax (Martins & Astudillo, 2016). This hybrid approach balances exploration
and exploitation during training. Initially, it behaves like Gumbel-Softmax, encouraging diverse
program structures. As training progresses, it shifts towards a Sparsemax variant with Gumbel
noise, which we term Gumbel-Sparsemax:

ysparse,i = sparsemax(z̃) := argmin
p∈∆K−1

∥p− z̃∥2. (6)

where ∆K−1 is the (K − 1)-dimensional probability simplex, and the equation finds the closest
point to the perturbed logit z̃. This promotes sparsity and more deterministic program choices,
refining promising solutions and encouraging concise, interpretable programs. This balance enables
the discovery of high-quality, interpretable, and efficient program structures.

The temperature parameter τ controls the smooth transition between Gumbel-Softmax and Gumbel-
Sparsemax. High τ favors exploration (Gumbel-Softmax), while low τ promotes exploitation
(Gumbel-Sparsemax). The transition is governed by α(τ):

α(τ) =
τ1 − τ

τ1 − τ2
(7)

where τ1, τ2 are the transition points (τ1 > τ2). The hybrid distribution is:

y = (1− α(τ)) · ysoft + α(τ) · ysparse (8)

While improving discrete optimization, this mechanism falls short of fully addressing the need for
adaptability and robustness in real-world scenarios, motivating our next contribution: Uncertainty-
Aware Attention.

3.3 UNCERTAINTY-AWARE ATTENTION

Categorical attention heads in Transformer Programs, as in Tracr (Lindner et al., 2024) and RASP
(Weiss et al., 2021), enforce one-to-one attention, excelling at discrete, rule-based relationships but
struggling with nuanced or continuous relationships. Weiss et al. (2021) proposed an extension
to RASP combining a binary function predicate : Q × K → {0, 1} with a continuous function
score : Q × K → R, capturing fine-grained relationships useful for tasks like semantic similar-
ity in NLP. This continuous score function forms the basis of what we term score-based attention.
While Friedman et al. (2024) suggested incorporating score-based attention in Transformer Pro-
grams, this approach increases program complexity. Our preliminary experiments with separate

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

binary (predicate-based) and continuous functions (score-based) revealed scenario-dependent per-
formance variations, motivating the development of a hybrid mechanism to create more Adaptive
Transformer Programs.

We employ Jensen-Shannon Divergence (JSD) (Lin, 1991), a symmetric and smoothed version
of Kullback-Leibler divergence (Kullback & Leibler, 1951), to measure uncertainty in categori-
cal attention. JSD’s non-negativity, boundedness, and symmetry make it suitable for this task. In
this context, JSD measures uncertainty in probability distributions, where higher values indicate
greater uncertainty and a larger divergence between categorical attention and a reference distri-
bution. Given a query q and keys k1, . . . , kn, we define categorical attention (CatAttention) as
Acat,i = predicate(q, ki) and score-based attention (ScoreAttention) as Ascore,i = score(q, ki). We
introduce a dynamic reference attention Aref,i that adapts during training, allowing flexible uncer-
tainty estimation. The JSD is formulated as:

JSD(Acat,i ∥ Aref,i) =
1

2
KL(Acat,i ∥ Aavg,i) +

1

2
KL(Aref,i ∥ Aavg,i) (9)

where Aavg,i = (Acat,i +Aref,i)/2. This formulation enables uncertainty estimation in the attention
mechanism, which is used to adjust attention weights accordingly.

A learnable gating mechanism, driven by the JSD-based uncertainty estimate, dynamically
weights the contributions of CatAttention and ScoreAttention. The gating mechanism: g =
MLP(JSD(Acat,i ∥ Aref,i)), that implemented as a network module that takes the JSD value as
input and outputs a gating weight between 0 and 1. This weight is used to combine the outputs of
CatAttention and ScoreAttention:

Ai = g ·Acat,i + (1− g) ·Ascore,i (10)

In high uncertainty scenarios (high JSD), the gate favors ScoreAttention, which is more reliable in
uncertain contexts. In low uncertainty (low JSD), CatAttention is preferred, as it is more confident
in its categorical decisions. This adaptive mechanism provides flexible and robust decision-making
by dynamically adjusting the balance between attention types based on uncertainty.

While Uncertainty-Aware Attention improves the handling of categorical and contextual informa-
tion, processing numerical data poses additional challenges. To address this, we introduce the
Position-Aware Attention module, which extends the original Numerical Attention mechanism.

3.4 POSITION-AWARE ATTENTION

The numerical attention mechanism in Transformer Programs (Friedman et al., 2024) is restricted
to outputting integer values within a bounded range. This limitation hinders the model’s ability to
represent and process continuous or fractional values, thereby reducing expressiveness and compli-
cating tasks that require nuanced numerical representations or complex calculations. Additionally,
numerical attention employs a binary predicate matrix and computes a weighted sum instead of a
weighted average, simplifying standard Transformer attention and diminishing the model’s capacity
to capture intricate relationships between inputs. Furthermore, numerical variables are limited to
being either constant (set to one at the input layer) or outputs of numerical attention heads, con-
straining the model’s ability to learn and represent arbitrary numerical values and restricting its
problem-solving capabilities.

Our Position-Aware Attention mechanism extends the numerical attention in Transformer Programs
(Friedman et al., 2024). It uses categorical variables as keys and queries, and numerical variables
as values. We incorporate both Learnable (Gehring et al., 2017) and Sinusoidal (Vaswani et al.,
2017) Positional Encodings into the numerical value variable var, creating a position-aware value
varpos. This allows the model to learn nuanced positional relationships. Given attention scores
S ∈ {0, 1}N×N , the output for the ith token is computed as:

Anum,i =

N∑
j=1

Si,jvarpos[j] (11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The integration of learnable and sinusoidal positional encodings offers several advantages. Learn-
able encodings capture nuanced positional information and enable processing of non-integer values,
expanding the model’s numerical capabilities for tasks requiring fine-grained representations. By
incorporating positional information, each token can distinguish between identical numerical values
at different positions. Additionally, Sinusoidal Positional Encodings provide a structured approach
to embedding positional information, improving the model’s ability to handle sequence-dependent
tasks and maintain interpretability. These enhancements, combined with the Smooth Transition
Mechanism and Uncertainty-Aware Attention, enable Transformer Programs to be effectively con-
verted into interpretable programs, as discussed in the subsequent section on Experimental Results.

Table 1: Accuracy (Acc.) and Program Length (Lines) for Transformer Programs (Baseline) and
Adaptive Transformer Programs (Ours) on In-Context Learning (Friedman et al., 2024) and RASP
tasks Weiss et al. (2021).

Dataset Description Example Baseline Ours
Acc. Lines Acc. Lines

Induction In-context learning. induction("a1b2b2a") = 1 100.0 107 100.0 101
Reverse Reverse the order. reverse("abbc") = "cbba" 99.74 859 99.99 779
Histogram Count the number of tokens. hist("abbc") = "1221" 99.94 199 99.95 189

Double hist. Count the number of unique tokens sharing
identical frequency count.

hist2("abbc") = "2112" 66.78 586 91.81 513

Sort Arrange the input elements in alphabetically
ascending order.

sort("cbba") = "abbc" 99.98 945 99.86 895

Most-Freq Order unique elements by occurrence fre-
quency, using earlier positions to break ties.

most freq("abbc") = "bac" 76.44 1334 80.80 894

Dyck-1 Classify if each position i is a valid string(T),
a valid prefix(P), or an invalid(F).

dyck1("(())") = "PTPTF" 99.69 1297 99.93 1086

Dyck-2 The same analysis with above, but in Dyck-2. dyck2("(()[])") = "PPPPTPF" 97.98 1316 98.14 1065

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP AND DATASETS

To evaluate the effectiveness of Adaptive Transformer Programs, we conducted experiments on a di-
verse set of tasks: a simple in-context learning task (Friedman et al., 2024), algorithmic RASP tasks
(Weiss et al., 2021), and two standard NLP tasks—named entity recognition using CoNLL-2003
(Tjong Kim Sang & De Meulder, 2003) and text classification using TREC, MR, Subj, and AG News
datasets (Voorhees & Tice, 2000; Pang & Lee, 2004; 2005; Zhang et al., 2015). In the in-context
learning task, the model processed sequences of up to 10 tokens of alternating letters and numbers
from a vocabulary of four letters and four numbers, outputting the number following a repeated let-
ter or unk for a new letter, using an attention-only Transformer with two layers and one attention
head per layer, fixed one-hot encoded token and position variables as input, and a causal attention
mask. For the RASP tasks, as summarized in Table 1, we tested our models on small-scale datasets
with sequence lengths up to 16 (Dyck tasks) or 8 (others), using vocabularies matching the sequence
lengths; the models employed fixed one-hot token and position embeddings, variable cardinality set
to the maximum sequence length, and incorporated our enhanced modules—Uncertainty-Aware cat-
egorical attention and Position-Aware numerical attention heads and MLPs with two input variables.
In the NLP tasks, sentences were limited to 32 words for named entity recognition and 64 words for
text classification, both using a 10,000-word vocabulary and initialized with 300-dimensional GloVe
embeddings (Pennington et al., 2014); for named entity recognition, only categorical attention heads
and MLPs were employed, while text classification used averaged token embeddings for sentence
representation.

4.2 IN-CONTEXT LEARNING AND RASP TASKS

Performance. Table 1 compares Adaptive Transformer Programs (Ours) to Transformer Programs
(Friedman et al., 2024) (Baseline) across eight tasks, showing improvements in accuracy and pro-
gram complexity. Our approach consistently matches or outperforms the baseline, with notable gains

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

in challenging tasks: Double histogram (91.81% vs 66.78%) and Most-Freq (80.80% vs 76.44%).
For tasks like Induction and Sort, where baseline accuracy was already high, our model maintains
performance (100% and 99.86% respectively) while reducing program complexity. Slight accuracy
improvements are observed in Reverse, Histogram, and Dyck-1 tasks. Interestingly, for the Dyck-2
task, which involves more complex string analysis, our model achieves a small increase in accuracy
from 97.98% to 98.14%. These results demonstrate that Adaptive Transformer Programs maintain
high accuracy across diverse RASP tasks while showing significant improvements in challenging
scenarios, highlighting the effectiveness of our proposed enhancements in complex reasoning tasks.

Interpretability. A key advantage of Adaptive Transformer Programs is their ability to achieve
more concise and interpretable representations, evidenced by the reduced program length (lines of
code) across all tasks in Table 1. This improved sparsity not only suggests greater computational effi-
ciency but also enhances interpretability, making it easier to understand the model’s decision-making
process. Notably, our approach achieves substantial reductions in program length for both complex
tasks like Dyck-1 (16.3% reduction) and Dyck-2 (19.1% reduction) and simpler tasks like Induction
(5.6% reduction) and Histogram (5% reduction). The most significant reduction is observed in the
Most-Freq task (33% reduction, from 1334 to 894 lines). These improvements in conciseness, com-
bined with maintained or improved accuracy across tasks, demonstrate the effectiveness of Adaptive
Transformer Programs in balancing performance with interpretability.

Ours Program Standard

20

40

60

80

100

A
cc

ur
ac

y

Reverse

Ours Program Standard

Sort

Ours Program Standard

Most Freq

|V| = 8, N = 8 |V| = 8, N = 16 |V| = 16, N = 16

Figure 1: RASP accuracy comparison of Adaptive Transformer Programs (Ours), Program Trans-
formers (Program), and Standard Transformers (Standard) across increasing input vocabulary sizes
(|V|) and sequence lengths (N).

Scalability. Adaptive Transformer Programs demonstrate robust scalability when faced with in-
creasing input complexity, outperforming both Program Transformers and Standard Transformers
in some scenarios. Figure 1 illustrates the performance across three representative RASP tasks (Re-
verse, Sort, and Most Freq) as we increase the input vocabulary size (|V|) from 8 to 16 and the
maximum sequence length (N) from 8 to 16. For the Reverse task, our model maintains high ac-
curacy (99.99%) with |V| = 8 and N = 8, and experiences less degradation (83.11% and 59.35%)
compared to baselines as complexity increases. In the Sort task, Adaptive Transformer Programs
consistently outperform Standard Transformers and show better resilience than Program Transform-
ers, maintaining 87.6% accuracy even at |V| = 16 and N = 16. The Most Freq task presents a
challenge for all models, but our approach still demonstrates competitive performance, particularly
at higher complexities. These results highlight the superior scalability of Adaptive Transformer
Programs, showing their potential for handling more complex, real-world data distributions while
maintaining interpretability.

Ablation Study. Table 2 presents our comprehensive ablation study, evaluating the impact of three
key enhancements: the Smooth Transition Mechanism, Uncertainty-Aware Attention, and Position-
Aware Attention on the Most-Freq task. We manually enable or disable these components in various
combinations, training separate models for each configuration. The results reveal that the full model,
with all enhancements enabled, achieves the highest accuracy of 80.8% while maintaining a rela-
tively concise program length of 894 lines. As observed in the ablation study where only Smooth
Transition is enabled and the others disabled, while the Smooth Transition Mechanism (which incor-
porates Gumbel-Sparsemax) contributes significantly to program conciseness, it also shows a slight
decrease in accuracy when used in isolation, highlighting the trade-off between interpretability and

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation study on Most-Freq task: Impact of model enhancements on performance (Accu-
racy) and program length (Lines).

Smooth Transition
Mechanism

Uncertainty-Aware
Attention

Position-Aware
Attention Accuracy Lines

✓ ✓ ✓ 80.8 894
✓ ✓ - 78.25 850
✓ - ✓ 75.01 939
- ✓ ✓ 78.62 938
✓ - - 73.61 920
- ✓ - 77.34 896
- - ✓ 76.26 1028
- - - 76.44 1334

performance. Disabling individual components leads to performance drops, with Uncertainty-Aware
Attention showing the most significant impact (accuracy decrease to 75.01% when disabled). No-
tably, removing all enhancements (equivalent to baseline Transformer Programs) results in a lower
accuracy (76.44%) and the longest program (1334 lines), highlighting the cumulative benefit of
our proposed enhancements. When multiple components are disabled, the performance declines
further—removing both Uncertainty-Aware Attention and Position-Aware Attention leads to an ac-
curacy of 73.61% and a less efficient program length of 920 lines. These results demonstrate the
critical role each enhancement plays in maintaining high performance and concise, interpretable
program structures.

4.3 NLP TASKS

Table 3: NER Performance Metrics and Program Length on CoNLL-2003 Dataset.

Model Accuracy Precision Recall F1 Lines
Standard Transformers 92.2 71.1 62.5 66.6 -
Transformer Programs 94.2 78.9 72.9 75.8 991
Ours 94.1 77.2 73.2 75.1 916

Named Entity Recognition (NER). On the CoNLL-2003 Named Entity Recognition (NER) task,
a standard benchmark for sequence labeling, Adaptive Transformer Programs demonstrate com-
petitive performance while offering significant advantages in interpretability. Table 3 presents the
results, comparing our approach to Standard Transformers and Transformer Programs. Our model
achieves 94.1% accuracy, closely matching the 94.2% of Transformer Programs and significantly
outperforming the 92.2% of Standard Transformers. Although the F1 scores are similar across
Transformer Program and our approach (75.8 and 75.1, respectively), Adaptive Transformer Pro-
grams achieve this performance with a notably shorter program length (916 lines compared to 991).
This conciseness, indicative of greater program sparsity, is a key advantage, promoting easier anal-
ysis and understanding of the learned programs, a crucial aspect for interpretability. This result
highlights the ability of Adaptive Transformer Programs to maintain competitive performance while
generating more interpretable program representations.

Table 4: Accuracy and Program Length for Various Text Classification Tasks.

Model TREC MR Subj AG
Acc. Lines Acc. Lines Acc. Lines Acc. Lines

Standard Transformer 83.4 - 75.9 - 90.9 - 89.1 -
Transformer Program 84.2 5520 77.1 3972 92.3 3065 90.3 1881
Ours 83.6 827 77.9 773 90.4 1954 90.0 1790

Text Classification. Adaptive Transformer Programs exhibit robust performance across diverse
text classification tasks, demonstrating their capacity for generalization to various real-world sce-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

narios. As shown in Table 4, our approach performs competitively on four distinct classification
tasks: TREC (question type identification), MR (sentiment evaluation), Subj (subjectivity assess-
ment), and AG news (topic categorization). Notably, our model achieves the highest accuracy on
the MR task at 77.9%, surpassing both Standard Transformers (75.9%) and Transformer Programs
(77.1%). While performance on other tasks is comparable to the baselines, with slight variations
in accuracy, the most striking difference lies in program length. Across all tasks, Adaptive Trans-
former Programs consistently produce more concise programs. For instance, on the TREC task, our
model requires only 827 lines compared to 5520 lines for Transformer Programs, representing an
85% reduction in complexity. This significant decrease in program length, coupled with competitive
accuracy, underscores the efficiency and interpretability of our approach in handling diverse text
classification challenges.

5 RELATED WORK

Learning Programs. Program synthesis has evolved from classical symbolic approaches to deep
learning-based methods, driven by the need to scale to complex programs learned by modern neural
architectures. Traditional paradigms like Inductive Logic Programming (Muggleton & de Raedt,
1994) and Deductive Program Synthesis (Manna & Waldinger, 1980) relied on symbolic reasoning
and expert knowledge. The field then shifted towards neural program induction, with works like
Neural Programmer-Interpreters (Reed & de Freitas, 2016) and Neuro-Symbolic Program Synthesis
(Devlin et al., 2017) learning programs directly from data. However, these methods struggle with
scalability to large datasets, complex program structures, and incorporating domain-specific knowl-
edge (Gulwani et al., 2017). Transformer Programs (Friedman et al., 2024) address these limitations
by leveraging Transformer architectures’ representation learning capabilities while imposing con-
straints to learn interpretable programs.

Transformers and Formal Languages. Recent research has demonstrated the expressive power
of Transformers in relation to formal languages. Studies show that Transformers can learn regular
and context-free languages, and implement algorithms like first-order logic with majority quantifiers
(Hahn, 2020; Merrill & Sabharwal, 2022). Work by Giannou et al. (2023) further supports the view
of Transformers as general-purpose computation devices. Weiss et al. (2021) established an initial
connection between Transformer operations and program-like representations through the RASP
language. Adaptive Transformer Programs build on this foundation, enhancing interpretability and
programmatic representation to align Transformers with human-understandable symbolic systems.

Interpretable Machine Learning Models. The field of interpretable machine learning has seen
a surge in methods for understanding deep learning models. Post-hoc methods include attention
visualization (Bahdanau et al., 2014), feature attribution (Ribeiro et al., 2016; Lundberg & Lee,
2017), and concept activation vectors (Kim et al., 2018). Architectural modifications, such as sparse
attention (Zhang et al., 2021) and inductive biases (Geiger et al., 2024), attempt to enhance inter-
pretability through model design. In contrast, intrinsically interpretable models offer direct access to
underlying algorithms, improved transparency, and the potential for formal verification. Our Adap-
tive Transformer Programs aim to learn inherently interpretable models, providing more faithful and
complete explanations of decision-making processes. This approach addresses the limitations of
post-hoc methods and architectural modifications by representing complex computations transpar-
ently.

Uncertainty in Deep Learning. Uncertainty estimation plays a crucial role in developing reli-
able and interpretable deep learning models. Quantifying uncertainty improves model reliability
(Kendall & Gal, 2017), facilitates human-AI collaboration (Gal & Ghahramani, 2016), and en-
hances interpretability (Leibig et al., 2017). Prominent techniques include Bayesian Neural Net-
works (MacKay, 1995), Monte Carlo Dropout (Gal & Ghahramani, 2016), and Ensemble Methods
(Lakshminarayanan et al., 2017). Our Uncertainty-Aware Attention mechanism dynamically com-
bines attention types based on uncertainty estimates, leading to more robust and interpretable mod-
els. This approach uniquely integrates program synthesis, Transformer architectures, interpretabil-
ity, and uncertainty estimation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION AND DISCUSSION

The study presents a novel framework for developing robust, expressive, and interpretable Trans-
former models that can be translated into human-readable programs. Key contributions include a
Smooth Transition Mechanism for discrete optimization, an Uncertainty-Aware Attention mecha-
nism for adaptive attention blending, and a Position-Aware Attention module for numerical reason-
ing. Empirical results on synthetic and real-world NLP tasks demonstrate superior performance
compared to benchmarks and provide concise, insightful interpretability analysis. This work ad-
vances interpretable AI by improving performance and clarity through new adaptive mechanisms,
facilitating the creation of transparent and reliable AI systems. Additionally, it explores the con-
vergence of program synthesis, deep learning, and uncertainty estimation, promoting accountability
and the societal benefits of AI.

Integration of Contributions. The three enhancements introduced in this work synergistically
contribute to the effectiveness of Adaptive Transformer Programs. The Smooth Transition Mecha-
nism promotes program sparsity by gradually shifting from exploration-focused Gumbel-Softmax to
exploitation-focused Gumbel-Sparsemax. Uncertainty-Aware Attention dynamically adapts the at-
tention strategy based on uncertainty estimates, enhancing expressiveness and robustness. Position-
Aware Attention improves numerical reasoning and training stability through positional encodings.

Future Research Directions. Adaptive Transformer Programs exhibit potential but face chal-
lenges such as scaling to larger models and tasks, necessitating improved training methods or com-
pact representations. The complexity of these programs can impede human understanding, high-
lighting the need for simplification, summarization, or visualization techniques. Extending their
application to computer vision or robotics will require adapting knowledge representation and ex-
traction processes. Future research might explore advanced structures like recursion and hierarchical
composition for greater expressiveness and leverage interpretability to support human-AI collabora-
tion through interactive program refinement tools.

REFERENCES

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Yonatan Belinkov. Probing classifiers: Promises, shortcomings, and advances. Computational
Linguistics, 48(1), March 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pp. 1877–1901, 2020.

Jacob Devlin, Jonathan Uesato, Rishabh Singh, and Pushmeet Kohli. Semantic code repair using
neuro-symbolic transformation networks. arXiv preprint arXiv:1710.11054, 2017.

Nelson Elhage, Neel Nanda, Catherine Olsson, Nicholas Joseph, Ben Mann, Amanda Askell, Yuntao
Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac Hatfield-Dodds,
Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei,
Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A mathematical frame-
work for transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

Dan Friedman, Alexander Wettig, and Danqi Chen. Learning transformer programs. Advances in
Neural Information Processing Systems, 36, 2024.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In International conference on machine learning, pp. 1243–1252.
PMLR, 2017.

Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
abstraction: A theoretical foundation for mechanistic interpretability, 2024.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference
on Machine Learning, pp. 11398–11442. PMLR, 2023.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? Advances in neural information processing systems, 30, 2017.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, and Rory
Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (tcav). In International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Lever-
aging uncertainty information from deep neural networks for disease detection. Scientific reports,
7(1):1–14, 2017.

Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on Information
theory, 37(1):145–151, 1991.

David Lindner, János Kramár, Sebastian Farquhar, Matthew Rahtz, Tom McGrath, and Vladimir
Mikulik. Tracr: Compiled transformers as a laboratory for interpretability. Advances in Neural
Information Processing Systems, 36, 2024.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. NIPS’17,
pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates, Inc. ISBN 9781510860964.

David JC MacKay. Bayesian neural networks and density networks. Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 354(1):73–80, 1995.

Zohar Manna and Richard Waldinger. A deductive approach to program synthesis. ACM Trans.
Program. Lang. Syst., 2(1):90–121, 1980.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention
and multi-label classification. In International conference on machine learning, pp. 1614–1623.
PMLR, 2016.

William Merrill and Ashish Sabharwal. Transformers implement first-order logic with majority
quantifiers. 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephen Muggleton and Luc de Raedt. Inductive logic programming: Theory and methods. The
Journal of Logic Programming, 19-20:629–679, 1994.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
sures for grokking via mechanistic interpretability. In The Eleventh International Conference on
Learning Representations, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. arXiv preprint arXiv:2209.11895, 2022.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pp. 271–278, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL’05), pp. 115–124, 2005.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. In 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Confer-
ence Track Proceedings, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 4902–4912, 2020.

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smooth-
grad: removing noise by adding noise. CoRR, abs/1706.03825, 2017.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003, pp. 142–147, 2003.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, volume 30, 2017.

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceed-
ings of the 23rd annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 200–207, 2000.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R. Bowman. BLiMP: The benchmark of linguistic minimal pairs for English. Transac-
tions of the Association for Computational Linguistics, 8, 2020.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

Biao Zhang, Ivan Titov, and Rico Sennrich. Sparse attention with linear units, 2021.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. Advances in neural information processing systems, 28, 2015.

12

	Introduction
	Background
	Adaptive Transformer Programs
	Overview
	Smooth Transition Mechanism for Discrete Optimization
	Uncertainty-Aware Attention
	Position-Aware Attention

	Experiments
	Experimental Setup and Datasets
	In-Context Learning and RASP Tasks
	NLP Tasks

	Related Work
	Conclusion and discussion

