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Abstract
Pretrained large language models (LLMs) are
powerful learners in a variety of language tasks.
We explore if LLMs can learn from graph-
structured data when the graphs are described
using natural language. We explore data augmen-
tation and pretraining specific to the graph domain
and show that LLMs such as GPT-2 and GPT-3 are
promising alternatives to graph neural networks.

1. Introduction
Recently, large language models (LLMs) have shown
remarkable performance in language tasks (Brown et al.,
2020; OpenAI, 2023). For non-language machine learning
tasks, domain-specific models have dominated, e.g.
convolutional neural networks for images (Wightman et al.,
2021) or graph neural networks (GNNs) for graphs (Kipf
& Welling, 2016; Veličković et al., 2017; Rampášek et al.,
2022). However, Dinh et al. (2022) showed that LLMs,
specifically auto-regressive ones such as GPT-3 (Brown
et al., 2020), can perform well even on non-language
tasks, such as classification and regression on tabular and
image data. In such cases, the LLMs are fine-tuned to
complete textual prompts, such as ‘‘When we have
an image with pixels 0 1 200 .... 0 0,
what should be its class?’’1. Along this
direction, Jablonka et al. (2023) showed that LLMs can
be fine-tuned to perform well in the chemical domain. In
their case, a string representation (in one of the chemical
formats, namely IUPAC names, SMILES, or SELFIES)
is provided as a prompt to the LLMs. For instance, the
prompt can be ‘‘What is the lipophilicity
of COc1cc(N2CCN(C)CC2)c3nc...?’’ and the
LLMs are fine-tuned to complete the prompt with the
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1To train the LLM, it is asked to predict the next token and the
loss is computed between the prediction and ground truth token (a
digit from 0 to 9 in this example).

molecule’s property value (Jablonka et al., 2023). While
they showed their approach is competitive with other
common methods including GNNs, in particular Wang et al.
(2022), they leverage a strong chemical prior by using the
IUPAC names, SMILES, or SELFIES representation.

In this work, we aim to understand if LLMs are effective
general graph learners, when resorting to domain specific
representations such as IUPAC names, SMILES, or SELF-
IES is not possible. Following tabular data prompts in Dinh
et al. (2022), we propose to describe graphs via prompts us-
ing natural language. To do so, we revisit a simple language
developed to describe graphs, the Graph Modelling Lan-
guage (GML) proposed by Himsolt (1997). For example, a
graph with three nodes and three edges can be described as:

graph [
comment "This is a sample graph"
directed 1
id 42
label "Hello, I am a graph"
node [

id 1
label "node 1"
thisIsASampleAttribute 42

]
node [

id 2
label "node 2"
thisIsASampleAttribute 43

]
node [

id 3
label "node 3"
thisIsASampleAttribute 44

]
edge [

source 1
target 2
label "Edge from node 1 to node 2"

]
edge [

source 2
target 3
label "Edge from node 2 to node 3"

]
edge [

source 3
target 1
label "Edge from node 3 to node 1"

]
]
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Contributions. We demonstrate that pretrained LLMs
fine-tuned on GML-based prompts are a promising approach
to solve graph learning tasks. Our main contributions are
two-fold:

• We show that the GML-based description of graphs
can be compressed more than 2 times (in terms of
tokens per graph) while only marginally hurting the
downstream performance.

• By evaluating GPT-2 and three GPT-3 variants on
CYCLES and ZINC (Gómez-Bombarelli et al., 2018;
Dwivedi et al., 2020), we show that using stronger
LLMs results in better downstream graph performance.
While our evaluation shows that using GML-based
prompts and LLMs is currently inferior to GNNs, the
scaling trend suggests that LLMs may eventually be
competitive with GNNs.

We further propose a data augmentation strategy for graph
data to improve generalization that is motivated by node
permutation invariance principles that are critical for the
success of GNN approaches. We also explore pretraining
on graph tasks as a potential way to narrow the gap between
LLMs and GNNs, but found that such a pretraining only
helps in initial fine-tuning iterations, without yielding sig-
nificant gains at the end of training, which requires further
investigation.

2. Related Work
Our work is connected to pure transformers (Kim et al.,
2022) that have a weak graph inductive bias and yet are able
to compete with GNNs that have a strong graph inductive
bias. While pure transformers achieve that by training on
large data with millions of samples, we aim to achieve that
by leveraging the pretraining power of LLMs. However,
we note that LLMs have an even weaker inductive prior
than pure transformers because of the absence of explicitly
defined node and edge identifiers.

Recent work of Wang et al. (2023) also explored LLMs
(GPT-3/4) for solving graph tasks using natural language.
They propose a collection of artificial graph problems of in-
creasing complexity to study, e.g., preliminary graph reason-
ing capacity or the effect of different promting techniques.
This is slightly orthogonal to our work as we focus on real-
world data like ZINC (Dwivedi et al., 2020) and compare
LLM capacity to state-of-the-art GNNs.

Flam-Shepherd & Aspuru-Guzik (2023) showed strong
generation abilities for molecular graphs but, similarly to
Jablonka et al. (2023), they used chemical string representa-
tions which limits the approach to chemical data only. For
example, this does not allow for pretraining on synthetic or
out-of-domain data, as done in our work.

Table 1. Prompt design approaches with respective number of to-
kens & mean absolute error (MAE) for ZINC test graphs using
GPT-3 (Ada).

Approach AVG number of tokens per graph MAE

Full text 963 0.616
Reduced text 400 0.658

3. Method
3.1. Prompt Design

The exact way the prompts are constructed is critical because
it affects the ability of the LLM to capture the relationship
between the prompt and completion and because it affects
the number of tokens and thus the computational cost of
fine-tuning. For example, OpenAI’s GPT-3 fine-tuning cost
and model usage is priced per 1K tokens, e.g., training:
$0.0004 / 1K tokens, usage: $0.0016 / 1K tokens2. There-
fore, we consider two approaches to prompting in order
to have a good balance between information vs cost and
illustrate them using examples from the ZINC molecular
dataset (Dwivedi et al., 2020).

Full text. The full text approach closely resembles the
Graph Modelling Language. While it appears more informa-
tive to a human (than our reduced text approach described
next), it is lengthy and is constructed as following.

Prompt:
What is the constrained solubility
(penalized logP) of a molecular graph
with 9 nodes and 16 edges described
based on Graph Modelling Language as:
node [ id=0, label=C ], node [ id=1,
label=C ], node [ id=2, label=O ],
node [ id=3, label=C ], node [ id=4,
label=O ], node [ id=5, label=CH1 ],
node [ id=6, label=Cl ], node [ id=7,
label=C ], node [ id=8, label=C ], edge
[ source=0, target=1, label=1 ], edge
[ source=1, target=0, label=1 ], edge
[ source=1, target=2, label=1 ], ... ,
edge [ source=8, target=7, label=1 ]?.

Completion:
The logP score is -0.2089.

Reduced text. To reduce the number of tokens without
losing essential graph information, we consider constructing
our prompts as following.

Prompt:
graph with 9 nodes: 0 C , 1 C , 2 O ,

2https://openai.com/pricing
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3 C , 4 O , 5 CH1 , 6 Cl , 7 C , 8 C;
edges: 0 1 single , 1 0 single , 1 2
single , ... , 8 7 single.

Completion:
score: -0.2089.

Further study of different promt designs and compression
strategies can be found in Section ?? in the appendix.

3.2. Data Augmentation

As demonstrated in Dinh et al. (2022), it is beneficial to em-
ploy data augmentation strategies for improved generaliza-
tion of LLMs. We follow this approach as well by permuting
the node identifiers (numbers 0 to 8 in the prompt example
above) and associated edge source and targets passed to the
LLMs. This serves two objectives: (i) avoiding the models
to “fingerprint” individual molecules, and (ii) encouraging
the LLMs to learn node(identifier)-permutation invariant
representations, which is a fundamental practice in graph
learning (Wu et al., 2020) and satisfied for most GNNs by
design.

4. Experiments
Setup. We mainly use GPT-2 in our experiments (Radford
et al., 2019) as it is computationally feasible and simple to
fine-tune. We follow standard train, validation and test splits
of the ZINC dataset with 10k train, 1k validation and 1k test
graphs (Dwivedi et al., 2020). In the case of the CYCLES
dataset, we use 9k train, 1k validation and 10k test graphs.

We experiment with different training regimes: GPT-2 and
GPT-3, are the iterations of the GPT model, respectively,
pretrained on language data. We further add the specifier
+aug if the proposed augmentation strategy was employed,
and +cyc if additional pretraining was conducted on the
CYCLES dataset (Dwivedi et al., 2020). For completeness,
we also include a vanilla GPT2 model, GPT-2-scratch, that
has not been pretrained at all.

For GPT-3 fine-tuning we use the official instruction3 and
fine-tune three variants (ada, babbage and curie).

Results. In Table 2, we report results on the CYCLES and
ZINC dataset (Dwivedi et al., 2020) for a selection of LLM
architectures and compare them to a selection of popular
GNN models.

On the ZINC dataset, we observe that subsequent iterations
of the GPT model perform increasingly well, with GPT-3
(Curie) approaching specialized graph learning approaches
such as GIN (Xu et al., 2019). We also found that training a
larger GPT-3 variant (Babbage) on reduced prompts lead to

3https://platform.openai.com/docs/guides/fine-tuning

Table 2. Main results on CYCLES (accuracy; higher is better) and
ZINC (MAE; lower is better). See more results in Table ??.

MODEL CYCLES ZINC

GPT-2-SCRATCH 0.643 0.858
GPT-2 0.649 0.764
GPT-2+AUG 0.649 0.723
GPT-2+AUG+CYC N/A 0.763
GPT-3 (ADA) - 0.658
GPT-3 (BABBAGE) - 0.616
GPT-3 (CURIE) - 0.584

NON LM BASELINES:
MLP - 0.706
GCN (KIPF & WELLING, 2016) - 0.459
GIN (XU ET AL., 2019) 0.861 0.526
GAT (VELIČKOVIĆ ET AL., 2017) - 0.384
GPS (RAMPÁŠEK ET AL., 2022) - 0.070

the same results (0.616) as training a smaller GPT-3 variant
(Ada) on full text prompts, while being cheaper ($9.78 vs
$15.59). Thus, further reducing the prompt size while in-
creasing the model capacity may be a feasible approach to
improve results.

We further investigate the merit of several strategies to im-
prove LLM performance in the case of GPT-2. We first
observe that language pretraining (GPT-2) clearly performs
better compared to training the model from scratch (GPT-
2-scratch), indicating that language-pretrained LLMs are
good candidates to be fine-tuned for graph learning tasks.

Second, we observe that the proposed data augmentation
strategy (Section 3.2) further improves performance notice-
able, suggesting that it is beneficial to encourage LLMs to
“understand” the concept of permutation invariance through
training.

We also experimented with additional pretraining on
graph data (GPT-2+aug+cyc) using the CYCLES
dataset (Dwivedi et al., 2020). We expect this task to be ben-
eficial for pretraining for ZINC, as the target (constrained
solubility), apart from other values, depends on the num-
ber of cycles of minimal length of six atoms. While this
specific pretraining had a negative effect on the final test
performance (Table 2), the model fine-tuning initially pro-
gressed faster (e.g., reaching lower training loss faster) as
seen in Figure 1. As in Dwivedi et al. (2020), we only exper-
imented with graphs of size 56 nodes and cycles of length
six here and hypothesize that refining the graph-pretraining
task (e.g., by including cycles of various lengths) could
further improve the performance on ZINC.

For the CYCLES dataset, we only observe a slight improve-
ment of the language-pretrained model GPT-2 over GPT-
2-scratch in terms of final test accuracy. However, the
language-pretrained model training converges faster.
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Figure 1. Training loss on ZINC dataset for first 100 optimization
steps for GPT-2+aug+cyc and GPT-2+aug. Pretraining on CY-
CLES leads to lower initial training loss, suggesting the pretraining
is informative for the ZINC task.

5. Conclusion
Despite relatively low performance of GPT models, we be-
lieve that the approach of fine-tuning LLMs using natural
language has a lot of promise. In particular, this approach al-
lows for leveraging vast knowledge of LLMs. The presented
results show a clear scaling trend on the ZINC dataset when
moving from older to newer GPT models, promising further
advances when moving to even newer versions. In addition,
it allows for pretraining on diverse graph tasks alleviating
the node and edge feature mismatch issue. However, more
research is required to develop the best practice of such a
pretraining. Another interesting direction is further prompt
compression, exploring alternative “language” to describe
graphs and allowing to tackle tasks on datasets with larger
graphs.
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