
Can LLMs Implicitly Learn Numeric Parameter
Constraints in Data Science APIs?

Yinlin Deng Chunqiu Steven Xia Zhezhen Cao Meiziniu Li Lingming Zhang

University of Illinois Urbana-Champaign
Southern University of Science and Technology

The Hong Kong University of Science and Technology

{yinlind2,chunqiu2,lingming}@illinois.edu, 12110529@mail.sustech.edu.cn, mlick@cse.ust.hk

Abstract

Data science (DS) programs, typically built on popular DS libraries (such as Py-
Torch and NumPy) with thousands of APIs, serve as the cornerstone for various
mission-critical domains such as financial systems, autonomous driving software,
and coding assistants. Recently, large language models (LLMs) have been widely
applied to generate DS programs across diverse scenarios, such as assisting users for
DS programming or detecting critical vulnerabilities in DS frameworks. Such appli-
cations have all operated under the assumption, that LLMs can implicitly model the
numerical parameter constraints in DS library APIs and produce valid code. How-
ever, this assumption has not been rigorously studied in the literature. In this paper,
we empirically investigate the proficiency of LLMs to handle these implicit numer-
ical constraints when generating DS programs. We studied 28 widely used APIs
from PyTorch and NumPy, and scrutinized the LLMs’ generation performance
in different levels of granularity: full programs, all parameters, and individual
parameters of a single API. We evaluated both state-of-the-art open-source and
closed-source models. The results show that LLMs are great at generating simple
DS programs, particularly those that follow common patterns seen in training data.
However, as we increase the difficulty by providing more complex/unusual inputs,
the performance of LLMs drops significantly. We also observe that GPT-4-Turbo
can sustain much higher performance overall, but still cannot handle arithmetic
API constraints well. In summary, while LLMs exhibit the ability to memorize
common patterns of popular DS API usage through massive training, they overall
lack genuine comprehension of the underlying numerical constraints.

1 Introduction

Data science (DS) is an emerging and important area that combines classic fields like statistics,
databases, data mining, and machine learning (ML) to gain insights via complex operations on the
abundance of available data [49]. DS libraries (such as PyTorch [41] and NumPy [38]) contain
thousands of APIs used by developers and data scientists to process/analyse data. These DS APIs serve
as the fundamental building blocks for almost all important ML/DS pipelines, and have penetrated
into almost every corner of modern society, including financial systems [18, 4], autonomous driving
software [9, 27, 46], coding assistants [45, 37], etc. Due to their high importance and wide usage,
automatically synthesizing valid DS programs has been a critical research area [29, 21, 47].

One key challenge of DS code generation is to satisfy the complex constraints within each DS library
API. DS library APIs perform transformations (e.g., matrix multiplication) on inputs (i.e., arrays or
array-like objects) with numeric constraints on API parameters and inputs. Figure 1 shows an example

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

of a typical DS program where the DS library (i.e., PyTorch) is first imported, followed by creating
some input_data, and then performing the data manipulation operation on the input_data using a
DS API (torch.nn.Conv2d). The parameters of the API (e.g., kernel_size, groups) must satisfy the
corresponding constraints between API parameters and the properties of the input_data. We refer to
API constraints as the set of relationships between properties of input_data and API parameters that,
if and only if when satisfied, leads to a valid DS API invocation. As seen in Figure 1, not only are
there constraints between the properties of the input_data and API parameters (e.g., kernel_size ≤
H + 2*padding), but there are also constraints within API parameters (e.g., out_channel % groups
= 0). These constraints are defined by developers according to the functionality of each DS API, and
are usually specified in natural language within the API documentation. Such complex constraints
are critical for DS applications, and DS users or even DS experts may unintentionally violate such
constraints [29, 26].

import torch
x = torch.randn(20, 16, 50, 1000)
m = torch.nn.Conv2d(16, 33, kernel_size=3, padding=2, groups=1)
y = m(x)

in_channel % groups = 0

out_channels % groups = 0

kernel_size ҎЖ H + 2*padding

ҎҎɷ

DS Library: PyTorch

Figure 1: Example DS program with constraints

Large language models (LLMs) have achieved
tremendous success in processing code [10, 2].
Due to their powerful code understanding and
generation ability, LLMs have been applied to
various coding tasks [34], such as code comple-
tion [20, 6], program repair [19, 54], and test
generation [16, 17, 48]. For DS libraries, LLMs
have been applied to solve practical user queries
on StackOverflow [29] and even generate test
programs to detect bugs in modern ML frame-
works [16]. Prior work assumes LLMs, through massive training, can already implicitly model
constraints in DS APIs by learning from numerous correct DS API uses [47, 21, 16]. However, this
assumption has not been systematically verified. Furthermore, popular DS-specific benchmarks like
DS-1000 [29] do not specially test the LLM’s ability to satisfy implicit constraints and instead focus
on how to apply DS APIs to solve data analysis tasks. These gaps in prior research raise a critical
question: Can LLMs implicitly learn the numeric constraints in data science APIs?

Our work. To answer the question, we conduct a rigorous study on the performance of LLMs
in generating valid DS programs satisfying diverse numerical API constraints. We collected a set
of 28 representative DS library APIs across two widely-used Python DS libraries (PyTorch and
NumPy), each with their unique constraints/setup. Additionally, we categorize each API’s constraints
into different categories (e.g., equality and arithmetic) and perform in-depth experiments on each
constraint type. To support our analysis, we systematically created 3 generation settings: full program,
all parameters, and individual parameters, designed to test the LLMs under different evaluation
scenarios. Additionally, we vary the difficulty level by adjusting the inputs to explore LLM behaviours
when asked to solve more complex API constraints or given more unnatural inputs.

Interestingly, contrary to the popular assumption in prior work, while LLMs can easily satisfy
constraints when the inputs are simple, we observe that the performance drops drastically as we
increase the difficulty or provide more unusual inputs. We found that LLMs tend to generate simple
and common inputs seen during training, highlighting that LLMs are often memorizing patterns
instead of truly understanding the actual DS API constraints. For example, for the widely used
Conv2d API shown in Figure 1, when max(in_channels,out_channels) is set to [128, 256), even
GPT-4-Turbo [1] can only predict the correct value of groups ∼24% of the time, while the other
models are below 14%. Furthermore, based on our experimental findings, we constructed DSEVAL,
the first benchmark for systematically evaluating LLMs’ capabilities in understanding the important
numerical API constraints for popular DS libraries. DSEVAL contains 19,600 different problems
across 12 representative APIs to extensively compare and contrast the performance of different
LLMs. DSEVAL supports lightweight and fast evaluation by extracting LLM generated parameters
and quickly verifying the correctness using state-of-the-art SMT solvers (such as Z3 [13]) to avoid
time-consuming execution-based evaluations. Our evaluation on eight state-of-the-art open-source
and closed-source models shows that while all studied models struggle with more difficult problems,
GPT-4-Turbo consistently achieves the highest accuracy across all difficulty levels. For example,
GPT-4-Turbo achieves an average accuracy of 57.5% for hard constraints of PyTorch APIs, while
the best open-source model can only achieve 39.2%, demonstrating the huge gap between large
proprietary models and other open-source LLMs. Our design of DSEVAL is general and can be easily
extended to additional libraries and APIs for the DS domain and even beyond.

2

Table 1: Categorization of constraint types with exemplar API names, description, and examples.

Category API names Description Example

Equality BatchNorm2d, Linear Copying specific dimension nfeat = input_shapes[1]
squeeze, split Indexing the correct dimension input_shapes[axis] = 1

Inequality SoftMax, mean Single value related to rank -rank ≤ dim < rank
sum, max Multiple values related to rank -rank ≤ dim < rank for dim in dims

Arithmetic

MaxPool2d, AvgPool2d Multiplies a constant number kernel_size ≤ H + padding * 2
Conv2d, Conv1d Divides a parameter in_channels % groups = 0
reshape, reshape Product of parameters

∏
input_shapes =

∏
target_shape

Fold, Conv1d Complex arithmetic L=
∏

⌊ o_size[d]+2xpad[d]-dil[d]x(k_size[d]-1)-1
stride[d] +1⌋

Set-related max, sum Uniqueness |{dims}| = |dims|
transpose Completeness {input_shapes} = {axes}

2 Study Approach

2.1 Scope of study

Instead of considering all possible DS programs and APIs, we focus on simple DS programs with
only a single API call. This allows us to isolate the evaluation to individual APIs or even individual
API parameters, facilitating fine-grained analysis and a detailed examination of the LLMs’ limitations
with respect to various types of numerical constraint.

We specifically target the core APIs commonly used by users that perform operations on the
input_data. Additionally, we also only consider numeric API constraints: constraints with only
numeric parameters such as integers. We ignore any other types of parameters (e.g., string) since they
do not affect the validity of numeric constraints. As such, any non-numeric parameters produced by
the model will be discarded during constraint validation.

Table 1 shows the types of constraints we considered in the study with the corresponding categories.
We group the constraints into i) Equality: constraints where the values have to match exactly. We see
that equality constraints are related to selecting or generating the right shape in the input_data. ii)
Inequality: constraints where values have to be greater or less than. Inequality constraints include
mainly rank related operations to stay within the valid rank range. iii) Arithmetic: constraints
involving arithmetic operations such as division, modulus or products. There are also more complex
API constraints that includes combination of many arithmetic operations. iv) Set-related: constraints
where the satisfaction criteria depend on different set-based properties. For example, there are
constraints that require parameters to be unique or complete with respect to input_shapes.

Step 1: import torch
Step 2: Generate one input tensor with torch.randn
Step 3: Compute an output tensor with the API torch.sum

Step 1: import torch
import torch
Step 2: Generate one input tensor with torch.randn

Full program input

x = torch.randn(3, 4, 5)
Step 3: Compute an output tensor with the API torch.sum
y = torch.sum(x, dim=0)

LLM output

import torch
x = torch.randn(16, 19, 25, 24)
m = torch.nn.MaxPool2d(<FILL_IN>)
y = m(x)

All parameters input

kernel_size=(2, 2), stride=(2, 2)

LLM output

import numpy as np
x = np.random.rand(11, 8, 5, 6, 3)
y = np.reshape(x, (2, <FILL_IN>))

Individual parameter input

3, 10, 6, 22

LLM output
a)

b)

c)

Figure 2: Example problem input and LLM output for each evaluation setting

2.2 Evaluation settings

Next, we describe our settings to evaluate the performance of LLM on handling the numeric con-
straints. In total, we have 3 settings: i) full program, ii) all parameters, and iii) individual parameter.

Full program. For the full program setting, we want the LLM to synthesize a complete DS program
using a specific API from scratch. To do this, we provide a 3-step instruction and the basic starting
code of importing the DS library. Figure 2a shows an example of the full program input for the
API torch.sum as well as an example LLM output. We note that in this setting, the LLM has full

3

freedom to generate any type or size for the input_data. As such, the LLM may choose very simple
input_data and API parameter values that can easily satisfy the constraint.

All parameters. In the all parameters setting, we directly provide the input_data for the API.
Figure 2b also shows an example of the input for the API torch.nn.MaxPool2d where the LLM just
needs to output the API parameters. This setting evaluates if/how LLMs can accurately solve the
constraints as we vary the input_data with more difficult or uncommon cases. Still the LLM has full
freedom to pick the full combination of parameters to satisfy the required constraint.

Individual parameter (main setting). To perform a finer-grained evaluation, we introduce the
individual parameter setting where we ask the LLM to generate a single parameter of the API.
Figure 2c additionally demonstrates an example for np.reshape where we only allow the LLM to
fill in a single parameter value of newshape. Furthermore, we can also add an additional constraint
by directly providing the first value of newshape (2 in the example). This makes the problem even
more challenging where instead of being able to simply copy the input_shapes, the LLM now has
to reason with the partial shape given and compute the final correct shape to satisfy the constraint.
Compared to the prior two settings, the choices here are much limited. This makes the task harder to
fully evaluate how LLMs solve complex API constraints, and serves as our main setting.

2.3 Input creation and output validation

Creation. To produce the inputs for each of the 3 settings, we use a fixed set of templates for each
API. For the full program setting, we produce one input per API, changing only the API name in
the input instruction. For the all parameters setting, we vary the input_data given to the API. In
particular, we focus on two properties of the input_data: 1) rank of the input_data and 2) each
dimension value. We create randomized inputs and increase the difficulty by either increasing the rank
or the dimension values to measure the LLM performance. Note that input rank or dimensionality
can affect different APIs depending on the specific numeric constraints (Table 1). For example, an
API like torch.nn.SoftMax that has a constraint of -rank ≤ dim < rank will have its difficulty
influenced by the actual rank of the input tensor. On the other hand, an API like torch.nn.Conv2d
has a constraint of in_channels % groups = 0, which depends on the actual dimension value of the
input (i.e., in_channels). As the dimension value of in_channels increases, it will be more difficult
to select the groups parameter that can divide it evenly. Therefore, we increase the difficulty of
different APIs based on whether the constraint depends on the rank, dimension, or both. Similarly,
for the individual parameter setting, we also randomize the input_data based on the previous two
properties. Additionally, we pick the parameters with interesting constraints for the LLM to predict
in order to be representative and cover the major constraint types. Furthermore, since we only ask the
LLM to produce a single parameter value, we also vary the other parameter values in the API to add
additional constraints (details discussed in Section 4.3).

in_channel % groups = 0 Λ
out_channels % groups = 0 Λ
kernel_size ҎЖ H + 2 * padding

H = 256

in_channel,groups,padding,
out_channels,kernel_size

Symbolic variables
Concrete input values

Satisfiable?

SMT formula

SMT solverΛ

SMT formula

H = 256 Concrete input values

in_channel=16,groups=1,padding=1,
out_channels=33,kernel_size=3

LLM output
concrete values

Valid?
SMT solver

in_channel % groups = 0 Λ
out_channels % groups = 0 Λ
kernel_size ҎЖ H + 2 * padding

a)

b)

Λ

Figure 3: Example usage of constraint solvers to
generate inputs and validate outputs.

To ensure the input is valid, we leverage satisfi-
ability modulo theory (SMT) solvers as shown
in Figure 3a. SMT solvers, such as Z3 [13], are
tools which can be used to solve an SMT prob-
lem of determining whether a mathematical or
first-order logic formula is satisfiable [5]. We first
encode the API constraints into an SMT formula.
We then randomly generate concrete values for
the input_shapes and leave the other parameters
that we want the LLM to generate as symbolic
variables. Next, we use an SMT solver to check
if the constraints are satisfiable (i.e., there exists
a set of values for each symbolic variable that can
satisfy the constraint). If it is satisfiable, the input we provide to the LLM is valid, otherwise we
restart the process by randomly selecting the concrete values. In our study, we reuse the encoded API
constraints provided by NNSmith [32] (a popular tool for testing ML libraries via formal constraint
solving) and add additional ones when needed.

Evaluation. To evaluate the validity of the DS programs generated by the LLMs, we first parse
the output to extract the input_data and API parameters. We then check if the LLM predicted

4

values are valid. This is also done via SMT solving as demonstrated in Figure 3b where we use the
SMT formulas and, this time, check if all the concrete values generated are valid according to the
constraints. Note that such light-weight constraint solving can support much faster validation than
actually executing the generated DS programs, while still providing the same guarantee.

3 Experimental Setup

3.1 Subjects

We construct a dataset with 28 representative APIs in total from two popular DS libraries: PyTorch (18)
and NumPy (10). For our API selection process, we begin by referencing prior work NNSmith [32]
and examined all 73 core operators it supports. From these, we select 22 core APIs that have
numeric parameter constraints and add additional 6 APIs to obtain the 28 APIs used in our study for
both the full program prediction setting (Section 4.1) and the full API parameter prediction setting
(Section 4.2). For a more detailed analysis, we select 12 APIs to cover the representative types of
numeric constraint for examination in the single API parameter prediction setting (Section 4.3) and in
our DSEVAL benchmark (Section 4.4). We use “representative” to mean representative with respect
to the numeric parameter constraints in DS library APIs. Table 1 shows the categorization of the
different types of numeric constraints that exist in DS libraries. Our selection criteria aim to select a
list of APIs that have interesting numeric parameter constraints that can cover all the major constraint
categories. A complete list of the 12 APIs and their corresponding constraints is provided in Table 3
in the Appendix.

We focus on the 3 settings described previously to analyse the performance of LLMs. For the full
program setting, we generate a single input prompt per each studied API and ask the LLMs to
synthesize the complete DS program by varying the sampling temperature. For the all parameters
setting, we have 14 difficulty settings, each with 200 different inputs per API, and use greedy decoding
to obtain the LLM solutions. The difficulty setting is controlled by increasing the rank of input_data
(from 2 to 8 in intervals of 1) with default dimension value as [1,16], and increasing the dimension
value (i.e., [1,4), [4,8),... , [128,256]) with default rank as 3, separately. Finally, in the single
parameter setting, we select one parameter for each API for the LLM to generate. For any parameters
irrelevant to the constraint, we use the default value if it is an optional parameter, and randomly
choose from a reasonable value range if it is a required parameter (Appendix C). We adopt the same
difficulty setup and greedy decoding strategy as the all parameter setting.

3.2 Metrics

Validity. To measure validity, we directly extract the LLM output predictions and evaluate according
to the process described in Section 2.3. We define accuracy as the percentage of valid programs
produced by the LLMs in each difficulty setting.

Diversity. To measure diversity, we compute the unique valid rate: the percentage of unique valid
programs generated via sampling. Note that we deduplicate by extracting the input shapes and
numeric parameters, ignoring the irrelevant parameters and irrelevant code suffix.

3.3 Studied models.

We evaluate 8 popular state-of-the-art LLMs, including both closed-source and open-source models
(detailed list shown in Table 2). For both the full program and all parameter settings, we only present
the results for DeepSeek Coder-33b [22], state-of-the-art open-source model, due to the space limit
(other models follow similar trends). For the individual parameter setting (the main setting), we focus
on the DeepSeek Coder family models (33b, 6.7b, and 1.3b) as well as GPT-4-Turbo (2024-04-09),
covering both state-of-the-art open-source and close-source models, as well as models with different
sizes. Apart from the full program setting, where the LLM generates a complete program, we perform
infilling using the studied LLMs’ model-specific infilling format. To perform infilling using GPT-4-
Turbo, we design a specialized prompt (see Appendix H). Unless otherwise stated, we use greedy
decoding (i.e., temperature = 0) and temperature of 1 when sampling for diversity evaluation.

5

4 Evaluation

4.1 Full program prediction

0.2 0.4 0.6 0.8 1.0
temperature

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy
sum(pt)
transpose(pt)
argmin(pt)
argmax(pt)
Conv1d(pt)
mean(pt)
BatchNorm2d(pt)
Softmax(pt)
prod(pt)
Linear(pt)
min(pt)
unsqueeze(pt)
Conv2d(pt)
squeeze(pt)

max(pt)
reshape(pt)
MaxPool2d(pt)
Fold(pt)
argmax(np)
max(np)
reshape(np)
split(np)
squeeze(np)
transpose(np)
argmin(np)
min(np)
prod(np)
swapaxes(np)

0.2 0.4 0.6 0.8 1.0
temperature

0.0

0.1

0.2

0.3

0.4

0.5

0.6

un
iq

ue
 v

al
id

 r
at

e

Figure 4: Full program prediction result on all 28 APIs (PyTorch and NumPy).

To start with, we ask the LLM (DeepSeek Coder-33b) to predict the entire DS program from scratch
given just simple instructions. Figure 4a shows the overall accuracy of the 18 APIs in PyTorch and 10
APIs in NumPy. We see that with low temperature the model has near perfect accuracy on almost
all the APIs and as temperature slowly increases, the accuracy tends to drop (ending with around
0.5∼0.8 with temperature=1). Surprisingly, we found that for torch.nn.Fold, which contains the
most complex constraint, the LLM failed to produce any valid DS programs. This demonstrates
that LLMs may still struggle with satisfying the extremely difficult constraints even when given the
full freedom of generating any input values. Furthermore, in Figure 4b, we plot the proportion of
unique valid programs generated by the model as we vary temperature. Of course when sampling at
low temperatures, many of the inputs will be repeated, leading to low number of unique programs
in general. In particular, the input shapes are often from widely-used computer vision datasets like
3*224*224 from ImageNet [15]. This indicates the LLMs tend to memorize some common patterns
from either documentation or user programs. However, we see that even though the unique valid rate
increases with high temperatures to give more diverse and creative outputs, the percentage of unique
valid programs can still be mostly below 50%. This demonstrates that while models are successful in
generating a high percentage of valid programs, a lot of generated programs are repeated.

4.2 Full API parameter prediction

2 3 4 5 6 7 8
difficulty (rank)

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

Softmax(pt)
Linear(pt)
reshape(pt)
argmax(np)
reshape(np)
split(np)
squeeze(np)
argmin(np)
others(13)

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

Conv1d(pt)
Conv2d(pt)
Linear(pt)
MaxPool2d(pt)
reshape(pt)
BatchNorm2d(pt)
reshape(np)
split(np)
Fold(pt)
others(17)

Figure 5: Full API parameter prediction result on all 28 APIs (PyTorch and NumPy). The LLM
has near 100% accuracy on some APIs, which are collectively referred to as others(x), where x is
the number of grouped APIs.

Figure 5 shows the setting where we randomly provide an input_data and ask DeepSeek Coder-33b
to complete the valid parameters of the API. We vary the difficulty by changing either the rank
or the dimension value ranges of the input_data to produce more complex and unnatural inputs.
We use greedy decoding (temperature 0) to generate one solution per problem, and compute the

6

average valid rate across the randomly created problems to compute accuracy for each difficulty level.
Compared to Section 4.1 where LLMs achieve near-perfect accuracy for almost all APIs with low
temperature like 0.2, we observe that the accuracy quickly drops when simply randomizing the input
shape, especially for APIs with more complex constraints. This indicates that the learned patterns
cannot easily generalize to less common input shapes. We further performed an interesting case
study on the PyTorch API Linear, and found this phenomenon holds true across different models
(Appendix D). However, we see that the majority of APIs maintain high accuracy even as difficulty
increases (others(x) in Figure 5). This is because these APIs have relatively easy constraints. For
example, APIs like max or argmax only require predicting a single integer representing the dimension
to operate on, and the LLMs learn to predict dim=1 or just rely on the default parameter values of the
API which are always valid.

4.3 Single API parameter prediction

We now focus on the main finer-grained evaluation setting where we ask LLMs to predict a single
parameter value and discuss the input setup, results, and findings for each API separately. Here, we
only discuss representative API constraints from each category and full results are in Appendix F.

x = torch.rand(9, 13, 14, 5)
y = torch.nn.BatchNorm2d(nfeat)

input_shapes[1] = nfeat

(a) PyTorch BatchNorm2d

x = torch.randn(7, 4, 4)
y = torch.max(x, dim)

-rank <= dim <rank

(b) PyTorch max w/ temp={0,1} (c) PyTorch max diversity

x = torch.rand(9, 13, 14)
y = torch.reshape(x, (6, new_shapes))

∏input_shapes == ∏new_shapes

input_shapes ∩ partial_shape == {}

(d) PyTorch reshape

x = torch.rand(9, 13, 14, 5)
y = torch.nn.Conv2d(13, 33, groups)

in_channels % groups = 0
out_channels % groups = 0

(e) PyTorch Conv2d

x = torch.randn(7, 4, 4)
m = torch.nn.Fold((2, 5), k_size,

 dilation=1, pad=0, stride=1)

C % (∏ k_size) == 0

L==∏⌊(out_size+2*pad-dilation*(k_size-1)-1)/stride+1⌋

(f) PyTorch Fold

x = np.random.rand(9, 1, 14)
y = np.transpose(x, axes=(2, new_dim))

{input_dim} = {partial_dim, new_dim}

(g) NumPy transpose

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(h) Conv2d on IT models

2 3 4 5 6 7 8
difficulty (rank)

0.00

0.05

0.10

0.15

0.20

0.25

ac
cu

ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(i) PyTorch Fold on IT models

Figure 6: Single API parameter result. Solid lines (except Fig. 6c) show the accuracy of using greedy
decoding (temp=0). In Fig. 6b, dashed lines show the pass@1 accuracy in sampling experiments with
temp=1. In Fig. 6d, dotted lines show the accuracy after excluding trivial solutions. In Fig. 6h and 6i,
we use *-Inst. to distinguish between the generation settings: infilling (GPT4-Turbo) and free-form
generation (GPT4-Turbo-Inst.). More details are provided in Appendix H and I.

Equality. BatchNorm2d in PyTorch applies batch normalization [25] on a 4D input tensor, with the
second dimension as the number of features. We select the parameter num_features for the models
to predict, with the equality constraint that num_features = input_shapes[1]. Figure 6a shows
the results as we increase the difficulty by changing the maximum possible value for each input

7

dimension. We observe that the DeepSeek Coder models drop from around 0.7∼0.8 to less than 0.5,
while GPT-4’s performance stays around 0.9 throughout different difficulty levels.

Finding: Overall, we found that smaller LLMs even struggles with even the simple constraint of
copying an existing value, while large state-of-the-art LLMs can maintain its high performance.

Inequality. max in PyTorch computes the maximum value along a dimension. The parameter we
target is dim with the valid range being [-rank, rank). In Figure 6b, when using greedy decoding,
all 4 LLMs achieve close to perfect accuracy. Therefore, we also conduct sampling experiments and
present the pass@1 accuracy and diversity in Figure 6b and 6c. For max we compute the diversity
differently from Section 3.2 (see Appendix G), since the number of possible unique valid outputs is
very small. Interestingly, the smaller DeepSeek Coder-1.3b model achieves highest sampling accuracy
for rank=8, but has the lowest diversity. This is because the smaller model often predicts common
values like 1, whereas the larger model (33b) can explore various correct answers like -1,2.

Findings: We found that larger models are indeed better at capturing the simple inequality constraints
and modeling the true probability of various possible values, while smaller models tend to memorize
common patterns, leading to less diverse predictions.

Arithmetic. reshape in both PyTorch and NumPy attempts to rearrange the dimensions in the
input_data, with the constraint being

∏
i input_shapes[i] ==

∏
j new_shape[j]. Since we found

that it is common for the LLMs to simply predict the same shape or a permutation of the original, we
add an additional constraint: we specify the first dimension of the new_shape to be different from any
dimensions in input_shapes. Figure 6d shows the results as we vary the ranks of the input_data
for PyTorch (similar trend in NumPy). We observe that most LLMs in the beginning perform well;
however, as the difficulty increases, their performance drastically lowers. Meanwhile, GPT-4-Turbo
performance does not drop even with more difficult inputs. We found the reason is that GPT-4-Turbo
tends to always predict the special -1 value for reshape where the new_shape will be automatically
inferred by the library. Figure 6d showcases this exact phenomenon in PyTorch (similar trend as
NumPy) where dotted lines present the accuracy of any outputs without -1. We see that now even
GPT-4-Turbo struggles in generating valid parameters without using the -1 crutch for the constraint.

Conv2d in PyTorch applies a 2D convolution over a 4D input tensor. The LLMs are asked to predict
the parameter groups, where they have to divide both in_channels and out_channels evenly. The
default value for groups is the trivial 1 (and therefore always valid). To ensure that there is at least one
non-trivial value for groups, we randomly sample in_channels and out_channels within the value
range such that their greatest common divisor is greater than 1. Figure 6e shows that the accuracy
steadily drops as we increase the magnitude of values: even GPT-4-Turbo can only solve ∼24% of
the hardest subset of problems, which other models drop below 14% for the same problems.

Fold in PyTorch aims to combine an array of sliding local blocks into a large containing tensor. The
constraint required for fold is the most complex out of all studied APIs where the LLM tries to
generate a k_size tuple, and the product of the tuple must divide the 2nd index of the input_shapes
evenly. Furthermore, it also needs to satisfy a complex equation over multiple parameters as shown in
Figure 6f. We use the default values for all parameters other than out_size and ask LLMs to produce
the correct k_size. Shown in Figure 6f, due to the complexity of the constraint, even on the lowest
difficulty with small values, LLMs achieve relatively poor accuracy compared to other APIs. As we
increase the values, the accuracy drops to nearly 0%. This highlights the high degree of difficulty in
many DS APIs which current LLMs cannot reliably solve.

Findings: Arithmetic parameter constraints in DS APIs are extremely challenging for all LLMs. Our
results show that current state-of-the-art LLMs cannot effectively solve such complex constraints with
their performance drops drastically and even sometimes drops to zero as we increase the difficulty.

Set-related. transpose in NumPy attempts to rearrange/transpose the input_data according to
the given new_dim. In transpose, the constraint is that the model-predicted new_dim must be a
permutation of the original dimensions in input_data. We found that the LLMs tend to predict very
simple permutations; as such, similar to reshape, we directly provide the first dimension of new_dim
to increase the difficulty. We see that in Figure 6g, LLMs generally perform well on solving this
constraint, and their performance improves with larger model sizes. Interestingly, the lowest difficulty
of rank = 2 has a drop in performance. We theorize that this is because when the rank is 2, it is

8

Table 2: DSEVAL benchmark result. Each column shows both the accuracy/diversity and ranking ().

Size

PyTorch NumPy
Easy Medium Hard Div () Easy Medium Hard Div ()Acc () Acc () Acc () Acc () Acc () Acc ()

GPT-4-Turbo NA 77.2 (1) 66.2 (1) 57.5 (1) - (-) 95.3 (1) 85.1 (1) 71.4 (1) - (-)

DeepSeek
33b 64.7 (5) 41.5 (4) 28.2 (5) 25.8 (6) 78.5 (3) 57.0 (2) 48.8 (3) 20.9 (1)

6.7b 66.2 (3) 39.8 (5) 33.4 (4) 38.8 (4) 73.3 (5) 45.8 (8) 35.6 (7) 17.6 (7)
1.3b 59.0 (8) 34.4 (6) 26.8 (6) 36.2 (5) 63.4 (8) 46.3 (7) 30.5 (8) 17.8 (6)

CodeLlama 13b 64.7 (6) 44.6 (3) 34.8 (3) 39.2 (3) 74.4 (4) 48.5 (6) 36.8 (6) 18.9 (3)
7b 62.6 (7) 32.7 (8) 13.8 (8) 21.2 (7) 67.1 (7) 53.2 (5) 45.4 (5) 18.7 (4)

StarCoder 15b 65.6 (4) 46.3 (2) 39.2 (2) 39.9 (2) 70.8 (6) 56.7 (3) 51.5 (2) 18.3 (5)

CodeQwen1.5 7b 67.5 (2) 33.2 (7) 25.2 (7) 53.2 (1) 80.0 (2) 54.7 (4) 47.1 (4) 19.3 (2)

more common to directly call transpose() without any additional arguments. Therefore, the LLMs
struggle a bit when given this unnatural task when asked to predict new_dim in low ranks.

Findings: We found that LLMs generally perform well across the set-related constraints, and their
performance scales with increasing model sizes. However, they still struggle with uncommon or
unnatural inputs that are no commonly seen during training.

Instruction-tuned models. We additionally investigate the performance of instruction-tuned (IT)
LLMs [59] with chain-of-thought (CoT) prompting [51]. Due to computational limitations, we
selected 3 constraints from PyTorch on which GPT-4-Turbo (without CoT) performs poorly for this
experiment and analysis. The detailed experimental setup is described in Appendix I. Recall that
for Conv2d, the task is essentially to predict groups such that it is a common divisor of two integers.
As we observe that some models tend to predict a trivial answer 1, we specifically mention “Don’t
set groups=1” in the prompt and consider such answer as invalid in evaluation. From Figure 6h, we
observe that GPT-4-Turbo with CoT performs well at this non-trivial task, maintaining over 85%
accuracy even with values up to 255. By contrast, the best open-source model can only solve 22%!
This shows that although models like CodeQwen achieves close performance to GPT-4-Turbo on
existing popular benchmarks like HUMANEVAL [10], there is still a huge gap in terms of coding
and math reasoning ability between GPT-4-Turbo and other open-source models. Meanwhile, when
we use the same setup on the extremely difficult constraint in Fold, we see that even GPT-4-Turbo
fails to perform well (less than 5% accuracy in later difficulty settings). This demonstrates that while
CoT prompting may elicit better performance in constraints like in Conv2d, it still cannot effectively
handle other more complex arithmetic constraints. In addition to CoT, we also test ReAct [57],
another prompting strategy to elicit more reasoning process from LLMs. We observe that while ReAct
can perform better than CoT, it still fails to solve more complex arithmetic constraints (detailed in
Appendix J). Additionally, we attempt to include API documentation in prompts, but found that this
does not always improve performance on our tasks (detailed in Appendix K).

4.4 DSEVAL: A public benchmark for numerical DS API constraints

Based on the above findings, we further construct a public benchmark – DSEVAL with the same
individual parameter prediction setting and the same representative set of APIs as studied in the
Section 4.3. For each API in the benchmark, there are 7 different difficulty settings (grouped as 2
easy, 3 medium, and 2 hard ones) and each with 200 randomly created problems. In total, this gives
us 19,600 problems in DSEVAL to extensively evaluate the performance of different LLMs.

Table 2 shows the accuracy and diversity of all 8 models. First, we observe that the LLMs’ accuracy
drops when increasing the difficulty levels on the benchmark problems. This is also reflected by prior
results where LLMs across the board struggle with more difficult problems. Next, we see that GPT-4-
Turbo consistently achieves the highest accuracy across all difficulty levels, showing the gap between
state-of-the-art proprietary models and other open-source LLMs. Furthermore, we observe some
interesting ranking changes across difficulty levels. For example, while CodeQwen1.5 [3] achieves
the second-best performance in the lowest difficulty level, its performance drops substantially on
the medium and hard problems (second worst on PyTorch medium and hard). Other models like
StarCoder [31] improve their relative performance and achieve higher ranking on more difficult

9

problems, showing that different LLMs can perform differently depending on the input and constraint
required to satisfy.

We also study the diversity (see Appendix G for more details) of the LLM outputs, except we do
not study GPT-4-Turbo due to its cost. Interestingly, LLMs which achieve high ranking in accuracy
do not necessarily perform well in generating diverse correct solutions. This indicates that certain
LLMs generate similar solutions to satisfy the constraint, without paying attention to the specific
context. Therefore, they are not suitable for tasks like fuzz testing [16] which requires efficiently
exploring a large solution space, or for tasks involving uncommon API usage. We further categorize
some common mistakes made by LLMs on DSEVAL and provide additional insights in Appendix E.
Overall, DSEVAL serves as the first benchmark to systematically evaluate the performance of LLMs
on satisfying complex numeric API constraints for popular DS libraries and can be extended to
support additional APIs and DS libraries.

5 Related work

LLMs for code. LLMs have made remarkable advancements in a wide range of coding tasks,
including code synthesis [60, 10, 2], debugging [11, 8], repair [53, 54, 7], and analysis [36, 56, 55].
Notably, recent works [29, 16] also demonstrated LLMs’ effectiveness in synthesizing DS code,
which requires programming proficiency in DS APIs from specialized libraries such as NumPy [38]
and PyTorch [41]. Trained on billions of code including such DS code, LLMs, such as StarCoder [31]
and DeepSeek Coder [22], have been extensively evaluated on DS code synthesis tasks. However,
no prior study has systematically examined whether LLMs can indeed understand numerical API
constraints of these scientific libraries instead of just memorizing the trained data [14].

Coding benchmarks for LLMs. Most code generation benchmarks [10, 33, 2, 22] are formulated
with a natural language description and tests to verify the functional correctness of LLM-generated
code. However, these benchmarks mostly target general-purpose code. To access LLM code generation
for DS tasks, DS-1000 [29] is created by collecting real DS problems from StackOverflow, and
ARCADE [58] evaluates LLMs’ ability to solve multiple interrelated problems within DS notebooks.
Compared to existing DS benchmarks, our study explores different granularity levels to systematically
evaluate to what extent LLMs can implicitly learn DS APIs’ numeric parameter constraints.

Math reasoning of LLMs. To evaluate LLMs’ arithmetic reasoning performance, GSM8K and other
benchmarks [12, 42, 35, 24, 28] construct math problems in natural language requiring mathematical
computations to solve. Compared to these existing benchmarks, problems designed in our study
implicitly encode the arithmetic logic inside the DS library API, and thus can evaluate the LLMs’
capability in understanding and solving numerical API constraints in the important DS libraries.

6 Conclusion

In this paper, we present the first systematic study on how LLMs understand the numerical API
constraints for important DS libraries. Our study results show that current LLMs often memoize
common patterns rather than truly understanding the actual numerical API constraints. Moreover,
GPT-4-Turbo largely outperforms other open-source models and can well understand some simple
arithmetic constraints using CoT. Based on our finding results, we also constructed DSEVAL, the first
benchmark (with 19,000 problems) for systematically evaluating LLMs’ capabilities in understanding
the important numerical API constraints for popular DS libraries (such as PyTorch and NumPy).

10

Acknowledgments and Disclosure of Funding

This work was partially supported by NSF grant CCF-2131943 and Kwai Inc. This project is supported,
in part, by funding from Two Sigma Investments, LP. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the
views of Two Sigma Investments, LP.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin
Ge, Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu,
Gao Liu, Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren,
Chuanqi Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu,
Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang,
Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv
preprint arXiv:2309.16609, 2023.

[4] Silvio Barra, Salvatore M. Carta, Andrea Corriga, Alessandro Sebastian Podda, and Diego Re-
forgiato Recupero. Deep learning and time series-to-image encoding for financial fore-
casting. IEEE/CAA Journal of Automatica Sinica, 7:683–692, 2020. URL https://api.
semanticscholar.org/CorpusID:218468218.

[5] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook of model checking,
pp. 305–343, 2018.

[6] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022.

[7] Islem Bouzenia, Premkumar Devanbu, and Michael Pradel. Repairagent: An autonomous,
llm-based agent for program repair. arXiv preprint arXiv:2403.17134, 2024.

[8] Nghi Bui, Yue Wang, and Steven C.H. Hoi. Detect-localize-repair: A unified framework
for learning to debug with CodeT5. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 812–823,
Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.findings-emnlp.57. URL https://aclanthology.org/2022.
findings-emnlp.57.

[9] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affordance
for direct perception in autonomous driving. In 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 2722–2730, 2015. doi: 10.1109/ICCV.2015.312.

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[11] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language
models to self-debug. ArXiv, abs/2304.05128, 2023. URL https://api.semanticscholar.
org/CorpusID:258059885.

[12] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

11

http://www.twosigma.com/
https://api.semanticscholar.org/CorpusID:218468218
https://api.semanticscholar.org/CorpusID:218468218
https://aclanthology.org/2022.findings-emnlp.57
https://aclanthology.org/2022.findings-emnlp.57
https://api.semanticscholar.org/CorpusID:258059885
https://api.semanticscholar.org/CorpusID:258059885

[13] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis of Systems, pp.
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-78800-3.

[14] Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Benchmark
probing: Investigating data leakage in large language models. In NeurIPS 2023 Workshop on
Backdoors in Deep Learning-The Good, the Bad, and the Ugly, 2023.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[16] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language
models. In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2023, pp. 423–435, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400702211. doi: 10.1145/3597926.3598067. URL
https://doi.org/10.1145/3597926.3598067.

[17] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case generators: Crafting unusual programs
for fuzzing deep learning libraries. In Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, ICSE ’24, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400702174. doi: 10.1145/3597503.3623343. URL
https://doi.org/10.1145/3597503.3623343.

[18] Yue Deng, Feng Bao, Youyong Kong, Zhiquan Ren, and Qionghai Dai. Deep direct reinforce-
ment learning for financial signal representation and trading. IEEE Transactions on Neural
Networks and Learning Systems, 28:653–664, 2017. URL https://api.semanticscholar.
org/CorpusID:9398383.

[19] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models. In Proceedings of the 45th International
Conference on Software Engineering, ICSE ’23, pp. 1469–1481. IEEE Press, 2023. ISBN
9781665457019. doi: 10.1109/ICSE48619.2023.00128. URL https://doi.org/10.1109/
ICSE48619.2023.00128.

[20] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages, 2020.

[21] Ken Gu, Madeleine Grunde-McLaughlin, Andrew McNutt, Jeffrey Heer, and Tim Althoff. How
do data analysts respond to ai assistance? a wizard-of-oz study. In Proceedings of the CHI
Conference on Human Factors in Computing Systems, pp. 1–22, 2024.

[22] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

[23] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao Shen.
Audee: automated testing for deep learning frameworks. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’20, pp. 486–498, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450367684. doi:
10.1145/3324884.3416571. URL https://doi.org/10.1145/3324884.3416571.

[24] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015.

12

https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://api.semanticscholar.org/CorpusID:9398383
https://api.semanticscholar.org/CorpusID:9398383
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.org/10.1145/3324884.3416571

[26] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study
on deep learning bug characteristics. In Proceedings of the 2019 27th ACM joint meeting
on european software engineering conference and symposium on the foundations of software
engineering, pp. 510–520, 2019.

[27] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2022. doi: 10.
1109/TITS.2021.3054625.

[28] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
MAWPS: A math word problem repository. In Kevin Knight, Ani Nenkova, and Owen Rambow
(eds.), Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1152–1157, San Diego,
California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1136.
URL https://aclanthology.org/N16-1136.

[29] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

[30] Meiziniu Li, Jialun Cao, Yongqiang Tian, Tsz On Li, Ming Wen, and Shing-Chi Cheung.
Comet: Coverage-guided model generation for deep learning library testing. ACM Trans.
Softw. Eng. Methodol., 32(5), jul 2023. ISSN 1049-331X. doi: 10.1145/3583566. URL
https://doi.org/10.1145/3583566.

[31] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be
with you! arXiv preprint arXiv:2305.06161, 2023.

[32] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and Lingming
Zhang. Nnsmith: Generating diverse and valid test cases for deep learning compilers. In
Proceedings of the 28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 2, ASPLOS 2023, pp. 530–543, New
York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399166. doi:
10.1145/3575693.3575707. URL https://doi.org/10.1145/3575693.3575707.

[33] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

[34] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. Large language model-based agents for software engineering: A survey. arXiv
preprint arXiv:2409.02977, 2024.

[35] Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter
Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured
mathematical reasoning. In International Conference on Learning Representations (ICLR),
2023.

[36] Mohammad Mahdi Mohajer, Reem Aleithan, Nima Shiri Harzevili, Moshi Wei, Alvine Boaye
Belle, Hung Viet Pham, and Song Wang. Skipanalyzer: A tool for static code analysis with
large language models, 2023.

[37] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Haiquan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with multi-turn
program synthesis. In International Conference on Learning Representations, 2022. URL
https://api.semanticscholar.org/CorpusID:252668917.

[38] Numpy. The fundamental package for scientific computing with python. https://numpy.org,
Accessed: May, 2024.

13

https://aclanthology.org/N16-1136
https://doi.org/10.1145/3583566
https://doi.org/10.1145/3575693.3575707
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://api.semanticscholar.org/CorpusID:252668917
https://numpy.org

[39] Numpy. Numpy documentation. https://numpy.org/doc/, Accessed: May, 2024.

[40] Numpy. Numpy unit tests. https://github.com/numpy/numpy/tree/main/numpy/
tests, Accessed: May, 2024.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[42] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems?, 2021.

[43] PyTorch. Pytorch documentation. https://pytorch.org/docs/stable/index.html, Ac-
cessed: May, 2024.

[44] PyTorch. Pytorch unit tests. https://github.com/pytorch/pytorch/tree/main/test,
Accessed: May, 2024.

[45] Steven I. Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interaction with a large language model for software
development. In Proceedings of the 28th International Conference on Intelligent User Interfaces,
IUI ’23, pp. 491–514, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701061. doi: 10.1145/3581641.3584037. URL https://doi.org/10.1145/
3581641.3584037.

[46] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multi-agent, reinforcement
learning for autonomous driving, 2016.

[47] Yiyin Shen, Xinyi Ai, Adalbert Gerald Soosai Raj, Rogers Jeffrey Leo John, and Meenakshi
Syamkumar. Implications of chatgpt for data science education. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1, pp. 1230–1236, 2024.

[48] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al
Rifat, and Vinicius Carvalho Lopes. Using large language models to generate junit tests: An
empirical study, 2024.

[49] Wil Van Der Aalst and Wil van der Aalst. Data science in action. Springer, 2016.

[50] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. Free lunch for testing:
fuzzing deep-learning libraries from open source. In Proceedings of the 44th International
Conference on Software Engineering, ICSE ’22, pp. 995–1007, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450392211. doi: 10.1145/3510003.3510041.
URL https://doi.org/10.1145/3510003.3510041.

[51] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35:24824–24837, 2022.

[52] Wikipedia contributors. Plagiarism — Wikipedia, the free encyclopedia, 2024. URL https:
//en.wikipedia.org/wiki/Hellinger_distance. [Online; accessed 20-May-2024].

[53] Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting
automated program repair via zero-shot learning. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 959–971, 2022.

14

https://numpy.org/doc/
https://github.com/numpy/numpy/tree/main/numpy/tests
https://github.com/numpy/numpy/tree/main/numpy/tests
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/index.html
https://github.com/pytorch/pytorch/tree/main/test
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3510003.3510041
https://en.wikipedia.org/wiki/Hellinger_distance
https://en.wikipedia.org/wiki/Hellinger_distance

[54] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, pp. 1482–1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.2023.
00129.

[55] Chenyuan Yang, Zijie Zhao, and Lingming Zhang. Kernelgpt: Enhanced kernel fuzzing via
large language models. arXiv preprint arXiv:2401.00563, 2023.

[56] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Reyhaneh Jabbarvand, and
Lingming Zhang. Whitefox: White-box compiler fuzzing empowered by large language models.
Proceedings of the ACM on Programming Languages, 8(OOPSLA2):709–735, 2024.

[57] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations.

[58] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code
generation in interactive data science notebooks. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 126–173, 2023.

[59] Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li,
Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey.
arXiv preprint arXiv:2308.10792, 2023.

[60] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang
Gan. Planning with large language models for code generation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=Lr8cOOtYbfL.

15

https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://openreview.net/forum?id=Lr8cOOtYbfL
https://openreview.net/forum?id=Lr8cOOtYbfL

A Problem statement

We first begin by describing the type of programs we are targeting as well as any terminology
definitions. In our study, we aim to verify the ability of LLMs on satisfying the numerical constraints
for DS library APIs. Figure 1 shows an example of a typical DS program consisting of different DS
APIs created by following these steps: i) importing the DS library (e.g., PyTorch) to be used in the
program; ii) obtaining or generating input data; iii) performing data manipulation operation using the
input data to produce outputs. In order for a DS program to be valid, it needs to satisfy the constraints
required in the DS library APIs used. Next, we will describe each component of a DS program in
more detail.

DS APIs. After importing the DS library, we start by obtaining or creating some input data to be used
in the program. The data creation process is done using a specific type of DS APIs, refer to by us
as generation APIs. The output of generation APIs is a specific data structure (e.g., tensors, arrays,
dataframes) used by each DS library defined by the parameters of the APIs. In the example from
Figure 1, the generation API is torch.randn to produce the input data of x. The DS library specific
input_data commonly has the following properties: i) shape: the size, rank or dimensions of the data
structure (e.g., [20, 16, 50, 1000]) ii) dtype: the type of primitive data in the input_data (e.g., float)
iii) value: the exact data values in the input_data. While most of the constraints in DS library APIs
focus on relationship of the shape, both dtype as well as value can be important to satisfy additional
constraints. Furthermore, more complex generation APIs can create heterogeneous input_data that
contains different dtypes or even nested structures.

Using the input_data created by the generation API, DS programs then use manipulation APIs to
perform additional operations. Different from generation APIs where the output produced depends
only on the provided API parameters, manipulation APIs create the output based on both the API
parameters and the input data. We refer to API parameters as the options used to initialize the
behaviour of the manipulation API. In the example, the manipulation API is Conv2d and is first
defined with a set of parameters (e.g., kernel_size) and then in the next line applied on x to create
the output y. For the program to be valid, the parameters of the manipulation API must satisfy
the corresponding constraints between API parameters and the properties of the input_data. Note
that we consider both model manipulation APIs (like Conv2d in the example) as well as sequential
manipulation APIs where the input_data is directly provided as a parameter of the API.

API constraints. We refer to API constraints as the set of relationships between properties of
input_data and API parameters that, if and only if when satisfied, leads to a valid DS API invocation.
Figure 1 provides some of the example API constraints for Conv2d. We observe that not only are there
constraints between the properties of the input_data and API parameters (e.g., in_channel % groups
= 0, kernel_size ≤ H + 2 * padding), but there are also constraints within API parameters (e.g.,
out_channel % groups = 0). Failure to satisfy any one of those constraints will lead to an invalid
DS API innovation where, when executed by the DS program, will lead to a runtime error.

B Benchmark details

Table 3 lists all the 12 APIs we studied in Section 4.3 and Section 4.4, where we ask LLMs to
predict a single API parameter. In Column “Constraint”, the underlined parameter is the one that the
models need to predict, and we also list all the parameter constraints related to it. Column “Category”
presents the categorization following Table 1, highlighting that our selected APIs and API parameters
can cover all the categories and are representative of their group.

Difficulty settings. As discussed in Section 3.1, we have two different difficulty settings depending
on the specific APIs, namely rank and rank. Below are the detailed setups for each API.

• For torch.max, np.squeeze, np.argmax, np.transpose, np.max whose constraints that
are more related to tensor dimensions, we design the difficulty level by increasing the rank
of input data (i.e., how many dimensions it has).

• For torch.nn.BatchNorm2d, torch.nn.Fold, torch.nn.Conv2d, torch.nn.MaxPool2d,
np.split whose constraints that are more related to the actual values (either API parameter
or the dimensions of input data), we design the difficulty level by increasing the range of
relevant values.

16

• For torch.reshape, np.reshape, since their constraints are closely related to both rank
and value, we study both settings for each of them.

Table 3: List of APIs and corresponding constraints used in DSEVAL.

Library API full name Constraint Category

PyTorch torch.nn.BatchNorm2d num_features = input_shape[1] Equality

PyTorch torch.max -rank ≤ dim < rank Inequality

PyTorch torch.nn.Fold
L =

∏
⌊ o_size[d]+2×pad[d]−dil[d]×(k_size[d]−1)−1

stride[d] +1⌋ ∧
C %

∏
k_size = 0

Arithmetic

PyTorch torch.nn.Conv2d
in_channels % groups = 0 ∧
out_channels % groups = 0

Arithmetic

PyTorch torch.nn.MaxPool2d kernel_size ≤ H + 2 × padding Arithmetic

PyTorch torch.reshape ∏
input_shape =

∏
target_shape Arithmetic

NumPy np.squeeze input_shape[axis] = 1 Equality

NumPy np.argmax -rank ≤ axis < rank Inequality

NumPy np.reshape ∏
input_shape =

∏
target_shape Arithmetic

NumPy np.split input_shape[axis] % section=0 Arithmetic

NumPy np.transpose
-rank ≤ dim < rank for dim in axes ∧
{input_shapes} = {axes}

Inequality
Set-related

NumPy np.max
-rank ≤ dim < rank for dim in axis ∧
|{axis}| = |axis|

Inequality
Set-related

C Common parameter value ranges

To create a set of diverse problems for LLMs to predict a single API parameter, we randomize the
context, namely the input data shape and other API parameters. Since the goal of our study is to
focus on numeric API constraints, we want to control the complexity or naturalness of the constraint-
related variables, and ensure that the other unrelated parameters are always within a reasonable and
common range. More specifically, during problem creation, if the irrelevant API parameter is an
optional parameter, we just use its default value. If the irrelevant API parameter is a required API
parameter, then we randomly choose a value according to the common value range listed in Table 4.
For example, for torch.nn.Conv2d(in_channels, out_channels, kernel_size, groups=1), the
targeted parameter is groups, and kernel_size is a irrelevent but required parameter. Therefore,
across all difficulty levels, we pick kernel_size randomly from [1,10].

To obtain Table 4, we perform an extensive study and refer to developer-written unit tests [44, 40],
API documentations [43, 39], and existing DS library fuzzing literature [50, 23, 32, 30] to gather the
common value range for each API parameter.

D Case study of the Linear API

When evaluated using the full API parameter setting (Section 4.2), we observe a much more significant
accuracy drop for Linear compared to the other APIs (Figure 5). To gain deeper insights, we conduct
an in-depth case study of this API.

For torch.nn.Linear(in_features, out_features), the only constraint is that the in_features
should match the last dimension of the input tensor. However, the DeepSeek Coder-33b model tends
to copy the wrong dimension of the input tensor, likely because it has not seen lots of high-rank
tensors (rank > 4) in the pre-training data.

17

Table 4: List of APIs and corresponding common input range used in DSEVAL.

API full name Parameter name Range

Conv[1|2]d ()

in_channels [0, 128]
out_channels [0, 128]
kernel_size [1, 10]
stride [1, 5]
padding [0, 9]
dilation [1, 5]

MaxPool2d ()
kernel_size [1, 10]
stride [0, 5]
padding [0, 9]

BatchNorm2d () num_features [0, 256]

expand () last_dim [-10, 10]

[argmin|argmax] (,) keepdims [True, False]

reshape (,) out_shape [0, 256]

Linear ()
in_features [1, 256]
out_features [1, 256]
bias [True, False]

Fold ()

output_size [2, 10]
kernel_size [1, 10]
stride [1, 5]
padding [0, 9]
dilation [1, 5]

APIs’ input_data (,) input_shape [0, 256]
input_rank [2, 8]

2 3 4 5 6 7 8
difficulty (rank)

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

DS-1.3b
DS-6.7b
DS-33b
GPT4-Turbo
CL-7b
CL-13b
StarCoder
CodeQwen-1.5

(a) PyTorch Linear Full API parameter

2 3 4 5 6 7 8
difficulty (rank)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

DS-1.3b
DS-6.7b
DS-33b
GPT4-Turbo
CL-7b
CL-13b
StarCoder
CodeQwen-1.5

(b) PyTorch Linear Single API parameter

Figure 7: Result on torch.nn.Linear using 8 different LLMs

We further evaluate this phenomenon across different LLMs. Figure 7b shows the results for both
the full API parameter and single API parameter setting for torch.nn.Linear as we increase the
difficulty (rank of the input data) across 8 LLMs. Similar to DeepSeek Coder-33b, the performance
of other LLMs also drops significantly when rank reaches 4. Afterwards, the performance stabilizes
for higher difficulties (i.e., rank > 4) especially for open-source LLMs. This is true for both the full
API parameter and single API parameter setting.

Surprisingly, we found that even the state-of-the-art GPT-4-Turbo drops in performance when the
rank reaches 4. However, we see that GPT-4-Turbo was able to improve its performance in higher
difficulties (i.e., rank > 6). After looking at the results, we found that for lower ranks, GPT-4-Turbo

18

tends to use other APIs as “short-cuts” and forgo the analysis on torch.nn.Linear directly as shown
in Figure 8.

import torch
x = torch.randn(1, 8, 10, 10)
m = torch.nn.Linear(8*10*10, 3)
y = m(x.view(1, -1))

Figure 8: Example of GPT-4-Turbo’s incorrect response. In this example, instead of operating on the
original input tensor x and set in_feature to its last input dimension (10), GPT-4-Turbo multiplies
all the dimensions together and performs a flattening operation (x.view(1, -1) before invoking
Linear). This violates the instruction to the model, which prohibits modifying the API invocation
code. As such, this model response is evaluated as incorrect.

E Common mistakes made by LLMs

In this section, we categorize some common mistakes made by LLMs during our experiments and
offer some additional insights and explanations.

• LLMs struggle with uncommon input tensors: We found that across many APIs and
constraints, LLMs struggle when provided with uncommon input tensor ranks (i.e., rank >
4) or uncommon shapes (e.g., x = torch.rand(9, 30, 23, 4)). The reason is that LLMs
are mostly trained with data that contains very common shapes or ranks. As such, LLMs
can easily make mistakes on uncommon inputs.

• LLMs tend to predict common parameter values blindly: We also observe that LLMs
tend to generate common parameter values (e.g., 0, 1, powers of 2) which often turn out to
be incorrect. This is again because LLMs are trained with pre-training code that frequently
contains such parameter patterns and thus are likely to predict them even given a different
input context.

• LLMs pay attention to the wrong tokens/irrelevant parameters: LLMs can learn
spurious correlations and pay attention to the wrong context tokens. For example, open-
source LLMs struggle with the simple equality constraint in_features=input.shape[-1]
in torch.nn.Linear because the attention weights are focused on the irrelevant parameters.

F Additional individual API parameter results

In this section, we provide the additional results for the individual API parameter setting.

Reshape. reshape in NumPy contains the same functionality and constraint as the PyTorch. Figure 9a
shows the result across two difficulty dimensions. Similar to the result discussed in Section 4.3, we
also observe the same trend in NumPy where GPT-4 is able to achieve superior performance.

MaxPool2d. MaxPool2d in PyTorch applies a 2D max pooling over a 4D input tensor. We fo-
cus on predicting the API parameter padding, where it needs to satisfy the following constraint:
kernel_size ≤ H + 2*padding (the problem is already simplified by setting stride to 1 and setting
W=H). Figure 9b shows that even GPT-4 is incapable of getting this type of non-trivial linear constraints
right when the value range increases to [128, 256), and we observe that it tends to predict 0 which
is the default value for padding and therefore fails to satisfy the second constraint. Meanwhile,
DeepSeek Coder models, especially the 6.7B variant, do surprisingly well in the highest difficulty
level we studied. After inspecting the outputs, we find that the DeepSeek Coder-6.7B model is able
to predict an expression kernel_size//2 instead of a constant number for padding, and since the
expression correctly characterizes the constraints it always leads to a valid solution.

Squeeze. squeeze in NumPy aims to remove any dimension of length one from the input_data.
The constraint is for the LLM to predict a dimension dim where input_shapes[dim] = 1. We add
an additional constraint when generating the input_data such that there is only one dimension
with length one (only one correct dimension). Figure 9c shows the result as we increase the rank

19

x = np.random.rand(9, 13, 14)
y = np.reshape(x, (6, new_shapes))

∏input_shapes == ∏new_shapes

input_shapes ∩ partial_shape == {}

(a) PyTorch Reshape

(b) PyTorch MaxPool2d

x = np.random.rand(9, 1, 14)
y = np.squeeze(x, axis=dim)

input_shapes[dim] == 1

input_shapes.count(1) == 1

(c) NumPy squeeze

x = np.random.rand(9, 13, 14)
y = np.split(x, 3, axis=dim)

input_shapes[dim]%index == 0

[x%index for x in input_shapes].count(0) == 1

(d) NumPy split

Figure 9: Single API parameter result (cont).

in input_data. We observe that while in smaller ranks (2-3), the LLMs achieve close to perfect
accuracy, the performance quickly drops off when we increase the rank to be >4, where all 3 LLM
sizes perform similarly. We found that this is because LLMs tends to generate dimensions of 0 or 1
(commonly seen in example code and pre-training data). As such, when given a high ranked tensor
where the correct squeeze dimension can be much higher than 0 or 1, the LLM struggles to satisfy
the simple constraint. This again demonstrate the memorization issue where LLMs tend to predict
commonly seen parameters during training instead of reasoning over the actual API constraint.

Split. For split in NumPy, the goal is to predict a dimension dim which can divide the index
parameter index evenly. Just like squeeze, we also add an additional constraint when generating the
input_data such that there is only one dimension that is divisible by index. Figure 9d shows the
results, where we see that even with rank of 2, the accuracy is just above 50%, showing the increase
in difficulty of the constraint in split As the rank increases, we also observe a huge decrease in
performance, where LLMs again overwhelmingly predict dimensions of 0 or 1.

20

G Diversity metric

Besides accuracy (percentage of valid programs generated), we also measure the diversity of the valid
programs generated. In particular, based on the exact API, we use different diversity metric:

i) For APIs where the number of possible valid outputs are large and not restricted (e.g.,
torch.reshape), we sample the LLM multiple times (100) with high temperature (1) and com-
pute the percentage of unique valid programs generated as discussed in Section 3.2.

ii) For APIs where the number of possible valid outputs are fixed (e.g., np.max can only select
valid dimensions within a range), we again sample the LLM multiple times and then compute
the distance between uniformed valid distribution and the distribution produced by the LLM. For
example, if the set of all valid answers is {-1,0,1}, and the model predicts {-3,-2,0,0,0,1,1,1,1,1}
in 10 samples, then the LLM’s distribution is P={-1: 0, 0: 0.3, 1: 0.5, others: 0.2}, and
the reference distribution is Q={-1: 1/3, 0: 1/3, 1: 1/3, others: 0}. Next, we compute the
Hellinger distance [52] between the two discrete probability distributions and compute the diversity
as 1− distance.

Since it requires a large amount of sampling programs (100 samples per problem) to evaluate diversity,
in Section 4.4, we evaluated the diversity of each LLM only on a single difficulty level, i.e., the third
level, either rank=4 or value in [8,16).

H GPT-4-Turbo infilling prompt

You are an expert Python programmer and are good at writing
correct PyTorch code. Please complete the program by filling in
the correct API parameter(s). You should keep the exact same
program unchanged, just fill in the missing code part.

```python
import torch
x = torch.randn(1, 2, 2, 3)
m = torch.nn.Conv2d(2, 2, 1, groups=<insert code here>)
y = m(x)
```

System
Prompt

Example
Input

Example
Output

```python
import torch
x = torch.randn(1, 2, 2, 3)
m = torch.nn.Conv2d(2, 2, 1, groups=2)
y = m(x)
```

Figure 10: Example GPT-4-Turbo prompt used for infilling and output

GPT-4-Turbo is an instruction-following LLM and we do not have access to a base version that
supports direct infilling. Therefore, we use a infill-specific prompt to ask GPT-4-Turbo to only fill
in the missing code without adding any additional text. This setup allows us to compare against
other infilling LLMs in the same setting. On the other hand, in this paper (e.g., Fig. 6h), we use
“GPT-4-Turbo-Inst” to differentiate the free-form generation setting. “GPT-4-Turbo-Inst” indicates
that we allow it to generate additional text (such as CoT or ReAct reasoning steps).

Figure 10 shows the prompt used by us to perform infilling using GPT-4. Note we separate out the
system prompt and how we format an example input. Additionally, we modify the library name in the
system prompt depending library of the API.

21

You are an expert Python programmer and are good at writing
correct {library} code. Please complete the program by filling in
the correct API parameter(s).

GPT-4-Turbo CoT Prompt

Deepseek Coder-Instruct CoT Prompt

You are an AI programming assistant, utilizing the DeepSeek
Coder model, developed by DeepSeek Company, and you only
answer questions related to computer science. For politically
sensitive questions, security and privacy issues, and other
non-computer science questions, you will refuse to answer.
Instruction:
Please complete the following Python program in a markdown
style code block. Replace "[INSERT HERE]" with the correct API
parameter(s). You should keep the exact same program
unchanged, just fill in the missing code part.

CodeQwen1.5-Chat CoT Prompt

You are an expert Python programmer and are good at writing
correct PyTorch code. Please think step by step and complete the
following Python program in a markdown style code block.
Replace "[INSERT HERE]" with the correct API parameter(s).

CodeLlama-Instruct CoT Prompt

[INST] You are an expert Python programmer and are good at
writing correct {library} code. Please think step by step and
complete the following Python program in a markdown style code
block. Replace "[INSERT HERE]" with the correct API parameter(s).

Figure 11: CoT prompts used for the instruction LLMs

I Single API parameter results for instruction model with CoT prompting

Experiment setup. We design CoT prompts shown in Figure 11. Note that the prompt is
slightly different for different models due to their specific format requirements. Additionally, for
torch.nn.Conv2d, we use a custom prompt (shown in Figure 12) where we explicitly add a sentence
“Don’t set groups=1” to avoid trivial answers. We use greedy decoding and set max_new_tokens
to 512 for all models and all APIs, except for torch.nn.Fold we use max_new_tokens=1024 since
LLMs tend to predict longer text before the actual code for this challenging API.

Results. Figure 13 shows the additional results on constraints chosen to evaluate the instruction-
tuned LLMs. Figure 13a, 13b, and 13c shows the result of the different variants on Conv2d.
Furthermore, we also evaluate on the constraint in MaxPool2d with the result shown in Figure 13d.

J Single API parameter results for instruction model with ReAct prompting

We applied the ReAct prompting strategy [57] on the difficult APIs constraints studied using CoT in
Section 4.3. Figure 14 shows our ReAcT prompt for GPT-4-Turbo. Note that the prompt is slightly

22

You are an expert Python programmer and are good at writing correct {library} code. Please complete the
program by filling in the correct API parameter(s). Don’t set groups=1.

GPT-4-Turbo CoT Prompt for Conv2d.

CodeLlama-Instruct CoT Prompt

Example Input

```python

import torch

x = torch.randn(254, 180, 153, 189)

m = torch.nn.Conv2d(180, 135, 8, groups=<insert code here>)

y = m(x)

```

In the given code snippet, you are trying to use a `torch.nn.Conv2d` layer, which is a 2D convolutional layer in

PyTorch. The parameters for `torch.nn.Conv2d` are:

1. `in_channels` (int) – Number of channels in the input image.

2. `out_channels` (int) – Number of channels produced by the convolution.

3. `kernel_size` (int or tuple) – Size of the convolving kernel.

4. `stride` (int or tuple, optional) – Stride of the convolution. Default: 1

5. `padding` (int or tuple, optional) – Zero-padding added to both sides of the input. Default: 0

6. `dilation` (int or tuple, optional) – Spacing between kernel elements. Default: 1

7. `groups` (int, optional) – Number of blocked connections from input channels to output channels. Default: 1

8. `bias` (bool, optional) – If `True`, adds a learnable bias to the output. Default: True

For the `groups` parameter in your code, you need to specify an integer that divides both the number of input

channels (`in_channels`) and the number of output channels (`out_channels`). The `groups` parameter is used

to control the connections between inputs and outputs. Setting `groups` to 1 means all inputs are convolved to

all outputs. If `groups` is set to `in_channels`, it means each input channel is convolved with its own set of

filters (like a depthwise convolution).

In your case, since `in_channels` is 180 and `out_channels` is 135, you need to find a divisor of both 180 and

135 to use as the `groups` value. The greatest common divisor (GCD) of 180 and 135 is 45. Thus, you can set

`groups=45`:

```python

import torch

x = torch.randn(254, 180, 153, 189)

m = torch.nn.Conv2d(180, 135, 8, groups=45)

y = m(x)

```

This configuration means that the convolution operation is performed separately in 45 groups, each group

handling a subset of the input and output channels.

Example Output

Figure 12: CoT prompt and example input/output for torch.nn.Conv2d used for the instruction LLMs.
In this example, GPT-4-Turbo is able to accurately recall the numeric constraint for the targeted pa-
rameter groups, apply them on this specific input example (in_channels=180, out_channels=135),
and generate valid answer 45.

different for different models due to their specific format requirements. Our ReAct prompt asks the
LLM to first generate a thought and then produce the code output. We also provide the LLM with
a single demonstration of the ReAct task. Furthermore, similar to the CoT experiments, we also
explicitly add the sentence “Don’t set groups=1” to avoid trivial answers.

Figure 15 compares the results of the instruction-following LLMs using CoT versus ReAct as well
as their base variants. We see that for torch.nn.MaxPool2d, ReAct prompting generally performs

23

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(a) Conv2d

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(b) Conv2d (excl. 1)

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(c) Conv2d avoid 1

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu
ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.

(d) PyTorch MaxPool2d

Figure 13: Instruction model results. Figure 13a shows the result where we do not add the additional
non-trivial requirement in the prompt (“Don’t set groups=1”), and we also count groups=1 answers
as correct. Figure 13b shows the result on the same setting and model samples as Figure 13a but
we count groups=1 answers as incorrect. Figure 13c shows the result where we add the additional
non-trivial requirement in the prompt (“Don’t set groups=1”), but we still count groups=1 answers as
correct.

better than CoT especially in more difficult problem settings (e.g., at highest difficulty setting, GPT-
4-Turbo-ReAct: 89.5% versus GPT-4-Turbo-CoT: 56.0%). This demonstrates the effectiveness of
ReAct in generating thoughts that can help with the correct API parameter generation. However, for
torch.nn.Conv2d, ReAct performs similarly to CoT prompting. The reason is that the constraint used
in Conv2d is much more complex, requiring factorization. As such, smaller open-source LLMs cannot
perform well even with reasoning steps. On the other hand, state-of-the-art LLMs like GPT-4-Turbo
show their powerful reasoning abilities by improving the performance over the base variant with
both CoT and ReAct. Although ReAct performs better than CoT for the easier difficulty settings in
torch.nn.Fold, its performance quickly drops in higher difficulty settings (at best ∼5% accuracy
with the best GPT-4-Turbo). Overall, this experiment results demonstrate that even more advanced
prompting methods such as ReAct still cannot effectively handle more complex constraints.

K Single API parameter results with documentation-augmented prompting

We conducted additional experiments using the documentation-augmented setting across the 3 difficult
API constraints used in the CoT experiments (Section 4.3). We provide the raw documentation of
each API (obtained from the source code docstring) in the prompt and apply both base and instruction-
following LLMs. Figure 16 shows an example prompt to perform the documentation-augmented
setting for GPT-4-Turbo. Note that the prompt is slightly different for different models due to their
specific format requirements. Furthermore, similar to the CoT and ReAct experiments, we also
explicitly add the sentence “Don’t set groups=1” to avoid trivial answers.

In Figure 17, we compare the performance with and without documentation. We found that there
are cases where documentation can improve performance. For example, in the most difficult setting
of torch.nn.Conv2d, adding documentation is able to improve performance of CodeLlama-34b-

24

You are an expert Python programmer and are good at writing
correct PyTorch code. Please refer the given examples and
complete the following Python program using these two steps:
1. Generate a thought about the API parameter values required to
satisfy the numeric constraints for a valid program.
2. Complete the program in a markdown style code block. You
should keep the exact same program unchanged, just fill in the
missing code part.

Examples are listed as follows:

Program:
```python
import torch
x = torch.randn(19, 21, 23, 3)
m = torch.nn.BatchNorm2d(<insert code here>)
y = m(x)
```
Thought:
The `torch.nn.BatchNorm2d` API in PyTorch expects the number
of channels (C) as its argument.
The input tensor `x` has a shape of `[N, C, H, W]`, which in this
case is `(19, 21, 23, 3)`.
Therefore, the valid API parameter value should be 21,
corresponding to the number of channels in the input tensor `x`.

Completed Program:
```python
import torch
x = torch.randn(19, 21, 23, 3)
m = torch.nn.BatchNorm2d(21)
y = m(x)
```

GPT-4-Turbo ReAct Prompt

Figure 14: Example React prompt used for GPT-4-Turbo

Instruct from 20% to 45% accuracy (Figure 17d). However, there are also similar cases where adding
documentation decreases performance. For example the GPT-4-Turbo-Instruct performance falls
from 57.5% to 22.5 in the most difficult setting of torch.nn.MaxPool2d (Figure 17b).

Since we provide the raw documentation text without further processing, the success rate of adding
documentation can vary depending on the specific model as well as the quality of the documentation.
As such, this demonstrates that naively adding API documentation cannot always achieve better
performance on our tasks.

L Computation Environment

We perform both LLM generation and evaluation on an 64-core workstation with 256 GB RAM
running Ubuntu 20.04.5 LTS. For local open-source LLMs, we use NVIDIA RTX A6000 GPUs. For
GPT-4-Turbo experiments, we directly access the API endpoint provided by OpenAI.

25

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

base
CoT
ReAct
CodeQwen-1.5
DS-33b
CL-34b
GPT4-Turbo
CL-13b

(a) PyTorch MaxPool2d

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

base
CoT
ReAct
CodeQwen-1.5
DS-33b
CL-34b
GPT4-Turbo
CL-13b

(b) PyTorch Conv2d

2 3 4 5 6 7 8
difficulty (rank)

0.00

0.05

0.10

0.15

0.20

0.25

ac
cu

ra
cy

base
CoT
ReAct
CodeQwen-1.5
DS-33b
CL-34b
GPT4-Turbo
CL-13b

(c) PyTorch Fold

Figure 15: Single API parameter result with chain-of-though (CoT) and ReAct prompting and the
base LLM using greedy decoding with 200 problems for each difficulty setting. We follow the same
generation and evaluation setting used in Section 4.3.

You are an expert Python programmer and are good at writing correct PyTorch code. Please refer to the given API
documentation and complete the Python program. Documentation for the torch.nn.MaxPool2d API:
Applies a 2D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
output :math:`(N, C, H_{out}, W_{out})` and :attr:`kernel_size` :math:`(kH, kW)`
can be precisely described as:

.. math::
 \begin{aligned}
 out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\
 & \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
 \text{stride[1]} \times w + n)
 \end{aligned}

If :attr:`padding` is non-zero, then the input is implicitly padded with negative infinity on both sides
for :attr:`padding` number of points. :attr:`dilation` controls the spacing between the kernel points.
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.

Note:
 When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding
 or the input. Sliding windows that would start in the right padded region are ignored.

The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:

 - a single ``int`` -- in which case the same value is used for the height and width dimension
 - a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
 and the second `int` for the width dimension

Args:
 kernel_size: the size of the window to take a max over
 stride: the stride of the window. Default value is :attr:`kernel_size`
 padding: Implicit negative infinity padding to be added on both sides
 dilation: a parameter that controls the stride of elements in the window
 return_indices: if ``True``, will return the max indices along with the outputs.
 Useful for :class:`torch.nn.MaxUnpool2d` later
 ceil_mode: when True, will use `ceil` instead of `floor` to compute the output shape

Please complete the program by filling in the correct API parameter(s). You should keep the exact same program
unchanged, just fill in the missing code part.

GPT-4-Turbo Documentation-augmented Prompt

Figure 16: Example documentation-augmented prompt used for GPT-4-Turbo

26

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5 w doc.
DS-33b w doc.
CL-13b w doc.
GPT4-Turbo w doc.

(a) PyTorch MaxPool2d base

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.
CodeQwen-1.5-Chat w doc.
DS-33b-Inst. w doc.
CL-34b-Inst. w doc.
GPT4-Turbo-Inst. w doc.

(b) PyTorch MaxPool2d instruct.

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5 w doc.
DS-33b w doc.
CL-13b w doc.
GPT4-Turbo w doc.

(c) PyTorch Conv2d base

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.
CodeQwen-1.5-Chat w doc.
DS-33b-Inst. w doc.
CL-34b-Inst. w doc.
GPT4-Turbo-Inst. w doc.

(d) PyTorch Conv2d instruct.

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

ac
cu

ra
cy

CodeQwen-1.5
DS-33b
CL-13b
GPT4-Turbo
CodeQwen-1.5 w doc.
DS-33b w doc.
CL-13b w doc.
GPT4-Turbo w doc.

(e) PyTorch Fold base

[1,4) [4,8) [8,16) [16,32) [32,64) [64,128)[128,256)
difficulty (input_dim)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

ac
cu

ra
cy

CodeQwen-1.5-Chat
DS-33b-Inst.
CL-34b-Inst.
GPT4-Turbo-Inst.
CodeQwen-1.5-Chat w doc.
DS-33b-Inst. w doc.
CL-34b-Inst. w doc.
GPT4-Turbo-Inst. w doc.

(f) PyTorch Fold instruct.

Figure 17: Single API parameter result for both instruction-following and base LLMs with and
without documentation. We follow the same generation and evaluation setting used in Section 4.3.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we perform a comprehensive evaluation on the proficiency of
LLMs to handle numeric parameter constraints in data science libraries. The main claims
made are accurately reflecting the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 3.1 we discuss the scope of our study as well as assumptions made,
that is, we focus on numeric constraints only and assumes all other parameters are default
and valid.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

28

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In our paper, we discuss our experimental settings in Section 2.2 as well as
evaluation setups in Section 3. Furthermore, in the Appendix, we provide additional details
regarding each API and their constraints to reproduce the main experimental results of the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

29

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes. The data and code will be made publicly available soon, along with
detailed instructions to replicate the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In Section 2, Section 3 and Appendix I, we provide all experimental setups for
benchmark creation and evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow prior benchmarking work like HumanEval [10] and directly report
the LLM performance without including error bars. Furthermore, to conduct a detailed
statistical test, it would be extremely costly on our large dataset especially with models such
as GPT-4.

Guidelines:

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: We provide the list of computation resources used by us in Appendix L.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

31

https://neurips.cc/public/EthicsGuidelines

Justification: We discuss the societal impacts in introduction. Since data science libraries are
widely used, we hope our work can facilitate future research to improve language models’
ability in this domain, and enable people to write data science programs faster.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: This paper constructs a synthetic dataset, and does not have a high risk for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the models we evaluated.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

32

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the data and code will be made publicly available soon.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper evaluates language models and does not involve human subjects.

Guidelines:

33

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

34

	Introduction
	Study Approach
	Scope of study
	Evaluation settings
	Input creation and output validation

	Experimental Setup
	Subjects
	Metrics
	Studied models.

	Evaluation
	Full program prediction
	Full API parameter prediction
	Single API parameter prediction
	DSeval: A public benchmark for numerical DS API constraints

	Related work
	Conclusion
	Problem statement
	Benchmark details
	Common parameter value ranges
	Case study of the Linear API
	Common mistakes made by LLMs
	Additional individual API parameter results
	Diversity metric
	GPT-4-Turbo infilling prompt
	Single API parameter results for instruction model with CoT prompting
	Single API parameter results for instruction model with ReAct prompting
	Single API parameter results with documentation-augmented prompting
	Computation Environment

