
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RESOURCE-EFFICIENT MODEL-FREE REINFORCE-
MENT LEARNING FOR BOARD GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Board games have long served as complex decision-making benchmarks in ar-
tificial intelligence. In this field, search-based reinforcement learning methods
such as AlphaZero have achieved remarkable success. However, their inherent
implementation complexity and computational demands have been pointed out as
barriers to their reproducibility. In this study, we propose a simple model-free
reinforcement learning algorithm designed for board games to achieve more effi-
cient learning. To validate the efficiency of the proposed method, we conducted
comprehensive experiments on five board games: Animal Shogi, Gardner Chess,
Go, Hex, and Othello. The results demonstrate that the proposed method achieves
more efficient learning than existing methods across these environments. In addi-
tion, our extensive ablation study shows the importance of core techniques used in
the proposed method. We believe that our simple yet efficient algorithm shows the
potential of model-free reinforcement learning in domains traditionally dominated
by search-based methods.

1 INTRODUCTION

Figure 1: Average performance across the five board
games. The proposed method (KLENT) achieves effi-
cient learning compared to existing approaches.

Board games are highly complex decision-
making tasks as even human experts may
spend minutes to hours deliberating on a
single action. Due to this complexity, they
have served as a canonical benchmark for
artificial intelligence for several decades
(Samuel, 1959; Tesauro et al., 1995; Camp-
bell et al., 2002; Silver et al., 2016).

In this field, search-based methods such
as AlphaZero (Silver et al., 2018) have
achieved a milestone by learning to play
Chess, Shogi, and Go by a single reinforce-
ment learning (RL) algorithm. Due to its
generality and independence from game-
specific knowledge, it has also been ap-
plied to various fields beyond board games
(Schrittwieser et al., 2020; Hubert et al.,
2021; Fawzi et al., 2022; Mankowitz et al.,
2023).

While the success of search-based methods in the board game domain is remarkable, their substan-
tial computational demands are often cited as a barrier to their reproducibility (Zhao et al., 2022).
Indeed, it has been reported that the training process of AlphaZero requires more than 10 GPU-
years (Silver et al., 2018; Tian et al., 2019). To address this issue, recent studies have proposed
modified search-based algorithms that reduce the depth and rollout count of the search tree (Hessel
et al., 2021; Danihelka et al., 2022), based on the observation that most of the computational cost is
incurred during sample collection with Monte-Carlo tree search (MCTS). Although these methods
lessen the reliance on look-ahead search during training, it remains an open question whether that
reliance can be entirely eliminated.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In other fields of RL such as robotics, model-free methods tend to be preferred due to their im-
plementation simplicity and computational efficiency (Kroemer et al., 2021; Tang et al., 2025).
Nonetheless, the effectiveness of model-free RL in the board game domain has not been thoroughly
investigated.

These situations raise the following question: Can we design a simple model-free RL algorithm
for board games that can learn a competitive policy with fewer training resources? In this paper,
we propose a model-free reinforcement learning algorithm that completely eliminates look-ahead
search during training. The proposed method is based on a simple policy optimization approach
which we refer to as Kullback-Leibler and Entropy Regularized Policy Optimization (KLENT). To
validate the efficiency of the proposed method, we have conducted comprehensive experiments on
five board games, namely Animal Shogi, Gardner Chess, Go, Hex, and Othello. As shown in Figure
1, our method achieves efficient learning compared to existing methods.

The proposed method KLENT incorporates three techniques from the field of RL: Kullback-Leibler
(KL) regularization for gradual policy updates, entropy regularization for encouraging exploration,
and λ-returns for efficient value function learning. Through an extensive ablation study, we empiri-
cally demonstrate that the combination of these three techniques is essential for efficient learning.

The main contributions of this work are summarized as follows:
1. We propose a simple model-free reinforcement learning algorithm designed for board

games, which we refer to as KLENT.
2. Through comprehensive experiments, we demonstrate that KLENT achieves more effi-

cient learning than existing methods.
3. We conduct an extensive ablation study, which validates that three components of

KLENT, namely KL regularization, entropy regularization, and λ-returns, are essential
for its efficiency.

We believe that our simple yet efficient approach shows the potential of model-free RL in domains
which have traditionally been dominated by search-based methods.

2 PROBLEM SETTING

2.1 REINFORCEMENT LEARNING

In this study, we formulate board games as reinforcement learning problems. Reinforcement learn-
ing (RL) (Sutton et al., 1998) is a framework in which an agent learns a policy π through interactions
with an environment to maximize an expected return. This framework can be formalized as a Markov
Decision Process (MDP) (Bellman, 1957), consisting of a state space S, an action space A, a tran-
sition probability function P (s′|s, a), a reward function r(s, a), and a discount factor γ ∈ [0, 1]. At
each time step t, the agent selects an action At ∈ A based on its policy π(At|St) and the current
state St ∈ S. In response, the environment transitions to the next state St+1 ∈ S according to the
transition probability P (St+1|St, At) and provides a reward Rt = r(St, At). The objective of the
agent is to maximize the expected return E(St,At,Rt)∼(P,π)

[∑T
t=0 γ

tRt

]
. Here, T represents the

terminal timestep of an episode. The state-value function V π(s) = E(P,π)[
∑T

t=0 γ
tRt|S0 = s] and

the action-value function Qπ(s, a) = E(P,π)[
∑T

t=0 γ
tRt|S0 = s,A0 = a] can be used to evaluate

and improve the policy π.

2.2 BOARD GAMES

Board games have long been used as important benchmarks for artificial intelligence (Samuel, 1959;
Tesauro et al., 1995; Campbell et al., 2002; Silver et al., 2016; Yannakakis & Togelius, 2018). In
this study, the term “board games” is used specifically to indicate perfect-information games with
a finite action space, such as the game of Go. This kind of games can be formulated as an MDP,
with the reward assigning RT = +1 for a win, RT = −1 for a loss, and RT = 0 for a draw, while
rewards are zero at all other timesteps t ∈ {0, 1, . . . , T − 1}. By setting the discount factor γ to 1,
we ensure that the final outcome of the game is directly reflected in the expected return.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 RELATED WORK

3.1 REGULARIZED POLICY OPTIMIZATION

In RL field, several algorithms have been proposed based on the paradigm of regularized policy
optimization, which can generally be formulated as follows:

maximize
π′

EA∼π′(·|s)[Q
π(s,A)]−R(π′). (1)

Here, π′ is the optimized policy, π is the prior policy, andR(π′) is the regularization term. For exam-
ple, if we define the regularization term asR(π′) = −αH(π′), where H(π′) is the entropy of the op-
timized policy π′, the optimal solution corresponds to a softmax policy π(a|s) ∝ exp(Qπ(s, a)/α).
This policy has long been adopted in prior studies, including classical approaches such as REIN-
FORCE (Williams, 1992) and SARSA (Rummery & Niranjan, 1994; Van Seijen et al., 2009). In
addition, Soft Q-Learning (Haarnoja et al., 2017) and SAC (Haarnoja et al., 2018) are methods that
treat the entropy term as additional rewards.

Alternatively, if we define the regularization term as the difference between prior policy π and op-
timized policy π′, we can make the policy updates gradual. For example, TRPO (Schulman et al.,
2015) and PPO (Schulman et al., 2017) use the forward KL divergence R(π′) = βDKL(π∥π′) and
MPO (Abdolmaleki et al., 2018) use the reverse KL divergence R(π′) = βDKL(π

′∥π). Interest-
ingly, Grill et al. (2020) have pointed out that AlphaZero (Silver et al., 2018) is also approximately
solving a policy optimization problem with KL regularization.

While methods that leverage both KL regularization and entropy regularization are relatively rare,
Vieillard et al. (2020), Sokota et al. (2022), and Zhan et al. (2023) provided the theoretical properties
of this combination. In this study, we aim to empirically show that this combination is effective for
achieving efficient learning in the board game domain.

3.2 SEARCH-BASED APPROACHES

Search-based approaches have demonstrated strong performance in board games. One of the most
well-known algorithms is AlphaGo (Silver et al., 2016). It combined supervised pre-training with
human expert game records and fine-tuning by RL with MCTS, defeating a human world champion
in the game of Go. AlphaGo Zero (Silver et al., 2017) eliminated the need for supervised pre-
training, and AlphaZero (Silver et al., 2018) extended it to general perfect-information finite-action
games. Its generality has enabled applications in other fields, including mathematical and algo-
rithmic discovery (Fawzi et al., 2022; Mankowitz et al., 2023). Subsequent studies of AlphaZero
(Schrittwieser et al., 2020; Hubert et al., 2021; Ozair et al., 2021; Schrittwieser et al., 2021) have ex-
tended its applicability to a wider range of RL settings, such as continuous action spaces and partial
observations.

While these search-based approaches are powerful, their inherent implementation complexity and
significant computational demand has been pointed out as limitations (Zhao et al., 2022). To address
this issue, recent studies have proposed more lightweight and efficient search-based algorithms.
For example, Hessel et al. (2021) proposed a method that reduces the depth of the search tree and
performs a one-step search instead of a deep MCTS. Furthermore, Danihelka et al. (2022) proposed
Gumbel AlphaZero, which reduces the rollout count of tree search, achieving efficient learning in
the board game domain. Our work shares the goal of achieving efficient learning with these prior
studies, but takes more drastic approach. While previous methods reduce the amount of look-ahead
search during training, we aim to completely eliminate it. In this sense, our method can be regarded
as the zero-search limit of this line of research.

3.3 GAME-SPECIALIZED APPROACHES

Another line of research aims to enhance game-playing agents by incorporating game-specific
knowledge. This approach has been adopted in both perfect-information games (Romstad et al.,
2016; Delorme, 2017; Wu et al., 2020) and imperfect-information games (Moravčı́k et al., 2017;
Li et al., 2020; Perolat et al., 2022; Bakhtin et al., 2023), leading to strong performance. However,
our aim is to design a game-agnostic pure reinforcement learning method for board games, which
distinguishes our work from these prior studies.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proposed Method (Motivation) 24

Our Approach (KLENT)

+

with Tree Search
Policy
(Vector)

State Value
(Scalar)

Neural Network

State

No Tree Search
Policy
(Vector)

Neural Network

State

Action Value
(Vector)

AlphaZero’s Approach

Figure 2: Conceptual comparison between AlphaZero and the proposed method KLENT. Search-
based methods such as AlphaZero model the policy and the state value, and use tree search to
estimate the action-values. KLENT, by contrast, directly models both the policy and the action
value using neural networks, eliminating the need for search.

4 KLENT: KL AND ENTROPY REGULARIZED POLICY OPTIMIZATION

In this study, we propose Kullback-Leibler and Entropy Regularized Policy Optimization (KLENT).
KLENT is a simple on-policy model-free RL algorithm, which is designed to achieve efficient learn-
ing in the board game domain. In Section 4.1, we describe our policy update rule, detailing our pol-
icy optimization problem and the solution to it. In Section 4.2, we explain value function learning
methodology, utilizing λ-returns to stabilize the learning process. Section 4.3 presents the overall
algorithm of KLENT with a pseudo code.

4.1 POLICY UPDATE RULE

To design the policy update rule, we employ the paradigm of regularized policy optimization. To
avoid abrupt policy changes and achieve gradual policy updates, we utilize reverse KL regular-
ization. In addition, to maintain sufficient exploration to ensure sample diversity and prepare for
unknown opponents, we also incorporate entropy regularization. Using these two regularizers, we
consider the following regularized policy optimization problem.

maximize
π′

EA∼π′(·|s)[Q
π(s,A)]− βDKL(π

′(·|s)∥π(·|s)) + αH(π′(·|s)). (2)

Here, DKL(π
′∥π) is the reverse KL divergence between the new policy π′ and the current policy π,

and H(π′) is the entropy of π′. The coefficients α and β are the non-negative scalar hyperparameters
which control the strength of the regularization terms. Leveraging the fact that the action space A
of board games is finite, the optimal solution π′ can be analytically derived in the following closed-
form expression:

π′(a|s) = 1

Z(s)
exp

(
Qπ(s, a) + β log π(a|s)

α+ β

)
, (3)

where Z(s) =
∑

a∈A exp
(

Qπ(s,a)+β log π(a|s)
α+β

)
is a normalization term to ensure that π′(·|s) is a

probability distribution. Appendix A provides the detailed derivation of this optimal solution. In
KLENT, this analytically obtained policy π′ is used for action selection during the training.

We model the policy as πθ(a|s) with a neural network. When updating the parameter θ, the analyt-
ically obtained optimal policy π′(·|s) is used as the learning target, and fitting of θ is conducted to
minimize the cross-entropy −

∑
a∈A π′(a|s) log πθ(a|s).

4.2 LEARNING ACTION-VALUE FUNCTION

To compute the optimized policy π′(a|s) in Equation 3, the probability given by the prior policy
π(a|s) and the estimate of the action value Qπ(s, a) are required for all actions a ∈ A. In search-
based methods such as AlphaZero, the state-value function V π(s) is modeled, and the action value
is estimated from backup values obtained through tree search. By contrast, because our goal is to
develop a model-free approach without look-ahead search, such backup values are unavailable. To
bridge this gap, we directly model the action-value function as Qθ(s, a), instead of the state-value
function. This conceptual difference is illustrated in Figure 2.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Illustration of difficulty in learning action-value in 9x9
Go. Learning the action-value function is generally more diffi-
cult than learning the state-value function, as it often requires
handling more complex spatial features.

Figure 4: Bias-Variance tradeoff
in 9x9 Go. Intermediate λ mini-
mizes the sum of squared bias and
variance.

This choice of directly modeling the action-value function can make value-function learning more
challenging, because learning the action-value function is often harder than learning the state-value
function because of the following reasons. First, while the state-value function is a mapping V π :
S → R, the action-value function Qπ : S × A → R must capture action-conditional variation at
every state. As |A| grows, the resulting function class expands substantially, making the action-value
function harder to learn.

In addition, learning the action-value function often requires reasoning over more complex spatial
features. For example, Figure 3 illustrates a position in which Black places a stone at the location
marked with a green triangle, capturing 16 white stones indicated by red crosses. In such positions,
recognizing that this move has high action value depends on interpreting intricate spatial configura-
tion of surrounding stones, whereas the state value is often estimable from simpler features such as
stone counts. Within these difficulties, learning the action-value function require additional care.

To achieve stable and efficient action-value learning, we consider the use of λ-returns (Sutton, 1988)
is an effective approach. For λ ∈ [0, 1], n-step return G

(n)
t and λ-return Gλ

t are defined as follows:

G
(n)
t =

n−1∑
k=0

γkRt+k + γn v̂t+n, Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1G
(n)
t + λT−t−1G

(T−t)
t . (4)

Here, v̂t+n denotes a bootstrap estimate of the state value V π(St+n). In general, the benefit of λ-
returns can be explained in terms of the bias-variance trade-off. The bias-variance decomposition is
given by the following formula:

E
[
(X̂ − x)2

]︸ ︷︷ ︸
Mean Squared Error

=
(
E[X̂]− x

)2︸ ︷︷ ︸
Squared Bias

+Var(X̂)︸ ︷︷ ︸
Variance

, (5)

where the estimand is the true action value, x = Qπ(St, At), and the estimator is the λ-return,
X̂ = Gλ

t in our case. We empirically validated this bias-variance trade-off through a preliminary
experiment. We measured the squared bias, the variance, and their sum of the λ-return using a
pretrained model provided by Koyamada et al. (2023) in 9x9 Go environment. The results in Figure 4
suggest that, in board games as well, increasing λ reduces bias while increasing variance, with an
intermediate value minimizing their sum.

Motivated by these observations, we employ the λ-return Gλ
t as the learning target for the action-

value Qθ(St, At). We obtain the state-value estimate v̂t+n by explicitly computing the expectation
as follows.

v̂t+n = EA∼π′(·|St+n)[Qθ(St+n, A)] =
∑
a∈A

π′(a|St+n)Qθ(St+n, a). (6)

We also empirically demonstrate through ablation experiments in which λ is set to 0 or 1, corre-
sponding to the 1-step return and the Monte Carlo return respectively, that an intermediate value of
λ contributes to learning efficiency.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 OVERALL ALGORITHM

Algorithm 1 KLENT Algorithm

1: Initialize the policy network πθ(a|s).
2: Initialize the action-value network Qθ(s, a).
3: repeat
4: D ← {} ▷ on-policy sample buffer
5: repeat
6: Initialize the state S0.
7: for t = 0, . . . , T do
8: π′(a|St) ∝ exp

(
Qθ(St,a)+β log πθ(a|St)

α+β

)
9: v̂t ← EA∼π′(·|St)

[
Qθ(St, A)

]
10: Sample At ∼ π′(·|St).
11: Execute At and observe (St+1, Rt).
12: end for
13: Compute λ-returns {Gλ

t }Tt=0 using equation 4.
14: D ← D ∪

{
(St, At, (π

′(a|St))a∈A, G
λ
t)
}T
t=0

15: until D reaches a predefined capacity.
16: Update θ by minimizing L(θ) in equation 7.
17: until convergence.

The overall procedure of the pro-
posed algorithm KLENT is illus-
trated in Algorithm 1. Starting from
randomly initialized networks, The
proposed algorithm updates the pol-
icy πθ and the action-value function
Qθ alternating a self-play phase for
data collection and a fitting phase for
network updates.

In the self-play phase, the goal is to
populate the on-policy sample buffer
D. During the episode, the ac-
tions are sampled from the policy π′

using the current networks πθ and
Qθ. After the episode terminates,
the λ-return Gλ

t is computed for all
timesteps t by Equation 4. Samples
are collected by repeatedly running
episodes until the number of sam-
ples in the buffer reaches a prede-
fined capacity.

In the fitting phase, the data accumulated in the buffer D is used to update the network parameter θ.
The loss function L(θ) is defined as follows:

L(θ) = ED

[
−
∑
a∈A

π′(a|S) log πθ(a|S) + (Qθ(S,A)−Gλ)2
]
. (7)

Here, ED[·] indicates that (S,A, (π′(a|S))a∈A, G
λ) are sampled from the buffer D. This loss func-

tion is designed to simultaneously optimize the policy and action-value networks, with the analyt-
ically obtained policy π′(·|S) and λ-return Gλ serving as targets for learning. By iterating these
self-play and fitting phases, the policy πθ and the action-value function Qθ are progressively refined
and eventually become strong.

5 EXPERIMENTS

In this section, we present our experimental results on board games. Specifically, Section 5.1 pro-
vides the results of performance comparison on five board games, demonstrating the efficiency of
the proposed method KLENT compared to existing methods. Subsequently, we present the results
of our ablation study in Section 5.2, demonstrating the importance of the key techniques in KLENT,
namely KL regularization, entropy regularization, and λ-returns. Lastly, we provide the experimen-
tal results on large-scale 19x19 Go in Section 5.3.

Table 1: Five board game environments used for the experiments.

Game Name Animal Shogi Gardner Chess 9x9 Go Hex Othello

Initial State

Observation Shape (4, 3, 194) (5, 5, 115) (9, 9, 17) (11, 11, 4) (8, 8, 2)

Action Space Size 132 1225 82 122 65

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Performance comparison between the proposed method KLENT and existing methods.
KLENT achieves competitive or higher efficiency compared to existing methods.

5.1 PERFORMANCE COMPARISON

We conducted experiments to compare the performance and the learning efficiency of KLENT and
existing approaches. We employed five medium-scale board games, namely, Animal Shogi, Gardner
Chess, 9x9 Go, Hex, and Othello as benchmark environments. The observation shape and action
space size for each game are summarized in Table 1.

To assess the playing strength of each agent, we used pretrained checkpoints from the Pgx library
(Koyamada et al., 2023) for anchored opponents and measured the win rates against them. To
evaluate the learning efficiency, we employed the number of simulator evaluations on the horizontal
axis, which corresponds to the number of neural network queries during self-play. This metric serves
as an indicator of the computational demand of training processes and has also been adopted in the
literature, particularly when training efficiency is of the primary interest (Wu et al., 2020).

As baselines for performance comparison, we used AlphaZero (Silver et al., 2018) and Gumbel
AlphaZero (Danihelka et al., 2022) as search-based approaches, and DQN (Mnih et al., 2015) and
PPO (Schulman et al., 2017) as model-free approaches. The network architecture was unified across
all experiments. Specifically, a ResNet (He et al., 2016) with 6 residual blocks was used for feature
extraction. Depending on the method, additional heads such as a policy head, an action-value head,
and a state-value head were added. These heads were designed as multilayer perceptrons. Further
details of the experimental setup and implementation are provided in Appendix B and Appendix C,
respectively.

The hyperparameters of the proposed method, KLENT, were unified across all five environments.
Specifically, the regularization coefficients were set to (α, β) = (0.03, 0.1). The hyperparameter for
λ-return was set to λ = e−1/8 ≈ 0.88. This configuration corresponds to a time constant of 8 for
the exponential decay in λ-return, indicating that returns around 8 steps ahead were considered on
average. The sensitivity analysis of these hyperparameters are provided in Appendix D.

The average performances across the five environments are presented in Figure 1. The results show
that the proposed method KLENT achieves the most efficient learning on average. In particular,
the results indicate severalfold efficiency gains. For example, Gumbel AlphaZero required 300
million simulator evaluations to reach an average win rate of 50%, whereas KLENT required only
75 million, representing a fourfold efficiency gain.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: The results of the ablation study. They highlight the importance of all three techniques for
consistently achieving high efficiency in the five environments.

The detailed performances in each environment are also presented in Figure 5. In Animal Shogi and
Gardner Chess, where search-based approaches demonstrate high performance with moderate num-
ber of simulator evaluations, KLENT achieves competitive efficiency. In 9x9 Go, Hex, and Othello,
where search-based approaches require substantial training resources, KLENT demonstrates signif-
icantly higher efficiency.

5.2 ABLATION STUDY

Table 2: Hyper-parameter configurations for
the ablation study.

α β λ

KLENT 0.03 0.1 e−1/8

KL Only 0 0.1 e−1/8

ENT Only 0.03 0 e−1/8

1-Step KLENT 0.03 0.1 0
Monte Carlo KLENT 0.03 0.1 1

We also conducted an ablation study to validate the
importance of the three key techniques in KLENT:
KL regularization, entropy regularization, and the
use of λ-returns. We compared KLENT with the
following four variants to evaluate the contribution
of each technique. KL Only: Entropy regulariza-
tion is removed by setting α = 0. ENT Only: KL
regularization is removed by setting β = 0. 1-Step
KLENT: λ-returns are replaced with 1-step back-
ups by setting λ = 0. Monte Carlo KLENT: λ-
returns are replaced with Monte Carlo returns by set-
ting λ = 1. The hyper-parameter configurations of each variant are summarized in Table 2.

The results of our ablation study are shown in Figure 6. The results demonstrate the importance of
all three techniques for consistently achieving high efficiency in the five environments. We discuss
the effect of each technique below.

The effect of entropy regularization can be analyzed by comparing KLENT and KL Only. In KL
Only, where the entropy regularization is removed, performance degrades significantly across all
the five games. Specifically, in Animal Shogi, the win rate initially rises to 75% but subsequently
declines, suggesting unstable learning. Figure 7 shows the evolution of the average entropy of the
policy π′ in Animal Shogi. While KLENT maintain the entropy, it rapidly decreases and becomes
nearly zero in KL Only, indicating that the policy becomes excessively deterministic. These results
suggest that encouraging sufficient exploration is crucial for stable learning process.

The effect of KL regularization can be observed by comparing the results of KLENT and ENT
Only. In ENT Only, KL regularization is removed so that the policy π′ is represented by the follow-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: Entropy evolution of the pol-
icy π′ in Animal Shogi. While KLENT
maintain the entropy, it becomes nearly
zero in KL Only.

Figure 8: The results of experiments in 19x19 Go. Even
in the large-scale environment, KLENT achieves compet-
itive learning efficiency compared to AlphaZero.

ing equation: π′(a|s) = 1
Z(s) exp (Qθ(s, a)/α) . In other words, the output of the policy network

is completely ignored, and actions are selected according to a softmax policy based solely on the
action-value function. According to the results, ENT Only exhibits degraded performance com-
pared to the original KLENT across the environments. The results suggest that it is also important
to gradually update the policy for stabilizing the learning process.

The effect of λ-returns can be observed by comparing the results of KLENT, 1-Step KLENT, and
Monte Carlo KLENT. Replacing λ-returns with 1-step returns or Monte Carlo returns results in a
performance drop especially in 9x9 Go and Hex. As discussed in Section 4.2, the results suggest the
importance of balancing bias-variance trade-off through the use of an intermediate λ.

5.3 SCALABILITY TO A LARGE-SCALE GAME

To assess the scalability of KLENT to a large-scale game, we further conducted experiments in
19x19 Go, comparing it with AlphaZero. As Pgx (Koyamada et al., 2023) does not provide the
pretrained checkpoint for 19x19 Go, we instead used the checkpoint released by ElfOpen Go (Tian
et al., 2019) for the anchored opponent. For the network architecture, we used 20-block ResNet (He
et al., 2016) instead of 6-block one to capture features in the larger board. Also in this experiment,
KLENT used the consistent hyperparameters, namely, (α, β, λ) = (0.03, 0.1, e−1/8).

We present the results in Figure 8. We can observe that even in 19x19 Go, KLENT achieves com-
petitive learning compared to AlphaZero. Overall, our experimental results demonstrate that the
proposed method achieves high learning efficiency in medium-scale environments, while also main-
taining competitive learning in the large-scale environment.

6 CONCLUSIONS

In this study, we have proposed KLENT, a simple model-free reinforcement learning algorithm de-
signed for board games. The key techniques used in KLENT are KL regularization for gradual
policy updates, entropy regularization for exploration, and λ-returns for efficient and stable value
function learning. Our experimental results have demonstrated learning efficiency of KLENT com-
pared to existing methods. Through our ablation study, we also validated the importance of these
three key techniques.

A limitation of this study is that our goal is focused to improve the efficiency. Although we consider
our simple and efficient approach to be valuable for most practitioners and researchers in the commu-
nity, our results do not preclude the effectiveness of search-based approaches including AlphaZero,
particularly when massive computational resources such as thousands of GPUs are available.

Our results have shown that even in board games, a domain long dominated by search-based meth-
ods, carefully designed model-free approaches can achieve more efficient learning. We hope this
perspective will inspire future research to extend model-free approaches to other domains where
search-based methods prevail, thereby opening promising directions for resource-efficient reinforce-
ment learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, Appendix A presents the theoretical proofs, Appendix B details the ex-
perimental setup, and Appendix C details the implementation. Our Supplementary Material includes
the code necessary to reproduce our experiments.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learn-
ing Representations, 2018.

Anton Bakhtin, David J Wu, Adam Lerer, Jonathan Gray, Athul Paul Jacob, Gabriele Farina, Alexan-
der H Miller, and Noam Brown. Mastering the game of no-press diplomacy via human-regularized
reinforcement learning and planning. In International Conference on Learning Representations,
2023.

David Balduzzi, Karl Tuyls, Julien Perolat, and Thore Graepel. Re-evaluating evaluation. In The
Thirty-Second International Conference on Neural Information Processing Systems, 2018.

Petr Baudiš and Jean-loup Gailly. Pachi: State of the art open source go program. Advances in
computer games, pp. 24–38, 2011.

Petr Baudiš and Jean-loup Gailly. Pachi: A fairly strong go/baduk/weiqi playing program. https:
//github.com/pasky/pachi, 2018. Retrieved September 1st, 2025.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pp. 679–
684, 1957.

Daniel Bump, Gunnar Farneback, and Arend Bayer. Gnugo. http://www.gnu.org/
software/gnugo/gnugo.html, 2005. Retrieved September 1st, 2025.

Murray Campbell, A. Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artif. Intell., 134:57–83,
2002.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with gumbel. In International Conference on Learning Representations, 2022.

Richard Delorme. edax-reversi. https://github.com/abulmo/edax-reversi, 2017.
Version 4.4, Retrieved September 1st, 2025.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Moham-
madamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz
Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multi-
plication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis
Antonoglou, and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In
International Conference on Machine Learning, pp. 3769–3778. PMLR, 2020.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016.

10

https://github.com/pasky/pachi
https://github.com/pasky/pachi
http://www.gnu. org/software/gnugo/gnugo.html
http://www.gnu. org/software/gnugo/gnugo.html
https://github.com/abulmo/edax-reversi

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane
Weber, David Silver, and Hado Van Hasselt. Muesli: Combining improvements in policy opti-
mization. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Con-
ference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
4214–4226. PMLR, 18–24 Jul 2021.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and planning in complex action spaces. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 4476–4486. PMLR, 18–24 Jul
2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015.

Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and
Shin Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning. In
Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2023.

Oliver Kroemer, Scott Niekum, and George Konidaris. A review of robot learning for manipulation:
challenges, representations, and algorithms. Journal of Machine Learning Research, 22(1):30:1–
30:82, 2021.

Marc Lanctot, Kate Larson, Yoram Bachrach, Luke Marris, Zun Li, Avishkar Bhoopchand, Thomas
Anthony, Brian Tanner, and Anna Koop. Evaluating agents using social choice theory, 2025.

Junjie Li, Sotetsu Koyamada, Qiwei Ye, Guoqing Liu, Chao Wang, Ruihan Yang, Li Zhao, Tao
Qin, Tie-Yan Liu, and Hsiao-Wuen Hon. Suphx: Mastering mahjong with deep reinforcement
learning. arXiv preprint arXiv:2003.13590, 2020.

Siqi Liu, Ian Gemp, Luke Marris, Georgios Piliouras, Nicolas Heess, and Marc Lanctot. Re-
evaluating open-ended evaluation of large language models. In The Thirteenth International
Conference on Learning Representations, 2025.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Padu-
raru, Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Köppe, Kevin
Millikin, Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert
Tung, Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane,
Thomas Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol
Vinyals, and David Silver. Faster sorting algorithms discovered using deep reinforcement learn-
ing. Nature, 618(7964):257–263, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou, Aaron Van Den Oord, and Oriol Vinyals.
Vector quantized models for planning. In international conference on machine learning, pp.
8302–8313. PMLR, 2021.

Julien Perolat, Bart De Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent de Boer,
Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Mastering the game of
stratego with model-free multiagent reinforcement learning. Science, 378(6623):990–996, 2022.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tord Romstad, Marco Costalba, Joona Kiiski, and et al. Stockfish. https://
stockfishchess.org, 2016. Version 7, Retrieved September 1st, 2025.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist systems, vol-
ume 37. University of Cambridge, Department of Engineering Cambridge, UK, 1994.

Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210–229, 1959.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, Dec 2020.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. Advances in Neural Information Processing Systems, 34:27580–27591, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with
deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap,
Fan Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550:354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

Samuel Sokota, Ryan D’Orazio, J Zico Kolter, Nicolas Loizou, Marc Lanctot, Ioannis Mitliagkas,
Noam Brown, and Christian Kroer. A unified approach to reinforcement learning, quantal re-
sponse equilibria, and two-player zero-sum games. In Deep Reinforcement Learning Workshop
NeurIPS 2022, 2022.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning,
3(1):9–44, Aug 1988.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martı́n-Martı́n, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 28694–28698, 2025.

Gerald Tesauro et al. Temporal difference learning and td-gammon. Communications of the ACM,
38(3):58–68, 1995.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and
Larry Zitnick. ELF OpenGo: an analysis and open reimplementation of AlphaZero. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6244–6253.
PMLR, 09–15 Jun 2019.

12

https://stockfishchess.org
https://stockfishchess.org

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Harm Van Seijen, Hado Van Hasselt, Shimon Whiteson, and Marco Wiering. A theoretical and
empirical analysis of expected sarsa. In 2009 ieee symposium on adaptive dynamic programming
and reinforcement learning, pp. 177–184. IEEE, 2009.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Process-
ing Systems, volume 33, pp. 12163–12174. Curran Associates, Inc., 2020.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Ti-Rong Wu, Ting-Han Wei, and I-Chen Wu. Accelerating and improving alphazero using popula-
tion based training. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 1046–1053, 2020.

Georgios N Yannakakis and Julian Togelius. Artificial intelligence and games, volume 2. Springer,
2018.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D. Lee, and Yuejie Chi. Policy
mirror descent for regularized reinforcement learning: A generalized framework with linear con-
vergence. SIAM Journal on Optimization, 33(2):1061–1091, 2023. doi: 10.1137/21M1456789.

Dengwei Zhao, Shikui Tu, and Lei Xu. Efficient learning for AlphaZero via path consistency. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 26971–26981. PMLR, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A DERIVATION OF THE ANALYTICAL SOLUTION FOR THE REGULARIZED
POLICY OPTIMIZATION PROBLEM

Here, we provide the formal mathematical definitions of the terms in Definition A.1 and present the
proof for the derivation of the optimal solution in Equation 3 in Theorem A.2. For simplicity, we do
not explicitly write the considered state s in the following equations.
Definition A.1 (KL divergence and entropy). Let A be a finite set and ∆ be the set of all proba-
bility mass functions over A. The Kullback-Leibler (KL) divergence between two probability mass
functions π′ ∈ ∆ and π ∈ ∆ over a finite set A is defined as:

DKL(π
′∥π) =

∑
a∈A

π′(a) log
π′(a)

π(a)
, (8)

where it is assumed that π′(a) = 0 =⇒ π′(a) log π′(a)
π(a) = 0 and π(a) > 0 for all a ∈ A. The

entropy of a probability mass function π′ ∈ ∆ over A is defined as:

H(π′) = −
∑
a∈A

π′(a) log π′(a), (9)

where it is assumed that π′(a) = 0 =⇒ π′(a) log π′(a) = 0.
Theorem A.2 (Formal Derivation of the Analytical Solution π′). Let A be a finite set, π(a) a
probability mass function over A, Q(a) : A → R a function, and ∆ the set of all probability mass
functions over A. Consider the following optimization problem:

maximize
π′∈∆

EA∼π′ [Q(A)]− βDKL(π
′∥π) + αH(π′), (10)

where β > 0 and α > 0. Then, the optimal solution is given by:

π′(a) =
1

Z
exp

(
Q(a) + β log π(a)

α+ β

)
, (11)

where

Z =
∑
a∈A

exp

(
Q(a) + β log π(a)

α+ β

)
(12)

is the normalization constant.

Proof. Define the Lagrangian as follows:

L(π′, λ) =
∑
a∈A

π′(a)Q(a)− βDKL(π
′∥π) + αH(π′)− λ

(∑
a∈A

π′(a)− 1

)
, (13)

where λ is the Lagrange multiplier enforcing the constraint that π′(a) is a probability mass function.

Using the method of Lagrange multipliers, we find π′ that satisfies

∇π′L(π′, λ) = 0. (14)

Expanding this condition yields:

∇π′L(π′, λ) = 0 (15)

⇐⇒ ∇π′

(∑
a∈A

π′(a)Q(a)− βDKL(π
′∥π) + αH(π′)− λ

(∑
a∈A

π′(a)− 1

))
= 0 (16)

⇐⇒ Q(a) + β log π(a)− (β + α) (log π′(a) + 1)− λ = 0, ∀a ∈ A (17)

⇐⇒ log π′(a) =
Q(a) + β log π(a)

β + α
+ (const.), ∀a ∈ A. (18)

Since π′(a) must be a probability mass function, the solution is given by Equation 11.

Here, the Lagrange multiplier λ is unrelated to the λ in λ-returns.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B EXPERIMENTAL SETUP DETAILS

We explain the detailed experimental setup in this section. For performance evaluation, we used
the baseline opponent provided by Pgx as an anchored opponent. This anchored opponent selects
actions stochastically based on its policy. The evaluated methods used deterministic policies by set-
ting the temperature parameter to zero for softmax policies and ϵ to zero for ϵ-greedy policies. In
particular, the proposed method uses the greedy policy corresponding to the output π of the policy
network. In the evaluation, all agents select actions without search unifying their test-time compu-
tational resources1. The evaluation was conducted by playing 1024 matches against the anchored
opponent, and the win rate was plotted on the vertical axis of the graph. Draws were treated as
half-wins. The horizontal axis represents the total number of simulator evaluations during training,
which includes all interactions with the environment simulator such as rollouts in tree search. This
choice is consistent with prior literature that measures computational cost in terms of simulator eval-
uations, as seen in studies such as KataGo (Wu et al., 2020). Methods closer to the upper-left in the
graph are interpreted as more efficient, achieving higher performance with fewer simulator accesses.
For each method, experiments were conducted using three random seeds, and the mean and standard
deviation of the obtained metrics were displayed on the graph.

C IMPLEMENTATION DETAILS

This section describes the implementation details used in the experiments. For model-based meth-
ods, Gumbel AlphaZero and AlphaZero, we used open-source implementations provided by Mctx
(Danihelka et al., 2022) and Pgx (Koyamada et al., 2023). Each iteration performed self-play in
parallel across 1024 threads, with each thread executing up to 256 state transitions. If a game ended
before 256 steps, a new game state was immediately initialized to continue the threads. Monte
Carlo tree search was conducted for decision-making with a simulation budget of 32 for each action
selection.

For model-free methods, including PPO, DQN, and the proposed method KLENT, self-play was
similarly conducted in parallel across 1024 threads, but with each thread executing up to 2048 state
transitions without search. The process for initializing new games upon completion was the same
as for model-based methods. The hyperparameters of the proposed method KLENT were set as
(α, β, λ) = (0.03, 0.1, e−1/8), as specified in Appendix B. The hyperparameters for PPO and DQN
were determined referring to the implementation in Stable-Baselines3 (Raffin et al., 2021). For PPO,
the regularization applied a clipping method to impose proximity, with the clipping ratio set to 0.2.
The Generalized Advantage Estimator (GAE) in PPO used the same λ = e−1/8 as KLENT. In the
case of DQN, the ϵ-greedy policy started with an ϵ value of 1.0, which was linearly reduced to 0.05
over the first 108 simulator evaluations, and fixed at 0.05 thereafter.

The network architecture was consistent across all methods and based on ResNetV2 (He et al.,
2016). The number of hidden layer channels was set to 128, for 6 residual blocks. Policy, state-
value, and action-value heads were added as required by each method. Table 3 summarizes the
inclusion of these heads for each method. The network takes a state observation as an input, with
the policy head and action-value head outputting |A|-dimensional vectors, and the state-value head
outputting a scalar value. Due to variations in input and output shapes depending on the games
and methods, the number of parameters varied slightly but remained within the range of 1.7 to 2.1
million across all experimental settings. Training of the networks was conducted with a batch size
of 4096, a learning rate of 0.001, and the Adam optimizer (Kingma & Ba, 2015).

D SENSITIVITY ANALYSIS OF HYPERPARAMETERS IN KLENT

This section examines the performance variation of KLENT with respect to changes in the hy-
perparameters α, β, λ. Specifically, for 9x9 Go, we conducted experiments on 27 combina-
tions of hyperparameter values as follows: (α, β, λ) ∈ {0.01, 0.03, 0.1} × {0.03, 0.1, 0.3} ×
{e−1/4, e−1/8, e−1/16}. For each combination, we used three random seeds and calculated the av-
erage win rate against the anchored opponent during the training steps between 600 and 800 million

1For search-based evaluations, please refer to Appendix H and I.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Summary of the network heads included for each method.

Policy Head State-Value Head Action-Value Head

KLENT Yes No Yes
AlphaZero Yes Yes No
Gumbel AlphaZero Yes Yes No
DQN No No Yes
PPO Yes Yes No

simulator evaluations. The results are shown in Figure 9. Other experimental settings follow those
described in Section 5.

Figure 9: The results of sensitivity analysis in 9x9 Go.

When the coefficients of KL regularization and entropy regularization were both set to small values,
specifically (α, β) = (0.01, 0.03), a notable decline in performance was observed. This is likely due
to the improved policy, defined by Equation 3, becoming overly sharp. These results suggest that the
regularization coefficients need to be set to sufficiently large and appropriate values. On the other
hand, within the range of experiments conducted, the performance appears to be robust to variations
in the time constant of λ-returns.

E DETAILS OF PRELIMINARY EXPERIMENTS ON BIAS-VARIANCE
TRADE-OFF

In Figure 4, we have demonstrated the bias-variance trade-off of λ-returns in 9x9 Go environment.
For the detailed experimental setup, we fixed both the policy and the value function using a pre-
trained baseline model from Pgx library (Koyamada et al., 2023) in order to isolate the effect of
varying λ. Since estimating the bias requires access to the true action value, which is not directly
observable, we approximated the ground-truth value by computing the Monte Carlo return 1,000
times from the same state action pair and taking the average as a surrogate for the true value.

F ADDITIONAL EVALUATION ON THE RELIABILITY OF THE ALPHAZERO
IMPLEMENTATION

F.1 RELIABILITY OF THE PGX IMPLEMENTATION AS A BASELINE

In this study, we adopt the Pgx implementation as the baseline for AlphaZero-family methods. The
original AlphaZero implementation by its authors is not publicly available. Similarly, for Gumbel
AlphaZero, only the MCTS technique has been released through the Mctx library, and the full train-
ing pipeline is not open-sourced. Therefore, reproducing the full experimental setup of AlphaZero-
family methods requires either relying on third-party open-source implementations or building one
from scratch. To the best of our knowledge, Pgx is the only open-source implementation that satis-
fies all of the following criteria:

• Peer-reviewed implementation: Pgx was accepted to the NeurIPS 2023 benchmark track,
indicating that its experimental setup has undergone peer review.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Evaluated across multiple environments: Pgx has been tested on five different board
games, not just a single domain. This suggests that the implementation is robust and not
reliant on environment-specific tricks.

• Performance comparison against other agents: According to the Pgx paper, its baseline
agent outperforms pachi, a reasonably strong Go engine.

• Use of the Mctx library for MCTS: Pgx utilizes the Mctx library for its MCTS technique,
ensuring consistency with the Gumbel AlphaZero implementation, which was developed
by some of the original AlphaZero authors.

For these reasons, we consider Pgx to be a reliable and robust open-source implementation of
AlphaZero-family methods, and adopt it as the baseline in our experiments.

F.2 PERFORMANCE COMPARISON WITH OTHER IMPLEMENTATIONS

To strengthen the credibility of the AlphaZero and baseline implementations used in this
study, we conducted a comparative evaluation against a well-known open-source implementa-
tion available at https://github.com/suragnair/alpha-zero-general. This repository provides pre-
trained models for several games, including 8×8 Othello. We used the provided checkpoint file
pretrained models/othello/8x8 100checkpoints best.pth.tar to construct an
evaluation agent. We conducted a round-robin tournament involving the following four agents,
where each pair played 100 games. Draws were counted as 0.5 wins for each agent.

• Random: An agent that selects legal moves uniformly at random.
• AlphaZero-General: An agent that follows the policy from the above checkpoint of
alpha-zero-general.

• Pgx Baseline: The baseline agent used throughout our experiments.
• Pgx’s AlphaZero: Our implementation of AlphaZero using the Pgx framework, trained

with 800 million simulator evaluations.

The number of wins for each agent against the others is shown in Table 4. Each cell indicates the
number of wins achieved by the row agent when playing against the column agent. As shown in

Table 4: Win rates among AlphaZero implementations and baselines in Othello.

Random AlphaZero-General Pgx Baseline Pgx’s AlphaZero

Random – 3 0 3
AlphaZero-General 97 – 17 13
Pgx Baseline 100 83 – 42
Pgx’s AlphaZero 97 87 58 –

the table, AlphaZero-General achieves a 97% win rate against the random agent, confirming that it
is significantly stronger than random. However, both the Pgx Baseline and Pgx’s AlphaZero imple-
mentation clearly outperform AlphaZero-General, achieving win rates of 83% and 87% respectively.
These results support the reliability and strength of the implementations used in our experiments.

G EXTENDED EXPERIMENTS ON ROLLOUT COUNTS AND TRAINING
BUDGETS FOR ALPHAZERO

This section presents additional experiments to examine how AlphaZero’s performance is affected
by the number of rollouts per move and the total training budget.

G.1 PERFORMANCE OF ALPHAZERO WITH VARYING ROLLOUT COUNTS IN 9X9 GO

AlphaZero performs Monte Carlo Tree Search (MCTS) at each move, where the number of roll-
outs corresponds to the number of simulator evaluations used per search. We investigated how this
parameter affects learning efficiency.

17

https://github.com/suragnair/alpha-zero-general

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The experiments were conducted in the 9x9 Go environment, using rollout counts of 2, 4, 8, 16, 32,
and 64. The total number of simulator evaluations used during training was fixed at 200M, 400M,
600M, and 800M. Evaluation was performed by measuring the win rate against a fixed baseline
agent. Note that for a fixed training budget, increasing the rollout count reduces the number of
parameter updates, since each update consumes a number of simulator evaluations proportional to
the rollout count. This highlights a trade-off: deeper search per move comes at the cost of fewer
parameter updates. The results are shown in Table 5.

Table 5: Performance of AlphaZero with different rollout counts (9x9 Go). Each entry shows the
win rate (%) against the baseline agent.

Simulator Evaluations 200M 400M 600M 800M

AZ (2 rollouts) 7 7 7 8
AZ (4 rollouts) 16 35 51 61
AZ (8 rollouts) 20 39 56 69
AZ (16 rollouts) 15 28 42 57
AZ (32 rollouts) 6 13 20 34
AZ (64 rollouts) 5 7 11 15
(cf: KLENT) 53 80 85 89

The results indicate that in 9x9 Go, setting the rollout count to around 8 leads to the most efficient
learning for AlphaZero. Nevertheless, even when the rollout count is optimized, KLENT achieves
substantially higher performance under the same training budget, highlighting its superior efficiency.

G.2 PERFORMANCE OF ALPHAZERO WITH VARYING ROLLOUT COUNTS IN 19X19 GO

We also tuned the number of rollouts in 19×19 Go with values of 4, 16, 64, and 256. As shown in
Figure 10, 16 rollouts achieved the most efficient learning. Accordingly, we reported this result as
the performance of AlphaZero in Figure 8 in Section 5.3.

Figure 10: The results of rollout count tuning in 19x19 Go. 16 rollouts achieve the most efficient
learning.

G.3 PERFORMANCE OF ALPHAZERO WITH INCREASED TRAINING BUDGETS

We also conducted additional experiments to examine AlphaZero’s asymptotic performance by in-
creasing the total training budget. The experimental settings were the same as above, and the number
of simulator evaluations was extended up to 4,800M. The results are presented in Table 6.

These results show that AlphaZero reaches approximately 89% win rate when the total training
budget is increased to around 3,200M to 4,000M simulator evaluations. This confirms the intuitive
expectation that AlphaZero can achieve strong asymptotic performance given sufficient training
budget. At the same time, KLENT achieves comparable performance using only 800 million simu-
lator evaluations, which is approximately four to five times fewer than those required by AlphaZero,
underscoring its efficiency advantage.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Performance of AlphaZero under increased training budgets (9x9 Go). Each entry shows
the win rate (%) against the baseline agent.

Simulator Evaluations 800M 1,600M 2,400M 3,200M 4,000M 4,800M

AZ (2 rollouts) 8 18 17 18 19 18
AZ (4 rollouts) 61 75 75 85 86 85
AZ (8 rollouts) 69 79 85 85 85 86
AZ (16 rollouts) 57 80 83 88 89 89
AZ (32 rollouts) 34 60 71 78 83 83
AZ (64 rollouts) 15 34 51 59 67 72
(cf: KLENT) 89 – – – – –

H STRENGTH SCALING WITH ADDITIONAL TEST-TIME COMPUTATION

Additional simulations during test time can improve the strength of agents. In this section, we
investigate how performance scales with the number of simulations for models trained with KLENT
and those trained with Gumbel AlphaZero in 9x9 Go. For both methods, parameters trained with
800 million simulator evaluations are used. We adopt an off-the-shelf Gumbel AlphaZero Monte
Carlo Tree Search (MCTS) for test-time computation, applying the same procedure to both sets
of parameters. While Gumbel AlphaZero learns policy and state-value networks, KLENT trains
policy and action-value networks. To address this difference, for KLENT, the inner product of the
policy and action-value is used as the state-value estimate during MCTS. The anchored baseline
opponent uses parameters provided by Pgx and runs with 800 simulations. Koyamada et al. (2023)
have reported that this agent has achieved 62 wins and 38 losses against Pachi (Baudiš & Gailly,
2011) with 10,000 simulations. We measure the win rates of the evaluated target agents, using either
KLENT or Gumbel AlphaZero parameters, under 0, 16, 32, 64, 100, 200, 400, and 800 simulations.
Here, 0 indicates that the agent conducts no search and deterministically chooses action solely based
on its policy network. In this experiment, the evaluation is conducted for 100 matches. The win rates
are measured with three random seeds and the mean and the standard deviation are plotted.

The results are shown in Figure 11, where the horizontal axis represents the number of simulations
and the vertical axis represents win rates against the anchored baseline. KLENT demonstrates that
it can effectively scale its strength with test-time computation. In this experiment, MCTS was per-
formed by using the inner product of the policy and action-value as an estimate for the state-value.
However, since KLENT’s network provides action-values for individual actions, it may be possible
to achieve even higher performance in the future by designing a test-time decision-making algorithm
specifically tailored for this architecture.

Figure 11: Performance changes with increased test-time computation budget. The simulation bud-
get of the anchored baseline opponent is fixed at 800. The horizontal axis represents the simulation
budget for the evaluated agents, while the vertical axis shows their win rate against the anchored
opponent. The results demonstrate that agents using parameters trained with KLENT can scale their
strength as the number of test-time simulations increases.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Anchored Opponent Winrate of KLENT’s side

GnuGo (Level 10) 100%
Pachi (10K rollouts) 81%

Table 7: The results of head-to-head matches against GnuGo and Pachi.

I HEAD-TO-HEAD MATCHES

I.1 EVALUATION AGAINST PACHI AND GNUGO IN 9X9 GO

In the domain of 9x9 Go, we conducted additional head-to-head experiments against GnuGo and
Pachi, which are baselines confirmed to have been used in prior studies. The detailed configurations
of these agents are provided below.

• Evaluated Agent

– KLENT: The model trained with KLENT. Similarly to Appendix H, Gumbel Alp-
haZero was employed as the search algorithm at test time, with the number of rollouts
set to 2,000 (approximately two seconds per move). For the neural network parame-
ters, we used the model trained by KLENT with 800M simulator evaluations. While
the MCTS in Gumbel AlphaZero requires estimates of the policy and state value,
KLENT’s neural network estimates the policy and action values. To account for this
difference, we used the inner product of the policy and action-value predictions as the
state-value estimate.

• Anchored Opponent

– GnuGo (Bump et al., 2005): A classical and lightweight MCTS-based Go engine.
The strength level was set to 10 (the strongest level), following the evaluation setting
in prior work (Hessel et al., 2021).

– Pachi (Baudiš & Gailly, 2011): A fairly strong MCTS-based Go engine. This program
has been reported to have the strength of a KGS 7-dan player in 9x9 Go (Baudiš &
Gailly, 2018), which corresponds to the top 0.5–1% of players on Kiseido Go Server.
The strength was set by configuring the MCTS rollout count to 10,000, consistent
with the evaluation settings in prior work (Hessel et al., 2021; Danihelka et al., 2022;
Koyamada et al., 2023).

Under these conditions, we conducted 100 games, and the win rate of KLENT is presented in Table
7. These results demonstrate the win rates against agents that have been used for evaluation in prior
studies, and we believe they can serve as one of the credible reference points.

I.2 HEAD-TO-HEAD MATCH AGAINST ALPHAZERO IN 19X19 GO

We additionally conducted direct head-to-head matches between the final checkpoints trained in
Section 5.3. In this setting, the evaluation used MCTS with 800 rollouts per move. The AlphaZero
checkpoint was trained with 16 rollouts, which was the strongest among the tested settings. Under
this protocol, KLENT won all evaluation games, yielding a 100% win rate against AlphaZero trained
with the same simulator budget. These result also support that KLENT can achieve efficient learning
under a fixed training budget.

J PERFORMANCE COMPARISON IN ELO RATINGS

While win rate was used as the primary metric for comparing trained agents in the main paper, for
reference, we provide Elo scores in Figure 12. Specifically, we fix the Elo score of the Pgx baseline
agent at R0 = 1000, and apply the following standard formula for Elo rating:

R = 400 log10

(
W

L

)
+R0,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

where W denotes the win rate against the Pgx baseline and L = 1 −W is the corresponding loss
rate. Since the mapping from win rate to Elo is monotonic, this transformation does not alter our
primary claim that KLENT outperforms the baselines under a fixed computational budget. However,
Elo scores must be interpreted with care, as they are highly sensitive to the composition of the
tournament pool. Indeed, in our preliminary experiments, we observed that Elo ratings of fixed
agents could vary significantly when the set of evaluated agents is modified. This sensitivity has also
been pointed out in prior works (Balduzzi et al., 2018; Liu et al., 2025; Lanctot et al., 2025). These
studies highlight that Elo ratings can be manipulated by adding redundant or biased agents, even
when anchor points are fixed. Therefore, cross-paper comparisons of Elo scores require identical
tournament configurations, which is difficult in our case since neither the full tournament details of
the Pgx implementation nor those of Gumbel AlphaZero are publicly available. For this reason, we
present Elo scores only as supplementary information.

Figure 12: Performance comparison in Elo scores. Win rates are converted by fixing the Pgx
baseline to Elo 1000. Note that Elo-based cross-paper comparisons are unreliable due to sensitivity
to tournament configurations.

K COMPUTATIONAL REQUIREMENTS

KLENT algorithm can be run on a single NVIDIA A100 GPU. This section describes the computa-
tional and memory requirements of the algorithm.

Memory Usage KLENT stores improved policies in a replay buffer for reuse. In our experiments,
memory usage was not an issue on a single A100 GPU with 80 GB of memory. Even when memory
becomes a limiting factor, this issue can be mitigated using a sparse representation. Since the im-
proved policy assigns non-zero probabilities only to legal actions and sets all others to zero, sparse
storage formats can significantly reduce memory consumption.

To illustrate this, we collected states from 10,000 games played by baseline agents implemented
with Pgx and computed the average and maximum number of legal actions per game. The results
are shown in the table below.

These results indicate that the number of legal actions is often much smaller than the full action
space. Therefore, sparse representations provide an effective solution in memory-constrained set-
tings.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8: Statistics of legal actions collected from 10,000 games for each environment.

Game Action Space Size Mean Legal Actions Max Legal Actions

Animal Shogi 132 7.5 36
Gardner Chess 1,225 9.5 40
9x9 Go 82 42.3 82
Hex 122 90.6 121
Othello 65 8.0 22

Computation Time One of KLENT’s strengths lies in its training efficiency. For example, in the
9x9 Go environment, KLENT reduced the time required to surpass the baseline agent by more than
25% compared to Gumbel AlphaZero and AlphaZero.

This efficiency stems from KLENT requiring fewer simulator interactions and neural network eval-
uations per training sample. As a result, it offers practical advantages in terms of wall-clock training
time and computational cost.

L THE USE OF LARGE LANGUAGE MODELS

We have utilized large language models to polish our writing and correct grammatical errors.

22

	Introduction
	Problem Setting
	Reinforcement Learning
	Board Games

	Related Work
	Regularized Policy Optimization
	Search-based Approaches
	Game-Specialized Approaches

	KLENT: KL and Entropy Regularized Policy Optimization
	Policy Update Rule
	Learning Action-Value Function
	Overall Algorithm

	Experiments
	Performance Comparison
	Ablation Study
	Scalability to a Large-Scale Game

	Conclusions
	Derivation of the Analytical Solution for the Regularized Policy Optimization Problem
	Experimental Setup Details
	Implementation Details
	Sensitivity Analysis of Hyperparameters in KLENT
	Details of Preliminary Experiments on Bias-Variance Trade-Off
	Additional Evaluation on the Reliability of the AlphaZero Implementation
	Reliability of the Pgx Implementation as a Baseline
	Performance Comparison with Other Implementations

	Extended Experiments on Rollout Counts and Training Budgets for AlphaZero
	Performance of AlphaZero with Varying Rollout Counts in 9x9 Go
	Performance of AlphaZero with Varying Rollout Counts in 19x19 Go
	Performance of AlphaZero with Increased Training Budgets

	Strength Scaling with Additional Test-time Computation
	Head-to-Head Matches
	Evaluation against Pachi and GnuGo in 9x9 Go
	Head-to-Head Match against AlphaZero in 19x19 Go

	Performance Comparison in Elo Ratings
	Computational Requirements
	The Use of Large Language Models

