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ABSTRACT

Two pressing topics in the theory of deep learning are the interpretation of feature learning
mechanisms and the determination of implicit bias of networks in the rich regime. Current
theories of rich feature learning effects revolve around networks with one or two trainable
layers or deep linear networks. Furthermore, even under such limiting settings, predictions
often appear in the form of high-dimensional non-linear equations, which require compu-
tationally intensive numerical solutions. Given the many details that go into defining a
deep learning problem, this analytical complexity is a significant and often unavoidable
challenge. Here, we propose a powerful heuristic route for predicting the data and width
scales at which various patterns of feature learning emerge. This form of scale analysis
is considerably simpler than such exact theories and reproduces the scaling exponents of
various known results. In addition, we make novel predictions on complex toy architec-
tures, such as three-layer non-linear networks, thus extending the scope of first-principle
theories of deep learning.

1 INTRODUCTION

There is a clear need for a better theoretical understanding of deep learning. However, efforts to construct
such theories inevitably suffer from a “curse of details”. Indeed, since any choice of architecture, activation,
data measure, and training protocol affects performance, finding a theory with true predictive power that
accurately accounts for all those details is unlikely. One workaround is to focus on analytically tractable toy
models, an approach that can often uncover interesting fundamental aspects. However, analytical tractability
is a fragile, fine-tuned property; thus, a large explainability gap remains between such toy models and more
complex data/architecture settings.

An alternative approach focuses on scaling properties of neural networks, which appear more robust. Two
well-established examples are empirically predicting network performance by extrapolating learning curves
using power laws Kaplan et al. (2020); Hestness et al. (2017), and providing theory-inspired suggestions for
hyperparameter transfer techniques Yang et al. (2022); Bordelon et al. (2023). Indeed, it is often the case
Cardy (1996) that predicting scaling exponents is easier than predicting exact or approximate behaviors. As
a simple toy model of this, consider the integral

∫→
↑→ dxg(x/P ). While g(..) needs to be fine-tuned for exact

computations, a change of variable reveals a robust linear scaling with P for any g(..).

This work focuses on scaling properties of feature learning. Feature learning, or, more generally, inter-
pretability, have been studied extensively both from the practical and theoretical side. On the practical side,
mechanistic interpretability Bereska & Gavves (2024) has provided us with statistical explanations for why
some predictions are made and the underlying decision mechanisms. On the theory side, kernel-based ap-
proaches Aitchison (2019); Li & Sompolinsky (2021); Aitchison (2021); Seroussi et al. (2023a); Ariosto
et al. (2022); Bordelon & Pehlevan (2022); Rubin et al. (2024; 2025); Ringel et al. (2025) and Saad and
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Solla type approaches Saad & Solla (1995); Arnaboldi et al. (2023); Bietti et al. (2022) (and their Bayesian
counterparts Cui (2025)) allow us to solve simple non-linear teacher-student networks in the rich regime.
However, our ability to capture more elaborate and compositional feature learning effects, such as those
involving depth and emergence, is hampered by said analytical difficulties.

In this work, we introduce a novel framework addressing the challenging task of making first-principle pre-
dictions on sample complexity and feature learning effects in networks trained to equilibrium. Our approach
consists of three main parts: (1) a taxonomy of feature learning patterns per layer along with concrete vari-
ational probabilities representing these patterns (Sec. 4.3), (2) a tractable proxy (Ẽ) to the Kullback-Leibler
divergence between each variational probability and the true distribution (Secs. 4.1-4.2), and (3) a set of
claims establishing how feature/kernel-eigenmode enhancement in one layer propagates to the next layer
and affects Ẽ (Sec. 4.4). Combining these three, together with a bound on sample complexity, we re-derive,
in a relatively straightforward manner, known results on two-layer networks: sample complexity benefits of
rich learning and Grokking transitions. We demonstrate the power of this approach by expanding the scope
of tractable models. Specifically, we study non-linear 3-layer networks in the rich regime and predict sample
complexity, layer-wise location of learning, and scaling of the number of specializing neurons.

2 SETUP

We consider here several types of feedforward networks, but, for the sake of clarity, we illustrate the main
derivation on deep fully connected networks (FCNs) and, later, when we analyze specific problems, augment
it for convolutional neural networks (CNNs) as needed. Our FCNs are defined by

f(x) =
NL∑

i=1

aiω(h
L↑1
i

(x)), where hl>1
i

(x) =
Nl∑

j=1

W (l)
ij

ω(hl↑1
j

(x)), h1
j
(x) =

d∑

k=1

W (1)
jk

xk (1)

where ω can be any activation function, and we refer to hl

i
’s as pre-acitvations. We consider Bayesian

neural networks, as Bayesian descriptions are a commonly used proxy for network behavior after long-
time stochastic training Wilson & Izmailov (2020); Wilson (2020); Naveh et al. (2021). Alternatively, they
represent an exact solution to Langevin dynamics with weight decay Welling & Teh (2011b). We denote the
target function by y and the training sample size by P , and assume training with MSE loss. The quadratic
weight decay for each layer l is set to 2εNl↑1/ω2

l
, where ε is the ridge parameter and N0 = d is the input

dimension. The possible outputs f of such a network, given y and P , are then distributed according to the
posterior:

ϑ (f | y, P ) =
1

Z
exp

(
→

1

2ε

P∑

ω=1

[f(xω)→ y(xω)]
2

)
p0(f) (2)

where Z is the normalization constant, xω is the training dataset of size P , and p0(f) is the prior defined
as p0(f) =

∫
d!p (!) ϖ [f → f!], determined by the weight decay. Here, p (!) corresponds to the density

of the prior weight distribution, which we take to be Gaussian with a diagonal covariance, representing
quadratic weight decay, and f! is the network architecture with weights !. We further set p(!) such that
pre-activations are all of order 1 under the prior He et al. (2015).

A main focus of this work is characterizing sample complexity. Specifically, we aim to determine the
scaling behavior of P↓, the threshold sample size at which learning becomes possible, as a function of
input dimension, layer width, regularization, and parametrization choices (e.g., mean-field versus standard
scaling). As a measure for learning, we consider an observable, which we refer to as alignment, given by

Af := ↑f, y↓/↑y, y↓, (3)
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where ↑g, h↓ =
∫
dµxg(x)h(x) is the functional inner product, and dµx is some test measure, which,

conveniently, does not need to be the measure from which the training set was drawn. We similarly de-
fine ↑g,K, h↓ =

∫
dµxdµx→g(x)K(x, x↔)h(x↔) for any kernel K. This alignment represents the extent to

which the network learns a function that is proportional to the target, and bounds the test MSE via the
Cauchy–Schwarz inequality

∫
dµx(f(x) → y(x))2 ↔ ↑y, y↓(Af → 1)2. We thus consider the condition

Af ↗ 1 to be a certificate of successful learning.

3 ALIGNMENT AND SAMPLE COMPLEXITY

We turn to analyze sample complexity via an upper bound on the probability of finding Af ↔ ϱ for ϱ ↘

O(1). We begin with a theoretical bound on the posterior that mainly depends on the chance that a random
network, chosen from the prior, produces an alignment of at least ϱ. We denote the prior and posterior
alignment probabilities by Prp0 [Af ↔ ϱ] and Prε [Af ↔ ϱ] respectively. Following simple arguments (see
App. A), we obtain the following bound on the log posterior

log (Prε [Af ↔ ϱ]) < Pk/ (2ε) + log (Prp0 [Af ↔ ϱ]) , (4)

where k = P↑1
∑

P

ω=1 Ep0 [(f(xω) → y(xω))2] is the only training-set dependent quantity and is generally
of order one. The Bayesian interpretation of successful learning is having Prε [Af ↔ ϱ] ↗ O(1). Since
a random network is unlikely to achieve strong alignment, log Prp0 [Af ↔ ϱ] would typically be highly
negative for large ϱ. Therefore, a sufficiently large data term is required to cancel this effect. Explicitly,

P ↭ P↓ = →2ε log Prp0 [Af ↔ ϱ] /k. (5)

Thus, up to the ridge parameter and an O(1) factor (k) depending on the training set, the log probability of
prior alignment with the target lower bounds the sample complexity. Here, it is worth noting that the bound
becomes tight when overfitting effects are small, which is typically the case for k/ε = O(1). Taking ε ≃ 0
encourages overfitting (though often benignly Bartlett et al. (2020)) and trivializes this bound. We conjecture
that, in this case, ε should be kept O(1) based on the effective ridge treatment Canatar et al. (2021); Cohen
et al. (2021); Bartlett et al. (2020). Establishing this conjecture is outside the scope of this work.

In App. B, we provide an asymptotically exact solution for estimating the bound for the prior alignment
Prp0 [Af ↔ ϱ] for a two-layer non-linear FCN using Large Deviation Theory (LDT). We also argue and
demonstrate that our bound is inherently tied to feature learning. Indeed, a network sampled from the prior
that achieves such alignment is a statistical outlier, driven by the emergence of an internal structure which
mimics feature learning (see also Fig. 1). Nevertheless, such a direct LDT approach is computationally
prohibitive in most cases of interest. We therefore introduce a heuristic LDT-based method for evaluating
P↓. This method not only enables predicting the scaling of P↓ but also the feature learning effects that lead
to successful learning.

4 HEURISTICS FOR COMPUTING PRIOR ALIGNMENT

In this section, we adopt a variational approach to estimating P↓ by comparing different modes of feature
learning 1 under a certain loss (see (8) below). While many approaches predict different feature learning
mechanisms Pacelli et al. (2023); Fischer et al. (2024); Meegen & Sompolinsky (2024); Buzaglo et al.
(2025); Li & Sompolinsky (2021); Seroussi et al. (2023b); Rubin et al. (2025; 2024), they are often case-
dependent, highly detailed, and complex. Thus, we propose a method that abstracts key feature learning
mechanisms from these frameworks into distinct, comparable patterns.

1Viewed here formally as emergent weight/pre-activation structures enabling the outlier.
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4.1 VARIATIONAL ANALYSIS

Our next objective is to make the sample complexity bound, P↓, tractable. This requires estimating the prior
probability term, Prp0 [Af ↔ ϱ], for alignments ϱ ↘ O(1). As a first step, we simplify this by relating
the cumulative probability to the probability density denoted by pAf (ϱ). As shown in App. A.2, for large
alignments, we have pAf (ϱ) ↭ Prp0 [Af ↔ ϱ]. This allows us to re-express P↓ in terms of the density:
P↓ = →2ε log pAf (ϱ)/k. However, computing pAf (ϱ) directly remains intractable. We therefore turn to
a variational approach to estimate it. As explained in the next section, we wish to express the variational
probability in terms of pre-activations h (1). Accordingly, in App. C.2, we follow standard statistical
mechanics techniques to express this density as

pAf (ϱ) =

∫
Dh exp[→Hp,ϑ(h)]/Zp, where Zp =

∫ →

↑→
dϱ

∫
Dh exp[→Hp,ϑ(h)]. (6)

Per ϱ, the above implies a probability over h’s namely exp[→Hp,ϑ(h)]/
∫
Dh exp[→Hp,ϑ(h)]. We next

approximate this probability by an analytically tractable variational estimate q̂(h) = e↑Hq(h)/Zq . The vari-
ational computation follows by looking for q̂(h) which minimizes the KL divergence. The KL divergence
can also be used in the estimation of E(ϱ) := → log(pAf (ϱ)), following the Feynman–Bogoliubov inequal-
ity Kuzemsky (2015); Bogolubov & Jr (2009); Huber (1968). Here we provide a brief description – for the
full derivation see App. C.1. By applying the Feynman–Bogoliubov inequality, we obtain an upper bound
on E(ϱ)

E(ϱ) ⇐ log(Zp/Zq) + Ẽq, Ẽq = Eh↗q̂[Hp,ϑ(h)→Hq(h)] (7)

We argue in App. C.3 that for ϱ ↘ O(1), the log(Z/Z ↔) terms are subleading w.r.t. Ẽq . Thus, for ϱ ↘ O(1),
we can estimate E(ϱ) ↗ Ẽq↑ where q̂↓ minimizes Ẽq .

4.2 AN ESTIMATE FOR THE VARIATIONAL ENERGY

Next, we turn to estimating the variational energy Ẽq (7). In App. C.2 we provide general expressions for
Hp,ϑ(h) and show that it decouples into independent distributions for each neuron and layer. Computing
Ẽq is difficult for all but deep linear networks due to ω(h)-dependent terms appearing in Hp,ϑ(h). The
argument put forward in App. C.3 is that non-linear terms scale the same way as the simpler quadratic terms
appearing in Hp,ϑ(h). They are therefore irrelevant to the scale analysis to follow.2

Since Hp,ϑ(h) decouples, we consider candidate q̂ patterns that do so in the same manner. This choice
of variational ansatz aligns with various works on deep non-linear networks, where layer-wise kernels
are identified as the relevant and sufficient set of order parameters Rubin et al. (2025); Fischer et al.
(2024); Seroussi et al. (2023b). Concretely, we define q̂ as a layer- and neuron-independent Gaussian
q̂ (h) =

∏
L↑1
l=1

∏
Nl

i=1 N
(
hl

i
| µl,i, Ql,i

)
. As shown in App. C.3, the variational energy estimate of a pat-

tern q̂, assuming an alignment of ϱ ↘ O(1), is given by

Ẽq ⇒

L↑1∑

l=1

Nl∑

i=1

(
Eh↗N (µl,i,Ql,i)

[〈
h,K↑1

l↑1 →Q↑1
l,i

, h
〉]

+
〈
µl,i, Q

↑1
l,i

, µl,i

〉)

  
=:”l,i

+ ↑y,KL↑1, y↓
↑1

  
=:ay

, (8)

where we define

Kl>0(x, x
↔) =

ω2
l+1

Nl

Nl∑

i=1

E
h
l
i↗q̂l,i


ω
(
hl

i
(x)

)
ω
(
hl

i
(x↔)

)
, K0(x, x

↔) =
ω2
1

d
x · x↔. (9)

2ω(..) still enters our analysis via feature propagation effects which determine K→1
l (see (9)).
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Here, the ”l,i terms arise from the difference between the approximated kernel and the actual one, and the
ay term results from enforcing an alignment ϱ ↘ O(1). Requiring that q̂ minimize Ẽq and ϱ ↘ O(1), we
estimate Ẽq ⇒ E(ϱ), which, in turn, enables us to estimate P↓.

4.3 FEATURE LEARNING PATTERNS

While the above variational approach allows a variety of candidate q̂’s, we focus on the previously mentioned
set of feature-learning scenarios that have been extensively studied in the literature. Although this subset
may appear restrictive, by varying behaviors among layers and between different neurons of the same layer,
it already captures a wide range of phenomena. We then need to compare the variational energy (Ẽq), as
detailed in Sec. 4.2, for such combinations and select the minimizer. The optimal pattern is an indication
of the feature learning that emerges in the network to enable strong alignment, as motivated in App. A.2.
Concretely, per layer and neuron pre-activation (hl

i
(x)), we allow one of the following choices:

(1) Gaussian Process (GP). Here, q̂l,i is a Gaussian process (GP) so that hl,i ↘ N (0,Kl↑1) with Kl↑1

defined in (9). This choice defines the “base model” of feature learning. For FCNs,3 it implies that the
network propagates feature structure forward without altering latent features (see Sec. 4.4). When all layers
and neurons follow this distribution, the network reduces to the neural network GP (NNGP) Neal (1996),
where no feature learning occurs. Introducing any of the patterns below in a subset of neurons enables
feature learning to emerge.

(2) Gaussian Feature Learning (GFL). In this scenario, pre-activations remain Gaussian with zero mean,
but the covariance is modified relative to the GP scenario (1): the kernel of the previous layer is amplified
by a factor D in the direction of a specific feature (e.g. an eigenfunction of Kl↑1) #l

↓.4 Thus, here too, the
distribution is a GP but with a different covariance Ql,i given by

Ql,i(x, x
↔) = Kl↑1(x, x

↔) +D↑#l

↓,Kl↑1,#
l

↓↓#
l

↓#
l

↓. (10)

(3) Specialization. In this scenario, a given neuron specializes to a particular feature #l

↓ with proportion-
ality constant µl,i. This pattern corresponds to a Gaussian distribution which is sharply peaked around a
non-zero mean µl,i#l

↓. Explicitly, we define the distribution of the specialized neuron as

q̂l,i(h
l

i
) = ϖ[hl

i
→ µl,i#

l

↓], (11)

4.4 LAYER-WISE FEATURE PROPAGATION

Since the variational energy of each layer depends on the kernel of the previous layer, an important element
in our heuristic is understanding how the choice of pattern in a given layer affects the kernel and its spectrum
in the subsequent layer. To this end, we define feature learning as any deviation from the baseline GP pattern
(see Sec. 4.3), such as introducing a non-zero mean to the distribution (i.e., specialization) or altering its
covariance structure (i.e., GFL). In our framework, a ”feature” refers either to the mean µl,i of q̂l,i or to an
eigenfunction of its covariance operator Ql,i(x, x↔).

We now outline several key claims concerning how features typically propagate between layers in FCNs. In
this context, we consider a data measure that is i.i.d. Gaussian with zero mean and variance 1, not because
it approximates the data well, but rather because it provides an unbiased baseline (see also Lavie & Ringel
(2025)) for measuring function overlaps. Depending on the input, other choices can also be considered

3For CNNs, even in the lazy regime, deeper kernels have different input scope and hence do generate new structure.
4One may also consider generalizations to several features.
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(e.g. permutation-symmetric measures over discrete tokens Lavie et al. (2024)). The following claims with
their justifications should be understood as heuristic principles or rationalizations of empirically observed
phenomena. Proving them in general or augmenting for different architectures is left for future work. For
further details and empirical results, see App. C.4.

Claim (i): Neuron specialization creates a spectral spike. Assume that M neurons in layer l spe-
cialize on a single feature #l

↓(x), the subsequent kernel Kl develops a new, dominant spectral fea-
ture corresponding to ω(#l

↓(x)). The corresponding RKHS norm of this feature is amplified, scaling
as O(Nl/M). Justification: When M neurons specialize, the next layer’s kernel is approximately
Kl(x, x↔) = A + M

Nl
ω(#l

↓(x))ω(#
l

↓(x
↔)), where A is the contribution from the non-specialized neurons.

Treating the specialization term as a rank-1 update, the Sherman-Morrison formula shows that its RKHS
norm becomes (R↑1

A
+ M/N)↑1, where RA is the RKHS norm of A, which satisfies R↑1

A
⇑ M/N in

typical high-dimensional settings.

Claim (ii): Amplified features in the pre-activation kernel create amplified higher-order features in

the post-activation kernel. If a feature #l

↓(x) in kernel Kl has its eigenvalue enhanced by a factor D (i.e.,
ς↓ ≃ ς↓D), then the corresponding m-th order power of this feature (#l

↓)
m(x) will have the bulk of its

spectral decomposition, under the downstream kernel, shifted up by Dm, with similar effect on the inverse
RKHS norm. Justification: A Taylor expansion of Kl+1 in terms of the eigenfunctions of Kl shows that
the term corresponding to (#l

↓)
m(x) will have a coefficient scaling with (ς↓D)m. We argue that this term is

difficult to span using other terms in this expansion, allowing us to treat it as a spectral spike and analyze it
similarly to Claim (i). A numerical demonstration of this effect is shown in Fig. 3.

Claim (iii): Lazy layers preserve the relative scale of features from the previous layer. In the absence
of feature learning, a properly normalized lazy layer approximately preserves the eigenspectrum of the
previous kernel. If a feature #l

↓(x) has an eigenvalue ς↓ with respect to the pre-activation kernel given by
Kl↑1, its effective eigenvalue with respect to the post-activation kernel Kl will also be proportional to ς↓.
Justification: Follows from Claim (ii) taking D = 1.

5 CONCRETE EXAMPLES

We now apply the heuristic principles of Sec. 4.2, 4.3, 4.4 to derive sample complexity bounds in a few
examples. We first benchmark this method on a two-layer network, a setting that is well-studied in the
literature and for which the prior’s upper bound can be computed directly using LDT. We then extend the
analysis to deep networks, going beyond the current state of the art.

5.1 THE TWO-LAYER NETWORK

In the two-layer setting, an exact solution can be obtained, so we begin by comparing our heuristic approach
to the exact solution. In this case, we consider both two-layer FCNs as well as CNNs with non-overlapping
convolution windows. Together, these are given by

f(x) =
Nw∑

i=1

N∑

j=1

w(2)
ij

ω(w(1)
j

· xi), (12)

where x ⇓ Rd is drawn from N (0, Id). We take d = NwS so that wj , xi ⇓ RS . The vector xi is given by
the ((i → 1)S + 1)-th to iS-th coordinates of x. We train these networks on a polynomial target of degree
m given by y(x) =

∑
Nw

i=1 Hem(w↓ · xi) where Hem is the m-th probabilist Hermite polynomial, which is
the standard polynomial choice under our choice of data measure, and w↓ ⇓ RS is some normalized vector.
The networks are trained via Lengevin dynamics Welling & Teh (2011b), with ridge parameter ε, quadratic
weight decay, and standard scaling. For an extension to mean-field scaling, see App. D.1.1.
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Fully Connected Networks. We turn to compute Ẽq for a range of feature learning patterns. For this
shallow FCN (and Nw = 1), our choice of feature learning patterns amounts to considering distributions in
a single layer. We consider the following three scenarios (though more combinations are possible): (1) all
neurons are GP distributed, (2) all are GFL distributed with amplification D, and (3) M neurons specialize
on a the same feature, while those remaining are GP distributed. As the kernel of the first layer can only
express linear features, the only relevant feature to be considered for the GFL and M-specialization patterns
is #↓(x) = w↓ · x. We compute the scale of the optimal variational energy for each pattern:

(1) GP: Here, ”1,i = 0 since Kl↑1 = Ql. In this baseline setting, learning m > 1 is hard since
↑Hem|K2|Hem↓ = O(d↑m) (see Sec. 4.4). Thus, in total, we have Ẽq̂↗GP ⇒ dm.

(2) GFL: Following (8), this pattern incurs a cost of ”1,i = D per neuron i, resulting in a total cost of ND.
The ay term can be calculated utilizing Claim (ii). This leads to a Dm-factor decrease in the RKHS norm
relative to the GP, so that ay ⇒ (d/D)m. In total, we find that Ẽq̂↗GFL ⇒ ND + (d/D)m. Minimizing
w.r.t. D, we obtain Dmin = (dm/N)1/(m+1), and, substituting back, we obtain Ẽq̂↗GFL ⇒ (Nd)

m
m+1 .

(3) M-Specialization: Following 8, this pattern incurs a cost of ”1 = M↑#↓,K
↑1
0 #↓↓ = Md, where we

denote ”l =
∑

i
”l,i. Utilizing Claim (i), this results in adding a spike with an M/N coefficient along

ω(w↓ · x) in K1 appearing in ay . Before this spike, Hem(x) only had overlaps with the m-th order
Taylor expansion of the kernel, leading to a d↑m scaling. However, since ω(w↓ ·x) has an O(1) overlap
with Hem(x), so that ay ⇒ N/M , we obtain Ẽq̂↗M-Sp ⇒ dM +N/M . Minimizing further over M , the
number of specializing neurons leads to Mmin =


N/d and therefore Ẽq̂↗M-Sp ⇒

⇔
dN .

Now, we can compare the different feature learning patterns. Taking the most common linear scaling where
N ⇒ d, the specialization scenario has the lowest variational energy. Our scaling theory then predicts an
O(d) sample complexity as well as multimodal distribution of w along w↓ with O(1) specializing neurons.
Taking m > 1 and N ↖ d5, lazy learning wins and leads to O(dm) complexity. When m = 1, GFL
and M-specialization are on par for N ⇒ d. These calculations coincide with both experimental and direct
LDT results, as demonstrated in Fig. 1 for networks trained on He3. In terms of sample complexity, both
predictions agree with experiment, with a scaling of P↓ ⇒ d, as seen in Fig. 1 (b). Our heuristic approach
correctly predicts the scaling of the number of specializing neurons with N , as seen in Fig. 1 (c). Finally,
as shown in panel (a), the analytical LDT method recovers the correct pre-activation distribution, which
corresponds to q̂(h) for q̂ ↘ M-Sp.

CNN with Non-overlapping Patches. Our approach can be extended to the CNN in (12) with Nw > 1. In
this case, it is better to focus on the covariance of wi, namely, $ = N↑1

∑
N

i=1 wiwT

i
, than on the covariance

of pre-activations on each path. One can then show that the cost becomes ”1 = Eq̂ww
T

$↑1

→ IS/S

w.

(1) GP: In this scenario, the output kernel is given by K2,CNN(x, x↔) = N↑1
w

∑
Nw

i=1 K2,FCN(xi, x↔
i
), where

K2,FCN is the FCN kernel (Nw = 1). Focusing on a linear target for simplicity, we can work out
the scaling of the relevant (linear) kernel feature by Taylor expanding K2,FCN = a1xi · x↔

i
/S to get

K2,CNN = a1
NwS

x ·x↔, with a1 being some O(1) constant. Lazy learning then yields Ẽq̂↗GP = NwS = d,
as in a FCN with no weight sharing.

(2) GFL: Here, we take $ = IS/S +Dw↓wT

↓ , resulting in ”l=1 = ND. The leading term of the Taylor
expansion now equals K2,CNN = 1

NwS

∑
Nw

i=1 x
T

i
$x↔

i
leading to a D/(NwS) scaling of the target. All in

all, we find that Ẽq̂↗GFL = ND + (NwS)/D, leading to Ẽq↑ =
⇔
NMwS for the optimal q̂↓ ↘ GFL.

(3) M-Specialization: In this case, we obtain a ”l=1 = MS cost. The contribution of the M specializing
neurons to the kernel goes as a1M

NwN

∑
i=1(w↓ · x)(w↓ · x↔), leading to ay = ↑y,KL, y↓ = O(M/NwN).

Thus, Ẽq̂↗M-Sp = MS +NwN/M resulting in the optimal variational energy
⇔
SNwN .
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(a) (b) (c)

Figure 1: Numerical and experimental results for a two-layer erf network trained on the normalized third
Hermite polynomial (m = 3). On the leftmost panel (a), the experimental negative log density of the hidden
layer pre-activation alignment with the linear feature is shown, along with theoretical predictions computed
utilizing LDT (see App. B). Indeed, the pre-activation distribution corresponds to q̂(h) for q̂ ↘ M-Sp, as
predicted by our heuristic approach. The center panel (b) compares theoretical and experimental predictions
for P↓, defined as alignment ϱ > 0.1 (inset shows alignment as a function of sample size). Both theoretical
and experimental results agree on P↓ ⇒ d. Finally, on the rightmost panel (c), we keep P and d fixed, and
plot the number of specialized neurons in the hidden layer as a function of our predicted


N/d scaling.

Both GFL and M-Specialization patterns, in the proportionate limit N ⇒ Nw ⇒ S ≃ ↙, lead to P↓ ⇒

S3/2 = d3/4. This recovers results reported in Ringel et al. (2025) computed via a mean-field approach.

5.2 THE THREE-LAYER NETWORK

Extending our analysis to the analytically complex setting of a three-layer network allows us to address a
previously intractable challenge: predicting where and how feature learning emerges within the network. For
brevity, we present only a representative subset of choices to illustrate how varying the width ratio influences
the most likely pattern to emerge. As before, we consider three scenarios: (1) both layers are GP distributed,
(2) the first layer is GP distributed, the second has M2 specialized neurons that learn the linear feature, while
those remaining are GP distributed, and (3) M1 neurons in the first layer specialize on the linear feature,
while all neurons in the second layer specialize on the cubic feature, with a small proportionality constant
µ2,i = ±


φ/N . We refer to the latter pattern as magnetization. We next turn to compute the variational

energy for each one of these cases.

(1) GP–GP: As in the two-layer FCN, both layers satisfy ”l=1,2,i = 0. Since no features are amplified in
this setting, we obtain Ẽq̂↗GP↑GP ⇒ d3.

(2) GP–Specialization: In the first layer we have ”1,i = 0, while the second layer contributes M2d through
”2. The contribution from ay is N2/M2 (see App. C.4). Altogether, we have Ẽq̂↗GP↑SP ⇒ M2d +
N2/M2. Minimizing with respect to M2 yields Ẽq̂↗GP↑SP ⇒

⇔
N2d with M2 =


N2/d.

(3) Specialization–Magnetization: The cost of the first layer is ”1 = dM1, as in the two-layer FCN.
Following Claim (i), K1 has a spike of size M1/N1 in the linear direction, so that the contribution from
the second layer is φN1/M1. The cubic feature is spiked in the second layer, contributing an alignment
term of N2/φ. In total, we have Ẽq̂↗SP-MAG ⇒ dM1 + N1

M1
φ + N2

ϖ
. Minimizing w.r.t. φ and M1, we

obtain Ẽq̂↗SP-MAG ⇒ (N2N1d)
1/3 with M1 = (N2N1/d2)1/3.
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(b)(a)

Figure 2: Heuristic predictions accurately capture sample complexity and neuron specialization in three-
layer erf FCNs with the 3-rd Hermite polynomial as the target. All experiments use a three-layer network
with N2 = d. Panel (a) shows network alignment as a function of sample to input dimension ratio P/d. The
data for different input dimensions (d) collapse onto a single curve, confirming the predicted O(d) sample
complexity, where good alignment is achieved. Here, N1 = d as well. Panel (b) shows the number of
linearly specialized neurons in the first (purple) and second (orange) layers as the first-layer width N1 varies
(with fixed P, d and N2). The number of first-layer specialists initially follows the predicted (N1/d)(1/3)

scaling before the predicted transition occurs, where second-layer neurons begin to specialize.

Across all choices of q̂ patterns, we obtain the same scaling of Ẽq in the proportional limit (N1 ⇒ N2 ⇒ d),
namely, P↓/ε ⇒ d. This observation is validated experimentally in Fig. 2(a), where the transition to non-
zero alignment becomes sharper in the thermodynamic limit (d ≃ ↙). However, the mechanism by which
this scaling is realized changes. In the specialization-magnetization pattern the sample complexity scales
with N1/3

1 , therefore, it increases with N1. However, under the GP-specialization pattern, sample complexity
does not scale with N1, making this pattern preferable. This prediction is in line with experimental results
(see Fig. 4(b)) where increasing N1 causes the described change in feature learning patterns. Our prediction
also accurately determines the scaling of the number of specializing neurons with N1.

6 DISCUSSION

This paper presents a novel methodology for analyzing the scaling behavior of sample complexity, through
which we can also understand how distinct learning mechanisms emerge. Its strength lies in abstracting
away from fine-grained details to isolate the core principles at play. By providing a common language for
disparate phenomena, our work aims to unify fragmented theoretical perspectives, paving the way for an
accessible and cohesive theory of representation learning. We hope such a strategy would remove barriers
and expedite connections between mechanistic interpretability and first-principles scientific approaches.

Limitations. Notwithstanding our contributions, several avenues for improvement remain. In particular,
extending the approach to overfitting patterns, quantifying feature propagation in more general CNNs and
transformers, and addressing multi-feature interaction effects as those appearing in the context of superpo-
sition Elhage et al. (2022). Finally, it would be desirable to extend our heuristic to dynamics of learning,
potentially drawing insights from previous work relating equilibrium and dynamical phenomena Power et al.
(2022); Rubin et al. (2024); Bahri et al. (2024); Nam et al. (2024)
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