Under review as a conference paper at ICLR 2026

RESOURCE-EFFICIENT

MODEL-FREE REINFORCE-

MENT LEARNING FOR BOARD GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Board games have long served as complex decision-making benchmarks in ar-
tificial intelligence. In this field, search-based reinforcement learning methods
such as AlphaZero have achieved remarkable success. However, their inherent
implementation complexity and computational demands have been pointed out as
barriers to their reproducibility. In this study, we propose a simple model-free
reinforcement learning algorithm designed for board games to achieve more effi-
cient learning. To validate the efficiency of the proposed method, we conducted
comprehensive experiments on five board games: Animal Shogi, Gardner Chess,
Go, Hex, and Othello. The results demonstrate that the proposed method achieves
more efficient learning than existing methods across these environments. In addi-
tion, our extensive ablation study shows the importance of core techniques used in
the proposed method. We believe that our simple yet efficient algorithm shows the
potential of model-free reinforcement learning in domains traditionally dominated

by search-based methods.

1 INTRODUCTION

Board games are highly complex decision-
making tasks as even human experts may
spend minutes to hours deliberating on a
single action. Due to this complexity, they
have served as a canonical benchmark for
artificial intelligence for several decades
(Samuel, | 1959; [Tesauro et al., {1995} |(Camp-
bell et al.| 2002 [Silver et al.l 2016).

In this field, search-based methods such
as AlphaZero (Silver et al. 2018) have
achieved a milestone by learning to play
Chess, Shogi, and Go by a single reinforce-
ment learning (RL) algorithm. Due to its
generality and independence from game-
specific knowledge, it has also been ap-
plied to various fields beyond board games
(Schrittwieser et al., 2020; Hubert et al.,
2021 [Fawzi et al., 2022} Mankowitz et al.|
2023).

Average Performance Across Environments

100

KLENT (Ours)

== = AlphaZero
=== = = Gumbel AlphaZero

-] -]
o o
L

(across 5 environments)
Iy
°

Average Win Rate [%]

N
o

A S
Y . » LAAYIR 2 | seva®sar
R O PP S T ot LA A AT Y2

(I) 160 260 360 460
Simulator Evaluations
[million]
Figure 1: Average performance across the five board
games. The proposed method (KLENT) achieves effi-

cient learning compared to existing approaches.

While the success of search-based methods in the board game domain is remarkable, their substan-
tial computational demands are often cited as a barrier to their reproducibility (Zhao et al [2022).
Indeed, it has been reported that the training process of AlphaZero requires more than 10 GPU-
years (Silver et al.| 2018} [Tian et al., 2019). To address this issue, recent studies have proposed
modified search-based algorithms that reduce the depth and rollout count of the search tree (Hessel
et al.,[2021; |Danihelka et al.|[2022)), based on the observation that most of the computational cost is
incurred during sample collection with Monte-Carlo tree search (MCTS). Although these methods
lessen the reliance on look-ahead search during training, it remains an open question whether that

reliance can be entirely eliminated.

Under review as a conference paper at ICLR 2026

In other fields of RL such as robotics, model-free methods tend to be preferred due to their im-
plementation simplicity and computational efficiency (Kroemer et al., [2021; Tang et al., 2025).
Nonetheless, the effectiveness of model-free RL in the board game domain has not been thoroughly
investigated.

These situations raise the following question: Can we design a simple model-free RL algorithm
for board games that can learn a competitive policy with fewer training resources? In this paper,
we propose a model-free reinforcement learning algorithm that completely eliminates look-ahead
search during training. The proposed method is based on a simple policy optimization approach
which we refer to as Kullback-Leibler and Entropy Regularized Policy Optimization (KLENT). To
validate the efficiency of the proposed method, we have conducted comprehensive experiments on
five board games, namely Animal Shogi, Gardner Chess, Go, Hex, and Othello. As shown in Figure
[I] our method achieves efficient learning compared to existing methods.

The proposed method KLENT incorporates three techniques from the field of RL: Kullback-Leibler
(KL) regularization for gradual policy updates, entropy regularization for encouraging exploration,
and A-returns for efficient value function learning. Through an extensive ablation study, we empiri-
cally demonstrate that the combination of these three techniques is essential for efficient learning.

The main contributions of this work are summarized as follows:

1. We propose a simple model-free reinforcement learning algorithm designed for board
games, which we refer to as KLENT.

2. Through comprehensive experiments, we demonstrate that KLENT achieves more effi-
cient learning than existing methods.

3. We conduct an extensive ablation study, which validates that three components of
KLENT, namely KL regularization, entropy regularization, and A-returns, are essential
for its efficiency.

We believe that our simple yet efficient approach shows the potential of model-free RL in domains
which have traditionally been dominated by search-based methods.

2 PROBLEM SETTING

2.1 REINFORCEMENT LEARNING

In this study, we formulate board games as reinforcement learning problems. Reinforcement learn-
ing (RL) (Sutton et al.,|1998) is a framework in which an agent learns a policy 7 through interactions
with an environment to maximize an expected return. This framework can be formalized as a Markov
Decision Process (MDP) (Bellmanl [1957), consisting of a state space S, an action space A, a tran-
sition probability function P(s’|s, a), a reward function r(s, a), and a discount factor v € [0, 1]. At
each time step t, the agent selects an action A; € A based on its policy 7w(A¢|S;) and the current
state S; € S. In response, the environment transitions to the next state S;+1 € S according to the
transition probability P(S¢41|St, A¢) and provides a reward R; = r(S;, A:). The objective of the

agent is to maximize the expected return E(s, 4, Rr,)~(P,x) [ZtT:o Wth} . Here, T represents the
terminal timestep of an episode. The state-value function V" (s) = E(p) [Z;‘F:O v Ry|So = s] and
=a

the action-value function Q™ (s, a) = E(p [ZtT:O Y RS0 = s, Ao
and improve the policy 7.

] can be used to evaluate

2.2 BOARD GAMES

Board games have long been used as important benchmarks for artificial intelligence (Samuel, 1959
Tesauro et al., [1995; |Campbell et al., 2002} |Silver et al., 2016} [Yannakakis & Togelius| [2018). In
this study, the term “board games” is used specifically to indicate perfect-information games with
a finite action space, such as the game of Go. This kind of games can be formulated as an MDP,
with the reward assigning Ry = +1 for a win, R = —1 for a loss, and Ry = 0 for a draw, while
rewards are zero at all other timesteps ¢ € {0,1,...,7 — 1}. By setting the discount factor 7 to 1,
we ensure that the final outcome of the game is directly reflected in the expected return.

Under review as a conference paper at ICLR 2026

3 RELATED WORK

3.1 REGULARIZED POLICY OPTIMIZATION

In RL field, several algorithms have been proposed based on the paradigm of regularized policy
optimization, which can generally be formulated as follows:

maximize E g (.15 [Q7 (s, A)] — R(7"). (1)

Here, 7’ is the optimized policy, is the prior policy, and R (7') is the regularization term. For exam-
ple, if we define the regularization term as R(7") = —aH (7'), where H (') is the entropy of the op-
timized policy 7/, the optimal solution corresponds to a softmax policy 7(a|s) x exp(Q™(s,a)/c).
This policy has long been adopted in prior studies, including classical approaches such as REIN-
FORCE (Williams), [1992) and SARSA (Rummery & Niranjan, [1994; [Van Seijen et al., [2009). In
addition, Soft Q-Learning (Haarnoja et al., 2017) and SAC (Haarnoja et al., 2018) are methods that
treat the entropy term as additional rewards.

Alternatively, if we define the regularization term as the difference between prior policy 7 and op-
timized policy 7/, we can make the policy updates gradual. For example, TRPO (Schulman et al.,
2015) and PPO (Schulman et al.;,[2017) use the forward KL divergence R(n’) = SDk(r||7") and
MPO (Abdolmaleki et al., [2018) use the reverse KL divergence R(n') = SDxp(n’||7). Interest-
ingly, |Grill et al.| (2020) have pointed out that AlphaZero (Silver et al.,|2018) is also approximately
solving a policy optimization problem with KL regularization.

While methods that leverage both KL regularization and entropy regularization are relatively rare,
Vieillard et al.|(2020)), [Sokota et al.|(2022), and|Zhan et al.|(2023) provided the theoretical properties
of this combination. In this study, we aim to empirically show that this combination is effective for
achieving efficient learning in the board game domain.

3.2 SEARCH-BASED APPROACHES

Search-based approaches have demonstrated strong performance in board games. One of the most
well-known algorithms is AlphaGo (Silver et al.l [2016). It combined supervised pre-training with
human expert game records and fine-tuning by RL with MCTS, defeating a human world champion
in the game of Go. AlphaGo Zero (Silver et al., 2017) eliminated the need for supervised pre-
training, and AlphaZero (Silver et al.,|2018) extended it to general perfect-information finite-action
games. Its generality has enabled applications in other fields, including mathematical and algo-
rithmic discovery (Fawzi et al., |2022; Mankowitz et al., [2023)). Subsequent studies of AlphaZero
(Schrittwieser et al.| 2020; [Hubert et al.| 2021;|Ozair et al.| 2021; |Schrittwieser et al., |2021)) have ex-
tended its applicability to a wider range of RL settings, such as continuous action spaces and partial
observations.

While these search-based approaches are powerful, their inherent implementation complexity and
significant computational demand has been pointed out as limitations (Zhao et al.,2022). To address
this issue, recent studies have proposed more lightweight and efficient search-based algorithms.
For example, Hessel et al.| (2021) proposed a method that reduces the depth of the search tree and
performs a one-step search instead of a deep MCTS. Furthermore, |Danihelka et al.|(2022)) proposed
Gumbel AlphaZero, which reduces the rollout count of tree search, achieving efficient learning in
the board game domain. Our work shares the goal of achieving efficient learning with these prior
studies, but takes more drastic approach. While previous methods reduce the amount of look-ahead
search during training, we aim to completely eliminate it. In this sense, our method can be regarded
as the zero-search limit of this line of research.

3.3 GAME-SPECIALIZED APPROACHES

Another line of research aims to enhance game-playing agents by incorporating game-specific
knowledge. This approach has been adopted in both perfect-information games (Romstad et al.,
2016j |Delorme, [2017; |Wu et al.l 2020) and imperfect-information games (Moravcik et al.l 2017
Li et al.| 2020; [Perolat et al., [2022; Bakhtin et al., |2023), leading to strong performance. However,
our aim is to design a game-agnostic pure reinforcement learning method for board games, which
distinguishes our work from these prior studies.

Under review as a conference paper at ICLR 2026

AlphaZero’s Approach Our Approach (KLENT)
State ' State '
!
] [T 1111
Policy State Value Policy Action Value
(Vector) (Scalar) with Tree Search (Vector) (Vector) No Tree Search

Figure 2: Conceptual comparison between AlphaZero and the proposed method KLENT. Search-
based methods such as AlphaZero model the policy and the state value, and use tree search to
estimate the action-values. KLENT, by contrast, directly models both the policy and the action
value using neural networks, eliminating the need for search.

4 KLENT: KL AND ENTROPY REGULARIZED POLICY OPTIMIZATION

In this study, we propose Kullback-Leibler and Entropy Regularized Policy Optimization (KLENT).
KLENT is a simple on-policy model-free RL algorithm, which is designed to achieve efficient learn-
ing in the board game domain. In Section we describe our policy update rule, detailing our pol-
icy optimization problem and the solution to it. In Section[4.2] we explain value function learning
methodology, utilizing A-returns to stabilize the learning process. Section presents the overall
algorithm of KLENT with a pseudo code.

4.1 PoLicYy UPDATE RULE

To design the policy update rule, we employ the paradigm of regularized policy optimization. To
avoid abrupt policy changes and achieve gradual policy updates, we utilize reverse KL regular-
ization. In addition, to maintain sufficient exploration to ensure sample diversity and prepare for
unknown opponents, we also incorporate entropy regularization. Using these two regularizers, we
consider the following regularized policy optimization problem.

maximize B (1)[Q7 (5, 4)] — BDku (7' (Js) | 7([s) + aH (7 (]5)). @)
Here, Dy (7'||7) is the reverse KL divergence between the new policy 7’ and the current policy 7,
and H (7') is the entropy of 7. The coefficients « and /3 are the non-negative scalar hyperparameters

which control the strength of the regularization terms. Leveraging the fact that the action space A
of board games is finite, the optimal solution 7’ can be analytically derived in the following closed-

form expression:
) = s ey (Ll Ploglals)

where Z(s) = >, 4 €xp (QW(S’“)zilﬁog”(als)) is a normalization term to ensure that 7v/(-|s) is a

3)

probability distribution. Appendix [A] provides the detailed derivation of this optimal solution. In
KLENT, this analytically obtained policy 7’ is used for action selection during the training.

We model the policy as mg(a|s) with a neural network. When updating the parameter 0, the analyt-
ically obtained optimal policy 7/(-|s) is used as the learning target, and fitting of 4 is conducted to
minimize the cross-entropy — > , 7'(als) log mg(als).

4.2 LEARNING ACTION-VALUE FUNCTION

To compute the optimized policy 7’(als) in Equation [3| the probability given by the prior policy
m(a|s) and the estimate of the action value Q7 (s, a) are required for all actions a € A. In search-
based methods such as AlphaZero, the state-value function V7™ (s) is modeled, and the action value
is estimated from backup values obtained through tree search. By contrast, because our goal is to
develop a model-free approach without look-ahead search, such backup values are unavailable. To
bridge this gap, we directly model the action-value function as Qy(s, a), instead of the state-value
function. This conceptual difference is illustrated in Figure

Under review as a conference paper at ICLR 2026

0.5 1 —=— Squared Bias
Variance
0.4 4 —e— Sum

»+++++. b9
I %E, o
90 99 te'e

lelslelelee e o2
ek ees N
DS+ 4

0.0 0.2 0.4 N 0.6 0.8 1.0

Figure 3: [llustration of difficulty in learning action-value in 9x9 Figure 4: Bias-Variance tradeoff
Go. Learning the action-value function is generally more diffi- in 9x9 Go. Intermediate A\ mini-
cult than learning the state-value function, as it often requires mizes the sum of squared bias and
handling more complex spatial features. variance.

This choice of directly modeling the action-value function can make value-function learning more
challenging, because learning the action-value function is often harder than learning the state-value
function because of the following reasons. First, while the state-value function is a mapping V7™ :
S — R, the action-value function Q™ : S x A — R must capture action-conditional variation at
every state. As |.A| grows, the resulting function class expands substantially, making the action-value
function harder to learn.

In addition, learning the action-value function often requires reasoning over more complex spatial
features. For example, Figure [3]illustrates a position in which Black places a stone at the location
marked with a green triangle, capturing 16 white stones indicated by red crosses. In such positions,
recognizing that this move has high action value depends on interpreting intricate spatial configura-
tion of surrounding stones, whereas the state value is often estimable from simpler features such as
stone counts. Within these difficulties, learning the action-value function require additional care.

To achieve stable and efficient action-value learning, we consider the use of A-returns (Suttonl |1988))
is an effective approach. For A € [0, 1], n-step return Gg") and A-return G are defined as follows:
T—t-1
G = Z Y Rk 47" Dtgns Gr=(1-X) > APIGM p ZT1G D ()
k=0 n=1
Here, ©:.,, denotes a bootstrap estimate of the state value V™ (S;;,,). In general, the benefit of A-

returns can be explained in terms of the bias-variance trade-off. The bias-variance decomposition is
given by the following formula:

]E[(X —z)?] = (E[X] — ;v)2 + Var(X), 5)
——
Mean Squared Error Squared Bias Variance

where the estimand is the true action value, x = Q7 (S;, A;), and the estimator is the A-return,
X = G? in our case. We empirically validated this bias-variance trade-off through a preliminary
experiment. We measured the squared bias, the variance, and their sum of the A-return using a
pretrained model provided by Koyamada et al|(2023) in 9x9 Go environment. The results in Figure[4]
suggest that, in board games as well, increasing A reduces bias while increasing variance, with an
intermediate value minimizing their sum.

Motivated by these observations, we employ the A-return G as the learning target for the action-
value Qg (S, A;). We obtain the state-value estimate 0;,, by explicitly computing the expectation
as follows.

Vtn = Eann(18,00)[Q0(Stn, A)] = Z 7' (alSt1n) Qo (Styn, a). (6)
acA

We also empirically demonstrate through ablation experiments in which A is set to 0 or 1, corre-
sponding to the 1-step return and the Monte Carlo return respectively, that an intermediate value of
A contributes to learning efficiency.

Under review as a conference paper at ICLR 2026

4.3 OVERALL ALGORITHM

The overall procedure of the pro- - -
posed algorithm KLENT is illus- Algorithm 1 KLENT Algorithm

trated in Algorithm[T] Starting from 1: Initialize the policy network my(als).
randomly initialized networks, The 2: Initialize the action-value network Qs (s, a).
proposed algorithm updates the pol- 3: repeat

icy mg and the action-value function 4: D+ {} > on-policy sample buffer
Qo alternating a self-play phase for 5: repeat
data collection and a fitting phase for ~ 6: Initialize the state So.
network updates. 7: fort =0,...,T do
. Qo (St,a)+Blog me(a|St)

In the self-play phase, the goal is to ' (alSy) o< exp(‘ s)
populate the on—policy sample buffer 9. 0 < Eanr(3,) [Qo(st, A)]
D. During the episode, thf: ac; 10: Sample A, ~ /(-] S,).
tions are sampled from the policy 7* 1. Execute A; and observe (Sy+1, R;).
using the current networks mg and . end for
Qo. After the episode terminates, 3. Compute \-returns {G7 }7_ using equation 4}
the A-return G is computed for all , a7
timesteps ¢ by Equation[d] Samples 14: D DU{(S, Ay, (m (alSt))aca, G)} o

15: until D reaches a predefined capacity.

are collected by repeatedly running
episodes until the number of sam-
ples in the buffer reaches a prede-
fined capacity.

16: Update # by minimizing L(6) in equation|7]
17: until convergence.

In the fitting phase, the data accumulated in the buffer D is used to update the network parameter 6.
The loss function L(6) is defined as follows:

L(#) =Ep [— Z 7' (a|S) log me(alS) + (Qa(S, A) — G*)?|. (7
acA

Here, Ep[-] indicates that (S, A, (7'(a|S))ac.a, G*) are sampled from the buffer D. This loss func-
tion is designed to simultaneously optimize the policy and action-value networks, with the analyt-
ically obtained policy 7/(-|.S) and A-return G* serving as targets for learning. By iterating these
self-play and fitting phases, the policy 7y and the action-value function Qg are progressively refined
and eventually become strong.

5 EXPERIMENTS

In this section, we present our experimental results on board games. Specifically, Section pro-
vides the results of performance comparison on five board games, demonstrating the efficiency of
the proposed method KLENT compared to existing methods. Subsequently, we present the results
of our ablation study in Section[5.2] demonstrating the importance of the key techniques in KLENT,
namely KL regularization, entropy regularization, and A-returns. Lastly, we provide the experimen-
tal results on large-scale 19x19 Go in Section[5.3]

Table 1: Five board game environments used for the experiments.

Game Name \ Animal Shogi Gardner Chess 9x9 Go Hex Othello
EEETRTIE]
g\ oe
Initial State P 0
[BJIK][RIES ettt
Observation Shape | (4,3,194) (5,5, 115) 9,9, 17) (11,11, 4) 8,8,2)
Action Space Size | 132 1225 82 122 65

Under review as a conference paper at ICLR 2026

Animal Shogi Gardner Chess 9x9 Go
. 100 +» 100 +» 100+
c < c
2 g g
=5 801 —6 80 58 %09
Xea xa X
2o -0 — o
K] O 60 - 8 o 604 K] O 60+
T O T O R o
e £ | L] | x £ 1
£g *° gs ¥ g3 ¥
= g 20 1 2 g 20 - 2 g 20 -
@ @ I @
> o] > oJ > o
0 100 200 300 400 0 100 200 300 400 0 200 400 600 800
Simulator Evaluations Simulator Evaluations Simulator Evaluations
[million] [million] [million]
Hex Othello
+ 100 +« 100
c c
2 80 H 80
T2 Ta = KLENT
< N-% < N-%
8o 60 go 60 == AlphaZero
Sg 5g 3 == Gumbel AlphaZero
= 40 = 40 y
1 SN ban
& 20 2 204 e R W E B PPO
g [R P o e S e T o
EO S ol Feetasetiain,

o 200 400 600 800 0o 200 400 600 800

Simulator Evaluations Simulator Evaluations
[million] [million]

Figure 5: Performance comparison between the proposed method KLENT and existing methods.
KLENT achieves competitive or higher efficiency compared to existing methods.

5.1 PERFORMANCE COMPARISON

We conducted experiments to compare the performance and the learning efficiency of KLENT and
existing approaches. We employed five medium-scale board games, namely, Animal Shogi, Gardner
Chess, 9x9 Go, Hex, and Othello as benchmark environments. The observation shape and action
space size for each game are summarized in Table[I]

To assess the playing strength of each agent, we used pretrained checkpoints from the Pgx library
(Koyamada et al., 2023) for anchored opponents and measured the win rates against them. To
evaluate the learning efficiency, we employed the number of simulator evaluations on the horizontal
axis, which corresponds to the number of neural network queries during self-play. This metric serves
as an indicator of the computational demand of training processes and has also been adopted in the
literature, particularly when training efficiency is of the primary interest (Wu et al.| 2020).

As baselines for performance comparison, we used AlphaZero (Silver et al.,, [2018)) and Gumbel
AlphaZero (Danihelka et al., 2022) as search-based approaches, and DQN (Mnih et al., 2015) and
PPO (Schulman et al.,[2017) as model-free approaches. The network architecture was unified across
all experiments. Specifically, a ResNet (He et al., 2016)) with 6 residual blocks was used for feature
extraction. Depending on the method, additional heads such as a policy head, an action-value head,
and a state-value head were added. These heads were designed as multilayer perceptrons. Further
details of the experimental setup and implementation are provided in Appendix [B]and Appendix [C]
respectively.

The hyperparameters of the proposed method, KLENT, were unified across all five environments.
Specifically, the regularization coefficients were set to («,) = (0.03,0.1). The hyperparameter for
A-return was set to A = e~ /% ~ 0.88. This configuration corresponds to a time constant of 8 for
the exponential decay in A-return, indicating that returns around 8 steps ahead were considered on
average. The sensitivity analysis of these hyperparameters are provided in Appendix

The average performances across the five environments are presented in Figure[I] The results show
that the proposed method KLENT achieves the most efficient learning on average. In particular,
the results indicate severalfold efficiency gains. For example, Gumbel AlphaZero required 300
million simulator evaluations to reach an average win rate of 50%, whereas KLENT required only
75 million, representing a fourfold efficiency gain.

Under review as a conference paper at ICLR 2026

Animal Shogi Gardner Chess 9x9 Go
. 100 +» 100 +» 100
H AN g g
R ey |2 so ~& 80
2e TS 2g 2s
20 60 < = 20 60 20 60
K] \\ S ®e "
.S | e £ | x £ 1
cg 40 it cg 40 cg 40
£8 v g4 g8
o 20 o 20 m 201
@ H @]
> o > o L
0 100 200 300 400 0 100 200 300 400 0 200 400 600 800
Simulator Evaluations Simulator Evaluations Simulator Evaluations
[million] [million] [million]

Hex Othello
w 100 « 100
c <
H 80 g 80
9 § T § = KLENT
8O 601 go 60 == KL Only
22 ol 22 ol —-- ENT Only
é ﬁ é T‘,{ 1-Step KLENT
a 20 @ 201 i e Monte Carlo KLENT
@ @
> o > o
[} 200 400 600 800 0o 200 400 600 800
Simulator Evaluations Simulator Evaluations
[million] [million]

Figure 6: The results of the ablation study. They highlight the importance of all three techniques for
consistently achieving high efficiency in the five environments.

The detailed performances in each environment are also presented in Figure[5] In Animal Shogi and
Gardner Chess, where search-based approaches demonstrate high performance with moderate num-
ber of simulator evaluations, KLENT achieves competitive efficiency. In 9x9 Go, Hex, and Othello,
where search-based approaches require substantial training resources, KLENT demonstrates signif-
icantly higher efficiency.

5.2 ABLATION STUDY

We also conducted an ablation study to validate the
importance of the three key techniques in KLENT:
KL regularization, entropy regularization, and the

Table 2: Hyper-parameter configurations for
the ablation study.

use of A-returns. We compared KLENT with the

following four variants to evaluate the contribution | @ B A
of each technique. KL Only: Entropy regulariza- KLENT 003 0.1 e U8
tion is removed by setting & = 0. ENT Only: KL KL Only 0 01 e V8
regularization is removed by setting 5 = 0. 1-Step ENT Only 003 0 e /8
KLENT: A-returns are replaced with 1-step back- 1-Step KLENT 0.03 0.1 0
ups by setting A = 0. Monte Carlo KLENT: \- Monte Carlo KLENT | 0.03 0.1 1

returns are replaced with Monte Carlo returns by set-
ting A = 1. The hyper-parameter configurations of each variant are summarized in Table 2]

The results of our ablation study are shown in Figure[6] The results demonstrate the importance of
all three techniques for consistently achieving high efficiency in the five environments. We discuss
the effect of each technique below.

The effect of entropy regularization can be analyzed by comparing KLENT and KL Only. In KL
Only, where the entropy regularization is removed, performance degrades significantly across all
the five games. Specifically, in Animal Shogi, the win rate initially rises to 75% but subsequently
declines, suggesting unstable learning. Figure [/| shows the evolution of the average entropy of the
policy 7’ in Animal Shogi. While KLENT maintain the entropy, it rapidly decreases and becomes
nearly zero in KL Only, indicating that the policy becomes excessively deterministic. These results
suggest that encouraging sufficient exploration is crucial for stable learning process.

The effect of KL regularization can be observed by comparing the results of KLENT and ENT
Only. In ENT Only, KL regularization is removed so that the policy 7’ is represented by the follow-

Under review as a conference paper at ICLR 2026

19x19 Go
2.01 —— KLENT + 60 1
c
—=- KL Only o _ _
1.51 I g_
3
— 0 4
2 00O 40
210 T o
£ ot
w £ § 20 4
0.5 A B
\\ “ —— KLENT
0.0 Ty apve | VPN > 01 —-= AlphaZero
0 100 200 300 400 (IJ 260 4(|)0 G(I)O 860
Simulator Evaluations Simulator Evaluations
[million] [million]

Figure 7: Entropy evolution of the pol- Figure 8: The results of experiments in 19x19 Go. Even
icy m’ in Animal Shogi. While KLENT in the large-scale environment, KLENT achieves compet-
maintain the entropy, it becomes nearly itive learning efficiency compared to AlphaZero.

zero in KL Only.

ing equation: 7'(als) = % exp (Qp(s,a)/a) . In other words, the output of the policy network
is completely ignored, and actions are selected according to a softmax policy based solely on the
action-value function. According to the results, ENT Only exhibits degraded performance com-
pared to the original KLENT across the environments. The results suggest that it is also important
to gradually update the policy for stabilizing the learning process.

The effect of \-returns can be observed by comparing the results of KLENT, 1-Step KLENT, and
Monte Carlo KLENT. Replacing A-returns with 1-step returns or Monte Carlo returns results in a
performance drop especially in 9x9 Go and Hex. As discussed in Section[d.2] the results suggest the
importance of balancing bias-variance trade-off through the use of an intermediate A.

5.3 SCALABILITY TO A LARGE-SCALE GAME

To assess the scalability of KLENT to a large-scale game, we further conducted experiments in
19x19 Go, comparing it with AlphaZero. As Pgx (Koyamada et al., 2023) does not provide the
pretrained checkpoint for 19x19 Go, we instead used the checkpoint released by ElfOpen Go (Tian
et al.| [2019) for the anchored opponent. For the network architecture, we used 20-block ResNet (He
et al, 2016) instead of 6-block one to capture features in the larger board. Also in this experiment,
KLENT used the consistent hyperparameters, namely, (a, 3, \) = (0.03,0.1,e~1/8),

We present the results in Figure[8] We can observe that even in 19x19 Go, KLENT achieves com-
petitive learning compared to AlphaZero. Overall, our experimental results demonstrate that the
proposed method achieves high learning efficiency in medium-scale environments, while also main-
taining competitive learning in the large-scale environment.

6 CONCLUSIONS

In this study, we have proposed KLENT, a simple model-free reinforcement learning algorithm de-
signed for board games. The key techniques used in KLENT are KL regularization for gradual
policy updates, entropy regularization for exploration, and A-returns for efficient and stable value
function learning. Our experimental results have demonstrated learning efficiency of KLENT com-
pared to existing methods. Through our ablation study, we also validated the importance of these
three key techniques.

A limitation of this study is that our goal is focused to improve the efficiency. Although we consider
our simple and efficient approach to be valuable for most practitioners and researchers in the commu-
nity, our results do not preclude the effectiveness of search-based approaches including AlphaZero,
particularly when massive computational resources such as thousands of GPUs are available.

Our results have shown that even in board games, a domain long dominated by search-based meth-
ods, carefully designed model-free approaches can achieve more efficient learning. We hope this
perspective will inspire future research to extend model-free approaches to other domains where
search-based methods prevail, thereby opening promising directions for resource-efficient reinforce-
ment learning.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, Appendix [A] presents the theoretical proofs, Appendix [B]details the ex-
perimental setup, and Appendix [C]details the implementation. Our Supplementary Material includes
the code necessary to reproduce our experiments.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learn-
ing Representations, 2018.

Anton Bakhtin, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina, Alexan-
der H Miller, and Noam Brown. Mastering the game of no-press diplomacy via human-regularized
reinforcement learning and planning. In International Conference on Learning Representations,
2023.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating evaluation. In The
Thirty-Second International Conference on Neural Information Processing Systems, 2018.

Petr Baudi§ and Jean-loup Gailly. Pachi: State of the art open source go program. Advances in
computer games, pp. 24-38, 2011.

Petr Baudi$ and Jean-loup Gailly. Pachi: A fairly strong go/baduk/weiqi playing program. https:
//github.com/pasky/pachil 2018. Retrieved September 1st, 2025.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679—
684, 1957.

Daniel Bump, Gunnar Farneback, and Arend Bayer. Gnugo. http://www.gnu.org/
software/gnugo/gnugo.html} 2005. Retrieved September 1st, 2025.

Murray Campbell, A. Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artif. Intell., 134:57-83,
2002.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with gumbel. In International Conference on Learning Representations, 2022.

Richard Delorme. edax-reversi. https://github.com/abulmo/edax—reversi, 2017.
Version 4.4, Retrieved September 1st, 2025.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multi-
plication algorithms with reinforcement learning. Nature, 610(7930):47-53, 2022.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, lIoannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In
International Conference on Machine Learning, pp. 3769-3778. PMLR, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861-1870. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-

works. In Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11-14, 2016, Proceedings, Part IV 14, pp. 630-645. Springer, 2016.

10

https://github.com/pasky/pachi
https://github.com/pasky/pachi
http://www.gnu. org/software/gnugo/gnugo.html
http://www.gnu. org/software/gnugo/gnugo.html
https://github.com/abulmo/edax-reversi

Under review as a conference paper at ICLR 2026

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy opti-
mization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
4214-4226. PMLR, 18-24 Jul 2021.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4476—4486. PMLR, 18-24 Jul
2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and
Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning. In
Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2023.

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
challenges, representations, and algorithms. Journal of Machine Learning Research, 22(1):30:1-
30:82, 2021.

Marc Lanctot, Kate Larson, Yoram Bachrach, Luke Marris, Zun Li, Avishkar Bhoopchand, Thomas
Anthony, Brian Tanner, and Anna Koop. Evaluating agents using social choice theory, 2025.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao
Qin, Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement
learning. arXiv preprint arXiv:2003.13590, 2020.

Siqi Liu, Ian Gemp, Luke Marris, Georgios Piliouras, Nicolas Heess, and Marc Lanctot. Re-
evaluating open-ended evaluation of large language models. In The Thirteenth International
Conference on Learning Representations, 2025.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Padu-
raru, Edouard Leurent, Shariq Igbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Koppe, Kevin
Millikin, Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert
Tung, Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane,
Thomas Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol
Vinyals, and David Silver. Faster sorting algorithms discovered using deep reinforcement learn-
ing. Nature, 618(7964):257-263, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Matej Moravéik, Martin Schmid, Neil Burch, Viliam Lisy, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508-513, 2017.

Sherjil Ozair, Yazhe Li, Ali Razavi, loannis Antonoglou, Aaron Van Den Oord, and Oriol Vinyals.
Vector quantized models for planning. In international conference on machine learning, pp.
8302-8313. PMLR, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990-996, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1-8, 2021.

11

Under review as a conference paper at ICLR 2026

Tord Romstad, Marco Costalba, Joona Kiiski, and et al. Stockfish. https://
stockfishchess.org, 2016. Version 7, Retrieved September 1st, 2025.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210-229, 1959.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604-609, Dec 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580-27591, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.

1889-1897, Lille, France, 07-09 Jul 2015. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550:354-359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, [oannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140-1144, 2018.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, loannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal re-

sponse equilibria, and two-player zero-sum games. In Deep Reinforcement Learning Workshop
NeurlIPS 2022, 2022.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9-44, Aug 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martin-Martin, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 2869428698, 2025.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,
38(3):58-68, 1995.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and
Larry Zitnick. ELF OpenGo: an analysis and open reimplementation of AlphaZero. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6244—6253.
PMLR, 09-15 Jun 2019.

12

https://stockfishchess.org
https://stockfishchess.org

Under review as a conference paper at ICLR 2026

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical and
empirical analysis of expected sarsa. In 2009 ieee symposium on adaptive dynamic programming
and reinforcement learning, pp. 177-184. IEEE, 2009.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Process-
ing Systems, volume 33, pp. 12163-12174. Curran Associates, Inc., 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229-256, 1992.

Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu. Accelerating and improving alphazero using popula-
tion based training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp- 1046-1053, 2020.

Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games, volume 2. Springer,
2018.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear con-
vergence. SIAM Journal on Optimization, 33(2):1061-1091, 2023. doi: 10.1137/21M1456789.

Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for AlphaZero via path consistency. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 26971-26981. PMLR, 2022.

13

Under review as a conference paper at ICLR 2026

APPENDIX

A DERIVATION OF THE ANALYTICAL SOLUTION FOR THE REGULARIZED
PoLicY OPTIMIZATION PROBLEM

Here, we provide the formal mathematical definitions of the terms in Definition and present the
proof for the derivation of the optimal solution in Equation [3|in Theorem[A.2] For simplicity, we do
not explicitly write the considered state s in the following equations.

Definition A.1 (KL divergence and entropy). Let A be a finite set and A be the set of all proba-
bility mass functions over .A. The Kullback-Leibler (KL) divergence between two probability mass
functions 7’ € A and 7w € A over a finite set A is defined as:

D (' |m) = Y #'(a) log ()

)
acA ﬂ-(a)

®)
where it is assumed that 7/(a) = 0 = 7'(a)log 7:((;)) = 0and m(a) > 0 forall a € A. The
entropy of a probability mass function 7’ € A over A is defined as:
H(r') = =) '(a)logn’(a), ©
acA
where it is assumed that 7' (a) = 0 = #’(a) log7’(a) = 0.
Theorem A.2 (Formal Derivation of the Analytical Solution 7). Let A be a finite set, w(a) a

probability mass function over A, Q(a) : A — R a function, and A the set of all probability mass
Sfunctions over A. Consider the following optimization problem:

magiergize Eanr [Q(A)] — BDgr (7' ||70) + aH ('), (10)
where B > 0 and a > 0. Then, the optimal solution is given by:

1 Q(a) + Blogm(a)

M) — — 11

7o) = owp (LU LEEET) b
where Q(a) + 51 (@)
a) + plogm(a

Z = ex 12

Ser (T w

is the normalization constant.

Proof. Define the Lagrangian as follows:

L(n',\) =" 7' (a)Q(a) — BDkL(w||7) + aH (') — A <Z ' (a) — 1) : (13)

acA acA
where) is the Lagrange multiplier enforcing the constraint that 7/ (a) is a probability mass function.

Using the method of Lagrange multipliers, we find 7’ that satisfies

Vo L(m',\) = 0. (14)

Expanding this condition yields:
Vo L(r',A) =0 (15)
= Vp (Z 7'(a)Q(a) — BDko(7'||T) + aH (7") — A <Z ™' (a) — 1)) =0 (16)

acA acA
< Q(a)+ Blogm(a) — (B+ a)(logn’(a) +1) =X =0, VaeA (17)
<~ log7'(a) = @(a) + Blogm(a) + (const.), Va e A. (18)
B+«

Since 7’/ (a) must be a probability mass function, the solution is given by Equation O

Here, the Lagrange multiplier A is unrelated to the A in A-returns.

14

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SETUP DETAILS

We explain the detailed experimental setup in this section. For performance evaluation, we used
the baseline opponent provided by Pgx as an anchored opponent. This anchored opponent selects
actions stochastically based on its policy. The evaluated methods used deterministic policies by set-
ting the temperature parameter to zero for softmax policies and € to zero for e-greedy policies. In
particular, the proposed method uses the greedy policy corresponding to the output 7 of the policy
network. In the evaluation, all agents select actions without search unifying their test-time compu-
tational resource The evaluation was conducted by playing 1024 matches against the anchored
opponent, and the win rate was plotted on the vertical axis of the graph. Draws were treated as
half-wins. The horizontal axis represents the total number of simulator evaluations during training,
which includes all interactions with the environment simulator such as rollouts in tree search. This
choice is consistent with prior literature that measures computational cost in terms of simulator eval-
uations, as seen in studies such as KataGo (Wu et al.,|2020). Methods closer to the upper-left in the
graph are interpreted as more efficient, achieving higher performance with fewer simulator accesses.
For each method, experiments were conducted using three random seeds, and the mean and standard
deviation of the obtained metrics were displayed on the graph.

C IMPLEMENTATION DETAILS

This section describes the implementation details used in the experiments. For model-based meth-
ods, Gumbel AlphaZero and AlphaZero, we used open-source implementations provided by Mctx
(Danihelka et al., [2022) and Pgx (Koyamada et al.| 2023). Each iteration performed self-play in
parallel across 1024 threads, with each thread executing up to 256 state transitions. If a game ended
before 256 steps, a new game state was immediately initialized to continue the threads. Monte
Carlo tree search was conducted for decision-making with a simulation budget of 32 for each action
selection.

For model-free methods, including PPO, DQN, and the proposed method KLENT, self-play was
similarly conducted in parallel across 1024 threads, but with each thread executing up to 2048 state
transitions without search. The process for initializing new games upon completion was the same
as for model-based methods. The hyperparameters of the proposed method KLENT were set as
(o, B,\) = (0.03,0.1,e~'/8), as specified in Appendix The hyperparameters for PPO and DQN
were determined referring to the implementation in Stable-Baselines3 (Raffin et al., 2021)). For PPO,
the regularization applied a clipping method to impose proximity, with the clipping ratio set to 0.2.
The Generalized Advantage Estimator (GAE) in PPO used the same A = ¢~ /% as KLENT. In the
case of DQN, the e-greedy policy started with an € value of 1.0, which was linearly reduced to 0.05
over the first 10® simulator evaluations, and fixed at 0.035 thereafter.

The network architecture was consistent across all methods and based on ResNetV2 (He et al.,
2016). The number of hidden layer channels was set to 128, for 6 residual blocks. Policy, state-
value, and action-value heads were added as required by each method. Table [3] summarizes the
inclusion of these heads for each method. The network takes a state observation as an input, with
the policy head and action-value head outputting |.A|-dimensional vectors, and the state-value head
outputting a scalar value. Due to variations in input and output shapes depending on the games
and methods, the number of parameters varied slightly but remained within the range of 1.7 to 2.1
million across all experimental settings. Training of the networks was conducted with a batch size
of 4096, a learning rate of 0.001, and the Adam optimizer (Kingma & Bal 2015)).

D SENSITIVITY ANALYSIS OF HYPERPARAMETERS IN KLENT

This section examines the performance variation of KLENT with respect to changes in the hy-
perparameters «, 3, \. Specifically, for 9x9 Go, we conducted experiments on 27 combina-
tions of hyperparameter values as follows: («,5,A) € {0.01,0.03,0.1} x {0.03,0.1,0.3} x
{e=1/4 e=1/8 ¢~1/16] For each combination, we used three random seeds and calculated the av-
erage win rate against the anchored opponent during the training steps between 600 and 800 million

"For search-based evaluations, please refer to Appendix andm

15

Under review as a conference paper at ICLR 2026

Table 3: Summary of the network heads included for each method.

| Policy Head ~ State-Value Head ~ Action-Value Head

KLENT Yes No Yes
AlphaZero Yes Yes No
Gumbel AlphaZero Yes Yes No
DQN No No Yes
PPO Yes Yes No

simulator evaluations. The results are shown in Figure[9} Other experimental settings follow those
described in Section 3

A=e- V4 A=e" 18 A=e" V16

BE 57 58 63 EKBE 57 58 67 ENBE 54 56 52

s 0.03 0.03 0.03 4 7/
0.01 LR 7/ 0.01 ¥R 7,7/ X 20 64
0.03 01 03 0.03 01 03 0.03 01 03
B B B

Figure 9: The results of sensitivity analysis in 9x9 Go.

When the coefficients of KL regularization and entropy regularization were both set to small values,
specifically (a, 8) = (0.01, 0.03), a notable decline in performance was observed. This is likely due
to the improved policy, defined by Equation 3] becoming overly sharp. These results suggest that the
regularization coefficients need to be set to sufficiently large and appropriate values. On the other
hand, within the range of experiments conducted, the performance appears to be robust to variations
in the time constant of A-returns.

E DETAILS OF PRELIMINARY EXPERIMENTS ON BIAS-VARIANCE
TRADE-OFF

In Figure[d we have demonstrated the bias-variance trade-off of A-returns in 9x9 Go environment.
For the detailed experimental setup, we fixed both the policy and the value function using a pre-
trained baseline model from Pgx library (Koyamada et al.| 2023) in order to isolate the effect of
varying A. Since estimating the bias requires access to the true action value, which is not directly
observable, we approximated the ground-truth value by computing the Monte Carlo return 1,000
times from the same state action pair and taking the average as a surrogate for the true value.

F ADDITIONAL EVALUATION ON THE RELIABILITY OF THE ALPHAZERO
IMPLEMENTATION

F.1 RELIABILITY OF THE PGX IMPLEMENTATION AS A BASELINE

In this study, we adopt the Pgx implementation as the baseline for AlphaZero-family methods. The
original AlphaZero implementation by its authors is not publicly available. Similarly, for Gumbel
AlphaZero, only the MCTS technique has been released through the Mct x library, and the full train-
ing pipeline is not open-sourced. Therefore, reproducing the full experimental setup of AlphaZero-
family methods requires either relying on third-party open-source implementations or building one
from scratch. To the best of our knowledge, Pgx is the only open-source implementation that satis-
fies all of the following criteria:

* Peer-reviewed implementation: Pgx was accepted to the NeurIPS 2023 benchmark track,
indicating that its experimental setup has undergone peer review.

16

Under review as a conference paper at ICLR 2026

* Evaluated across multiple environments: Pgx has been tested on five different board
games, not just a single domain. This suggests that the implementation is robust and not
reliant on environment-specific tricks.

* Performance comparison against other agents: According to the Pgx paper, its baseline
agent outperforms pachi, a reasonably strong Go engine.

* Use of the Mctx library for MCTS: Pgx utilizes the Mct x library for its MCTS technique,
ensuring consistency with the Gumbel AlphaZero implementation, which was developed
by some of the original AlphaZero authors.

For these reasons, we consider Pgx to be a reliable and robust open-source implementation of
AlphaZero-family methods, and adopt it as the baseline in our experiments.

F.2 PERFORMANCE COMPARISON WITH OTHER IMPLEMENTATIONS

To strengthen the credibility of the AlphaZero and baseline implementations used in this
study, we conducted a comparative evaluation against a well-known open-source implementa-
tion available at https://github.com/suragnair/alpha-zero-general. This repository provides pre-
trained models for several games, including 8x8 Othello. We used the provided checkpoint file
pretrainedmodels/othello/8x8_100checkpoints_best.pth.tar to construct an
evaluation agent. We conducted a round-robin tournament involving the following four agents,
where each pair played 100 games. Draws were counted as 0.5 wins for each agent.

* Random: An agent that selects legal moves uniformly at random.

* AlphaZero-General: An agent that follows the policy from the above checkpoint of
alpha-zero—-general.

* Pgx Baseline: The baseline agent used throughout our experiments.

* Pgx’s AlphaZero: Our implementation of AlphaZero using the Pgx framework, trained
with 800 million simulator evaluations.

The number of wins for each agent against the others is shown in Table d Each cell indicates the
number of wins achieved by the row agent when playing against the column agent. As shown in

Table 4: Win rates among AlphaZero implementations and baselines in Othello.

Random AlphaZero-General Pgx Baseline Pgx’s AlphaZero

Random - 3 0 3
AlphaZero-General 97 - 17 13
Pgx Baseline 100 83 - 42
Pgx’s AlphaZero 97 87 58 -

the table, AlphaZero-General achieves a 97% win rate against the random agent, confirming that it
is significantly stronger than random. However, both the Pgx Baseline and Pgx’s AlphaZero imple-
mentation clearly outperform AlphaZero-General, achieving win rates of 83% and 87% respectively.
These results support the reliability and strength of the implementations used in our experiments.

G EXTENDED EXPERIMENTS ON ROLLOUT COUNTS AND TRAINING
BUDGETS FOR ALPHAZERO

This section presents additional experiments to examine how AlphaZero’s performance is affected
by the number of rollouts per move and the total training budget.

G.1 PERFORMANCE OF ALPHAZERO WITH VARYING ROLLOUT COUNTS IN 9X9 GO
AlphaZero performs Monte Carlo Tree Search (MCTS) at each move, where the number of roll-

outs corresponds to the number of simulator evaluations used per search. We investigated how this
parameter affects learning efficiency.

17

https://github.com/suragnair/alpha-zero-general

Under review as a conference paper at ICLR 2026

The experiments were conducted in the 9x9 Go environment, using rollout counts of 2, 4, 8, 16, 32,
and 64. The total number of simulator evaluations used during training was fixed at 200M, 400M,
600M, and 800M. Evaluation was performed by measuring the win rate against a fixed baseline
agent. Note that for a fixed training budget, increasing the rollout count reduces the number of
parameter updates, since each update consumes a number of simulator evaluations proportional to
the rollout count. This highlights a trade-off: deeper search per move comes at the cost of fewer
parameter updates. The results are shown in Table 5]

Table 5: Performance of AlphaZero with different rollout counts (9x9 Go). Each entry shows the
win rate (%) against the baseline agent.

Simulator Evaluations \ 200M 400M 600M 800M

AZ (2 rollouts) 7 7 7 8
AZ (4 rollouts) 16 35 51 61
AZ (8 rollouts) 20 39 56 69
AZ (16 rollouts) 15 28 42 57
AZ (32 rollouts) 6 13 20 34
AZ (64 rollouts) 5 7 11 15
(cf: KLENT) 53 80 85 89

The results indicate that in 9x9 Go, setting the rollout count to around 8 leads to the most efficient
learning for AlphaZero. Nevertheless, even when the rollout count is optimized, KLENT achieves
substantially higher performance under the same training budget, highlighting its superior efficiency.

G.2 PERFORMANCE OF ALPHAZERO WITH VARYING ROLLOUT COUNTS IN 19X19 Go

We also tuned the number of rollouts in 19x19 Go with values of 4, 16, 64, and 256. As shown in
Figure 16 rollouts achieved the most efficient learning. Accordingly, we reported this result as
the performance of AlphaZero in Figure[§]in Section[5.3]

19x19 Go
£ 60
o
- |
Xa ==
—_— 0 g .
P & 40 /’,
e 2 & o AlphaZero (4 rollouts)
£ 20 7 N gt - =N AlphaZero (16 rollouts)
s / ke —-= AlphaZero (64 rollouts)
0 /I
X ;& —--= AlphaZero (256 rollouts)
g 04 L..¢

o 200 400 600 800
Simulator Evaluations
[million]

Figure 10: The results of rollout count tuning in 19x19 Go. 16 rollouts achieve the most efficient
learning.

G.3 PERFORMANCE OF ALPHAZERO WITH INCREASED TRAINING BUDGETS

We also conducted additional experiments to examine AlphaZero’s asymptotic performance by in-
creasing the total training budget. The experimental settings were the same as above, and the number
of simulator evaluations was extended up to 4,800M. The results are presented in Table [6]

These results show that AlphaZero reaches approximately 89% win rate when the total training
budget is increased to around 3,200M to 4,000M simulator evaluations. This confirms the intuitive
expectation that AlphaZero can achieve strong asymptotic performance given sufficient training
budget. At the same time, KLENT achieves comparable performance using only 800 million simu-
lator evaluations, which is approximately four to five times fewer than those required by AlphaZero,
underscoring its efficiency advantage.

18

Under review as a conference paper at ICLR 2026

Table 6: Performance of AlphaZero under increased training budgets (9x9 Go). Each entry shows
the win rate (%) against the baseline agent.

Simulator Evaluations | 800M 1,600M 2,400M 3,200M 4,000M 4,800M

AZ (2 rollouts) 8 18 17 18 19 18
AZ (4 rollouts) 61 75 75 85 86 85
AZ (8 rollouts) 69 79 85 85 85 86
AZ (16 rollouts) 57 80 83 88 89 89
AZ (32 rollouts) 34 60 71 78 33 33
AZ (64 rollouts) 15 34 51 59 67 72
(cf: KLENT) 89 - - - - -

H STRENGTH SCALING WITH ADDITIONAL TEST-TIME COMPUTATION

Additional simulations during test time can improve the strength of agents. In this section, we
investigate how performance scales with the number of simulations for models trained with KLENT
and those trained with Gumbel AlphaZero in 9x9 Go. For both methods, parameters trained with
800 million simulator evaluations are used. We adopt an off-the-shelf Gumbel AlphaZero Monte
Carlo Tree Search (MCTS) for test-time computation, applying the same procedure to both sets
of parameters. While Gumbel AlphaZero learns policy and state-value networks, KLENT trains
policy and action-value networks. To address this difference, for KLENT, the inner product of the
policy and action-value is used as the state-value estimate during MCTS. The anchored baseline
opponent uses parameters provided by Pgx and runs with 800 simulations. [Koyamada et al.| (2023)
have reported that this agent has achieved 62 wins and 38 losses against Pachi (Baudis & Gailly,
2011) with 10,000 simulations. We measure the win rates of the evaluated target agents, using either
KLENT or Gumbel AlphaZero parameters, under 0, 16, 32, 64, 100, 200, 400, and 800 simulations.
Here, 0 indicates that the agent conducts no search and deterministically chooses action solely based
on its policy network. In this experiment, the evaluation is conducted for 100 matches. The win rates
are measured with three random seeds and the mean and the standard deviation are plotted.

The results are shown in Figure [TT] where the horizontal axis represents the number of simulations
and the vertical axis represents win rates against the anchored baseline. KLENT demonstrates that
it can effectively scale its strength with test-time computation. In this experiment, MCTS was per-
formed by using the inner product of the policy and action-value as an estimate for the state-value.
However, since KLENT’s network provides action-values for individual actions, it may be possible
to achieve even higher performance in the future by designing a test-time decision-making algorithm
specifically tailored for this architecture.

9x9 Go

=
[=]
o

1 —@— KLENT
—8- Gumbel AlphaZero

-]
o
L

-]
o
L

_..—‘

N
o
L

-
/.‘

Win rate [%]
vs. Baseline opponent with
800 test-time simulations
Y
)

?

i
IW
i
<

0 16 32 64 100 200 400 800
The number of test-time simulations
for evaluated methods

Figure 11: Performance changes with increased test-time computation budget. The simulation bud-
get of the anchored baseline opponent is fixed at 800. The horizontal axis represents the simulation
budget for the evaluated agents, while the vertical axis shows their win rate against the anchored
opponent. The results demonstrate that agents using parameters trained with KLENT can scale their
strength as the number of test-time simulations increases.

19

Under review as a conference paper at ICLR 2026

Anchored Opponent | Winrate of KLENT’s side

GnuGo (Level 10) 100%
Pachi (10K rollouts) 81%

Table 7: The results of head-to-head matches against GnuGo and Pachi.

I HEAD-TO-HEAD MATCHES

1.1 EVALUATION AGAINST PACHI AND GNUGO IN 9X9 GO

In the domain of 9x9 Go, we conducted additional head-to-head experiments against GnuGo and
Pachi, which are baselines confirmed to have been used in prior studies. The detailed configurations
of these agents are provided below.

* Evaluated Agent

— KLENT: The model trained with KLENT. Similarly to Appendix [Hl Gumbel Alp-
haZero was employed as the search algorithm at test time, with the number of rollouts
set to 2,000 (approximately two seconds per move). For the neural network parame-
ters, we used the model trained by KLENT with 800M simulator evaluations. While
the MCTS in Gumbel AlphaZero requires estimates of the policy and state value,
KLENT’s neural network estimates the policy and action values. To account for this
difference, we used the inner product of the policy and action-value predictions as the
state-value estimate.

* Anchored Opponent

— GnuGo (Bump et al, [2005): A classical and lightweight MCTS-based Go engine.
The strength level was set to 10 (the strongest level), following the evaluation setting
in prior work (Hessel et al.| [2021]).

— Pachi (Baudi§ & Gailly, 2011): A fairly strong MCTS-based Go engine. This program
has been reported to have the strength of a KGS 7-dan player in 9x9 Go (Baudis &
Gailly, [2018]), which corresponds to the top 0.5-1% of players on Kiseido Go Server.
The strength was set by configuring the MCTS rollout count to 10,000, consistent
with the evaluation settings in prior work (Hessel et al., 2021} |Danihelka et al.| [2022;
Koyamada et al.| 2023).

Under these conditions, we conducted 100 games, and the win rate of KLENT is presented in Table
These results demonstrate the win rates against agents that have been used for evaluation in prior
studies, and we believe they can serve as one of the credible reference points.

1.2 HEAD-TO-HEAD MATCH AGAINST ALPHAZERO IN 19x19 GO

We additionally conducted direct head-to-head matches between the final checkpoints trained in
Section[5.3] In this setting, the evaluation used MCTS with 800 rollouts per move. The AlphaZero
checkpoint was trained with 16 rollouts, which was the strongest among the tested settings. Under
this protocol, KLENT won all evaluation games, yielding a 100% win rate against AlphaZero trained
with the same simulator budget. These result also support that KLENT can achieve efficient learning
under a fixed training budget.

J PERFORMANCE COMPARISON IN ELO RATINGS

While win rate was used as the primary metric for comparing trained agents in the main paper, for
reference, we provide Elo scores in Figure[T2] Specifically, we fix the Elo score of the Pgx baseline
agent at Ry = 1000, and apply the following standard formula for Elo rating:

w

20

Under review as a conference paper at ICLR 2026

where W denotes the win rate against the Pgx baseline and L = 1 — W is the corresponding loss
rate. Since the mapping from win rate to Elo is monotonic, this transformation does not alter our
primary claim that KLENT outperforms the baselines under a fixed computational budget. However,
Elo scores must be interpreted with care, as they are highly sensitive to the composition of the
tournament pool. Indeed, in our preliminary experiments, we observed that Elo ratings of fixed
agents could vary significantly when the set of evaluated agents is modified. This sensitivity has also
been pointed out in prior works (Balduzzi et al.,[2018; [Liu et al., [2025; [Lanctot et al.,[2025). These
studies highlight that Elo ratings can be manipulated by adding redundant or biased agents, even
when anchor points are fixed. Therefore, cross-paper comparisons of Elo scores require identical
tournament configurations, which is difficult in our case since neither the full tournament details of
the Pgx implementation nor those of Gumbel AlphaZero are publicly available. For this reason, we
present Elo scores only as supplementary information.

Animal Shogi Gardner Chess 9x9 Go
1500 1500 1500 4
1250 1250 1250 4
2 1000 2 1000 21000 -
3 7504 fho g 7504) 2 750
o sool ° | 2 5004
w 500 i w 500 ‘ w 500
250 ’ 250 , 250
04 ! o ! 04
o 100 200 300 400 0 100 200 300 400 o 200 400 600 800
Simulator Evaluations Simulator Evaluations Simulator Evaluations
[million] [million] [million]
Othello

—— KLENT
== AlphaZero
—-:= Gumbel AlphaZero

Elo Rating
~
@
)

Elo Rating
~
a
°©

500 { ; DQN
250 2501 f - PPO
I
04 [] .4
o 200 400 600 800 0 200 400 600 800
Simulator Evaluations Simulator Evaluations
[million] [million]

Figure 12: Performance comparison in Elo scores. Win rates are converted by fixing the Pgx
baseline to Elo 1000. Note that Elo-based cross-paper comparisons are unreliable due to sensitivity
to tournament configurations.

K COMPUTATIONAL REQUIREMENTS

KLENT algorithm can be run on a single NVIDIA A100 GPU. This section describes the computa-
tional and memory requirements of the algorithm.

Memory Usage KLENT stores improved policies in a replay buffer for reuse. In our experiments,
memory usage was not an issue on a single A100 GPU with 80 GB of memory. Even when memory
becomes a limiting factor, this issue can be mitigated using a sparse representation. Since the im-
proved policy assigns non-zero probabilities only to legal actions and sets all others to zero, sparse
storage formats can significantly reduce memory consumption.

To illustrate this, we collected states from 10,000 games played by baseline agents implemented
with Pgx and computed the average and maximum number of legal actions per game. The results
are shown in the table below.

These results indicate that the number of legal actions is often much smaller than the full action
space. Therefore, sparse representations provide an effective solution in memory-constrained set-
tings.

21

Under review as a conference paper at ICLR 2026

Table 8: Statistics of legal actions collected from 10,000 games for each environment.

Game | Action Space Size Mean Legal Actions Max Legal Actions
Animal Shogi 132 7.5 36
Gardner Chess 1,225 9.5 40
9x9 Go 82 423 82
Hex 122 90.6 121
Othello 65 8.0 22

Computation Time One of KLENT’s strengths lies in its training efficiency. For example, in the
9x9 Go environment, KLENT reduced the time required to surpass the baseline agent by more than
25% compared to Gumbel AlphaZero and AlphaZero.

This efficiency stems from KLENT requiring fewer simulator interactions and neural network eval-
uations per training sample. As a result, it offers practical advantages in terms of wall-clock training
time and computational cost.

L THE USE OF LARGE LANGUAGE MODELS

We have utilized large language models to polish our writing and correct grammatical errors.

22

	Introduction
	Problem Setting
	Reinforcement Learning
	Board Games

	Related Work
	Regularized Policy Optimization
	Search-based Approaches
	Game-Specialized Approaches

	KLENT: KL and Entropy Regularized Policy Optimization
	Policy Update Rule
	Learning Action-Value Function
	Overall Algorithm

	Experiments
	Performance Comparison
	Ablation Study
	Scalability to a Large-Scale Game

	Conclusions
	Derivation of the Analytical Solution for the Regularized Policy Optimization Problem
	Experimental Setup Details
	Implementation Details
	Sensitivity Analysis of Hyperparameters in KLENT
	Details of Preliminary Experiments on Bias-Variance Trade-Off
	Additional Evaluation on the Reliability of the AlphaZero Implementation
	Reliability of the Pgx Implementation as a Baseline
	Performance Comparison with Other Implementations

	Extended Experiments on Rollout Counts and Training Budgets for AlphaZero
	Performance of AlphaZero with Varying Rollout Counts in 9x9 Go
	Performance of AlphaZero with Varying Rollout Counts in 19x19 Go
	Performance of AlphaZero with Increased Training Budgets

	Strength Scaling with Additional Test-time Computation
	Head-to-Head Matches
	Evaluation against Pachi and GnuGo in 9x9 Go
	Head-to-Head Match against AlphaZero in 19x19 Go

	Performance Comparison in Elo Ratings
	Computational Requirements
	The Use of Large Language Models

