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ABSTRACT

Two pressing topics in the theory of deep learning are the interpretation of feature learning
mechanisms and the determination of implicit bias of networks in the rich regime. Current
theories of rich feature learning effects revolve around networks with one or two trainable
layers or deep linear networks. Furthermore, even under such limiting settings, predictions
often appear in the form of high-dimensional non-linear equations, which require compu-
tationally intensive numerical solutions. Given the many details that go into defining a
deep learning problem, this analytical complexity is a significant and often unavoidable
challenge. Here, we propose a powerful heuristic route for predicting the data and width
scales at which various patterns of feature learning emerge. This form of scale analysis is
considerably simpler than such exact theories and reproduces the scaling exponents of var-
ious known results. In addition, we make novel predictions on complex toy architectures,
such as three-layer non-linear networks and attention heads, thus extending the scope of
first-principle theories of deep learning.

1 INTRODUCTION

There is a clear need for a better theoretical understanding of deep learning. However, efforts to construct
such theories inevitably suffer from a “curse of details”. Indeed, since any choice of architecture, activation,
data measure, and training protocol affects performance, finding a theory with true predictive power that
accurately accounts for all those details is unlikely. One workaround is to focus on analytically tractable toy
models, an approach that can often uncover interesting fundamental aspects. However, analytical tractability
is a fragile, fine-tuned property; thus, a large explainability gap remains between such toy models and more
complex data/architecture settings.

An alternative approach focuses on scaling properties of neural networks, which appear more robust. Two
well-established examples are empirically predicting network performance by extrapolating learning curves
using power laws Kaplan et al.| (2020); Hestness et al.|(2017), and providing theory-inspired suggestions for
hyperparameter transfer techniques [Yang et al.| (2022); Bordelon et al.| (2023). Indeed, it is often the case
Cardy|(1996) that predicting scaling exponents is easier than predicting exact or approximate behaviors. As
a simple toy model of this, consider the integral [*_dxg(x/P). While g(-) needs to be fine-tuned for exact

computations, a change of variable reveals a robust linear scaling with P for any g(-).

This work focuses on scaling properties of feature learning. Feature learning, or, more generally, inter-
pretability, have been studied extensively both from the practical and theoretical side. On the practical side,
mechanistic interpretability Bereska and Gavves|(2024) has provided us with statistical explanations for why
some predictions are made and the underlying decision mechanisms. On the theory side, kernel-based ap-
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Figure 1: Logical flow of sample complexity derivation. Bounds: (i)-(iii) deriving lower bounds on sample
complexity using LDT (Sec.[3). Approximations: (iv) approximating the intractable lower bound (Sec. ),
Heuristics: (v)-(vi) providing heuristic methods for manually computing the approximated bound (Sec. [3).
Each section is composed of intermediate steps as detailed in the diagram.

proaches |Aitchison| (2019); L1 and Sompolinsky| (202 1); |Aitchison| (2021)); |Seroussi et al.| (2023a); |Ariosto
et al.| (2022)); [Bordelon and Pehlevan| (2022); Rubin et al.| (2024; [2025); Ringel et al.| (2025 and Saad and
Solla type approaches|Saad and Sollal(1995); Arnaboldi et al.[(2023); Bietti et al.|(2022)) (and their Bayesian
counterparts (Cui (2025))) allow us to solve simple non-linear teacher-student networks in the rich regime.
However, our ability to capture more elaborate and compositional feature learning effects, such as those
involving depth and emergence, is hampered by said analytical difficulties.

In this work, we introduce a novel framework addressing the challenging task of making first-principles pre-
dictions on sample complexity and feature learning effects in networks trained to equilibrium The undeniable
success of various deep learning models across diverse domains underscores the importance of theoretically
predicting the conditions under which these models exhibit failure modes. Accordingly, a main focus of this
work is lower-bounding sample complexity. Specifically, we aim to determine the scaling behavior of P,
the threshold sample size at which learning becomes possible, as a function of input dimension, layer width,
regularization, and parametrization choices (e.g., mean-field versus standard scaling).

Our Bayesian approach, capturing networks fully trained using SGLD []_-] Mandt et al.| (2017), is described
schematically in Fig. [1} It consists of the following steps: (i) we lower bound the test MSE by (1 — Af)?,
where Ay is the alignment of output and target; (ii) we establish an upper bound on the probability to observe
good learning (ie, strong alignment Ay > a ~ 1) in the posterior using the negative-log-probability of the
rare event of good learning in the prior; (iii) we leverage an upper bound on the prior to obtain a lower
bound F(«) on the minimal sample size necessary for alignment of at least «; (iv) we derive a variational
approximation, E,(«), for E(«) with an explicit formula using kernel-adaptation type approximations; (v)
we propose feature learning patterns as heuristic variational probabilities ¢ and choose such ¢ that minimizes
E,(o); finally (vi) our fully analytic computation of E,(«) further relies on heuristic scaling relations for
how a feature amplified in one layer propagates to downstream layers.

Using the above, we re-derive, in a relatively straightforward manner, known results on two-layer networks:
sample complexity benefits of rich learning and Grokking transitions. We demonstrate the power of this
approach by expanding the scope of tractable models. Specifically, we study non-linear 3-layer networks in
the rich regime and predict sample complexity, layer-wise location of learning, and scaling of the number of
specializing neurons.

2 SETUP

We consider here several types of feedforward networks, but, for the sake of clarity, we illustrate the main
derivation on deep fully connected networks (FCNs) and, later, when we analyze specific problems, augment

'which can be thought of as a proxy for SGD Mingard et al.{(2020)
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it for convolutional neural networks (CNN5s) as needed. Our FCNs are defined by
NL —1 Nl —1

d
fla)= > wlo(hf'(x)), where hi™'(x) = > Who(h ' (z), hj(z)=> Whar, (1)
i=1 j=1 k=1

where o can be any activation function, and we refer to h!’s as pre-acitvations. We consider Bayesian
neural networks, as Bayesian descriptions are a commonly used proxy for network behavior after long-time
stochastic training Wilson and Izmailov| (2020); [Wilson| (2020); Naveh et al. (2021). Alternatively, they
represent an exact solution to Langevin dynamics with weight decay [Welling and Teh| (2011b). We denote
the target function by y and the training sample size by P, and assume training with Mean Squared Error
(MSE) loss. The quadratic weight decay for each layer [ is set to kN;_1 /o7, where r is the ridge parameter
and Ny = d is the input dimension. This choice of weight decay results in a Gaussian prior distribution for
the weights given by Wll] ~ N(0,0%/N;_1) fori =1,..,N;, j = 1,..., N;_1. The possible outputs f of
such a network, given y and P, are then distributed according to the posterior:

P
7 (F |9, P)= o exp <—21K S () - y(x»]"’) po(f), @)
v=1

where Z is the normalization constant, {z, }Z_, is the training dataset of size P, and po(f) is the prior
defined as po(f) = [dOp(©)d[f — fe], determined by the weight decay. Here, © is the collection of
all network weights, and p (©) corresponds to the density of the prior weight distribution, which we take
to be Gaussian with a diagonal covariance, representing quadratic weight decay, and fg is the network
architecture with weights ©. We further set p(©) such that pre-activations are all O(1) under the prior He
et al|(2015). For classification tasks see App. @ As a measure for learning, we consider an observable,
which we refer to as alignment, given by

Ap = (f,0)/ (Y, v), 3)

where (g, h) = [ du,g(z)h(x) is the functional inner product, and dy, is some test measure, which, con-
veniently, does not need to be the measure from which the training set was drawn. We similarly define
(9, K,h) = [ dpgdpe g(x)K (z,2")h(x") for any kernel K. Alignment represents the extent to which the
network learns a function that is proportional to the target. It bounds the test MSE via the Cauchy—Schwarz
inequality [ du.(f(z) — y(z))* > (y,y)(A; — 1)%. Having Ay ~ 1 is thus a necessary condition for
successful learning.

3 ALIGNMENT AND SAMPLE COMPLEXITY

We turn to analyze sample complexity via an upper bound on the probability of finding Ay > « for o = 1.
We begin with a theoretical bound on the posterior that mainly depends on the chance that a random network,
chosen from the prior, produces an alignment of at least . We denote the prior and posterior alignment
probabilities by Pr, [Af > a] and Pr, [A; > a] respectively. Following simple arguments (see App.
and App. for generalization to classification.), we obtain the following bound on the log posterior

log (Prr [Af > a]) < Pk/(2k) + log (Prp, [Af > a]), )

where k = P! 25:1 E,o [(f(z,) — y(z,,))?] is the only training-set dependent quantity and is generally
of order one. The Bayesian interpretation of successful learning is having Pr, [Af > o] ~ O(1). Since
a random network is unlikely to achieve strong alignment, log Pr,,, [As > «] would typically be highly
negative for large a. Therefore, a sufficiently large data term is required to cancel this effect. Explicitly,

P 2 —2klogPr,, [A; > o] /. (5)

2See also|Lavie and Ringel| (2025), for a similar data-agnostic bound in the context of lazy learning.
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Thus, up to the ridge parameter and the O(1) factor k, depending on the training set, the log probability
of prior alignment with the target lower bounds the sample complexity. Here, it is worth noting that the
bound becomes tight when overfitting effects are small, which is typically the case for k/x ~ O(1). Taking
k — 0 encourages overfitting (though often benignly Bartlett et al.| (2020)) and trivializes this bound. We
conjecture that, in this case, x should be kept O(1) based on the effective ridge treatment (Canatar et al.
(2021); |Cohen et al.[(2021); Bartlett et al.| (2020). Establishing this conjecture is outside the scope of this
work. From a PAC-Bayesian perspective, an analogous bound would require P to be much larger than the
KL-divergence between the prior and posterior (e.g. [McAllester (1999))El More recently, prior-posterior
relations have been studied in the context of complex Boolean functions Mingard et al.|(2025).

Following the Chernoff inequality, we can find an upper bound for the probability (and a lower bound for
P)via

P > —2k/k log Py, [Af > a] > 2k/k E(a), E(a)=—log %r>1(f) e Ky, [emf] . 6)

Where we refer to E(«) as the energy. We can thus express the minimal sample size necessary for learn-
ing, P., through the energy as P, «x E(«). In App. we provide an asymptotically exact solution for
E(«), and compute it explicitly for a two layer network . We also argue and demonstrate that our bound is
inherently tied to feature learning. Indeed, a network sampled from the prior that achieves such alignment
is a statistical outlier, driven by the emergence of an internal structure which mimics feature learning (see
also Fig. 2). Nevertheless, such a direct LDT approach is computationally prohibitive in most cases of inter-
est. We therefore introduce a heuristic LDT-based method for evaluating P,. This method not only enables
predicting the scaling of P, but also the feature learning effects that lead to successful learning.

In this section, we adopt a variational approach to estimating P, by comparing different modes of feature
learning E] under a certain loss (see @]) below). While many approaches predict different feature learning
mechanisms [Pacelli et al.| (2023); [Fischer et al.| (2024)); Meegen and Sompolinsky| (2024)); Buzaglo et al.
(2025); ILi and Sompolinsky| (2021); [Seroussi et al.|(2023b)); Rubin et al.| (2025} |2024)), they are often case-
dependent, highly detailed, and complex. Thus, we propose a method that abstracts key feature learning
mechanisms from these frameworks into distinct, comparable patterns.

4  VARIATIONAL ANALYSIS

Our next objective is to make the sample complexity bound tractable. This requires estimating the prior
probability term, Pr,, [A¢ > «], for alignments o ~ 1. As a first step, we simplify this by relating the
cumulative distribution function to the probability density denoted by p4, (). As shown in App. for
large alignments, we have F(a) ~ —logpa, (). This allows us to re-express P in terms of the density:
P, = —2rlogpa,(a)/k. However, computing p, (c) directly remains intractable. We therefore turn to
a variational approach to estimate it. As explained in the next section, we wish to express the variational
probability density in terms of pre-activations & (I)). Accordingly, in App. we follow standard statistical
mechanics techniques to express this density as

pa;(a) = /Dh exp[—Hp.(h)]/Z,, where Z,= /_OO da/Dh exp[—Hp o (h)]. @)

We comment that the above equation explicitly constitutes a definition of H), ,, namely, for every « one
can find a function H, o(h) and normalizing constant Z, such that ( holds. Further requiring that

3Following the data-processing-inequality, one can lower-bound the KL-divergence between the full prior and poste-
rior probabilities by the KL-divergence of a coarser probability of an Ay > « event in the prior and posterior. The latter
KL divergence is given by — log Pr;,, [Af > ]

*Viewed here formally as emergent weight/pre-activation structures enabling the outlier.
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miny, Hy o(h) = 0 ensures the uniqueness of this definition. Similarly, the above implies a measure over
h’s given by exp[—H,, (h)]/ [ Dh exp[—H, o (h)]. We next approximate this measure per « by an ana-
lytically tractable variational estimate, g. Here too we follow the same notation as in ([7), so that for any
q, o we define g, (h) == e Haa(W) /7 where here Z, o = [ Dhe™Ha«(") The variational computation
follows by looking for g, (k) which minimizes the KL divergence between the measure on h which defines
pa, and g. The KL divergence can also be used in the estimation of F(a) := —log(pa,(«)), following
the Feynman—Bogoliubov inequality Kuzemsky| (2015)); [Bogolubov and Ji| (2009); Huber| (1968). Here we
provide a brief description — for the full derivation see App.|C.2] By applying the Feynman—-Bogoliubov
inequality, we obtain an upper bound on E(«)

E(a) ~ rr(llin(log(ZP/Zq,a) + Eq(oz)), Eq(a) = Ehrgo [Hp,a(h) — Hya(h)] (3)

We argue in App. that for @ ~ 1, the log terms are subleading w.r.t. Eq(a). Defining ¢. o to be the
measure that minimizes F,(«), we obtain E(a) =~ Ey_ ().

Next, we turn to estimating the variational energy E,(«a) Eq. @D for a ~ 1, omitting all « indices for brevity.
In App. we simplify p4,, and show that the distribution in each layer depends only on the previous
through a fluctuating non-linear operator. Next, we assume that this kernel is weakly fluctuating, and replace
it with its expectation w.r.t. the variational distribution. This choice approximation aligns with various
works on deep non-linear networks, where layer-wise kernels are identified as the relevant and sufficient set
of order parameters Rubin et al.| (2025); [Fischer et al.[(2024); Seroussi et al (2023b) Ringel et al.| (2025).
We further take a decoupled Gaussian variational ansatz so that ¢(h) = l 1 vall q,i(ht) where g ; is
Gaussian with mean 1 ; and variance @; ;. As shown in App. [C.3] the variational energy estimate is then
given by

L—1 N,
X Z Z (EhNN(/_Lly,;,QLi) |:<h7K1111 - Qliilv h>i| + <Ml,ia Q;¢17 ,U/l,7,'>) + <ya KL—la y>_1a (9)
1=1 i=1 ne =:a,
where we define
o2 2
Ki~o(z,2") H'l ZEthH [o(hl(2)) o (hk(z")], Ko(z,2') = %x . (10)
=1

Here, the A; ; terms arise from the difference between the approximated kernel and the actual one, and the
a,, term results from enforcing an alignment o ~ 1. Requiring that ¢ minimize E’q and o ~ 1, we estimate
E, x E(ov = 1) < P,. Another interpretation of A; ;, discussed in App. @ is the excess weight due to
feature learning. This viewpoint is useful for feature learning patterns involving circuits, as the latter have a
sharp imprint in weight-space. The above kernel viewpoint is, however, more general and can be used both
for circuits and for more distributed learning patterns.

5 HEURISTICS FOR MANUAL COMPUTATION OF VARIATIONAL APPROXIMATION

5.1 FEATURE LEARNING PATTERNS

While the above variational approach allows a variety of candidate ¢’s, we focus on the previously mentioned
set of feature-learning scenarios that have been extensively studied in the literature. Although this subset
may appear restrictive, by varying behaviors among layers and between different neurons of the same layer,
it already captures a wide range of phenomena. We then need to compare the variational energy (Eq), as
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detailed in Sec. ] for such combinations and select the minimizer. The optimal pattern is an indication
of the feature learning that emerges in the network to enable strong alignment, as motivated in App.
Concretely, per layer and neuron pre-activation (h!(z)), we allow one of the following choices, as illustrated
in Fig.

(1) Gaussian Process (GP). Here, g;; is a Gaussian process (GP) so that h; ; ~ N (0, K;_1) with K;_;
defined in . This choice defines the “base model” of feature learning. For FCNSE] it implies that the
network propagates feature structure forward without altering latent features (see Sec.[5.2). When all layers
and neurons follow this distribution, the network reduces to the neural network GP (NNGP) Neal (1996),
where no feature learning occurs. Introducing any of the patterns below in a subset of neurons enables
feature learning to emerge.

(2) Gaussian Feature Learning (GFL). In this scenario, pre-activations remain Gaussian with zero mean,
but the covariance is modified relative to the GP scenario (1): the kernel of the previous layer is amplified
by a factor D in the direction of a specific feature (e.g. an eigenfunction of K;_1) tI’fk Thus, here too, the
distribution is a GP but with a different covariance (); ; given by

Qui(r,2") = Kj_1(x,2') + D(®L, K1, L) & (2)® (2). (11)

(3) Specialization. In this scenario, a given neuron specializes to a particular feature ®' with proportion-
ality constant y; ;. This pattern corresponds to a Gaussian distribution which is sharply peaked around a

non-zero mean /1, ;®! |'| Explicitly, we define the distribution of the specialized neuron as

qi((h}, @L)) = 0[(hl, ®L) — puil,  qui((hl, @) = N(0,(¢", Ki—1, @))). 12)
5.2 LAYER-WISE FEATURE PROPAGATION

Since the variational energy of each layer depends on the kernel of the previous layer, an important element
in our heuristic is understanding how the choice of pattern in a given layer affects the kernel and its spectrum
in the subsequent layer. To this end, we define feature learning as any deviation from the baseline GP pattern
(see Sec. [5.1)), such as introducing a non-zero mean to the distribution (i.e., specialization) or altering its
covariance structure (i.e., GFL). In our framework, a “feature” refers either to the mean p; ; of g; ; or to an
eigenfunction of its covariance operator Q; ;(x, x’).

We now outline several key claims concerning how features typically propagate between layers in FCNs. In
this context, we consider a data measure that is i.i.d. Gaussian with zero mean and variance 1, not because
it approximates the data well, but rather because it provides an unbiased baseline (see alsoLavie and Ringel
(2025)) for measuring function overlaps. Depending on the input, other choices can also be considered
(e.g. permutation-symmetric measures over discrete tokens |Lavie et al.| (2024)). The following claims with
their justifications should be understood as heuristic principles or rationalizations of empirically observed
phenomena. Proving them in general or augmenting for different architectures is left for future work. For
further details and empirical results, see App.|[C.5

Claim (i): Neuron specialization creates a spectral spike. Assume that M neurons in layer [ spe-
cialize on a single feature ®(z), the subsequent kernel K; develops a new, dominant spectral fea-
ture corresponding to o(®!(x)). The corresponding RKHS norm of this feature is amplified, scaling

SFor CNNs, even in the lazy regime, deeper kernels have different input scope and hence do generate new structure.

®0One may also consider generalizations to several features.

"Taking equilibrated networks and increasing the amount of data, specialization was shown in Rubin et al.[(2024) to
emerge as a first-order phase transition where the average of preactivations suddenly shifts to ; ;. This behavior was
further associated with Grokking, suggesting a potential specialization-grokking link.
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as O(N;/M). Justification: When M neurons specialize, the next layer’s kernel is approximately
Ki(z,2") = A(z, ') + %a(@i(x))a((bi(x’)), where A is the contribution from the non-specialized neu-
rons. Treating the specialization term as a rank-1 update, the Sherman-Morrison formula shows that its
RKHS norm becomes (R ;' + M/N)~!, where R 4 is the RKHS norm of A, which satisfies R ;' < M/N
in typical high-dimensional settings.

Claim (ii): Amplified features in the pre-activation kernel create amplified higher-order features in
the post-activation kernel. If a feature ®, (z) in kernel K has its eigenvalue enhanced by a factor D (i.e.,
A« — A.D), then the corresponding m-th order power of this feature (®')™ (z) will have the bulk of its
spectral decomposition, under the downstream kernel, shifted up by D™, with similar effect on the inverse
RKHS norm. Justification: A Taylor expansion of K, in terms of the eigenfunctions of K; shows that
the term corresponding to (®!)™ (z) will have a coefficient scaling with (A, D)™. We argue that this term is
difficult to span using other terms in this expansion, allowing us to treat it as a spectral spike and analyze it
similarly to Claim (i). A numerical demonstration of this effect is shown in Fig.[3]

Claim (iii): Lazy layers preserve the relative scale of features from the previous layer. In the absence
of feature learning, a properly normalized lazy layer approximately preserves the eigenspectrum of the
previous kernel. If a feature ® () has an eigenvalue \, with respect to the pre-activation kernel given by
K4, its effective eigenvalue with respect to the post-activation kernel K; will also be proportional to \,.
Justification: Follows from Claim (ii) taking D = 1.

Propagation rules for FCNs

(1) Specialization: Layer [ specialized M neurons on ®!. For any feature ® satisfying (o (®L), ®) #

2 —1
. _ s e e .
0, we approximate (®, K 1 d) [E i sp. ]\}‘ll} , where we sum over all specializing neurons.

(2) GFL: Layer [ amplified fluctuation along ®. by D so that (®!, K, ', ®L) = (D),) ™!, where A,
is the GP value of the inner product. Then for any m we have ((®1)™, K, ', (®L)™) oc (D)™™

6 CONCRETE EXAMPLES

We now apply the heuristic principles of Sec.[d} [5.1][5.2]to derive sample complexity bounds in a few exam-
ples. In App. [EI} we benchmark our method on two-layer FCNs and simple CNNs with non-overlapping
patches. There we reproduce both the sample complexity exponent P, = d3/4 identified for CNNs in Ringel
et al.[(2025)) and further predict that P, = d for two-layer FCNs studying a Hermite-3 target as well as the
scaling of the number of specializing neurons with width (see Fig. [2). The latter is also a setting for which
the prior’s upper bound can be computed directly from F(«) using Large Deviation Theory, leading to a
good match with experiment (Fig. [2] panel (a)).

Going to what we believe is beyond the current analytical state of the art, in App. we predicta P, = /L,
where L is the context length, of a softmax attention layer learning a cubic target (see Fig. [3). Another such
instance, discussed in detail below, is that of a 3-layer non-linear network learning a non-linear target. In
App. [A.2]we show that this approach can be extended to classification tasks as well. In App. [E.2]we apply
our heuristics to a concrete setting, of a two-layer ReL.U network trained on a parity task. We find there as
well are able to predict the emergent feature pattern, which qualitatively differs from erf networks. Rather
than identifying the scaling number of specializing neurons, we find that there is a finite number of neurons
and we are able to predict their scale.
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Figure 2: Numerical and experimental results for a two-layer erf network trained on the normalized third
Hermite polynomial (m = 3). In panel (a) we compare the experimental results and exact theoretical
predictions (computed utilizing LDT, see App. for the distribution of the alignment of the hidden layer
pre-activation with the linear feature. Here we follow the same notation as in ([7)), so that H is the negative
log posterior of the preactivations up to an additive constant that enforces zero minimum. We also find the
pre-activation distribution corresponds to g(h) for ¢ ~ M-Sp, as predicted by our heuristic approach. Panel
(b) compares theoretical and experimental predictions for P,, defined as alignment o > 0.1 (inset shows
alignment as a function of sample size). Both theoretical and experimental results agree on P,  d. In (c),
we increase IV and keep P and d fixed, and plot the number of specialized neurons in the hidden layer. In
agreement with our heuristic predictions, the number of neurons increases linearly with /N /d.

6.1 THE THREE-LAYER NETWORK

Here we consider a three-layer FCNs given by
N2 N1
F@) =Y aio | Y w? oV ) |, (13)
i=1 j=1

where z € R? is drawn from (0, I;). We train these networks on a polynomial target of degree m given
by y(z) = Hep(wy - ) where He,, is the m-th probabilist Hermite polynomial, which is the standard
polynomial choice under our choice of data measure, and w, € R® is some normalized vector. The networks
are trained via Langevin dynamics Welling and Teh| (201 1b), with ridge parameter «, quadratic weight decay,
and standard scaling. For an extension to mean-field scaling, see App. [E.I.1]

G

As a starting point for our analysis, consider the simplest pattern (¢*“="GP-GP), having two GP/lazy layers
where taking an {’th layer to be lazy means @); ; = K;_; and 1 ; = 0. Following the choice of pattern, our
goal is to estimate the scaling of Eq. Examining Eq. @), we find that the A;—; 5 ; contributions all cancel
by our above choice of Q’s and ’s. The only non-zero contribution thus comes from the final layer and is
given by the inverse of (y, K, y). Because of lazy learning, Ks(x, ') is a standard dot product FCN kernel
which can be expanded as >~ | a,,(z - 2’/d)", with a,, = O(1) w.r.t. Ny 2, d, P. It can then be shown that

(y, K2,y) = O(d~™). Leading to Egp_gp = a, o< d™.

Next, we consider a feature learning pattern wherein the first layer is GP distributed but the second has
feature learning (¢“="GP-Sp.). Specifically, for the [ = 1 layer, we take Q1,; = Ko;u1,; = 0 thereby
nullifying again A; o in Eq. |§I for E/;. For the second layer, we assume M5 specializing neurons (e.g.
i = 1..M>3) which fluctuate around the linear feature (w, - x), while others are lazy, namely Q2 >, =
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Ki, poisn, = 0and Qo i—1..0, = Ki, pi2,i=1..0, () = (ws - x). Examining 25\21 Ay ; in Eq. EI» we
get zero contributions from Ay ;< = 0 and Ma{(w. - ), Ki', (w, - x)) from i = 1..M,. As K is
again a simple FCN dot product kernel with no feature learning effects, normalized linear functions such
as wy - « have an O(d) RKHS norm. We thus obtain an overall contribution to F, from the | = 2 layer
equal to Mod. Finally, we need to estimate a,, = (y|K2|y) ~'. Note that K> is not a standard FCN kernel
anymore, since ()2, which contains target information, is used in its definition (Eq. . According to our
feature propagation rule (i), with &, = (w, - z), we have a, = Ny/M,. Given M,, we thus obtain a
variational energy of Mad + No/M;. We next need to minimize over free parameters, namely M leading
to My = /Ny/d and finally Egp_sp. = v/ Nad. Provided N, scales less than d*m=1 (Ny = o(d?™~ 1)),
this pattern is favorable to GP — GP.

Finally, we consider what turns out to be the favorable pattern consisting of M; neurons specializing on
(wy - x) in the first layer and all neurons in the second layer specializing He,, (w. - «) in the second layer,
with a small proportionality constant ps ; = £+/5/Na (¢“= ”Sp -Mag.). We refer to the second-layer pattern
as magnetization. Following straightforward adaptation previous argument to this pattern, the variational
energy for this pattern as well as others, for m = 3, can be found in Table[I]

Feature Pattern A Ag Qy Minimizing Parameters E
GP-GP 0 0 d3 — &3
NQ N2

P-Sp. Myd | — My =4/ —= Nod
GP-Sp 0 2 M, 2 d ‘ 2

MM N2\ P NoNp\ ? .

Sp.-Mag. Md | =25 | = = (== M, = N;Nod)'/?
p.-Mag 1 Mlﬁ 3 B ( N.d ) 1 2 (N1 Na2d)

Table 1: Variational energy F for different choices of feature-learning patterns in a three-layer FCN trained
on y(x) = Heg(w,-x). The patterns shown here are (first/second layer): GP-GP, GP-Specialization, and
Specialization-Magnetization. For each pattern, the components of the variational energy (A, As, ay)
together with the corresponding minimizing parameters are shown. We comment that the GP-GP pattern is
favorable only for d > N3, and otherwise feature learning will emerge.

In the non-GP ¢ patterns, we obtain the same scaling of E in the proportional limit (N7 o< Ns o d),
namely, P, /k o d. This observation is validated experlmentally in Fig. l Bl where the transition to non-zero
alignment becomes sharper in the thermodynamic limit (d — oo). However, the mechanism by which this
scaling is realized changes. In the specialization-magnetization pattern the sample complexity scales with

N, 1/3 , therefore, it increases with N;. However, under the GP-specialization pattern, sample complexity
does not scale with V7, making this pattern preferable. This prediction is in line with experimental results
(see Figs.[8|and panel (c)) where increasing N7 causes the described change in feature learning patterns.
Our prediction also accurately determines the scaling of the number of specializing neurons with V.

6.2 SOFTMAX ATTENTION

Here, we consider an attention block of the form

I -1
fz Z @ (X)(wp - 2%) @ (X) = T An” (Z G]TAthC) B

h=1a,b=1

where X € RL¥4, A € R¥¥4 and 2® € R is the a-th row of X, and w;, € R%. Our prior on network
weights is []2_, NV'(0, Iz /d?; Ap) N'(0, I/ (dH ); wy). The only dependence on the context length L arises
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from the pre-factor 1/v/L, which ensures that for X¢ ~ A(0,1), we have f(X) = O(1). The target
function is given by y(X) = >"_, ﬁx‘fzgxlg, also normalized to be O(1). Following our approach,
we propose two patterns for this architecture: GP (or lazy learning) and specialization (where we take
Ap ~ N(poy @ Ig_sy,142) for o, = [1,0;0, 1] and optimize over 11). As detailed in the variational
energy scales as Ld> for the GP pattern and as v H Ld3 for the specialization pattern, the latter thus being

favorable for H scaling less than v/ Ld3. As shown in Fig. |3 this scaling of P with L and d indeed matches
the dependence of the sample complexity on L.

@ (b) (©) Avg No. of outliers
h W "l Theoy
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% X 360
320
" 5 *1xd o
o
05 256
o < . oS M-Sp-+ GP
0 I} w =
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02 ‘ {' . d=16 m
. M x d—sg 0
3
e H . PoxViLd® 4
18
B 00 theory v 0o
g o . g P 3 g 0 2 T
a r22y1/3
Frd PV Ld? (N1 Ny /d?)Y/3

Figure 3: Sample complexity: Heuristic predictions accurately capture sample complexity in both three-
layer erf FCNs and softmax attention heads, as well as feature learning scaling. Panels (a),(b) both track
how the network alignment changes as a function of the ratio between the sample size, P, and the predicted
sample complexity- P/d for the FCN in panel (a), and P/v/ Ld? for the attention head in panel (b). In
both cases, we observe that the alignment collapses onto a single curve, confirming the predicted sample
complexity, where good alignment is achieved. See Fig. [9] for comparison to MSE. See and |F.1
for experimental details. Feature learning patterns: Panel (c) tracks the number of linearly specialized
neurons, in both the first (blue) and second (purple) layers as the first-layer width /Ny varies (with fixed P, d
and N,). The number of first-layer specializing neurons initially follows the predicted (N, /d)*/3) scaling
before the predicted transition occurs, where second-layer neurons begin to specialize on the linear feature
rather than the cubic one, and the first layer neurons approach the GP distribution.

7 DISCUSSION

This paper presents a novel methodology for analyzing the scaling behavior of sample complexity, through
which we can also understand how distinct learning mechanisms emerge. Its strength lies in abstracting
away from fine-grained details to isolate the core principles at play. By providing a common language for
disparate phenomena, our work aims to unify fragmented theoretical perspectives, paving the way for an
accessible and cohesive theory of representation learning. We hope such a strategy would remove barriers
and expedite connections between mechanistic interpretability and first-principles scientific approaches.

Limitations. Notwithstanding our contributions, several avenues for improvement remain. In particular,
extending the approach to overfitting patterns, quantifying feature propagation in more general CNNs and
transformers, and addressing multi-feature interaction effects as those appearing in the context of superpo-
sition [Elhage et al.| (2022)). It would also be desirable to extend our heuristic to dynamics of learning, po-
tentially drawing insights from previous work relating equilibrium and dynamical phenomena Power et al.
(2022); Rubin et al.|(2024)); [Bahri et al.| (2024)); [Nam et al.| (2024). Since Bayesian convergence times can
be exceptionally slow, correctly predicting the emergence of feature learning in early stages of training may
also be highly advantageous. Finally, in some cases, such as under mean-field scaling, overfitting effects can
emerge. It would therefore be valuable to extend our approach to account for patterns that lead to overfitting.
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