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Abstract

Few-shot learning with large language models001
holds substantial potential in the biomedical002
domain where obtaining extensive annotated003
data for specialized tasks can often be challeng-004
ing. In the presence of small annotated datasets,005
incorporating domain knowledge from exter-006
nal sources is a common strategy. In this pa-007
per, we explore knowledge augmentation strate-008
gies for biomedical named entity recognition009
(NER) by incorporating information encapsu-010
lated in the Unified Medical Language System011
(UMLS). We leverage UMLS knowledge along012
with its hierarchical structure, and information013
from large language models (LLMs) to auto-014
matically generate new training examples in015
few-shot settings. We further explore the via-016
bility of employing GPT-3.5 for the extraction017
of biomedical named entities from Reddit data018
focused on prescription and illicit opioids. The019
results show an improvement of 13% on the020
F1-score on average over five established NER021
datasets, and a 6% increase on the REDDIT-022
IMPACTS dataset after appropriate prompt en-023
gineering improvements. Our findings indicate024
that utilizing UMLS and LLMs as a joint source025
of prior knowledge can be a viable approach026
for improving the state of the art for few-shot027
learning-based NER in medical text.028

1 Introduction029

Few-shot learning in biomedical Natural Lan-030

guage Processing (NLP), contrasts with traditional031

lexicon-based approaches, which may struggle032

with lexical variants or ambiguous expressions in033

larger datasets, and deep learning models that re-034

quire large amounts of data (Dong and Xing, 2018;035

Ge et al., 2022), makes it particularly useful for036

fine-grained classification tasks such as Named037

Entity Recognition (NER), where obtaining large038

amounts of data can be challenging. For instance,039

in medical diagnosis, few-shot learning has been040

used to develop models that can make accurate041

predictions with only a few examples (Sung et al., 042

2018; Lake et al., 2013), which is particularly ben- 043

eficial for rare or new diseases (Jadon, 2021; Yoo 044

et al., 2021). 045

Few-shot learning has shown promising results 046

in NER tasks. The extensive popularity and adop- 047

tion of Large Language Models (LLMs) like Gener- 048

ative Pre-trained Transformer (GPT (Radford et al., 049

2018; Brown et al., 2020)) recently, also offer a 050

valuable chance to assess the capabilities of LLMs 051

in few-shot learning scenarios (Brown et al., 2020), 052

by generating human-like texts and providing ex- 053

ternal knowledge with limited examples. This 054

adaptability is further enhanced by prompt-based 055

strategies, where Well-designed prompts can sig- 056

nificantly improve accuracy (Zhao et al., 2021; Li 057

and Liang, 2021a). The strength of LLMs lies in 058

their ability to generate text and provide contextu- 059

ally relevant responses to queries. However, they 060

might face challenges when dealing with special- 061

ized medical concepts, as they may lack domain- 062

specific knowledge and may generate unrealistic 063

or incorrect medical information (Yunxiang et al., 064

2023). To address this, we propose incorporat- 065

ing domain knowledge from the Unified Medical 066

Language System (UMLS) (Bodenreider, 2004), a 067

comprehensive database of medical terminologies 068

to enrich the representations of sparsely occurring 069

medical concepts and enhance the performance in 070

few-shot learning for biomedical NER tasks. 071

In this paper, our contributions are three-fold: 072

C1. We explore knowledge augmentation meth- 073

ods using UMLS for improving NER in few-shot 074

settings. Specifically, we used the encapsulated 075

knowledge of UMLS and its hierarchical structure 076

to enhance the training data when dealing with rare 077

entities. 078

C2. We leverage in-context information gener- 079

ated by GPT-3.5 to supplement UMLS knowledge 080

to boost NER performance in the clinical domain. 081

C3. We introduce a new dataset, REDDIT- 082
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IMPACTS, collected from subreddits (Reddit fo-083

rums) focused on prescription and illicit opioids,084

and medications for opioid use disorder. We also085

explore the viability of employing GPT-3.5 for086

the extraction of named entities from REDDIT-087

IMPACTS dataset by utilizing prompt engineering088

techniques and integrating background knowledge089

from the UMLS.090

The results show an improvement of 13% on the091

F1 score on average over five NER datasets, as com-092

pared to the baseline model. Our findings indicate093

that utilizing UMLS and LLMs as a source of prior094

knowledge can be a viable approach for improv-095

ing the state of the art for few-shot learning-based096

NER in medical text. Also, LLMs with appropriate097

prompts can significantly improve the performance098

where there are only few annotated samples.099

2 Related Work100

Early research in few-shot learning within biomed-101

ical NLP faced challenges due to the complexi-102

ties of natural language data containing domain-103

specific terminologies and associations. Prior104

knowledge has been identified as crucial (Schmidt105

et al., 2015) to combat this issue. FSL methods106

based on the use of prior knowledge are catego-107

rized into data, model, and algorithm types (Wang108

et al., 2020). Initial approaches, such as meta-109

learning and metric learning, leveraged prior knowl-110

edge at different levels to generalize to new tasks111

with limited data (Schmidt et al., 2015). Meta-112

learning (Hospedales et al., 2021) has perhaps been113

the most common framework for early stage of114

FSL research, which is trained using a set of train-115

ing tasks. Other approaches such as matching net-116

works (Vinyals et al., 2016), which use embedding117

functions to generalize knowledge, prototypical118

networks (Snell et al., 2017), which generate pro-119

totype representations of classes to address overfit-120

ting issues, and transfer learning were considered121

mainstream directions in the field of few-shot learn-122

ing (Pan and Yang, 2009), prior to the extensive123

exploration of LLMs in few-shot learning.124

The advent of LLMs has shifted the focus to-125

wards prompt-based learning, which has shown126

promise in few-shot NLP (Prato et al., 2020; Liu127

et al., 2023). This approach relies on the ability128

of LLMs to generate text and provide contextu-129

ally relevant responses with minimal training data,130

offering a promising solution to the challenges131

posed by few-shot settings, particularly in the clin-132

ical domain. The use of data from social media 133

for biomedical tasks presents additional complex- 134

ities in the form of noisy data and inconsistent 135

language usage (Hu et al., 2024). The potential of 136

LLMs and prompt-based strategies in overcoming 137

the challenges posed by few-shot settings has been 138

demonstrated with techniques like LM-BFF (Li and 139

Liang, 2021b) utilizing prompts to fine-tune mod- 140

els on limited data. Additionally, approaches like 141

PPT (Gu et al., 2022) enhance prompt effectiveness 142

by pre-training prompt token representations with 143

unsupervised data. Augmenting knowledge from 144

biomedical and clinical knowledgebases such as 145

UMLS have also been explored (Michalopoulos 146

et al., 2021; Alsentzer et al., 2019) and found to 147

outperform general purpose pre-trained language 148

models. Leveraging knowledge from both domain- 149

specific knowledgebases and in-context informa- 150

tion extracted by LLMs, however, is relatively 151

nascent. 152

3 Methods 153

First, our aim is to compare and contrast the dynam- 154

ically generated linguistic structures from LLMs, 155

with those systematically extracted from the UMLS. 156

We explored the usage of hierarchical informa- 157

tion and structured knowledge encapsulated in the 158

UMLS and its semantic networks to automatically 159

retrieve concepts related to the named entities in 160

the few-shot training data. Considering the gen- 161

erative capabilities of GPT-3.5, which enable it 162

to produce contextually relevant linguistic struc- 163

tures, we also utilize GPT-3.5 to provide external 164

knowledge. These related concepts are added to the 165

few-shot training data to create additional synthetic 166

instances. The synthetic instances and the original 167

few-shot training data are then used to train models 168

and compare their performances. 169

Second, we explore the feasibility of employ- 170

ing GPT-3.5 for extracting named entities, specifi- 171

cally clinical and social impacts, from our REDDIT- 172

IMPACTS datasets. We proposed a task-specific 173

prompt to refine the prompt engineering process, 174

and to evaluate GPT-3.5’s performance in compar- 175

ison to conventional few-shot learning models on 176

biomedical-related social media datasets. 177

3.1 Hierarchy Information and Semantic 178

Network in UMLS 179

One of the key features of the UMLS is its hierar- 180

chical organization of concepts, which provides a 181
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way to access information about the parents, chil-182

dren, and siblings of a given concept. In addition to183

the hierarchy, the UMLS also includes a semantic184

network that describes the relationships between185

concepts based on their semantic similarity. The186

hierarchy information in the UMLS represents the187

relationships between concepts in a hierarchical188

structure (Mishra et al., 2018), similar to a tree.189

This hierarchical structure allows for easy naviga-190

tion of the UMLS and helps to organize and cate-191

gorize concepts based on their relationships. The192

hierarchy is based on a number of different types of193

relationships between concepts, including ’isa’ (is194

a), ’has_parent’ and ’has_child’ relationships. Fig-195

ure 1 shows an example of the tree-like structure196

of the UMLS.197

The semantic network1 in the UMLS, represents198

the relationships between concepts based on their199

semantic similarity, rather than their hierarchical200

relationships. A portion of the UMLS semantic201

network is shown in Figure 2. The semantic net-202

work is organized into a set of categories, such203

as ’Anatomy’, ’Chemicals and Drugs’, and ’Phys-204

iology’, each of which represents a different area205

of biomedical and health-related concepts (Lind-206

berg et al., 1993). Within each category, concepts207

are further organized based on their relationships208

to other concepts, such as ’isa’ relationships or209

’part_of’ relationships.210

Both the hierarchy information and the seman-211

tic network are important for understanding the212

relationships between concepts in the UMLS. The213

hierarchy allows for navigation and understanding214

of general relationships, while the semantic net-215

work provides insight into specific relationships216

based on semantic similarity. Together, these two217

approaches help to provide a comprehensive un-218

derstanding of the relationships between concepts219

within the UMLS.220

3.2 Data Augmentation by UMLS and221

GPT-3.5222

Our approach utilizes the UMLS for generating223

new examples in several ways. When faced with224

entity types with small numbers of labeled sam-225

ples, we use the knowledge encoded in the UMLS226

to expand the training data and add synthetic ex-227

amples into the training set, so that the original228

few-shot training set is expanded to a larger one.229

Specifically, we incorporate knowledge in multiple230

1https://www.ncbi.nlm.nih.gov/books/NBK9679/

Figure 1: A subtree of the hierarchical structure of con-
cept "diarrhea" in SNOMEDCT_US dictionary (Sys-
tematized Nomenclature of Medicine–Clinical Terms).

Figure 2: A portion of the UMLS semantic network. Isa
links and non-isa relations are represented in the figure,
respectively.

layers. 231

The first layer consists of lexical expressions 232

with the same UMLS concept IDs (typically re- 233

ferred to as concept unique identifiers or CUIs), 234

which are added to create synthetic examples. Thus, 235

this layer of knowledge augmentation adds poten- 236

tial synonyms of the original named entities in the 237

training data. 238

The second layer of expansion consists of aug- 239

menting the training data from the first layer with 240

additional closely related CUIs that are under the 241

same UMLS semantic type (broad category of con- 242

cepts, such as pharmacological substances). This 243

layer, thus, adds additional examples that are likely 244

to be conceptually closely related to the entities in 245

the training data, and thus, are likely to occur in 246

similar contexts in medical free texts. The third 247

layer of augmentation considers the hierarchical as- 248

sociations in medical concepts. Specifically, we uti- 249

lize the parent-child relationships between concepts 250

and extract parents, children, and siblings of given 251

concepts based on the SNOMEDCT_US dictionary 252

(Systematized Nomenclature of Medicine–Clinical 253

Terms), which is a comprehensive clinical termi- 254
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nology that is widely used in the healthcare indus-255

try (Benson, 2012).256

Contrary to the extraction of linguistic structures257

to a given concept from the UMLS, our approach258

in utilizing GPT-3.5 for generating new examples259

involves providing the model with complete sen-260

tences. This strategy enables GPT-3.5 to leverage261

contextual information to enhance its comprehen-262

sion of the given concepts, thereby facilitating the263

generation of semantically coherent new examples.264

Furthermore, we strictly control the number of gen-265

erated examples to match the quantity extracted266

from the UMLS, ensuring that the results are not in-267

fluenced by discrepancies in the volume of training268

data. In the use of prompts, we adopt a fundamen-269

tal prompt strategy, which involves providing the270

sentence itself, indicating its task and the expected271

output format, while mandating that it generates272

based on the knowledge from the UMLS. The over-273

all architecture of our data augmentation approach274

is shown in Figure 3.275

Figure 3: The overall architecture of our data augmen-
tation approach. An example sentence is shown, where
the sentence is directly fed into GPT-3.5, while the word
"diarrhea" is extracted from the training data by the Ex-
tractor, then its related information is retrieved by using
UMLS Metathesaurus, and a Generator module expands
the training data. After that, new training data is put
into the encoder for training.

3.3 GPT-3.5 with Prompt Engineering 276

3.3.1 Prompt Engineering 277

Figure 4 illustrates the components of the prompts 278

used for GPT models and the main workflow of our 279

experiment. We designed task-specific prompts for 280

use with GPT-3.5 which comprises the following 281

components: 282

Figure 4: An overview of our study workflow. Prompt
with different strategies are delivered to GPT-3.5-turbo-
16k model, then the predictions are returned back from
API for evaluation.

1. Baseline prompt with task description, en- 283

tity types with definitions, and format specification: 284

The baseline component provides the LLM with 285

essential information regarding the basic aims of 286

the task, which is extracting and classifying entities. 287

The categories of labels present in the dataset along 288

with elucidation of their definitions, as we only fo- 289

cused on these two entity types. Entity definitions 290

provide detailed and unequivocal explanations of 291

an entity in the context of a specific task, crucially 292

guiding the LLM towards accurately pinpointing 293

entities within textual documents. Also, we pro- 294

vided the input and output format in which the 295

LLMs are expected to deliver results, which is a 296

crucial step in ensuring the successful completion 297

of the task, and it presents a greater challenge for 298

NER problems. 299

For GPT-3.5, NER present more challenges as 300

it is essentially a sequence-to-sequence problem, 301

where each token is assigned a corresponding label. 302

However, if our query only provides a sentence, it 303

is difficult for GPT-3.5 to directly and accurately 304

assign labels to each token. As it is challenging 305

to ensure that the number of labels in the output 306

matches the number of words in the input sentence. 307

One issue is that GPT-3.5 has its own tokenization 308

mechanisms which may differ from what we ex- 309

pected. Providing labels in the IOB format also 310

adds to the complexity. Moreover, handling punc- 311

tuation often presents difficulties in this context. 312
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A common approach is to provide a sentence313

and indicate the entities within it (Xie et al., 2023).314

For example, in the sentence "I was a codeine ad-315

dict," the phrase "codeine addict" is identified as316

an entity and is annotated as a ’Clinical Impacts’317

entity in this task. However, this format can be-318

come ambiguous when facing with long sentences319

contain the same word or phrase multiple times,320

each with different contextual meanings, not all of321

which may be labeled as entities. A subsequent322

method involves providing spans corresponding to323

the entities (Hu et al., 2024), but this adds signif-324

icant challenges for GPT models, as mismatches325

between spans and entities can frequently occur.326

To address these challenges, we adopt a new327

format for constructing the input and output for the328

GPT model. We provide GPT-3.5 with a list of329

tokens that have already been tokenized. For the330

output, we instruct the model to return each token331

along with its corresponding label and concatenate332

together. This method allows us to easily extract333

labels for evaluation, and it ensures a one-to-one334

correspondence between the predicted labels and335

tokens, with the number of labels always consistent336

with the number of tokens in the input sentence.337

For instance,338

Input: [’I’, ’was’, ’a’, ’codeine’, ’addict’, ’.’]339

Output: [’I-O’, ’was-O’, ’a-O’, ’codeine-Clinical340

Impacts’, ’addict-Clinical Impacts’, ’.-O’]341

2. Description of datasets: By describing the342

dataset’s origin, content, and themes, we aim to343

provide GPT-3.5 with a basic understanding of the344

dataset, which can further refine the filtering of pre-345

dicted entities. For example, the REDDIT-IMPACTS346

dataset focuses on individuals who use opioids, and347

we are interested in the impact of opioid use on348

their health and life.349

3. High-frequency instances: Given that clin-350

ical impacts and social impacts are relatively ab-351

stract concepts, unlike entities such as medicines352

or symptoms which have clear definitions, the de-353

termination of clinical and social impacts is more354

ambiguous. Therefore, we provide the most fre-355

quently occurring words or phrases in these two356

entity types within the training dataset to assist357

GPT-3.5 in understanding the potential distribution358

of entities and the theme of the text for this task.359

4. Incorporation of background knowledge from360

the UMLS: We provided GPT-3.5 with integrat-361

ing the comprehensive and structured information362

provided by UMLS into the analysis or processing363

of medical data. We expect this knowledge can364

enhance the understanding and interpretation of 365

medical concepts, relationships, and terminologies. 366

5. Annotated samples: To further assist the 367

LLMs in understanding the task and generating 368

accurate results, we provided a set of annotated 369

samples to improve its performance in a few-shot 370

learning setting. We randomly selected either 5 371

annotated examples for each entity types from the 372

training set and formatted them according to the 373

task description and entity markup guide. 374

In this work, we compare the effectiveness of 375

different prompt components by incrementally in- 376

corporating description of datasets, high-frequency 377

instances, background knowledge from the UMLS 378

and annotated samples. 379

4 Datasets 380

We conduct our data augmentation experiments 381

on five medical text datasets in 5-shot settings, 382

which included: (i) MIMIC III (Medical Informa- 383

tion Mart for Intensive Care) dataset (Johnson et al., 384

2016); (ii) the N2C2 2018 shared task track (Henry 385

et al., 2019); (iii) the BC5CDR Disease dataset (Li 386

et al., 2016); (iv) the MedMentions dataset (Mo- 387

han and Li, 2019); and (v) the NCBI Disease 388

dataset (Doğan et al., 2014). In addition to our 389

experiments on these five datasets, we also intro- 390

duce the REDDIT-IMPACTS dataset, which we use 391

to evaluate the performance of our proposed ap- 392

proach on biomedical data obtained from social 393

media. 394

Reddit communities have been found to serve 395

as a means of social support for people who use 396

drugs, for both prescription and non-prescription 397

usage. We identified 14 opioid-related subreddits 398

spanning discussions on prescription and illicit opi- 399

oids, and collected all retrievable posts using the 400

Python-Reddit API Wrapper for Reddit2. We ex- 401

tracted unique users from the retrieved posts, re- 402

sulting in a cohort of users who had posted on the 403

selected sub-reddits. We selected a random sample 404

of these Redditors (N=13,812) and collected each 405

of their past public posts across all subreddits (i.e., 406

timelines), between November 2006 (correspond- 407

ing to the earliest post available) and March 2019 408

(corresponding to the last date of data collection). 409

From this, we randomly selected 40 Redditors and 410

manually reviewed and annotated 26,126 posts. 411

We applied natural language processing to gener- 412

ate lexical variants of all included prescription and 413

2https://praw.readthedocs.io/en/latest/
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illicit opioids and stimulants, and detect mentions414

of them on the chosen subreddits. We developed415

annotation guidelines to categorize the words or416

phrases in posts into 33 entity types and manually417

annotated a set. The annotation process was itera-418

tive and involved several rounds. We first explored419

the posts, developed the annotation guidelines, and420

then annotated the texts. The authors then dis-421

cussed the disagreements, updated the guideline,422

and re-annotated the posts.423

However, the annotation of this large dataset424

revealed that some concepts, such as medicine in-425

take, illicit drug use, were relatively easy to find426

and annotate. Therefore, for our few-shot learn-427

ing research, we focused on two entity types in428

our dataset, which belonged to the category with429

the least number of samples: clinical impacts and430

social impacts, and named the dataset containing431

only these two entity types as REDDIT-IMPACTS432

dataset.433

From this sparse dataset, we randomly extracted434

totaling 1,380 posts for our experiments, includ-435

ing 843 posts for training, 259 for validation, and436

278 for testing. Among these, 27.8% of the posts437

contain words or phrases marked as clinical or so-438

cial impacts, with 184 entities annotated as clinical439

impacts and 67 entities in social impacts.440

5 Results and Discussion441

5.1 Comparison of incorporating UMLS and442

GPT-3.5443

Our primary findings were that incorporating prior444

knowledge via UMLS outperforms baseline few-445

shot models on all included datasets. The results446

in Table 1 show that using the UMLS and its hier-447

archical information helps the model utilize the448

parent-child relationships between concepts for449

NER. Similarly, models enhanced with GPT-3.5 in-450

formation show improved performance, especially451

in the BC5CDR disease and MIMIC III datasets.452

The most significant improvements are observed453

when incorporating related concepts and parents454

and children, indicating the importance of hierar-455

chical and semantic relationships in entity recog-456

nition. In comparison to the baseline models, our457

model achieved higher F1-scores: on average, our458

results showed an improvement of around 13%459

compared to the baseline models. The improve-460

ment is particularly noticeable in difficult cases461

where the baseline models struggled to make accu-462

rate predictions.463

Comparing the use of GPT-3.5 and the incorpo- 464

ration of UMLS, both approaches show improve- 465

ments. However, GPT-3.5 tends to perform bet- 466

ter in the most datasets, suggesting its strength in 467

understanding complex clinical text. UMLS in- 468

corporation shows more consistent improvements 469

across all datasets, as it provides a solid foundation 470

for identifying and categorizing entities based on 471

established medical vocabularies, indicating its use- 472

fulness in providing structured medical knowledge. 473

This approach significantly improves the perfor- 474

mance of the model, especially for cases with only 475

a few samples. In addition, these results demon- 476

strate the effectiveness of our approach and its 477

potential for use in real-world applications. Im- 478

portantly, the augmented models consistently out- 479

perform the baseline model. The integration of 480

external knowledge sources like UMLS and GPT 481

models appears to be beneficial for NER in clinical 482

texts. 483

Our motivation behind leveraging UMLS infor- 484

mation and utilizing GPT-3.5 for data augmentation 485

to improve the performance of few-shot learning in 486

medical text datasets is manifold. First, the UMLS 487

is a comprehensive ontology that contains a vast 488

amount of knowledge about biomedical and health- 489

related concepts. By using this information as data 490

augmentation, we can provide our few-shot learn- 491

ing model with access to domain-specific knowl- 492

edge that is not present in the training data. This 493

can help to improve the model’s ability to make ac- 494

curate predictions on unseen data (Tian et al., 2020). 495

Second, GPT-3.5 might offer a more context-aware 496

understanding of entities, potentially leading to 497

richer and more nuanced entity recognition. There- 498

fore, we could effectively increase the amount of 499

training data available to our model without the 500

need for additional manual annotations. This can 501

help to improve the model’s performance on rare 502

or complex cases that may not be well-represented 503

in the original training data. 504

Overall, using information from UMLS and 505

GPT-3.5 as data augmentation can help to address 506

some of the key challenges in few-shot learning 507

in medical text datasets, including limited training 508

data and the need for domain-specific knowledge. 509

This approach has the potential to improve the per- 510

formance of few-shot learning models in a variety 511

of medical applications. This is also a high-utility 512

use case for knowledge sources that have been de- 513

veloped and maintained for decades for supporting 514

biomedical NLP research. 515
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Baseline Model Incorporation Models N2C2 2018 MIMIC III
BC5CDR

disease

Med-

Mentions

NCBI

disease

SANER (Nie et al., 2020)

N/A SANER (baseline model) 10.27 21.25 37.25 52.12 22.11

with UMLS

Incorporate related concepts 17.37 34.44 54.71 55.83 28.49

Incorporate parents and children 26.62 33.79 51.12 53.29 26.31

Incorporate siblings 23.98 32.65 54.82 53.94 27.19

with GPT-3.5

Incorporate related concepts 18.54 28.95 55.96 54.57 30.92

Incorporate parents and children 20.93 32.23 54.94 56.12 26.80

Incorporate siblings 22.10 26.58 53.77 55.88 27.85

DANN (Ge et al., 2024)

N/A DANN (baseline model) 0.21 19.68 35.75 52.40 22.38

with UMLS

Incorporate related concepts 11.36 34.35 55.04 55.87 26.88

Incorporate parents and children 16.58 32.33 50.86 54.77 25.04

Incorporate siblings 17.53 30.77 55.31 52.62 28.68

with GPT-3.5

Incorporate related concepts 13.76 28.19 56.72 58.90 30.16

Incorporate parents and children 16.27 34.63 56.48 57.46 26.88

Incorporate siblings 20.41 26.45 54.16 58.31 27.57

Table 1: F1-scores of incorporating UMLS or GPT-3.5 compared with baseline on five medical datasets. All of the
results used BERT (Devlin et al., 2019) as the embedding layer, and the best performances are highlighted in bold.

5.2 Performance on REDDIT-IMPACTS516

Dataset517

The results in Table 2 show that the best perfor-518

mance we received so far on this new dataset is519

54.36% by using DANN model with full training520

data. Both the SANER and DANN models struggle521

in the 5-shot setting, when incorporating related522

concepts from GPT-3.5, the performance improves523

slightly. As our datasets were collected from social524

media, which means the texts are often informal,525

unstructured, and contains abbreviations and typos.526

In the few-shot settings, the performance of GPT-527

3.5 in making predictions is surprising and impres-528

sive. Compared to other few-shot learning models,529

GPT-3.5’s performace significantly outperforms530

others when provided with only 5-shot training531

data. Although these results are lower than those532

obtained using the full training dataset, it is reason-533

able. The inability to utilize the full dataset stems534

from the current constraints of the OpenAI plat-535

form, which does not facilitate direct fine-tuning on536

our own datasets, coupled with restrictions on the537

lengths of prompts and outputs. Therefore, it might538

be prudent to provide GPT-3.5 with an augmented539

volume of training data, to explore the upper limit540

of GPT-3.5 on this new dataset.541

Figure 5 shows the performance on GPT-3.5 with542

different prompt-based strategies. We found that,543

providing with description of the datasets, high-544

frequency instances from the dataset or more ex-545

amples with annotations all improves the perfor-546

mance significantly, which indicates that aspects 547

such as a clear description of the dataset’s origin, 548

content, themes, and high-frequency instances are 549

very helpful for GPT-3.5 to understand the task 550

and identify entities. Notably, the impacts of eluci- 551

dating these elements are comparable to providing 552

more annotated data. However, it is surprising that 553

merely informing GPT-3.5 about UMLS-related 554

knowledge in the prompt leads to worse results. A 555

potential reason could be that simply stating the 556

use of UMLS knowledge without effectively inte- 557

grating it into the prompt may not provide GPT-3.5 558

with sufficient context to properly utilize this in- 559

formation, potentially leading to ambiguity in its 560

predictions. Furthermore, it was observed that GPT- 561

3.5 predicted a large number of spurious entities. 562

"Spurious" here means that these entities were not 563

annotated as such in the golden tests, but GPT-3.5 564

identified them as belonging to either clinical im- 565

pacts or social impacts. One reason is that the lan- 566

guage used in social media posts can be ambiguous, 567

and without clear boundaries for what constitutes a 568

clinical or social impact. 569

6 Conclusions and Future Work 570

Few-shot learning approaches have substantial 571

promise for NLP in the medical domain, as many 572

medical datasets naturally have low numbers of an- 573

notated instances. Our experimental results demon- 574

strated that using UMLS and GPT-3.5 to incorpo- 575

rate prior knowledge is a possible solution for ex- 576
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Conduct on GPT-3.5 Size of Training Data Models F1-score

Few-shot learning models

Full training data
SANER 49.26

DANN 54.36

5-shot

SANER 0.00

DANN 0.00

Incorporate related concepts from GPT-3.5 based on SANER 5.41

Incorporate related concepts from GPT-3.5 based on DANN 4.64

GPT-3.5

with different

prompt-based strategies

1-shot

Basic Prompts 16.73

Incorporate with description of datasets 21.15

Incorporate with high-frequency instances 21.15

Incorporate with background knowledge of UMLS 16.29

5-shot
Incorporate with 5-shot examples 21.69

Incorporate with all above 22.90

Table 2: Performance on Reddit-Impacts Datasets by using few-shot learning methods and GPT-3.5 with different
prompts.

Figure 5: Performance of GPT-3.5 with Different
Prompts.

ploring few-shot learning methods on medical text.577

Furthermore, we proposed a new dataset which was578

collected from Reddit, our experimental results re-579

veal that GPT-3.5 significantly outperforms other580

models in few-shot settings. Additionally, by tun-581

ing the prompts, we have successfully achieved a582

notable improvement in GPT-3.5’s performance on583

dataset. This indicates that appropriate prompt tun-584

ing strategies can significantly improve the perfor-585

mance of large language models on specific tasks,586

especially in scenarios with limited annotated sam-587

ples.588

Our future work will focus on exploring a wider589

variety of prompting techniques to augment spe-590

cialized biomedical knowledgebases. We also plan591

to study the potential of small LLMs and quanti-592

zation techniques in the context of few-shot learn-593

ing. By investigating how these approaches can be594

applied to develop efficient and effective models, 595

we aim to advance the state-of-the-art in few-shot 596

natural language processing tasks while address- 597

ing the computational constraints associated with 598

large-scale language models. 599

Limitations 600

While our model has shown significant improve- 601

ment in results on medical text datasets, especially 602

when annotated examples are scarce, its perfor- 603

mance is still far from reaching the state-of-the- 604

art level. Future research still has considerable 605

room for enhancement. Another limitation stems 606

from the study of prompt engineering; attempting 607

to perfect prompts from the perspective of provid- 608

ing more useful information is challenging and 609

task-specific. More general methods of generat- 610

ing prompts are already leading us to further re- 611

search. Furthermore, due to the limitations of the 612

API, we are unable to directly fine-tune GPT on 613

other datasets. Therefore, the emergence of small 614

LLMs and the development of quantization are also 615

directions for our future research. 616
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