
Real World Offline Reinforcement Learning
with Realistic Data Source

Gaoyue Zhou1∗ Liyiming Ke2∗ Siddhartha Srinivasa2 Abhinav Gupta1

Aravind Rajeswaran3 Vikash Kumar3

1Carnegie Mellon University 2University of Washington 3Meta AI

Abstract

Offline reinforcement learning (ORL) holds great promise for robot learning due
to its ability to learn from arbitrary pre-generated experience. However, current
ORL benchmarks are almost entirely in simulation and utilize contrived datasets
like replay buffers of online RL agents or sub-optimal trajectories, and thus hold
limited relevance for real-world robotics. In this work (Real-ORL), we posit that
data collected from safe operations of closely related tasks are more practical
data sources for real-world robot learning. Under these settings, we perform an
extensive (6500+ trajectories collected over 800+ robot hours and 270+ human
labor hour) empirical study evaluating generalization and transfer capabilities of
representative ORL methods on four real-world tabletop manipulation tasks. Our
study finds that ORL and imitation learning prefer different action spaces, and that
ORL algorithms can generalize from leveraging offline heterogeneous data sources
and outperform imitation learning. We release our dataset and implementations at
URL: https://sites.google.com/view/real-orl

1 Introduction

Despite rapid advances, the applicability of Deep Reinforcement Learning (DRL) algorithms [1–8] to
real-world robotics tasks is limited due to sample inefficiency and safety considerations. The emerging
field of offline reinforcement learning (ORL) [9, 10] has the potential to overcome these challenges,
by learning only from logged or pre-generated offline datasets, thereby circumventing safety and
exploration challenges. This makes ORL well suited for applications with large datasets (e.g.
recommendation systems) or those where online interactions are scarce and expensive (e.g. robotics).
However, comprehensive benchmarking and empirical evaluation of ORL algorithms is significantly
lagging behind the burst of algorithmic progress [11–21]. Widely used ORL benchmarks [22, 23] are
entirely in simulation and use contrived data collection protocols that do not capture fundamental
considerations of physical robots. Our work aims to bridge this gap by outlining practical offline
dataset collection protocols that are representative of real-world robot settings. Our work also
performs a comprehensive empirical study spanning 6500+ robot trajectories and 270+ human
labor hours, to benchmark and analyze three representative ORL algorithms thoroughly. We will
release all the datasets, code, and hardware hooks from this paper.

In principle, ORL can consume and train policies from arbitrary datasets. This has prompted the
development of simulated ORL benchmarks [22–24] that utilize data sources like expert policies
trained with online RL, exploratory policies, or even replay buffers of online RL agents. However,
simulated dataset may fail to capture the challenges in real world: hardware noises coupled with

∗Equal contribution.

Offline Reinforcement Learning Workshop at Neural Information Processing Systems, 2022

https://sites.google.com/view/real-orl


Figure 1: Canonical tasks for tabletop manipulation.

varying reset conditions lead to covariate shift and violate the i.i.d. assumption about state distributions
between train and test time. Further, such datasets are not feasible on physical robots and defeat the
core motivation of ORL in robotics – to avoid the use of online RL due to poor sample efficiency and
safety! Recent works [24, 25] suggest that dataset composition and distribution dramatically affect
the relative performance of algorithms. In this backdrop, we consider the pertinent question: What is
a practical instantiation of the ORL setting for physical robots, and can existing ORL algorithms
learn successful policies in such a setting?

In this work, we envision practical scenarios to apply ORL for real-world robotics. Towards
this end, our first insight is that real-world offline datasets are likely to come from well-behaved
policies that abide by safety and monetary constraints, in sharp contrast to simulator data collected
from exploratory or partially trained policies, as used in simulated benchmarks [22–24]. Such
trajectories can be collected by user demonstrations or through hand-scripted policies that are
partially successful but safe. It is more realistic to collect large volumes of data for real robots using
multiple successful policies designed under expert supervision for specific tasks than using policies
that are unsuccessful or without safety guarantees. Secondly, the goal of any learning (including
ORL) is broad generalization and transfer. It is therefore critical to study whether a learning algorithm
can leverage task-agnostic datasets, or datasets intended for a source task, to make progress on a new
target task. In this work, we collect offline datasets consistent with these principles and evaluate
representative ORL algorithms on a set of canonical table-top tasks as illustrated in Figure 1.

Evaluation studies on physical robots are sparse in the field due to time and resource constraints,
but they are vital to furturing our understanding. Our real robot results corroborate and validate
intuitions from simulated benchmarks [26] but also enable novel discoveries. We find that (1) even
for scenarios with sufficiently high-quality data, some ORL algorithms could outperform behavior
cloning (BC) [27] on specific tasks, (2) for scenarios that require generalization or transfer to new
tasks with low data support, ORL agents generally outperform BC. (3) in cases with overlapping
data support, ORL algorithms can leverage additional heterogeneous task-agnostic data to improve
their own performance, and in some cases even surpass the best in-domain agent.

Our empirical evaluation is unique as it focuses on ORL algorithms ability to leverage more realistic,
multi-task data sources, spans over several tasks that are algorithm-agnostic, trains various ORL
algorithms on the same settings and evaluates them directly in the real world. In summary, we believe
our work establishes the effectiveness of offline RL algorithms in leveraging out of domain high-
quality heterogeneous data for generalization and transfer in robot-learning, which is representative
of real world applications.

2 Preliminaries and Related Work

Offline RL. We consider the ORL framework, which models the environment as a Markov Decision
Process (MDP): M = ⟨S,A,R, T, ρ0, H⟩ where S ⊆ Rn is the state space, A ⊆ Rm is the action
space, R : S × A → R is the reward function, T : S × A× S → R+ is the (stochastic) transition
dynamics, ρ0 : S → R+ is the initial state distribution, and H is the maximum trajectory horizon.
In the ORL setting, we assume access to the reward function R and a pre-generated dataset of the
form: D = {τ1, τ2, . . . τN}, where each τi = (s0, a0, s1, a1, . . . sH) is a trajectory collected using a
behavioral policy or a mix of policies πb : S ×A → R+.

2



The goal in ORL is to use the offline dataset D to learn a near-optimal policy,

π∗ := argmax
π

EM,π

[
H∑
t=0

r(st, at)

]
.

In the general case, the optimal policy π∗ may not be learnable using D due to a lack of sufficient
exploration in the dataset. In this case, we would seek the best policy learnable from the dataset, or,
at the very least, a policy improves upon behavioral policy.

Offline RL Algorithms. Recent years have seen tremendous interests in offline RL and the devel-
opment of new ORL algorithms. Most of these algorithms incorporate some form of regularization
or conservatism. This can take many forms, such as regularized policy gradients or actor critic
algorithms [14, 15, 19, 28–30], approximate dynamic programming [11, 13, 17, 18], and model-
based RL [12, 31–33]. We select a representative ORL algorithms from each category: AWAC [19],
IQL [18] and MOREL [12]. In this work, we do not propose new algorithms for offline RL; rather we
study a spectrum of representative ORL algorithms and evaluate their assumptions and effectiveness
on a physical robot under realistic usage scenarios.

Offline RL Benchmarks and Evaluation. In conjunction with algorithmic advances, offline RL
benchmarks have also been proposed. However, they are predominantly captured with simulation [22,
23, 34] using datasets with idealistic coverage, i.i.d. samples, and synchronous execution. Most of
these assumptions are invalid in real world which is stochastic and has operational delays. Prior works
investigating offline RL for these settings on physical robots are limited. For instance, Kostrikov
et al. [18] did not provide real robot evaluation for IQL, which we conduct in this work; Chebotar
et al. [35], Kalashnikov et al. [36] evaluate performance on a specialized Arm-Farm; Rafailov et al.
[37] evaluate on a single drawer closing task; Singh et al. [17], Kumar et al. [38] evaluate only one
algorithm (COG, CQL, respectively). Mandlekar et al. [39] evaluate BCQ and CQL alongside BC on
three real robotics tasks, but their evaluations consider only in-domain setting: that the agents were
trained only on the specific task data, without giving them access to a pre-generated, offline dataset.
Thus, it is unclear whether insights from simulated benchmarks or limited hardware evaluation can
generalize broadly. Our work aims to bridge this gap by empirically studying representative offline
RL algorithms on a suite of real-world robot learning tasks with an emphasize on transfer learning
and out-domain generalization. See Section 3 for detailed discussion.

Imitation Learning (IL). IL [40] is an alternate approach to training control policies for robotics.
Unlike RL, which learns policies by optimizing rewards (or costs), IL (and inverse RL [41–43]) learns
by mimicking expert demonstrations and typically requires no reward function. IL has been studied
in both the offline setting [44, 45], where the agent learns from a fixed set of expert demonstrations,
and the online setting [46, 47], where the agent can perform additional environment interactions. A
combination of RL and IL has also been explored in prior work [48, 49]. Our offline dataset consists of
trajectories from a heuristic hand-scripted policy collected under expert supervision, which represents
a dataset of reasonably high quality. As a result, we consider offline IL and, behavior cloning in
particular, as a baseline algorithm in our empirical evaluation.

3 Experiment Scope and Setup

To investigate the effectiveness of ORL algorithms on real-world robot learning tasks, we adhere
to a few guiding principles: (1) we make design choices representing the wider community to the
extent possible, (2) we strive to be fair to all baselines by providing them their best chance and work
in consultation with their authors; and (3) we prioritize reproducibility and data sharing. We will
open-source our data, camera images along with our training and evaluation codebase.

Hardware Setup. Hardware plays a seminal role in robotic capability. For reproducibility and
extensibility, we selected a hardware platform that is well-established, non-custom, and commonly
used in the field. After an exhaustive literature survey [50–55], we converged on a table-top
manipulation setup, shown in Figure 2. It consists of a table-mounted Franka panda arm that uses a
RobotiQ parallel gripper as its end effector, which is accompanied by two Intel 435 RGBD cameras.
Our robot has 8 DOF, uses factory-supplied default controller gains, accepts position commands at 15

3



Hz, and runs a low-level joint position controller at 1000 Hz. To perceive the object to interact with,
we exact the position of the AprilTags attached to the object from RGB images. Our robot states
consist of joint positions, joint velocities, and positions of the object to interact with (if applicable).
Our policies compute actions (desired joint pose) using robot proprioception, tracked object locations,
and desired goal location.

Figure 2: Our setup consists of a commonly
used Franka arm, a RobotiQ parallel gripper,
and two Intel Realsense 435 cameras.

Canonical Tasks We consider four classic manipu-
lation tasks common in literature: reach, slide,
lift, and pick-n-place (PnP) (see Figure 1).
reach requires the robot to move from a randomly
sampled configuration in the workspace to another
configuration. The other three tasks involve a heavy
glass lid with a handle, which is initialized randomly
on the table. slide requires the robot to hold and
move the lid along the table to a specified goal lo-
cation. lift requires the robot to grasp and lift the
lid 10 cm off the table. PnP requires the robot to
grasp, lift, move and place the lid at a designated
goal position i.e. the chopping board. The four tasks
constitute a representative range of common tabletop
manipulation challenges: reach focuses on free movements while the other three tasks involve
intermittent interaction dynamics between the table, lid, and the parallel grippers. We model each
canonical task as a MDP with an unique reward function. Details on our tasks are in Appendix. 7.1.

Data Collection. We use a hand-designed, scripted policy developed under expert supervision to
collect (dominantly) successful trajectories for all our canonical tasks. To highlight ORL algorithms
ability to overcome suboptimal dataset, previous works [22, 34, 39] have crippled expert policies
with noise, use half-trained RL policies or collect human demonstrations with varying qualities to
highlight the performance gain over compromised datasets. We posit that such data sources are not
representative of robotics domains, where noisy or random behaviors are unsafe and detrimental to
hardware’s stability. Instead of infusing noise or failure data points to serve as negative examples,
we believe that mixing data collected from various tasks offers a more realistic setting in which to
apply ORL on real robots for three reasons: (1) collecting such “random/roaming/explorative” data
on a real robot autonomously would require comprehensive safety constraints, expert supervision
and oversight, (2) engaging experts to record such random data in large quantities makes less sense
than utilizing them to collecting meaningful trajectories on a real task, and (3) designing task-specific
strategies and stress testing ORL’s ability against such a strong dataset is more viable than using a
compromised dataset. We collected offline dataset using heuristic strategies designed with reasonable
efforts and, to avoid biases favoring task/algorithm, frozen the dataset ahead of time.

Dataset. In total, we collected a dataset of around 3000 trajectories and the characteristics of
our dataset is shown in Table. 1. Our offline dataset is represented as a series of transition tuples
{(s, a, s′)task}. States consist of joint positions, joint velocities, and positions of the object to interact
with (if applicable). Actions contain target joint positions. To perceive the object to interact with,
we obtain the position of tracked AprilTags attached to the object from the RGB images of the two
cameras. More details are available in Appendix 7.2.

Task # Traj # Samples Avg Score Max Score Human Score Theoretical Best Score

reach 1000 99752 0.960 0.99 0.963 1
slide 731 244422 0.819 0.93 0.834 1
lift 609 178515 0.948 1 1 1
PnP 616 327478 0.875 1.09 0.924 1.15

Table 1: Characteristics of collected data. # Traj denotes the total number of trajectories, # Samples
denotes the total number of state-action-reward pairs. Each trajectory’s score is the maximum reward
in the trajectory. Avg Score shows the average scores per trajectories, Max Score shows the maximum
reward achieved by trajectories in our dataset, Human Score shows the max reward achieved by a
human teleoperator and Theoretical Best Score denotes the theoretical maximum possible reward
determined by our reward function.

4



4 Experiment Design

Our experiments aim to answer the following questions. (1) Are ORL algorithms sensitive to, or
show a preference for, any specific state and action space parameterization? (2) How do they perform
against the standard methods for in-domain tasks? (3) How do common methods perform in out-of-
domain tasks requiring (a) generalization, and (b) re-targeting? To ensure fair evaluation, we now
outline our choice of candidate algorithms and performance metrics.

Algorithms For all evaluations, we compare four algorithms: Behavior Cloning (BC) [27],
Model-based Offline REinforcement Learning (MOREL) [12], Advantage-Weighted Actor Critic
(AWAC) [19] and Implicit Q-Learning (IQL) [18]. BC is a model-free IL algorithm that remains
a strong baseline for real robot experiments due to its simplicity and practicality. AWAC and
IQL both train an off-policy value function and then derive a policy to maximize the expected reward.
AWAC uses KL divergence minimization to constrain the resulting policy to be close to the given pol-
icy distribution. In contrast, IQL leverages expectile regression to avoid querying the value function
for any out-of-distribution query. MOREL is distinct since it is a model-based approach: it recovers
a dynamics model from offline data that allows it directly apply policy gradient RL algorithms. We
use implementations of BC and MOREL from the MOREL author implementation. For the later,
we add a weighted behavior cloning loss to its policy training step to serve as a regularizer, inspired
by [30]. We use AWAC and IQL implemented in the open sourced d3rlpy library [56].

Training. Since neural network agents are empirically sensitive to parameters and seeds, we (1) used
the same fixed random seed (123) for all our experiments with additional seed sweeping to strengthen
the reproducibility of our results and (2) conducted equal amount of efforts for hyperparameter tuning
efforts for all algorithms. Unlike traditional supervised learning, we cannot simply select the agents
with the best validation loss for tuning the hyperparameters, because we cannot know the performance
of an agent unless testing it on a real robot [39]. We thus keep our tuning simple and fair: starting
with the default parameters and training 5 agents in 3 rounds, trying to make the agent converge.
We observe that certain agents cannot converge after exhausting the allocated trials and report these
results with a (*) marker, signaling the challenge in tuning parameters for such algorithms. More
details are available in Appendix. 7.4.

Evaluation. Real robot evaluations can have high variance due to reset conditions and hardware
noise. For each agent, we collect 12 trajectories and report their mean and standard deviation of
scores. To confirm the reproducibility of our results and robustness to seed sweeping, for agents that
contributed to our conclusions (usually the best and the second-best agents) we report performance
swept over three consecutive random seeds (122, 124 in addition to the fixed seed of 123) in
Appendix 7.6. To verify the statistical significance of our results when comparing performance
between agents, we report the p-value of paired difference tests in Appendix 7.7.

A. In-domain Ablations. We note the distinction between “in-domain” training and “out-domain”
training, where the former leverages only data that were collected for the test task and the later allow
incorporating heterogeneous data from different tasks. We first train all agents using in-domain data
(i.e., we train a slide agent by feeding only slide data) to test ORL algorithms’ sensitivity to
varying data representation and inspect: (1) whether it is worth including velocity information in
the state space (Vel versus NoVel); for simulator experiments, it is almost always a gain to include
velocity, but velocity sensors on real robots are notoriously noisy; (2) whether to use the policy output
joint position (Abs) vs the change in joint position (Delta) as action. Most BC literature uses the
former, whereas RL prefers the latter. 2 We use the outcome of the ablations and the best-performing
setting for each algorithm to study generalization and transfer in the following three scenarios:

B. Generalization: Lacking data support. The data collection may not cover the task space
uniformly. For example, imagine that a robot trained to wipe clean a table but now cleans a bigger
table. Empirically, a policy trained with behavior cloning would have trouble predicting actions for
states when there is less data support. Can ORL algorithms, by learning a value function or model,

2Additionally, to verify that our dataset has reasonable optimality sufficient for training BC, we train
BC separately with Top-K% of the trajectories to exclude the relatively “worse” trajectories. The results showns
in Appendix. 7.5 verifies that BC has the best performance using the full dataset we collect.

5



Task Agent Representations
AbsNoVel AbsVel DeltaNoVel DeltaVel

Reach

BC 0.863 ± 0.069 0.768 ± 0.118 0.912 ± 0.026 0.924 ± 0.048
Morel 0.795 ± 0.086 0.584 ± 0.105 0.86 ± 0.069 0.917 ± 0.036
AWAC 0.770 ± 0.105 0.713 ± 0.158 0.916 ± 0.030 0.925 ± 0.047
IQL 0.843 ± 0.148 0.872 ± 0.104 0.904 ± 0.032 0.894 ± 0.066

Slide

BC 0.623 ± 0.172 0.681 ± 0.147 0.548 ± 0.200 0.551 ± 0.101
Morel 0.356 ± 0.189 0.117 ± 0.235 0.532 ± 0.147 0.629 ± 0.160
AWAC 0.548 ± 0.171 * 0.591 ± 0.146 * 0.569 ± 0.138 0.732 ± 0.113
IQL 0.627 ± 0.144 0.589 ± 0.166 0.712 ± 0.137 0.767 ± 0.065

Lift

BC 0.759 ± 0.179 0.823 ± 0.177 0.721 ± 0.225 0.613 ± 0.142
Morel 0.460 ± 0.189 0.149 ± 0.092 0.678 ± 0.186 0.652 ± 0.160
AWAC 0.518 ± 0.083 * <0 * 0.863 ± 0.149 * 0.821 ± 0.121
IQL 0.682 ± 0.163 <0 0.841 ± 0.144 0.880 ± 0.149

PnP

BC 0.632 ± 0.123 0.818 ± 0.185 0.564 ± 0.045 0.678 ± 0.195
Morel <0 <0 0.750 ± 0.197 0.748 ± 0.220
AWAC 0.451 ± 0.159 * <0 0.626 ± 0.234 * 0.735 ± 0.175 *
IQL 0.469 ± 0.142 <0 0.548 ± 0.160 0.601 ± 0.228

Table 2: Performance of all algorithms on varying representations. Each agent for each task is
trained and evaluated on four settings: to include velocity in state or not (Vel versus NoVel); to use
absolute or delta action space (Abs versus Delta). For each task, the best BC agent and the best
ORL agent are highlighted and bolded. Agents that could not converge during training time are
marked with (*). Some agents triggered violent crashes at test time and we report such performance
as <0. Underline scores are swept over 3 seeds.

generalize to a task space that lacks data support? To this end, we create a new dataset from our slide
task by dividing the task space to three regions: left, center, right. We remove any trajectory where
the object was initially placed in the center region from the collected dataset. We train all agents and
gather evaluation trajectories asking them to slide an object initially placed in the left, center and
right regions.

C. Generalization: Re-targeting data for dynamic tasks. For the slide task, our collected
demonstration has static goal positions. We test agents trained using such static data in a dynamic
setting by updating the goal at a fixed frequency, and asking the agents to grasp and slide the lid
following some predetermined curves. We collected the ideal trajectories via human demonstration.
This task can be viewed as a simplified version of daily tasks, including drawing, wiping, and cleaning,
which require possibly repeated actions and a much longer horizon than usual IL and ORL tasks.
We select a variety of trajectories: circle, square, and the numbers 3, 5, 6, 8, which have different
combinations of smooth curves and corners.

D. Transfer: Reusing data from different tasks. We investigate whether we can reuse heter-
genuous data collected from previous tasks to train a policy for a new task. For example, would
combining data from two canonical tasks (e.g., slide+lift) helps the agent perform better on
either of these tasks? When aggregating data collected for multiple tasks, ORL algorithms can use
the reward function for the test task to relabel the offline dataset. Evaluating ORL algorithms on
such out-domain, transfer-learning settings is practical and relevant: instead of collecting random
explorative data which demands careful setup of safety constraints on a real robot, we want to leverage
offline datasets collected from different tasks to improve ORL performance. We train our algorithm
with different combinations of canonical task demonstrations (“train-data”) and evaluate each agent
on each individual task.

6



Start Position BC MOREL AWAC IQL
Left 0.790 ± 0.056 0.571 ± 0.062 0.704 ± 0.119 0.704 ± 0.066
Right 0.774 ± 0.015 0.799 ± 0.033 0.707 ± 0.136 0.808 ± 0.015
Center 0.764 ± 0.013 0.793 ± 0.015 0.830 ± 0.026 0.811 ± 0.007

Center, trained with full data 0.791 ± 0.018 0.776 ± 0.022 0.813 ± 0.021 0.811 ± 0.050

Table 3: Training agents using a carved-out dataset to see how they perform when generalizing to a
task region that lacks data support (the Center region, highlighted in Gray). For comparison, we
also train all agents using full dataset and evaluate them on the Center region.

5 Results and Discussion

5.1 In-domain Tasks

Which agent performs best for in-domain tasks? Table 2 summarizes agents’ performance
for in-domain tasks, providing empirical insights into agents’ sensitivity to varying representations.
Interestingly, two of the ORL agent, IQL and AWAC achieved higher mean-scores than BC trained
with abundant, in-domain real robot demonstrations on 2 out of 4 tasks. On the simplest task reach,
the best version of all agents reached comparable performance. On the hardest task PnP, BC outper-
formed ORL agents. We would recommend considering IQL as a baseline even for imitation learning,
when it is applicable to write a continuous reward function (an additional assumption compared to
classic imitation learning).

Sensitivity to representation Empirically, BC demonstrated robustness to different state and action
spaces, whereas ORL agents had varied performance. In 3 of 4 tasks considered, BCperformed the
best when using absolution joint position as the action space and including velocity in the state space
(AbsVel). On all tasks, ORL agents performed better using delta action space (Delta) rather than
joint position. Intuitively, using the delta action space would be equivalent to restricting the policy
to move in a unit ball centered around the current state. Such constraints could benefit RL policies
that need exploration and sampling in action space more than it helped BC, which simply learns the
mapping from states to actions. Additionally, we observed that our best agents all included velocity in
their state space, though they were not guaranteed to have monotonic performance gain with velocity
added.

5.2 Generalization and Transfer

Generalization to regions that lack data support. Table 3 trains agent using an carved-out dataset
and compares the agents’ performance on regions with more data support versus the region with
less data support (Center, highlighted in Grey). For comparison, we also train all agents using
full dataset and evaluate them on the Center region. On the region with abundant data support
(Left and Right), we note that BC and IQL performed well and AWAC/MOREL got lower scores,
aligning with our previous observation that BC/IQL performed better on in-domain tasks. Inspecting
the performance on regions that have less data support (Center), however, we discovered that (1)
AWAC and MOREL could match BC’s performance on low-support region regardless of their initial
disadvantage (they had poorer performance on the region with more support) and (2) ORL agents
trained with carved-out dataset and evaluated on carved-out region performed no worse than them
trained with full dataset, in contrast to BC agent, which performed worse after carving-out.

Generalization to dynamic tasks. Table 4 lists the ideal curves and the curves traced by each model.
Each dot represents the location of the lid at a time step. BC had the worst performance among all
models since it failed to complete tracing of the circle, square, and number 8 which requires a larger
range of motion, and the BC agent seemed to get stuck during execution. Meanwhile, ORL methods
largely succeeded tracing the entire curve following the time-varying goals, demonstrating stronger
generalizing ability for this dynamic task.

7



Ideal Traj

BC

MOREL

AWAC

IQL

Table 4: Trajectory tracking. Green: the ideal demo trajectories, followed by each agent’s tracking
trajectories.

Transfer learning by leveraging heterogeneous dataset Table 5 evaluates the performance of
ORL algorithms when trained with different combinations of datasets from multiple tasks. We
observe that:

1. The performance changes to ORL agents after leveraging offline data from different tasks can
vary, due to the characteristics of the algorithm, the nature of the task, design of the reward function
and the data distribution.
2. We observed all ORL agents could improve their own performance using some task/data com-
binations. Noticeably, MOREL achieved higher or comparable performance on all tasks after
leveraging more offline data. For instance, its performance on the lift task progressively im-
proved (0.606 → 0.726 → 0.896) with the inclusion of data from slide and PnP tasks. Intuitively,
MOREL’s dynamic model training process could benefit from any realistic data, regardless of whether
the data was in-domain or out-of-domain.
3. Certain task-agnostic data could provide overlapping data support and enable effective transfer
learning, allowing some ORL agents to surpass imitation learning and even the best in-domain agents.
On slide and lift, all ORL algorithms managed to surpass BC. On PnP, AWAC achieved compa-
rable performance as BCbut with a slightly higher mean using a combo of slide and lift data. With
our extensive ablations, we observe that the final best agent for each task is either an ORL algorithm
or a tie between ORL and BC.
4. However, ORL algorithms are not guaranteed to increase performance or guaranteed to surpass
the best in-domain agents. The performance changes of ORL after leveraging out-domain data are
likely to vary by agents, the task and dataset distribution. For instance, both AWAC and IQL agents
have worse performance for lift, when using slide+lift+PnP than using only slide+lift data
(0.899 → 0.728, 0.863 → 0.684). Training IQL for PnP using slide or slide+lift data (without
using PnP data), however, yielded even better results than using PnP data. Qualitatively we observe
that IQL agents trained with slide data were better at grasping the object than the ones trained with
PnP data at lifting the object, completing this first part of the task with more success while claiming
distance-to-goal reward bonus.

With our extensive ablations, we observe that the final best agent for each task is either an ORL algo-
rithm or a tie between ORL and BC.

Random Seed Sweeping To improve the statistical significance of our results and to demonstrate
reproducibility, we conduct additional random seed sweeping (i.e., train an agent with 3 consecutive
random seeds). Results from additional agents (Appendix. 7.6) shows that the seed2seed variation of
our experiments are low and provide more statistical significance to some of our observations: ∼60%
of newly trained agents change score by less than 1%, ∼90% of agents change by less than 2%, and
the maximum change was 6% from one agent (whose score change does not affect our conclusion).

8



Agent Train Data Test Task
slide lift PnP

BC

in-domain 0.681 ± 0.147 0.823 ± 0.177 0.818 ± 0.185
slide 0.681 ± 0.147 0.582 ± 0.058 0.612 ± 0.083
slide+lift 0.595 ± 0.127 0.580 ± 0.053 0.605 ± 0.120
slide+lift+PnP 0.610 ± 0.137 0.609 ± 0.079 0.640 ± 0.144

MOREL

in-domain 0.629 ± 0.160 0.678 ± 0.186 0.750 ± 0.197
slide 0.629 ± 0.160 0.606 ± 0.063 0.744 ± 0.174
slide+lift 0.616 ± 0.146 0.726 ± 0.184 0.636 ± 0.173
slide+lift+PnP 0.715 ± 0.134 0.896 ± 0.133 0.753 ± 0.181

AWAC

in-domain 0.732 ± 0.113 0.863 ± 0.149 * 0.735 ± 0.175 *
slide 0.732 ± 0.113 0.638 ± 0.055 0.770 ± 0.111*
slide+lift 0.734 ± 0.110 * 0.899 ± 0.149 0.813 ± 0.121
slide+lift+PnP 0.644 ± 0.144 * 0.728 ± 0.200 * 0.758 ± 0.188 *

IQL

in-domain 0.767 ± 0.065 0.880 ± 0.149 0.601 ± 0.228
slide 0.767 ± 0.065 0.258 ± 0.033 0.810 ± 0.107
slide+lift 0.704 ± 0.141 0.863 ± 0.166 0.842 ± 0.114
slide+lift+PnP 0.643 ± 0.143 0.684 ± 0.158 0.833 ± 0.183

Table 5: Performance of agents trained with different combinations of offline data. The best in-domain
agent, transfer learning agents that improves over their in-domain counterparts are colored. The
best agent for each task is bold. Agents that could not converge during training time are marked
with (*). Some agents triggered violent crashes at test time and we report such performance as <0.
Underline scores are swept over 3 seeds.

Comparison to previous works. Some of our in-domain conclusions are aligned with [40] and [39]:
that behavior cloning demonstrates strong robustness to varying representations and tasks, serving
as a competitive baseline in all four tasks tested. Even when BC is not the best, it has reasonable
performance that is no worse than 85% of the best in-domain agents. Our findings also provide
empirical verification to one of [34]’s observations that ORL could outperform BC for tasks where
the initial state distributions change during deployment, a common condition for real robotic task, or
when the environment has a few “critical” states, as seen in our manipulation tasks. In contrast to
previous works, however, we highlight that (1) IQL can be a competitive baseline for settings that
were traditionally favoring behavior cloning, as it turns out to be the best in-domain agent on 2 out of
4 tasks we tested, despite the lack of real robotic evaluation for IQL [18], (2) our extensive ablations
on out-domain transfer learning are unique and allow us to verify several ORL algorithms’ capability
in generalizing to task region with less data-support (Table. 3) and to dynamic tasks (Figure. 4), (3)
we observe that leveraging heterogeneous data has enabled all ORL algorithms to improve their own
performance on at least one of the tasks, allowing some to even surpass the best in-domain agents,
which suggest that ORL can be an interesting paradigm for real-world robotic learning.

6 Conclusion
In this work, we conducted an empirical study of representative ORL algorithms on real-world
robotic learning tasks. The study encompassed three representative ORL algorithms (along with
behavior cloning), four table-top manipulation tasks with a Franka-Panda robot arm, 3000+ train
trajectories, 3500+ evaluation trajectories, and 270+ human labor hours. Through our extensive
ablation studies, we find that (1) even for in-domain tasks with abundant amount of high-quality data,
IQL can be a competitive baseline against the best behavior cloning policy, (2) for out-domain tasks,
ORL algorithms were able to generalize to task regions with low data-support and to dynamic tasks,
(3) the performance changes of ORL after leveraging heterogeneous data are likely to vary by agents,
the design of the task, and the characteristics of the data, (4) certain heterogeneous task-agnostic data
could provide overlapping data support and enable transfer learning, allowing ORL agents to improve
their own performance and, in some cases, even surpass the best in-domain agents. Overall, (5) the
best agent for each task is either an ORL algorithm or a tie between ORL and BC. Our rigorous
empirical evaluations indicate that even in out-of-domain multi-task data regime, (more realistic in
real world setting) offline RL is an effective paradigm to leverage out of domain data.

9



References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[2] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
Region Policy Optimization. CoRR, abs/1502.05477, 2015.

[3] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
Policy Optimization Algorithms. CoRR, abs/1707.06347, 2017.

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[5] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In NeurIPS, 2019.

[6] Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A Game Theoretic Framework for
Model-Based Reinforcement Learning. In ICML, 2020.

[7] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362:1140–1144, 2018.

[8] Oriol Vinyals, Igor Babuschkin, Wojciech Marian Czarnecki, Michaël Mathieu, Andrew Joseph
Dudzik, Junyoung Chung, Duck Hwan Choi, Richard W. Powell, Timo Ewalds, Petko Georgiev,
Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor
Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias
Pohlen, Valentin Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch,
Katrina McKinney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature, pages 1–5, 2019.

[9] Sascha Lange, Thomas Gabel, and Martin A. Riedmiller. Batch Reinforcement Learning. In
Reinforcement Learning, volume 12. Springer, 2012.

[10] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[11] Scott Fujimoto, David Meger, and Doina Precup. Off-Policy Deep Reinforcement Learning
without Exploration. CoRR, abs/1812.02900, 2018.

[12] Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL :
Model-Based Offline Reinforcement Learning. In NeurIPS, 2020.

[13] Aviral Kumar, Aurick Zhou, G. Tucker, and S. Levine. Conservative Q-Learning for Offline
Reinforcement Learning. ArXiv, abs/2006.04779, 2020.

[14] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision Transformer: Reinforcement Learning
via Sequence Modeling. 2021.

[15] Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33:7768–7778, 2020.

[16] Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline
reinforcement learning. arXiv preprint arXiv:2011.07213, 2020.

10



[17] Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. Cog:
Connecting new skills to past experience with offline reinforcement learning. arXiv preprint
arXiv:2010.14500, 2020.

[18] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[19] Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[20] Ksenia Konyushova, Yutian Chen, Thomas Paine, Caglar Gulcehre, Cosmin Paduraru, Daniel J
Mankowitz, Misha Denil, and Nando de Freitas. Active offline policy selection. Advances in
Neural Information Processing Systems, 34:24631–24644, 2021.

[21] Tony Z Zhao, Jianlan Luo, Oleg Sushkov, Rugile Pevceviciute, Nicolas Heess, Jon Scholz,
Stefan Schaal, and Sergey Levine. Offline meta-reinforcement learning for industrial insertion.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6386–6393. IEEE,
2022.

[22] Justin Fu, Aviral Kumar, Ofir Nachum, G. Tucker, and S. Levine. D4RL: Datasets for Deep
Data-Driven Reinforcement Learning. ArXiv, abs/2004.07219, 2020.

[23] Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo,
Konrad Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, et al. Rl
unplugged: Benchmarks for offline reinforcement learning. arXiv preprint arXiv:2006.13888,
2020.

[24] Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, P. Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning. ArXiv, abs/2201.13425, 2022.

[25] Rongjun Qin, Songyi Gao, Xingyuan Zhang, Zhen Xu, Shengkai Huang, Zewen Li, Weinan
Zhang, and Yang Yu. Neorl: A near real-world benchmark for offline reinforcement learning.
ArXiv, abs/2102.00714, 2021.

[26] Aviral Kumar, Joey Hong, Anika Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? ArXiv, abs/2204.05618, 2022.

[27] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in
neural information processing systems, 1, 1988.

[28] Yifan Wu, George Tucker, and Ofir Nachum. Behavior Regularized Offline Reinforcement
Learning. CoRR, arXiv:1911.11361, 2019.

[29] Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Àgata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind W. Picard. Way Off-Policy Batch Deep Reinforcement
Learning of Implicit Human Preferences in Dialog. CoRR, abs/1907.00456, 2019.

[30] Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

[31] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. ArXiv, abs/2005.13239,
2020.

[32] Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In NeurIPS, 2021.

[33] Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. ArXiv,
abs/2008.05556, 2021.

[34] Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. When should we prefer offline
reinforcement learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

11



[35] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex
Irpan, Benjamin Eysenbach, Ryan C. Julian, Chelsea Finn, and Sergey Levine. Actionable
models: Unsupervised offline reinforcement learning of robotic skills. ArXiv, abs/2104.07749,
2021.

[36] Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. ArXiv, abs/2104.08212, 2021.

[37] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement
learning from images with latent space models. In L4DC, 2021.

[38] Aviral Kumar, Anika Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. In CoRL, 2021.

[39] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,
Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning
from offline human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298,
2021.

[40] Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters,
et al. An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics,
7(1-2):1–179, 2018.

[41] Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf
Aytar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations
and unlabeled experience. arXiv preprint arXiv:2011.13885, 2020.

[42] Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan
Cabi, and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning.
arXiv preprint arXiv:2012.06899, 2020.

[43] Firas Jarboui and Vianney Perchet. Offline inverse reinforcement learning. arXiv preprint
arXiv:2106.05068, 2021.

[44] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter
Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleop-
eration. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages
5628–5635. IEEE, 2018.

[45] Liyiming Ke, Jingqiang Wang, Tapomayukh Bhattacharjee, Byron Boots, and Siddhartha
Srinivasa. Grasping with chopsticks: Combating covariate shift in model-free imitation learning
for fine manipulation. In 2021 IEEE International Conference on Robotics and Automation
(ICRA), pages 6185–6191. IEEE, 2021.

[46] Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mit-
igating covariate shift in imitation learning via offline data without great coverage. ArXiv,
abs/2106.03207, 2021.

[47] Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Visual adversarial imitation
learning using variational models. In NeurIPS, 2021.

[48] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combining
reinforcement learning & imitation learning. arXiv preprint arXiv:1805.11240, 2018.

[49] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

[50] Oliver Kroemer, Scott Niekum, and George Dimitri Konidaris. A review of robot learning
for manipulation: Challenges, representations, and algorithms. Journal of machine learning
research, 22(30), 2021.

[51] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Cliport: What and where pathways for robotic
manipulation. In Proceedings of the 5th Conference on Robot Learning (CoRL), 2021.

12



[52] Mohak Bhardwaj, Balakumar Sundaralingam, Arsalan Mousavian, Nathan D. Ratliff, Dieter
Fox, Fabio Ramos, and Byron Boots. STORM: An integrated framework for fast joint-space
model-predictive control for reactive manipulation. 2021.

[53] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

[54] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,
Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.
In Conference on Robot Learning, pages 158–168. PMLR, 2022.

[55] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A
universal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

[56] Michita Imai Takuma Seno. d3rlpy: An offline deep reinforcement library. In NeurIPS 2021
Offline Reinforcement Learning Workshop, December 2021.

7 Appendix

7.1 Canonical Task Setup

We considered four canonical tasks: reach, slide, lift and PnP. To apply ORL, each task can be
formulated as an MDP. The state contains the joint position of the robot, the gripper open position
(R ∼ [0, 0.08]), (optionally) the velocity of the joints, (optionally) the tracked tag position and a
goal position. To facilitate RL training, we came up with a continuous reward function for each task
r : state → R, as shown in Table 6, considering the position of the gripper x, the position of tracked
AprilTag t (if exists), the position of goal g, the Euclidean distance function dis between two 3D
coordinates, a convenient function height to denote the height of a given coordinates. While the
reward for reach and slide are naturally smaller than 1, we explicitly cap the maximum reward
for lift to be 1 since we don’t encourage agents to lift up the lid arbitrarily high. We don’t cap the
PnP reward since we encourage the pick-n-place policy to be distinguished from the policy with a
height bonus height(t).

We used heuristic policies to collect the demonstration data, as described in Sec. 3. Our policies have
a reasonable success rate accomplishing the task but is not designed to be optimal in solving the MDP.
To evaluate and compare between agents, we instead report the maximum reward over the trajectory
as a proxy of the task completion ("score"). We report our heuristic policies’ accumulated reward
average over trajectories and the score.

Task r(s)
∑

r(s) Score

Reach 1− dis(g − x) 173 0.99
Slide 1− (2 ∗ dis(g − t) + dis(t− x)) 223 0.93
Lift min(1, 0.57− dis(t− x) + height(t)) 167 1
Pick-n-place 1− (dis(g − t) + 2 ∗ dis(t− x)) ∗ 0.9 + height(t) 281 1.09

Table 6: Characteristics of task and collected data.

7.2 Dataset

In addition to the reward functions and statistics of our dataset, we also attach the score distribution
on each task to demonstrate our dataset’s overall quality. From Figure 3, we can see that the score
distribution for each task skew heavily to the left, which means the datasets are suitable for imitation
learning as well.

7.3 Open Source Code and Dataset

To remain anonymity we have only uploaded our collected dataset to here. Once accepted, we would
share code and instructions on how to process and use our dataset.

13

https://drive.google.com/drive/folders/1nyMPlbwkjsJ_FyMwVp9ynOvz_ykGtbA8?usp=sharing


(a) Reaching (b) Sliding (c) Lifting (d) Pick-n-place

Figure 3: Score distribution for each task of our dataset.

7.4 Training Details

Our code base was built upon the author’s implementation of MOREL [12] and the D3RLPY [56]
library. We used the same fixed random seed for all our experiments, unless otherwise specified.
For hyperparameter tuning, we always started by training using the default hyperparameters. If the
training loss reported by the agent did not converge, we adjusted the learning rate and retrain, up to 5
agents, till we find a model that converge or have been trained for 5, 000, 000 steps using batch size
2048. For model whose training loss exploded (e.g., AWAC), we choose an checkpoint from earlier
of the training when the loss were relatively stable for 100, 000 steps (frequently, this was an agent
that finished about half a million to a million training steps). Surprisingly, when evaluated on real
robot, models that reported convergence did not necessarily perform better than model that did not
converge.

Practicality of Training and Tuning BC was the cheapest to train (∼ 3min) and easiest to
converge (no additional tuning required). MOREL was the second shortest to train (∼ 4 hours);
most MOREL agents were able to converge, judged by the reward of trajectories generated by the
learned dynamics model. AWAC agents took longer to train (∼ 12 hours) and had the most trouble
converging (8 of the 16 agents in the ablation table could not converge in allocated trials). IQL agents
took the longest to train (10 ∼ 24 hours) but had more success converging. Though loss convergence
during training or a good reward estimated by the learned dynamics model or learned value function
cannot indicate the agent’s true performance, it is helpful for selecting an agent to test. Since some
AWAC agents had trouble converging, we selected an earlier checkpoint before loss explosion and
documented their performance, which, surprisingly, yielded higher reward than some agents that
reported convergence. We leave it to future work to investigate this phenomenon.

7.5 Training Behavior Cloning with Top-K% Trajectories

To ensure that our dataset contains high quality trajectories that is sufficient to train behavior cloning,
we launched new experiments training behavior cloning using only the Top-k % of the best trajectories.
In Figure. 3, we plot the distribution of performance of our data for each task. For reach, slide,
lift, 90% of trajectories complete the task with good scores (> 0.75). For (our most difficult task),
50% of our collected trajectories completed the task (scores > 0.8).

Thus we train BC for reach, slide, lift on Top-90% of data and train BC for PnP on Top-
50%,70%,90% of data and observe that, BC in our experiments benefit from using the full dataset.

Task Top-k% #Trajs Threshold for Demo Score Original Score
(BC with full data)

reach 90 900 0.909 0.899 ± 0.037 0.924 ± 0.048
slide 90 657 0.774 0.659 ± 0.152 0.681 ± 0.147
lift 90 554 0.787 0.784 ± 0.157 0.823 ± 0.177

PnP 50 304 0.935 0.723 ± 0.217 0.818 ± 0.185
70 426 0.792 0.789 ± 0.290 0.818 ± 0.185
90 548 0.656 0.789 ± 0.204 0.818 ± 0.185

14



7.6 Sweeping of Random Seeds

We evaluated an addition of 28 agents for 340 trajectories for a total of 70 hours including training
and testing to inspect how the scores for critical agents (i.e., the best agents for a category) would
vary by random seeds. We now have 3 seeds for each of the following agents:

1. The Best Agents for each task in Table 2

2. The Second Best Agents for each task in Table 2

3. ORL agents with out-domain datasets in in Table 5

The original agents are trained with seed 123, we trained the additional agents with seed 122 and
seed 124. Each seed is evaluated on 12 trajectories. The results are listed and we observe that ∼60%
of newly trained agents change score by less than 1%, ∼90% of agents change by less than 2%, and
the maximum change was 6% from one agent (whose score change does not affect our conclusion).

Best Agents Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2 (original seed) 3 seeds
AWAC,
DeltaVel,reach 0.920 ± 0.031 0.919 ± 0.066 0.935 ± 0.032 0.925 ± 0.047 0.01 (1.07%)
IQL,
DeltaVel, slide 0.781 ± 0.038 0.763 ± 0.044 0.757 ± 0.095 0.767 ± 0.065 -0.01 (-1.32%)
IQL,
DeltaVel, lift 0.877 ± 0.166 0.878 ± 0.158 0.884 ± 0.120 0.880 ± 0.149 0.004 (0.45%)
BC,
AbsVel, PnP 0.819 ± 0.199 0.800 ± 0.195 0.836 ± 0.157 0.818 ± 0.185 0.018 (2.15%)

Second Best Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 2 (original seed) 3 seeds
MOREL,
DeltaVel, reach 0.919 ± 0.034 0.908 ± 0.042 0.925 ± 0.028 0.917 ± 0.036 0.008 (0.86%)
BC,
DeltaVel, reach 0.921 ± 0.051 0.917 ± 0.055 0.934 ± 0.032 0.924 ± 0.048 0.01 (1.07%)
BC,
AbsVel, slide 0.699 ± 0.125 0.698 ± 0.120 0.645 ± 0.18 0.681 ± 0.147 -0.036 (-5.58%)
MOREL,
DeltaVel, slide 0.655 ± 0.157 0.602 ± 0.180 0.629 ± 0.136 0.629 ± 0.160 0 (0%)
AWAC,
DeltaVel,slide 0.757 ± 0.068 0.703 ± 0.108 0.739 ± 0.144 0.732 ± 0.113 0.007 (0.95%)
BC,
AbsVel, lift 0.821 ± 0.192 0.832 ± 0.177 0.818 ± 0.161 0.823 ± 0.177 -0.005 (0.61%)

ORL Seed 122 Seed 124 Seed 123 Means w/ Mean diff
in Table 5 (original seed) 3 seeds
AWAC on PnP
w/ slide+lift (diverged) 0.811 ± 0.103 0.815 ± 0.134 0.813 ± 0.121 0.002 (0.25%)
AWAC on PnP
w/ slide+lift+pnp 0.759 ± 0.180 0.773 ± 0.204 0.742 ± 0.175 0.758 ± 0.188 -0.016 (-2.16%)
IQL on PnP
w/ slide+lift 0.838 ± 0.103 0.847 ± 0.117 0.843 ± 0.120 0.842 ± 0.114 0.001 (0.12%)
IQL on PnP
w/ slide+lift+pnp 0.842 ± 0.170 0.826 ± 0.211 0.829 ± 0.163 0.833 ± 0.183 -0.004 (-0.48%)
MOREL on lift
w/ slide+lift+pnp 0.879 ± 0.124 0.904 ± 0.119 0.906 ± 0.151 0.896 ± 0.133 -0.01 (-1.1%)

15



7.7 Statistical Significance of Conclusions

In this section we verify the statistical significance of the conclusions we drew from our empirical
study. To evaluate every trained agent for every task, we collected 12 trajectories and calculated
their scores. One one hand, the estimated standard deviations of such scores were large, making
the comparison between agents challenging (i.e. comparing 0.818 ± 0.161 with 0.884 ± 0.120).
On the other hand, the distribution of scores is unknown. We cannot exclude the possibility of the
distribution being skewed, as the agent could perform better in a certain task region because of the
nature of the task. Therefore, we conducted both the dependent t-test (p) and the Wilcoxon signed
T-test (pw) for paired samples to calculate the p-value to reject or accept this null hypothesis: the two
models’ have identical scores.

We will reject the hypothesis with a small p-value (p or pw < 0.1). Tasks and application-domains
determine the confidence level requirements for any application. This often requires domain knowl-
edge and might not transfer between different applications even for the same task. For openness and
interpretability, we clearly outline our statistical tests and list our p-values, leaving it up to the readers
to justify their statistical significance required for their applications. We found that:

1. On in-domain tasks, we initially observe that: on reach, BC and the best ORL agent
(AWAC) achieved similar performance (0.93 ∼ 0.93, p = 0.953, pw = 0.844); on slide,
IQL outperform BC (0.76 > 0.64, p = 0.066, pw = 0.110); on lift, we observe that
BC is identical to the best ORL (0.82 ∼ 0.88, p = 0.146, pw = 0.110); on PnP, we
observed that BC outperformed the best ORL agent (0.90 > 0.75, p = 0.012, pw = 0.016).
After running the best and the second best agents with multiple seeds, we can confirm the
statistical significance of IQL outperforming BC on lift and slide (0.88 > 0.82, p =
0.084, pw = 0.041, 0.77 > 0.68, p = 0.001, pw = 0.001). With such observation, we
recommend IQL and BC as a strong baseline for in-domain tasks.

2. Testing agent’s ability to generalize to task space lacking data support, we verify that
MOREL and AWAC achieved comparable performance or better to BC for regions lacking
data support (MOREL: 0.80 ∼ 0.77, p = 0.235, pw = 0.500, AWAC: 0.82 > 0.77, p =
0.006, pw = 0.250). It’s worth noting that MOREL was having an initial disadvantage
of having poorer performance on regions that have more data support (0.67 < 0.78, p =
0.050, pw = 0.062).

3. In terms of leveraging task-agnostic data, MOREL has benefited from inclusion of more
data. On Slide, the model achieved significantly higher performance when using combined
data from three tasks 0.64 ∼ 0.72, p = 0.113, pw = 0.027). On Lift, the model achieved
significantly higher performance when using combined data from three tasks (0.65 →
0.91, p = 0.000, pw = 0.003). AWAC and IQL agents, however, had less success achieved
higher scores. The only significant improvement is AWAC on Lifting (0.82 → 0.90, p =
0.082, pw = 0.059). Otherwise, AWAC agents performed the same irregardless of training
data (p > 0.1). IQL had mostly similar or worse performance leveraging more data (e.g.
worse slide performance: 0.70 → 0.64, p = 0.069, pw = 0.077).

16


	Introduction
	Preliminaries and Related Work
	Experiment Scope and Setup
	Experiment Design
	Results and Discussion
	In-domain Tasks
	Generalization and Transfer

	Conclusion
	Appendix
	Canonical Task Setup
	Dataset
	Open Source Code and Dataset
	Training Details
	Training Behavior Cloning with Top-K% Trajectories
	Sweeping of Random Seeds
	Statistical Significance of Conclusions


