
DartQuant: Efficient Rotational Distribution
Calibration for LLM Quantization

Yuantian Shao1,2∗ Yuanteng Chen2,3,4∗ Peisong Wang2,3† Jianlin Yu5

Jing Lin5 Yiwu Yao5 Zhihui Wei1 Jian Cheng2,3
1Nanjing University of Science and Technology,

2 C2DL, Institute of Automation, Chinese Academy of Sciences,
3School of Artificial Intelligence, University of Chinese Academy of Sciences,

4Zhongguancun Academy,
5Huawei Technologies Co., Ltd.

Abstract

Quantization plays a crucial role in accelerating the inference of large-scale mod-
els, and rotational matrices have been shown to effectively improve quantization
performance by smoothing outliers. However, end-to-end fine-tuning of rota-
tional optimization algorithms incurs high computational costs and is prone to
overfitting. To address this challenge, we propose an efficient distribution-aware
rotational calibration method, DartQuant, which reduces the complexity of rota-
tional optimization by constraining the distribution of the activations after rotation.
This approach also effectively reduces reliance on task-specific losses, thereby
mitigating the risk of overfitting. Additionally, we introduce the QR-Orth opti-
mization scheme, which replaces expensive alternating optimization with a more
efficient solution. In a variety of model quantization experiments, DartQuant
demonstrates superior performance. Compared to existing methods, it achieves
47× acceleration and 10× memory savings for rotational optimization on a 70B
model. Furthermore, it is the first to successfully complete rotational calibra-
tion for a 70B model on a single 3090 GPU, making quantization of large lan-
guage models feasible in resource-constrained environments. Code is available at
https://github.com/CAS-CLab/DartQuant.git.

1 Introduction

Large Language Models (LLMs) [1, 2, 3] have been a key breakthrough in natural language processing,
demonstrating exceptional language understanding and generation capabilities through training on
vast datasets with numerous parameters. These models perform exceptionally well on multiple
tasks, including text generation, translation, and question-answering systems [4, 5]. However, the
high computational and memory demands of LLM inference severely limit their deployment in
resource-constrained environments [6, 7, 8, 9].

Current methods for reducing computational cost and improving the inference efficiency of deep
learning models and LLMs include model pruning, knowledge distillation, parameter sharing, and
quantization [10, 11, 12, 13, 14, 15]. Among these, post-training quantization (PTQ) stands out as a
crucial technique to reduce computational costs due to its advantage of bypassing complex training
processes, making it highly practical for real-world deployment [16, 17, 18, 19, 20].

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CAS-CLab/DartQuant.git

In LLM quantization, activations pose a greater challenge than weights due to the frequent presence of
extreme outliers, which can significantly degrade model accuracy [21]. To address this issue, various
outlier-handling techniques have been proposed. For example, high-bit protection mechanisms
preserve the precision of outliers, while diagonal matrices help smooth extreme values in activations
[22, 23]. Recent studies have shown that rotation matrices and affine transformations are highly
effective in reducing outliers in activations, significantly improving quantization performance [24].
Rotation matrices are invertible, preserve vector norms, and can be seamlessly integrated into model
architectures without introducing additional inference costs, making them a mainstream approach
for quantization [25]. Although random Hadamard rotations can improve performance to some
extent, they are not optimal. SpinQuant demonstrates that training rotation matrices further enhances
quantization performance [26].

Figure 1: Comparison of computational costs
across different rotation optimization methods.

However, existing methods (e.g., SpinQuant
[26], OSTQuant [27]) treat the rotation matrices
as network parameters and fine-tune them end-
to-end, which incurs substantial computational
and memory costs associated with quantization.
As shown in Figure 1, optimizing the rotation
matrices for a 70B model requires hundreds of
GiB of GPU memory and tens of gpu hours
of computation, which conflicts with the fast
deployment goals of PTQ algorithms. More-
over, end-to-end fine-tuning of rotation matri-
ces presents unique challenges due to the com-
plexity of optimizing on the rotation manifold.
Specifically, rotation matrices must be carefully
optimized to preserve orthogonality, which ne-
cessitates the use of specialized techniques such
as Cayley or Riemannian SGD [28, 29]. These
methods are computationally intensive and incur significant time overhead. Additionally, using small
sample sizes for end-to-end fine-tuning poses a substantial risk of overfitting [27], which would
worsen the optimization process.

To address these challenges, we propose DartQuant, a distribution-based rotation matrix calibration
method that eliminates the need of end-to-end fine-tuning, significantly reducing the resource de-
mands of rotation optimization while achieving higher accuracy. To mitigate overfitting, we redefine
the rotation optimization problem from the perspective of distribution calibration, i.e., to transform
the activations into the distribution most suitable for quantization. Based on the distribution trans-
formation function that expands small value ranges and compresses large value ranges, we design
the Whip loss. Unlike others that directly constrain outliers, Whip loss optimizes the activation
distribution, making it more uniform and reducing the impact of outliers, thus lowering quantization
errors. Finally, we introduce QR-Orth, an optimization method that applies orthogonal constraints
using QR decomposition, avoiding complex projection calculations and significantly reducing the
computational complexity of orthogonal optimization, thereby enhancing calibration efficiency.

Our contributions are summarized as follows:

• We introduce fast LLM Quantization with rotational distribution calibration framework, avoid-
ing the excessive computational and memory costs of end-to-end fine-tuning paradigm. Based on
this, the Whip loss is designed, which drives rotated activations toward a uniform distribution,
effectively reducing quantization error and improving calibration efficiency.

• We present the QR-Orth optimization scheme, which ensures orthogonality of rotations via QR
decomposition, eliminating the need for complex orthogonal optimizers. This reduces computa-
tional complexity and further enhances calibration efficiency.

• The proposed DartQaunt framework achieves superior quantization performance while significantly
accelerating the rotation matrix calibration. For the 70B model, it delivers a 47× speedup in
terms of GPU hours and reduces memory usage by 10× compared to existing methods.
Notably, DartQuant enables rotation calibration of the 70B model on a single 3090 GPU in ∼3
hours, greatly reducing calibration costs.

2

2 Related Work

2.1 Challenges in LLM Quantization

Large language models (LLMs) face challenges in quantization due to activation outliers, which take
up most of the quantization range and reduce accuracy. To address this, researchers have proposed
various strategies. Early methods used mixed precision, applying different precisions to weights and
activations to reduce errors. However, mixed precision methods are complex and hinder inference
speed and memory efficiency.

2.2 Outlier Handling through Scaling

To address outliers in activation quantization, scaling-based methods have been proposed.
SmoothQuant [23] transfers outliers from activations to weights using scale invariance, reducing
activation quantization errors. Outlier Suppression+ [21] addresses the asymmetric distribution of ac-
tivations across channels by applying channel-wise scaling and shifting. OmniQuant [19] introduces
learnable weight clipping and fine-tunes quantization errors using blockwise error minimization.
Although scaling methods reduce outliers in activations, they often shift the quantization difficulty to
weights. This does not fully solve the problem, especially in the presence of extreme outliers [30].
Efficiently handling outliers without complicating weight quantization remains a key challenge.

2.3 Outlier Handling through Rotation

Recent research shows that rotation matrices offer unique advantages in handling outliers in activation
quantization. QuIP [31] first introduces incoherent processing to reduce the impact of outliers in both
the weight and activation spaces. QuIP# [32] further improves speed by using randomized Hadamard
transforms, which also have better theoretical properties. Building on this, QuaRot [25] combines the
outlier suppression ability of rotation matrices with invariance transformations, applying it to large
models like LLaMA, significantly improving PTQ performance. QuaRot also finds that Hadamard
transforms outperform random orthogonal transformations in quantization. SpinQuant [26] extends
the rotation matrix as a trainable parameter and employs the Cayley optimizer [28] for end-to-end fine-
tuning. QServe [27] combines rotation and scaling techniques, using random Hadamard transforms
and scaling methods to suppress outliers across different modules, enhancing performance under
low-bit quantization. Further, OSTQuant [27] treats both rotation and scaling as trainable parameters
and employs a KL-top loss for end-to-end fine-tuning, achieving better quantization accuracy.

Existing end-to-end fine-tuning methods for optimizing rotation matrices, while relatively simple
to implement, typically incur significant optimization costs and are prone to overfitting. These
methods also require high-quality calibration samples. Furthermore, the orthogonal optimizers used
during optimization are computationally expensive, as they need to perform optimization on complex
manifolds, adding additional challenges. In contrast, DartQuant significantly improves the efficiency
of rotation matrix calibration. While maintaining comparable accuracy, it achieves a calibration speed
that is more than 47× faster than existing methods.

(a) Original. (b) Hadamard. (c) SpinQuant. (d) OSTQuant. (e) DartQuant.

Figure 2: Effects of different transformations on activation distribution.

3 Preliminaries and Difficulty

The Transformer architecture, commonly used in large language models (LLMs), consists of multi-
head self-attention modules and feedforward network modules, both primarily composed of linear
layers. Let the output of a linear layer be represented as Y = XW⊤, where X ∈ RT×Cin denotes the
input activation, and W ∈ RCout×Cin represents the weight matrix. Based on rotational invariance, we
can insert an orthogonal transformation R into the linear layer without altering the output, yielding

3

(a) The number of outliers. (b) Quantization error.

Figure 3: Effects of different transformations
on 1000 activations in layer 20 for various mod-
els. The rotation matrix optimized by DartQuant
achieves the lowest number of outliers and the
smallest quantization error.

Table 1: Impact of overfitting: Calibration on
different data distribution on LLaMA models.

Model Datasets WiKi PTB C4

2 7b

Baseline 5.47 37.91 7.26
WiKi 5.94 45.13 8.13
PTB 6.02 38.24 8.13
C4 6.05 44.99 8.02

2 13b

Baseline 4.88 50.94 6.73
WiKi 5.21 58.39 7.40
PTB 5.33 49.14 7.41
C4 5.33 60.59 7.32

Y = (XR)(R⊤W⊤), where R ∈ RCin×Cin is an orthogonal matrix satisfying RR⊤ = I . By
combining R with the previous weight matrix and R⊤ with the current layer’s weight matrix, we can
rotate the activation vector without introducing any additional computational cost.

Similarly, under the condition that the model’s output remains unchanged, we can insert four orthog-
onal matrices R1, R2, R3, R4 within the Transformer block, as outlined in [26] and Appendix A.
Specifically, by multiplying R1 on the right side of Wq,Wk,Wv,Wup,Wgate, and multiplying R⊤

1
on the left side of Wout and Wdown, an equivalent transformation is achieved. Similarly, R2 can be
inserted between Wv and Wout. R3 can be inserted between the rotated encodings of Q and K. R4

can be inserted before Wdown. Finally, Wembedding is multiplied on the left by RT
1 , and Wlm_head is

multiplied on the right by R1, completing all the equivalent transformations. This process is referred
to as the “Computational Invariance” [33].

QuaRot [25] demonstrates that using random Hadamard rotation can achieve good results; however,
this is not optimal, as shown in Figure 2. Methods like SpinQuant [26] and OSTQuant [27] treat
the rotation matrix R as learnable network parameters and fine-tune them in an end-to-end manner
with pseudo-quantizers inserted, resulting in better quantization performance. Although end-to-end
fine-tuning is simple to implement, the complex computational process faces resource challenges and
optimization difficulties. In Figure 3a, we present the number of outliers among 1000 activations
in the 20th layer of various models after different transformations. Figure 3b shows the average
quantization error of these samples (statistics for activations from other layers are in Appendix F). It
is evident that the transformations in end-to-end fine-tuning do not significantly reduce the number of
outliers in the activations, nor do they notably lower the quantization error, highlighting the limitations
of end-to-end fine-tuning.

Moreover, end-to-end fine-tuning based on calibration sets not only consumes considerable compu-
tational resources but also tends to lead to overfitting on the calibration set [34, 27]. As shown in
Table 1, fine-tuning methods exhibit a significant performance improvement on the corresponding test
sets, with the improvement being particularly pronounced on the PTB dataset. A possible explanation
is that the limited and relatively simple calibration data often fail to fully cover the parameter space
of large models, causing the model to overfit to a narrow feature distribution, thereby limiting its
generalization and emergent capabilities [27].

In addition, optimizing the rotation matrix requires the use of orthogonal optimizers to ensure the
matrix’s orthogonality. These optimizers are based on Riemannian optimization on the Grassmanian or
Stiefel manifold, involving complex projection computations [28, 29]. As a result, their computational
time is approximately twice that of standard optimizers. This, in turn, further increases the cost of
rotation optimization and slows down the optimization process.

4 Method

In this section, we provide a detailed description of the proposed DartQuant method. DartQuant is
comprised of three key components: the rotational distribution calibration, the Whip loss function,
and QR-Orth optimization. Each of these components addresses the primary challenges outlined
earlier. Figure 4 illustrates the overall framework, highlighting the flow and interactions between
these components.

4

calibration results

x

x@R_init

x@R_dart

large and
numerous
outliers

small and
fewer
outliers

almost
w/o
outliers

25/75 percentile
1/99 percentile

min/max percentile

rotational distribution calibration

embedding

1. avoid overfitting
2. decrease computation

(w/o end2end)

activations(X)

MHSA

FFN

LM head

Z

loss=whip(O)

forward
backward

QR decomposition

O=X@R

R

···

···

one-shot calibration data collection iterative rotation calibration

Figure 4: Left: The DartQuant implementation process, with Z representing the latent parameters in
QR-orth and R as the applied rotation matrix. Right: The change in rotation matrix before and after
calibration.

4.1 Rotational Distribution Calibration

End-to-end fine-tuning typically requires more data, and the optimization of rotation matrices depends
on the task-specific loss, which significantly increases the risk of overfitting. For LLMs, end-to-end
fine-tuning also entails substantial computational and memory overheads. To address these challenges,
we redefine the rotation optimization problem and propose a rotational distribution calibration.

Specifically, we revisit the optimization objective of the rotation matrix from the perspective of feature
distribution transformation. We redefine the problem as finding a rotation matrix that transforms the
activations into the distribution most suitable for quantization. This approach reduces the reliance on
task-specific loss during calibration, thereby mitigating the risk of overfitting.

Previous studies have shown that outliers are the primary cause of activation quantization loss.
Therefore, we constrain the activation distribution after rotation by minimizing the number of outliers
in the transformed activations, i.e.

min
R

cin∑
i=1

I(|(Rx)i| > τ) (1)

The function I(·) represents the indicator function, and τ is the threshold used to identify outliers.
Although this problem cannot be directly solved using standard stochastic gradient descent, we can
resort to approximation methods for calibration. In statistics, variance is commonly used to measure
the dispersion of data; however, using variance as an optimization objective is not ideal. Due to
the symmetric distribution of activations [34], the variance of activations typically corresponds to a
constant multiple of the activation vector’s norm square. Furthermore, the norm-invariance property
of the rotation matrix introduces significant challenges when directly optimizing using variance (as
shown in Figure 7a). In addition to variance, kurtosis is frequently used to measure the heaviness
of the distribution’s tails, making it a suitable alternative objective. However, since the rotated
activations are already close to a Gaussian distribution with relatively few outliers, optimizing with
kurtosis is slow (as shown in Figure 7a). Therefore, there is an urgent need for a better optimization
objective to constrain the activation distribution.

4.2 Activation Uniformity via Whip Loss

To better reduce outliers, we propose a new optimization objective that constrains the activation
distribution to approach a uniform distribution, thereby effectively reducing the number of outliers in
the rotated activations.

As shown in Figure 2a and Appendix G, the activation tokens exhibit a distribution near Laplace.
Assuming that the activation tokens follow a Laplace distribution with mean µ = 0 and scale
parameter b, the probability density function (PDF) is given by:

f(x) =
1

2b
exp(−|x|

b
). (2)

5

hard to quantize easy to quantize

outlieroutlier

Probability

0

0.5 0.5

0

Rotate

flatten

gathergather

outlier outlier

peak

0 𝜏𝜏-𝜏𝜏0 𝜏𝜏-𝜏𝜏

𝑈𝑈𝑋𝑋(𝑥𝑥)

0

c

-c

disperse

compress disperse

compress

Figure 5: Intuition behind the distribution transformation: UX(x) transforms the Laplace distribution
into a uniform distribution by flattening the peak and aggregating the outliers.

In statistics, cumulative distribution functions (CDFs) are often used to transform one distribution
into another [35]. To convert x ∼ Laplace(0, b) to a uniform distribution over the interval [−τ, τ],
the transformation function is the following:

UX(x) = 2τ [

∫ x

−∞

1

2b
exp(−|x|

b
) dt− 1

2
]

=

{
τ [exp(xb)− 1], x ≤ 0,

τ [1− exp(−x
b)], x > 0.

(3)

As shown in Figure 5, the left side presents the function graph of UX(x), where the intervals near
the origin are expanded, while those further from the center are compressed. The right side visually
illustrates the impact of this transformation on the distribution. UX(x) spreads values originally
concentrated around the center over a wider range, thus smoothing the peak of the distribution.
Meanwhile, outliers farther from the center are gathered together, shrinking the overall distribution
range, ultimately resulting in a uniform distribution within the interval [−τ, τ].
Inspired by the mechanism of UX(x), we propose the Whip loss function:

Whip =

cin∑
i=1

exp(−|xi|). (4)

Here, x = [x1, x2, . . . , xCin] ∈ RCin denotes the activation vector. Clearly, the Whip function is
continuously differentiable, and has larger gradients near zero. When used as a loss function, smaller
values in the rotated activation vector are pushed away from zero. In other words, the Whip function
encourages the rotation to smooth the sharp central peak of the Laplace distribution, producing
a more uniform distribution. As the magnitudes of several small-value channels in the activation
vector increase, the outliers are suppressed due to the norm-invariance constraint. This results in an
“aggregation” effect in the activation values. As a result, the overall activation distribution tends to
converge toward a uniform distribution within a smaller interval, thereby effectively reducing the
quantization error.

4.3 Enforcing Orthogonality with QR-Orth

To satisfy the orthogonality constraint, the rotation matrix must be optimized on the Grassmannian
or Stiefel manifold, which necessitates the use of specialized optimizers, such as the Cayley SGD
[28] used in SpinQuant [26]. Unlike gradients in Euclidean space, gradients on manifolds require
complex projection operations, resulting in significantly higher computational costs. To avoid the
computational complexity of orthogonal optimizers, we propose the QR-Orth optimization method.

Specifically, we can obtain an orthogonal matrix R ∈ Rn×n and an upper triangular matrix U ∈ Rn×n

by performing a QR decomposition on any matrix Z ∈ Rn×n. Based on this relationship, we design

6

Algorithm 1 Rotational Distribution Calibration
with QR-Orth Optimizer

1: Input: LLM model LLM , calibration se-
quence S, initial latent parameter Z0 ∈ Rn×n,
max iterations T , learning rate η.

2: Output: Rotational matrix R ∈ Rn×n.
3: X ← LLM(S)
4: X ← token_sampling(X)
5: Z ← Z0

6: for k = 0 to T do
7: R← qr_decomposition(Z)
8: O ← X@R
9: L ←Whip(O)

10: Z ← Z − η ∂L
∂Z

11: end for

the rotational distribution calibration method
with QR-Orth optimizer shown in Algorithm 1.
We use the orthogonal matrix R, obtained from
the QR decomposition, as the rotation matrix
for the actual computation. The latent parameter
Z is treated as a optimization parameter and is
discarded after calibration. By optimizing the
latent matrix Z, we indirectly optimize the ro-
tation matrix R. In this way, we can use any
optimizer to optimize the rotation matrix.

When the matrix size becomes large, the Cayley
optimizer introduces a computational overhead
of approximately 6n3 compared to standard op-
timizers. In contrast, QR-Orth only incurs the
cost of the QR decomposition, with a compu-
tational complexity on the order of 4

3n
3 (see

Appendix B for a detailed complexity deriva-
tion). Although QR decomposition usually requires iterative calculations, the significant reduction in
overall computational load has brought about a 1.4x acceleration effect. In practice, QR-Orth can
easily integrate with various optimizers such as SGD or Adam, making it highly adaptable. This
flexibility makes QR-Orth a promising solution for optimizing orthogonal matrices.

5 Experiment

Model and Dataset. We evaluate our method on the Llama series models, including Llama-2
(7B/13B/70B) [1] and Llama-3 (8B/70B). Moreover, we also provide results on two popular MoE
models: Mixtral-8x7B [36] and Deepseek-MoE [37]. We report perplexity (PPL) scores on the
WikiText2 [38], C4 [39], and PTB [40]. Additionally, we assess model performance on nine zero-
shot evaluation tasks, including LAMBADA [41], HellaSwag [42], PIQA [43], WinoGrande [44],
OpenBookQA [45], SIQA [46], MMLU [47], ARC-E, and ARC-C [48].

Baselines and Implementation Details. In addition to the basic RTN method, we compare our
approach with several other methods, including SmoothQuant [23], GPTQ [49], OmniQuant [19],
and current state-of-the-art methods such as Quarot [25], SpinQuant [26] and OSTQuant [27] for
weight and activation quantization.

In the main results, we apply GPTQ to reconstruct the weights. To do so, we use 128 samples from
WikiText2, with a sequence length of 2048 tokens, as the calibration set for GPTQ, following the
standard GPTQ setup. All activations are quantized using per-token asymmetric quantization. We
optimize all orthogonal matrices using SGD combined with QR-Orth. During the orthogonal matrix
calibration phase, we use 128 samples from WikiText2, each with a token length of 2048.

5.1 Main Results

Table 2 evaluates six models across four common bit-width settings, offering practical guidance for
selecting appropriate rotation schemes. DartQuant utilizes learned rotation matrices R1 and R2 ,
which can be fused into the model weights during inference, eliminating any additional computational
overhead. In contrast, online Hadamard rotations (R3 and R4) leverage fast Hadamard kernels
for efficient inference computation [32]. As shown in Table 2, when both weights and activations
are quantized to 8 bits, the performance differences among methods are minimal. However, when
weights are quantized to 4 bits and activations to 8 bits, methods like SmoothQuant and OmniQuant
experience significant performance degradation. This is primarily due to SmoothQuant’s design,
which complicates weight quantization and increases quantization errors, leading to a substantial
drop in performance. In contrast, other methods generally maintain the model accuracy.

Although rotation transformation methods improve quantization performance when activations are
quantized to 8 bits, the additional computational cost associated with R3 and R4 makes this approach
less efficient. When activations are quantized to 4 bits, omitting the rotation matrix results in a
significant performance drop. Furthermore, DartQuant, SpinQuant, and OSTQuant, which optimize

7

Table 2: Comparison of the average Perplexity Scores across three datasets and the average accuracy
on nine Zero-shot Common Sense Reasoning tasks. The results for all comparison methods were
obtained using their publicly available codebases. Full results can be found in the Appendix C.

Bits
(W-A-KV) Method Llama-2 7B Llama-2 13B Llama-2 70B Llama-3 8B Llama-3 70B

PPL ↓ 0-shot9 ↑ PPL ↓ 0-shot9 ↑ PPL ↓ 0-shot9 ↑ PPL ↓ 0-shot9 ↑ PPL ↓ 0-shot9 ↑
16-16-16 FloatingPoint 16.88 61.16 20.85 64.28 11.09 69.53 8.92 66.04 6.19 72.70

4-8-16

RTN 18.15 59.37 21.77 62.49 12.53 67.83 10.35 62.97 12.38 67.18
SmoothQuant 332.17 30.97 1510.66 29.89 180.96 38.36 112.46 31.94 544.68 33.95

GPTQ 6977.62 60.03 20.76 63.70 11.90 69.03 10.27 64.79 6.89 69.44
OmniQuant 426.53 59.15 20.74 62.95 14.06 67.18 10.48 62.72 14.95 59.94

QuaRot 18.41 59.92 22.02 63.50 11.15 69.09 9.59 64.92 6.92 70.75
SpinQuant 17.85 60.10 21.15 63.53 11.29 69.57 9.48 65.01 6.63 71.76
DartQuant 17.69 60.17 20.93 63.77 11.18 69.30 9.49 65.58 6.66 71.82

4-4-16

RTN 668.50 31.39 2523.84 29.61 63311.10 29.12 200.56 30.54 17390.85 31.01
SmoothQuant 3278.95 29.48 4366.47 29.05 1636.53 29.40 2216.28 29.55 6242.62 29.30

GPTQ 1529.13 31.05 1554.72 29.85 68684.35 29.23 270.49 33.47 14201.63 32.53
OmniQuant 202.95 40.18 107.01 42.98 109.27 41.08 186.02 31.25 380.94 28.37

QuaRot 20.63 57.90 24.11 61.81 11.35 67.92 11.74 58.20 10.73 62.28
SpinQuant 19.90 57.85 22.88 62.32 11.70 68.59 10.67 62.29 9.61 66.06
OSTQuant 19.24 57.94 22.33 62.38 11.98 68.29 10.66 62.18 7.67 67.94
DartQuant 18.53 58.05 22.44 62.64 11.51 69.02 10.58 62.80 7.99 69.39

4-4-4

RTN 853.68 30.29 2535.13 29.53 63772.42 29.15 353.44 30.54 17803.40 30.41
GPTQ 1813.34 29.97 1929.93 29.53 78362.25 29.15 496.93 31.60 17361.71 32.98
QuaRot 27.01 57.03 24.98 59.87 11.49 67.41 12.29 57.32 11.38 61.50

SpinQuant 25.12 57.55 23.37 61.60 11.76 68.05 10.99 61.35 10.17 64.76
OSTQuant 19.74 57.88 22.83 62.31 11.67 68.11 10.66 61.57 7.76 67.84
DartQuant 19.14 57.96 22.64 62.46 11.55 68.22 10.78 62.38 8.13 69.05

rotation matrices, clearly demonstrate the necessity of rotation matrix optimization, outperforming
QuaRot. Additionally, while SpinQuant and OSTQuant perform well in reducing perplexity, their
performance in zero-shot tasks is poor, which highlights the potential overfitting risks associated with
end-to-end fine-tuning methods. In contrast, DartQuant, with its novel calibration strategy, generates
rotation matrices that effectively compress the activation distribution range, resulting in outstanding
performance in 0-shot tasks. Notably, we achieve a performance loss of only 0.5% on Llama 2-70b
under w4a4kv16 setting. For Llama 3-70b which is more difficult to quantize [50], we manage to
limit the average performance loss to 3.31%, outperforming SpinQuant and OSTQuant by 3.33% and
1.45% respectively.

Besides dense LLMs, we also extend our research to recent popular MoE-LLMs, and further
experimental results can be found in the Appendix H.

Table 3: Comparison of Rotation Matrix Optimization Cost.

Cost Method 7B 13B 70B

Time
(GPU hour)

SpinQuant 0.30 0.70 42.90
OSTQuant 0.30 0.80 44.00
DartQuant 0.14 0.23 0.91

DartQuant3090 0.43 0.70 2.90

Memory
(GiB)

SpinQuant 19.98 33.73 238.89
OSTQuant 42.25 239.16 583.86
DartQuant 17.41 21.40 23.47

DartQuant3090 17.41 21.40 23.47

Table 3 presents a comparison of the
optimization time and memory con-
sumption of SpinQuant, OSTQuant,
and DartQuant on an A800 GPU
server. DartQuant simplifies the cal-
ibration framework, leading to sig-
nificant reductions in resource over-
head across various models. In par-
ticular, for the 70B model, DartQuant
completes the calibration in 30 min-
utes using a single GPU, achieving a
speedup of 47× in training and 10×
in memory savings compared to Spin-
Quant and OSTQuant. Moreover, DartQuant is the first to optimize the rotation matrix of the 70B
model on a single 3090 GPU, with a calibration time of ∼3 hours. This development substantially
reduces the cost of rotation matrix optimization and enhances its practical value.

5.2 Ablation Studies

We compared the effectiveness of four optimization objectives: quantization loss, variance, kurtosis,
and the Whip function. As shown in Figure 7a, the change in activation quantization loss over
iteration steps is presented for each optimization objective. It is clearly observed that when using
quantization loss, variance, or kurtosis as the optimization objective, the activation quantization loss
shows minimal variation. However, when the Whip function is used as the optimization objective, the
quantization loss curve decreases significantly within fewer iterations and converges rapidly.

8

(a) Original. (b) Hadamard. (c) Quant.

(d) Variance. (e) Kurtosis. (f) Whip.

Figure 6: Histograms of Activation Distributions After Rotation by Different Rotation Matrices. The
region outside the red dashed line represents the outliers.

5.2.1 Optimization objectives

By comparing the effects of different optimization objectives on the activation distribution (as shown
in Figure 6), we can clearly observe the substantial changes induced by the Whip function. Figure 6a
shows the histogram of the original, unrotated activation distribution. From the range on the x-
axis, it is evident that the original distribution contains significant outliers. Figure 6b displays the
histogram of the activation distribution after a random Hadamard matrix rotation. After the Hadamard
rotation, the activation range is notably compressed, although some outliers remain untreated. The
rotation matrices trained with quantization loss and variance as optimization objectives show little
improvement, resulting in an activation distribution nearly identical to that obtained by random
Hadamard rotation. Although kurtosis optimization slightly improves the distribution, its effect
is limited. In contrast, the histogram after Whip optimization shows a significant improvement
(as shown in Figure 6f): this method not only effectively addresses the outlier problem but also
disperses the activation points, initially concentrated around zero, across other regions. The resulting
distribution is the closest to a uniform distribution. This outcome aligns closely with our design
goals and further validates the effectiveness of our approach. More ablation studies on different
optimization objectives under zero-shot tasks and perplexity metrics are provided in Appendix I.

5.2.2 Optimizer Comparison

Figure 7b presents the comparison of the convergence curves between the Cayley optimization and
our proposed QR-Orth optimization, both using Whip loss under identical settings. It is evident that
QR-Orth demonstrates faster convergence and lower final loss, regardless of whether combined with
SGD or Adam. As shown in Table 4, QR-Orth achieves a 1.4× speedup over Cayley optimization
for the same number of iterations. Due to its faster convergence, QR SGD achieves the same result
as Cayley SGD after 100 steps in just 6 steps, yielding an overall acceleration factor of 41×. This
significantly improves the efficiency of orthogonal optimization.

Table 4: Comparison of Time Taken for 100 Iterations Across Different Orthogonal Optimization
Schemes.

Method Cayley QR-Orth Speed up

SGD 8.2h 5.7h 1.44x
Adam 8.1h 5.7h 1.42x

9

(a) Loss comparison. (b) Cayley vs QR-Orth.

Figure 7: Comparison of activation quantization loss and convergence performance using different
optimization methods.

5.3 Results on Different Datasets

To investigate the sensitivity of DartQuant to different training datasets, we sample training data from
three datasets: WIKITEXT2, PTB, and C4. These datasets are used to optimize R1 and R2 separately,
and the impact of the dataset on the performance of the quantized LLM is compared. As shown in
Table 5, the results of all three experiments are largely consistent. This demonstrates that DartQuant
is robust to calibration datasets and does not negatively affect the generalization ability of the LLM.
Further analysis on the impact of sample size on performance is provided in Appendix D.

Table 5: Comparison of LLM Performance with Different Calibration Datasets Using DartQuant.

Model Dataset WikiText2 PTB C4 Avg

2 7b

Baseline 5.47 37.91 7.26 16.88
WikiText2 5.92 42.63 7.99 18.85

PTB 5.91 42.78 8.01 18.90
C4 5.92 42.99 8.00 18.97

2 13b

Baseline 4.88 50.94 6.73 20.85
WikiText2 5.25 58.29 7.3 23.61

PTB 5.24 58.46 7.33 23.68
C4 5.28 58.18 7.31 23.59

6 Conclusions

In this paper, we introduce DartQuant, an innovative method for LLM quantization that efficiently
handles activation outliers. By constraining the activation distribution, DartQuant simplifies rotation
matrix calibration and avoids overfitting risks in end-to-end fine-tuning. The QR-Orth optimization
method eliminates the need for complex orthogonal optimization, further speeding up the process.
DartQuant achieves state-of-the-art results in 4-bit quantization while significantly reducing costs.
Notably, it successfully quantizes a 70B model on a single RTX 3090, advancing LLM deployment
in resource-constrained environments.

7 Acknowledgments

This work was supported in part by the National Key R&D Program of China (No. 2025ZD0122000),
the Science and Technology Major Special Program of Jiangsu (No.BG2024028), Beijing Natural
Science Foundation (L244046), the Jiangsu Key Research and Development Plan (No. BE2023016),
and the CCF-Baidu Open Fund.

10

References
[1] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-

thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[2] Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

[3] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang.
Glm: General language model pretraining with autoregressive blank infilling. arXiv preprint
arXiv:2103.10360, 2021.

[4] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1,
page 2. Minneapolis, Minnesota, 2019.

[5] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[6] Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[7] Zhilin Yang. Xlnet: Generalized autoregressive pretraining for language understanding. arXiv
preprint arXiv:1906.08237, 2019.

[8] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems,
35:30318–30332, 2022.

[9] Yuanteng Chen, Yuantian Shao, Peisong Wang, and Jian Cheng. EAC-MoE: Expert-selection
aware compressor for mixture-of-experts large language models. In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 12942–12963, July 2025.

[10] Geoffrey Hinton. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531,
2015.

[11] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[12] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[13] Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo,
Xiaojuan Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization:
From llms to mllms. Visual Intelligence, 2(1):36, 2024.

[14] Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, and Jian Cheng. Two-step
quantization for low-bit neural networks. In Proceedings of the IEEE Conference on computer
vision and pattern recognition, pages 4376–4384, 2018.

[15] Weihan Chen, Peisong Wang, and Jian Cheng. Towards mixed-precision quantization of
neural networks via constrained optimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5350–5359, 2021.

[16] Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training
network quantization via bit-split and stitching. In International Conference on Machine
Learning, pages 9847–9856. PMLR, 2020.

11

[17] Peisong Wang, Weihan Chen, Xiangyu He, Qiang Chen, Qingshan Liu, and Jian Cheng.
Optimization-based post-training quantization with bit-split and stitching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(2):2119–2135, 2022.

[18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[19] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng
Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-
tion for large language models. arXiv preprint arXiv:2308.13137, 2023.

[20] Chen Tianqi, Yuanteng Chen, Weixiang Xu, Zeyu Zhu, Peisong Wang, and Jian Cheng. Q-
mamba: Towards more efficient mamba models via post-training quantization, 2025.

[21] Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by
equivalent and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

[22] Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-
aware weight quantization for efficient fine-tuning and inference of large language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 13355–13364,
2024.

[23] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

[24] Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei
Chao, and Rongrong Ji. Affinequant: Affine transformation quantization for large language
models. In The Twelfth International Conference on Learning Representations, 2024.

[25] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit
inference in rotated llms. arXiv preprint arXiv:2404.00456, 2024.

[26] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman
Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm
quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.

[27] Xing Hu, Yuan Cheng, Dawei Yang, Zhixuan Chen, Zukang Xu, JiangyongYu, XUCHEN, Zhi-
hang Yuan, Zhe jiang, and Sifan Zhou. OSTQuant: Refining large language model quantization
with orthogonal and scaling transformations for better distribution fitting. In The Thirteenth
International Conference on Learning Representations, 2025.

[28] Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold
via the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

[29] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. arXiv
preprint arXiv:1810.00760, 2018.

[30] Haokun Lin, Haobo Xu, Yichen Wu, Jingzhi Cui, Yingtao Zhang, Linzhan Mou, Linqi Song,
Zhenan Sun, and Ying Wei. Duquant: Distributing outliers via dual transformation makes
stronger quantized llms. arXiv preprint arXiv:2406.01721, 2024.

[31] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantiza-
tion of large language models with guarantees. Advances in Neural Information Processing
Systems, 36, 2024.

[32] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

12

[33] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[34] Janghwan Lee, Jiwoong Park, Jinseok Kim, Yongjik Kim, Jungju Oh, Jinwook Oh, and Jung-
wook Choi. Amxfp4: Taming activation outliers with asymmetric microscaling floating-point
for 4-bit llm inference. arXiv preprint arXiv:2411.09909, 2024.

[35] Yucui Liu and Tomasz J Kozubowski. A folded laplace distribution. Journal of Statistical
Distributions and Applications, 2:1–17, 2015.

[36] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[37] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[38] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[40] Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark
Ferguson, Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate
argument structure. In Human Language Technology: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994, 1994.

[41] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[42] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[43] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about phys-
ical commonsense in natural language. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 7432–7439, 2020.

[44] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[45] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[46] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[47] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

[48] Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, An-
drew McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei,
et al. A systematic classification of knowledge, reasoning, and context within the arc dataset.
arXiv preprint arXiv:1806.00358, 2018.

[49] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

13

[50] Minghai Qin. The uniqueness of llama3-70b with per-channel quantization: An empirical study.
arXiv e-prints, pages arXiv–2408, 2024.

[51] Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten
Hoefler, and Dan Alistarh. Quik: Towards end-to-end 4-bit inference on generative large
language models. arXiv preprint arXiv:2310.09259, 2023.

[52] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.

14

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in the abstract and introduction accurately reflect the paper’s
contributions and scope. They align with both the theoretical and experimental results, and
the motivations and assumptions are clearly stated.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15

Answer: [Yes]

Justification: The paper includes comprehensive hypotheses, derivations, and experimental
validations, with additional detailed discussions provided in Appendices B, G and J.

• Appendix B provides a detailed analysis of the computational complexity of QR-Orth
and Cayley-based orthogonal optimization.

• Appendix G presents activation distributions across different models along with statisti-
cal metrics such as kurtosis variance and mean, supporting the validity of Laplacian
modeling.

• Appendix J proves the norm-invariant property of the rotation transformation and
thoroughly explains the mechanism of the Whip function.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code required to reproduce the experiments is provided in the supplemen-
tary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

16

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be packaged into a Zip file and uploaded to the supplementary
materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental setup is described in Section 5, and Appendix K contains
the detailed hyperparameter settings for reproducing the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: All experimental results in the paper were obtained using open-source bench-
mark frameworks and datasets. The detailed experimental setup is provided in Section
5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental section of the paper provides details on the types of servers
used for the experiments, as well as the memory and time requirements for the computations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and ensured that our
research complies with its guidelines in all respects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

18

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impact of this work is discussed in Appendix M.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

19

Justification: All existing assets used in this work are explicitly cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code required to reproduce the results in this paper will be included in the
supplementary materials, along with a detailed README to guide the experiments.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

20

paperswithcode.com/datasets

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing and formatting purposes.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM

A Computational Invariance in Transformers

x

𝑥
𝑑𝑖𝑎𝑔(α)

𝐖𝑞

𝐖𝑘

𝐖𝑣

RoPE MHSA

𝑤𝑜

x

𝑥
𝑑𝑖𝑎𝑔(α)

𝐖𝑔𝑎𝑡𝑒

𝐖𝑢𝑝

𝜎

𝐖𝑑𝑜𝑤𝑛⊗

KV
Cache

RMSNorm

Attention

RMSNorm

FFN

𝐗 𝐘

Figure 8: Flowchart of the transformer block used in most language models, including pre-RMSNorm,
multi-head self-attention (MHSA), and the gated feedforward network (FFN). The solid arrows
represent the data flow during training, pre-filling, and inference for each token. In RMSNorm, the
input signal is normalized by its norm and rescaled by the parameter σ. In MHSA, the RoPE module
computes the relative position embeddings, and the dashed arrows indicate access to the KV-Cache
during generation. In the FFN, the activation function σ is applied to the gated signal, and the two
signals are combined element-wise.

The weights and activations between blocks in the transformer can be transformed using orthogonal
matrices without altering the model’s output. Specifically, if a rotation transformation R1 is applied
to the input activations, the effect can be offset by left-multiplying the weight matrices on the left
side of the transformer block (such as Wq,Wk,Wv,Wup,Wgate in Figure 8) by the orthogonal
matrix R⊤

1 . To ensure the correctness of the residual computation, R1 is right-multiplied with the
output matrices (such as Wo and Wdown in Figure 8). Although RMSNorm is applied between
two blocks, this transformation remains valid as long as there is no rescaling within RMSNorm (in
practice, any rescaling is typically absorbed into the adjacent weight matrices). Theoretically, this
is because RMSNorm only normalizes the activations, and applying a rotation transformation does
not alter the norm of the activations. As a result, the commutative property RMSNorm(XR1) =
RMSNorm(X)R1 can be established [33].

𝐗 x

𝑥

𝐑𝟏
T(α) 𝐖𝑞

𝐑𝟏
T(α) 𝐖𝑘

𝐑𝟏
T α 𝐖𝑣𝐑𝟐

RoPE MHSA 𝐑𝟏
T(α)𝐖𝒈𝒂𝒕𝒆

𝐑𝟏
T α 𝐖𝑢𝑝

𝜎

𝐑𝟒
T𝐖𝑑𝑜𝑤𝑛𝐑𝟏⊗

𝐗

KV
Cache

𝐗 𝐗

RMSNorm

Attention

RMSNorm

FFN

𝐗𝐑𝟏
𝐘𝐑𝟏

𝐑𝟐
T𝐖𝑜𝐑𝟏

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝑑𝑒𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒

x

𝑥

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝐑
𝟒

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝐑𝟑

𝐑𝟑

Figure 9: Transformer applied in DartQuant. The RMSNorm scaling factor (σ) has been absorbed
into the weight matrices. The black section represents the flow in FP16 format, while the gray section
indicates the flow in INT4 format, and the dashed line shows the flow in and out of the KV buffer. The
hidden state X has been rotated by R1, which is offset by R⊤

1 and absorbed into the weight matrices
Wq,Wk,Wv,Wup,Wgate. R1 is also incorporated into Wo and Wdown to ensure correct residual
calculation. R2 in Wv cancels with R⊤

2 in Wo. R3 and R4 are random Hadamard matrices computed
online: R3 cancels out during the attention computation, and R4 cancels with R⊤

3 absorbed in Wdown.
All weights are stored in INT4 format, and all activations prior to the weights are also quantized
to INT4. The result of the matrix multiplication between INT4 weights and INT4 activations on
TensorCore is INT32, which is immediately converted (and scaled) to FP16.

22

In addition to R1 , the Transformer block can also incorporate R2, R3, and R4 as shown in Figure 9.
R2 operates within the multi-head attention mechanism by being applied to each attention head. It is
absorbed into Wv to rotate the input of Wo. To counterbalance the rotation effect introduced by Wv ,
the transpose of R2, denoted R⊤

2 , is left-multiplied to Wo.

R3 is absorbed into the KV cache to alleviate the quantization loss within the KV cache. Due to
the presence of RoPE, directly incorporating R3 into the weight matrices is challenging, so R3 is
designed as an online Hadamard transform.

Finally, R4 is a rotation matrix used to smooth the input to the down-projection. Given the gating
mechanism, its rotational component cannot be fused into Wup or Wgate, thus it is also designed as
an online Hadamard transform. However, the inverse transformation can be combined with Wdown,
avoiding the computational overhead of the inverse operation.

It is important to emphasize that the inference framework of DartQuant (Figure 9) is identical to
the framework proposed by SpinQuant [26], resulting in the same level of inference acceleration.

B Comparison of Calculation Amount

B.1 QR Decomposition

The Householder QR decomposition for an n× n matrix A can be expressed as follows:

Algorithm 2 Householder QR Decomposition

1: Input: Matrix A ∈ Rn×n

2: Output: Orthogonal matrix Q ∈ Rn×n, Upper triangular matrix R ∈ Rn×n

3: Initialize R = A
4: for k = 1 to n− 1 do
5: Set the vector x = Rk:n,k

6: Compute the Householder vector v = x+ sign(x1)∥x∥2e1
7: Normalize v: v = v

∥v∥2

8: Update R: Rk:n,k:n = Rk:n,k:n − 2vvTRk:n,k:n

9: Update the orthogonal matrix Q: Qk:n,k:n = Qk:n,k:n − 2vvTQk:n,k:n

10: end for
11: Rn,n is the upper triangular matrix, Q is the orthogonal matrix.

Let us analyze the computational complexity of each step in the above pseudocode:

• Step 6&7: Computing the Householder vector v:
– The operation involves computing the norm ∥x∥2, which takes (n− k + 1).
– Computing v involves adding two vectors and normalizing, which is also (n− k + 1).

• Step 8: Updating R:
– The update of R requires multiplying a vector v by a matrix slice Rk:n,k:n, which takes
(n− k + 1)2.

• Step 9: Updating Q:
– Updating Q involves a similar computation to updating R, so it also takes (n− k+1)2.

We now aggregate the computational complexity of all steps across the iterations. The overall
computational complexity is given by:

Total complexity ≈
n−1∑
k=1

2[(n− k + 1)2 + (n− k + 1)] (5)

=
2n(n+ 1)(2n+ 1)

6
+ n(n+ 1)− 4

≈ 4

3
n3

23

B.2 Cayley SGD

Algorithm 3 provides the detailed computational process of the Cayley SGD. Compared to standard
SGD, it introduces additional computations in steps 5 through 12. These computations are primarily
composed of matrix multiplications.

Algorithm 3 Cayley SGD with Momentum

1: learning rate l, momentum coefficient β, ϵ = 10−8, q = 0.5, s = 2
2: Initialize X1 as an orthonormal matrix; and M1 = 0
3: for k = 0 to T do
4: Mk+1 ← βMk − G(Xk)

5: Ŵk ←Mk+1X
⊤
k − 1

2Xk(X
⊤
k Mk+1X

⊤
k)

6: Wk ← Ŵk −W⊤
k

7: Mk+1 ←WkXk

8: α← min{l, 2q/(∥Wk∥+ ϵ)}
9: Initialize Y 0 ← X + αMk+1

10: for i = 1 to s do
11: Y i ← Xk + α

2Wk(Xk + Y i−1)
12: end for
13: Update Xk+1 ← Y s

14: end for

• Step 5: Computing the auxiliary matrix Ŵk

– The first part involves computing Mk+1X
⊤
k , which requires a matrix multiplication

with complexity n3.

– The second part involves the term Xk(X
⊤
k Mk+1X

⊤
k). To optimize this computation,

the matrix multiplication X⊤
k Mk+1X

⊤
k requires n3, and multiplying this with Xk

results in a total complexity of 2n3 due to the nested operations.

• Step 7: Momentum projection update

– The update Mk+1 = WkXk is a matrix multiplication, which takes n3.

• Step 9 to 11: Iterative Cayley transform

– Each iteration involves matrix addition and matrix multiplication, which has a com-
plexity of n3.

– Since there are s iterations, the total complexity is 2n3.

In conclusion, Cayley SGD incurs approximately an additional 6n3 in computational complexity
compared to standard SGD.

C Complete Results of Main Result Table

In Tables tables 6 to 15, we present the full results of Table 2. We report perplexity (PPL) scores on the
WikiText2 [38], C4 [39], and PTB [40]. Additionally, we assess model performance on nine zero-shot
evaluation tasks: LAMBADA [41], HellaSwag [42], PIQA [43], WinoGrande [44], OpenBookQA
[45], SIQA [46], MMLU [47], ARC-E, and ARC-C [48]. We compare our approach with several other
methods, including SmoothQuant [23], GPTQ [49], OmniQuant [19], and current state-of-the-art
methods such as Quarot [25] and SpinQuant [26] for weight and activation quantization.

24

Table 6: Comprehensive comparison of the average accuracy of LLaMA-2 7B on nine Zero-Shot
Commonsense Reasoning tasks.

Bits
(W-A-KV) Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU Avg

16-16-16 Full Precision 69.06 46.16 79.05 44.2 73.9 76.02 74.54 46.33 41.21 61.16

4-8-16

RTN 68.51 44.88 78.24 42.20 70.50 74.07 73.06 44.62 38.24 59.37
SmoothQuant 50.75 34.14 55.22 26.40 0.82 32.09 31.61 24.91 22.80 30.97

GPTQ 69.53 45.55 78.78 42.80 72.29 74.60 73.40 44.11 39.21 60.03
OmniQuant 69.22 44.73 77.91 42.40 71.84 73.88 72.60 43.26 36.52 59.15

QuaRot 68.27 44.88 77.86 43.80 73.96 75.23 72.90 43.6 38.77 59.92
SpinQuant 67.96 44.83 78.78 43.60 72.95 74.80 73.61 44.80 39.55 60.10
DartQuant 68.75 45.55 78.78 42.60 73.63 75.15 73.65 44.62 38.81 60.17

4-4-16

RTN 50.59 35.82 53.65 29.80 6.21 29.73 30.89 22.44 23.39 31.39
SmoothQuant 49.25 35.36 49.89 26.80 0.00 25.60 27.23 26.62 24.61 29.48

GPTQ 50.28 35.47 53.05 27.40 3.59 29.17 32.03 25.26 23.22 31.05
OmniQuant 51.85 37.67 63.55 32.60 28.22 49.43 46.04 27.47 24.81 40.18

QuaRot 66.06 43.45 76.44 42.60 71.26 73.57 69.87 43.09 34.80 57.90
SpinQuant 66.06 43.71 76.61 39.80 72.17 73.70 70.96 42.83 34.79 57.85
OSTQuant 66.69 45.60 76.71 43.60 70.62 73.64 69.36 40.96 34.32 57.94
DartQuant 67.17 44.93 76.93 39.00 71.65 73.76 70.96 42.41 35.66 58.05

4-4-4

RTN 49.88 34.75 52.56 26.20 3.07 28.44 28.91 25.34 23.46 30.29
GPTQ 50.91 33.98 52.39 24.60 1.92 28.21 30.51 23.63 23.61 29.97
QuaRot 65.27 43.65 77.04 40.60 70.25 72.81 68.43 41.64 33.56 57.03

SpinQuant 64.17 44.73 76.44 40.60 71.16 73.40 70.50 42.32 34.67 57.55
OSTQuant 66.93 43.76 77.37 40.40 71.24 73.50 69.95 42.58 35.22 57.88
DartQuant 66.69 44.68 77.48 38.60 70.95 73.81 69.87 44.20 35.32 57.96

Table 7: Comprehensive comparison of Perplexity scores for LLaMA-2 7B across three datasets.

Bits
(W-A-KV) Method Wiki PTB C4 Avg

16-16-16 Full Precision 5.47 37.91 7.26 16.88

4-8-16

RTN 5.91 40.64 7.89 18.15
SmoothQuant 250.33 500.08 246.09 332.17

GPTQ 7.69 20917.14 8.04 6977.62
OmniQuant 5.75 1266.1 7.75 426.53

QuaRot 5.63 42.00 7.60 18.41
SpinQuant 5.61 40.41 7.53 17.85
DartQuant 5.60 39.95 7.52 17.69

4-4-16

RTN 487.93 758.10 759.48 668.50
SmoothQuant 2999.11 2426.98 4410.75 3278.95

GPTQ 995.88 2497.44 1094.07 1529.13
OmniQuant 17.06 566.12 25.68 202.95

QuaRot 6.02 47.64 8.24 20.63
SpinQuant 5.89 45.66 8.14 19.90
OSTQuant 5.89 43.76 8.06 19.24
DartQuant 5.88 41.72 7.99 18.53

4-4-4

RTN 731.05 819.7 1010.3 853.68
GPTQ 1905.56 2254.27 1280.19 1813.34

QuaRot 6.17 66.41 8.46 27.01
SpinQuant 5.99 61.03 8.34 25.12
OSTQuant 5.94 45.16 8.13 19.74
DartQuant 5.93 43.41 8.08 19.14

25

Table 8: Comprehensive comparison of the average accuracy of LLaMA-2 13B on nine Zero-Shot
Commonsense Reasoning tasks.

Bits
(W-A-KV) Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU Avg

16-16-16 Full Precision 72.14 47.39 80.52 45.20 76.73 79.38 77.44 49.15 50.53 64.28

4-8-16

RTN 71.67 46.01 79.22 43.60 75.06 75.51 74.96 48.38 48.00 62.49
SmoothQuant 51.38 34.54 53.65 26.20 0.35 27.21 28.20 24.57 22.95 29.89

GPTQ 72.30 46.57 80.09 45.60 76.25 78.13 76.73 48.29 49.32 63.70
OmniQuant 70.88 46.11 79.76 44.60 47.56 75.04 77.70 76.60 48.29 62.95

QuaRot 70.72 46.26 79.49 44.80 76.62 78.52 76.39 49.15 49.59 63.50
SpinQuant 71.11 46.21 79.76 44.80 76.85 78.30 76.56 48.98 49.21 63.53
DartQuant 72.06 46.88 79.98 44.40 76.81 78.73 76.85 48.98 49.26 63.77

4-4-16

RTN 47.83 33.93 52.45 27.40 0.72 26.88 29.29 24.23 23.72 29.61
SmoothQuant 49.41 34.08 50.65 24.20 0.00 25.77 26.09 27.39 23.89 29.05

GPTQ 51.30 34.60 52.56 23.60 1.26 27.29 30.68 23.38 23.97 29.85
OmniQuant 53.67 39.51 67.68 33.00 30.39 54.90 53.58 29.69 24.42 42.98

QuaRot 69.69 45.14 78.73 43.80 74.29 76.24 74.75 47.18 46.43 61.81
SpinQuant 70.24 45.75 78.78 44.20 74.36 77.50 75.88, 46.84 47.36 62.32
OSTQuant 69.46 46.37 78.89 44.00 74.62 77.13 75.21 47.95 47.79 62.38
DartQuant 71.11 46.16 79.27 44.20 75.18 78.04 75.38 47.61 46.80 62.64

4-4-4

RTN 50.12 33.98 50.33 25.60 0.60 26.78 28.96 25.68 23.73 29.53
GPTQ 50.04 34.19 50.33 25.00 0.58 27.87 29.34 24.66 23.73 29.53
QuaRot 69.30 44.27 78.24 42.80 65.44 75.75 72.64 45.90 44.52 59.87

SpinQuant 68.35 45.65 77.75 43.60 73.28 77.10 75.00 47.61 46.08 61.60
OSTQuant 70.40 46.37 79.16 45.00 75.20 76.74 73.53 47.18 47.19 62.31
DartQuant 71.11 45.29 79.27 43.80 74.93 77.57 76.01 47.53 46.59 62.46

Table 9: Comprehensive comparison of Perplexity scores for LLaMA-2 13B across three datasets.

Bits
(W-A-KV) Method Wiki PTB C4 Avg

16-16-16 Full Precision 4.88 50.94 6.73 20.85

4-8-16

RTN 5.23 52.95 7.12 21.77
SmoothQuant 1884.63 920.66 1726.69 1510.66

GPTQ 5.00 50.39 6.90 20.76
OmniQuant 5.07 50.13 7.02 20.74

QuaRot 5.02 54.08 6.96 22.02
SpinQuant 4.99 51.56 6.91 21.15
DartQuant 4.98 50.89 6.91 20.93

4-4-16

RTN 1595.89 3016.34 2959.29 2523.84
SmoothQuant 4811.32 4299.06 3989.04 4366.47

GPTQ 914.38 1856.09 1893.68 1554.72
OmniQuant 15.39 282.92 22.73 107.01

QuaRot 5.35 59.52 7.46 24.11
SpinQuant 5.19 56.07 7.37 22.88
OSTQuant 5.21 54.46 7.33 22.33
DartQuant 5.22 54.82 7.28 22.44

4-4-4

RTN 1793.38 2845.81 2966.21 2535.13
GPTQ 1367.96 2758.47 1663.36 1929.93
QuaRot 5.51 61.78 7.65 24.98

SpinQuant 5.30 57.3 7.51 23.37
OSTQuant 5.25 55.87 7.37 22.83
DartQuant 5.26 55.32 7.34 22.64

26

Table 10: Comprehensive comparison of the average accuracy of LLaMA-2 70B on nine Zero-Shot
Commonsense Reasoning tasks.

Bits
(W-A-KV) Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU Avg

16-16-16 Full Precision 77.98 49.13 82.75 48.8 79.58 83.8 81.02 57.51 65.2 69.53

4-8-16

RTN 76.01 47.19 82.37 48.00 77.59 80.64 80.77 56.74 61.14 67.83
SmoothQuant 53.35 34.34 69.80 33.60 9.70 41.60 50.34 28.41 24.10 38.36

GPTQ 77.74 47.70 82.75 49.00 79.57 82.83 81.27 56.74 63.68 69.03
OmniQuant 73.95 46.72 81.45 48.40 75.06 82.64 80.64 57.08 58.66 67.18

QuaRot 77.27 48.31 82.75 48.00 80.01 83.21 80.64 57.00 64.61 69.09
SpinQuant 78.22 48.93 82.48 48.60 80.26 83.90 81.52 57.76 64.44 69.57
DartQuant 78.14 48.82 82.81 47.80 80.13 83.4 80.6 57.51 64.49 69.30

4-4-16

RTN 50.28 34.19 50.05 26.20 0.00 25.67 26.56 26.11 23.02 29.12
SmoothQuant 48.93 33.83 50.65 26.60 0.52 27.21 27.57 24.66 24.63 29.40

GPTQ 49.96 34.80 50.82 25.00 0.12 25.72 26.85 25.26 24.58 29.23
OmniQuant 52.88 37.62 63.71 33.20 25.01 51.89 50.76 30.89 23.76 41.08

QuaRot 75.93 47.80 82.15 46.60 78.98 81.98 80.64 56.14 61.07 67.92
SpinQuant 76.56 48.93 82.15 46.60 79.53 83.00 80.98 56.66 62.89 68.59
OSTQuant 76.24 47.95 82.32 47.20 79.20 82.52 80.09 56.31 62.78 68.29
DartQuant 77.58 48.52 82.70 48.20 79.99 82.62 81.93 57.00 62.60 69.02

4-4-4

RTN 49.96 34.19 50.38 23.60 0.00 25.96 26.35 28.92 23.02 29.15
GPTQ 50.59 34.03 49.46 25.60 0.16 25.86 26.39 26.28 23.96 29.15
QuaRot 76.48 46.26 81.28 46.00 79.00 81.82 79.46 55.63 60.78 67.41

SpinQuant 75.93 47.85 81.50 47.40 79.16 82.90 79.91 55.20 62.59 68.05
OSTQuant 76.58 48.21 82.32 46.60 79.58 81.70 80.51 56.23 61.28 68.11
DartQuant 76.40 48.93 82.81 47.00 79.76 82.56 78.58 55.38 62.55 68.22

Table 11: Comprehensive comparison of Perplexity scores for LLaMA-2 70B across three datasets.

Bits
(W-A-KV) Method Wiki PTB C4 Avg

16-16-16 Full Precision 3.32 24.25 5.71 11.09

4-8-16

RTN 3.75 27.72 6.11 12.53
SmoothQuant 95.26 318.96 128.66 180.96

GPTQ 3.50 26.33 5.87 11.90
OmniQuant 4.01 31.78 6.40 14.06

QuaRot 3.42 24.23 5.80 11.15
SpinQuant 3.40 24.68 5.79 11.29
DartQuant 3.41 24.34 5.78 11.18

4-4-16

RTN 65680.98 60069.34 64182.98 63311.10
SmoothQuant 1868.60 1906.48 1134.50 1636.53

GPTQ 69089.76 68684.35 79127.77 72300.63
OmniQuant 27.29 265.00 35.53 109.27

QuaRot 3.78 24.16 6.10 11.35
SpinQuant 3.67 25.38 6.04 11.70
OSTQuant 3.65 26.28 6.01 11.98
DartQuant 3.64 24.90 5.99 11.51

4-4-4

RTN 66102.31 60357.61 64857.35 63772.42
GPTQ 73603.62 75839.09 85644.05 78362.25

QuaRot 3.81 24.53 6.14 11.49
SpinQuant 3.69 25.52 6.07 11.76
OSTQuant 3.67 25.3 6.03 11.67
DartQuant 3.67 24.98 6.01 11.55

27

Table 12: Comprehensive comparison of the average accuracy of LLaMA-3 8B on nine Zero-Shot
Commonsense Reasoning tasks.

Bits
(W-A-KV) Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU Avg

16-16-16 Full Precision 73.32 47.19 80.96 45.00 75.63 79.14 77.82 53.24 62.06 66.04

4-8-16

RTN 70.88 45.04 78.29 46.60 70.17 76.86 73.95 49.23 55.75 62.97
SmoothQuant 51.70 34.39 55.71 24.20 8.97 33.30 33.84 22.10 23.27 31.94

GPTQ 72.45 46.57 79.38 46.40 73.47 77.60 76.43 51.11 59.70 64.79
OmniQuant 70.64 44.83 79.16 43.40 68.93 76.75 73.65 48.81 58.30 62.72

QuaRot 74.11 46.83 79.49 43.80 74.11 77.07 77.40 51.79 59.64 64.92
SpinQuant 74.19 45.91 79.92 44.80 75.74 74.81 77.10 51.88 60.74 65.01
DartQuant 73.24 46.26 80.41 44.80 76.09 78.17 78.24 52.65 60.37 65.58

4-4-16

RTN 50.59 34.95 52.88 24.40 5.53 31.16 29.92 22.10 23.29 30.54
SmoothQuant 49.41 34.60 50.87 27.20 0.06 26.44 26.6 26.96 23.77 29.55

GPTQ 49.41 34.54 55.33 28.80 13.35 36.14 35.44 25.26 22.93 33.47
OmniQuant 49.57 33.47 53.92 26.40 4.04 36.64 30.09 24.15 22.97 31.25

QuaRot 66.54 43.50 76.01 38.40 66.54 72.69 67.26 43.26 49.59 58.20
SpinQuant 69.46 44.73 77.20 43.40 72.77 75.90 74.16 47.61 55.38 62.29
OSTQuant 68.43 44.78 77.91 41.40 72.68 75.49 75.63 48.55 54.74 62.18
DartQuant 70.96 45.34 79.16 43.40 72.39 75.81 74.45 48.21 55.46 62.80

4-4-4

RTN 50.59 34.95 52.88 24.40 5.53 31.16 29.92 22.10 23.29 30.54
GPTQ 49.17 34.70 54.62 27.00 7.18 31.48 33.92 23.21 23.14 31.60
QuaRot 66.77 44.78 73.61 41.00 64.93 71.69 66.33 40.02 46.77 57.32

SpinQuant 67.56 43.71 77.26 41.40 72.06 75.50 73.48 47.95 53.20 61.35
OSTQuant 68.03 44.32 77.58 42.00 71.96 74.94 74.28 46.67 54.35 61.57
DartQuant 70.68 44.68 78.18 43.00 72.58 75.28 75.52 48.63 54.31 62.38

Table 13: Comprehensive comparison of Perplexity scores for LLaMA-3 8B across three datasets.

Bits
(W-A-KV) Method Wiki PTB C4 Avg

16-16-16 Full Precision 6.14 11.18 9.45 8.92

4-8-16

RTN 7.20 12.65 11.19 10.35
SmoothQuant 84.37 139.98 113.02 112.46

GPTQ 7.22 12.88 10.71 10.27
OmniQuant 7.17 12.68 11.6 10.48

QuaRot 6.55 11.74 10.48 9.59
SpinQuant 6.49 11.63 10.31 9.48
DartQuant 6.50 11.68 10.29 9.49

4-4-16

RTN 179.40 244.36 177.91 200.56
SmoothQuant 2623.41 2213.76 1811.66 2216.28

GPTQ 137.12 258.71 415.63 270.49
OmniQuant 124.75 248.78 184.54 186.02

QuaRot 8.05 13.99 13.19 11.74
SpinQuant 7.22 12.88 11.90 10.67
OSTQuant 7.26 12.81 11.9 10.66
DartQuant 7.32 12.51 11.81 10.58

4-4-4

RTN 354.37 372.86 333.09 353.44
GPTQ 282.29 308.06 900.45 496.93
QuaRot 8.40 14.68 13.79 12.29

SpinQuant 7.41 13.33 12.23 10.99
OSTQuant 7.26 12.81 1.90 10.66
DartQuant 7.43 12.89 12.02 10.78

28

Table 14: Comprehensive comparison of the average accuracy of LLaMA-3 70B on nine Zero-Shot
Commonsense Reasoning tasks.

Bits
(W-A-KV) Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU Avg

16-16-16 Full Precision 80.82 50.61 84.44 48.40 79.31 84.99 85.98 64.25 75.47 72.70

4-8-16

RTN 73.56 47.80 81.45 43.80 72.93 82.35 78.70 55.03 69.00 67.18
SmoothQuant 49.25 34.95 61.92 27.20 2.02 39.39 40.49 27.39 22.95 33.95

GPTQ 79.48 48.36 82.37 46.60 75.30 83.18 80.30 57.08 72.28 69.44
OmniQuant 57.93 46.01 79.60 34.60 58.39 80.02 74.96 53.41 54.54 59.94

QuaRot 79.48 48.87 83.30 48.20 79.14 83.29 82.41 59.13 72.92 70.75
SpinQuant 80.27 49.90 84.22 49.20 78.58 84.42 83.54 61.77 73.97 71.76
DartQuant 80.35 49.80 83.95 48.40 78.79 84.89 85.06 61.18 73.96 71.82

4-4-16

RTN 52.01 33.37 55.22 28.00 1.44 27.11 31.4 26.45 24.07 31.01
SmoothQuant 51.62 33.42 52.12 27.40 0.00 25.68 26.01 24.15 23.28 29.30

GPTQ 48.07 34.70 60.72 25.40 3.53 28.77 39.81 26.96 24.77 32.53
OmniQuant 49.57 32.91 49.51 27.60 0.00 25.04 25.08 22.70 22.95 28.37

QuaRot 69.69 43.71 78.02 44.40 71.96 75.95 71.00 47.18 58.61 62.28
SpinQuant 73.56 44.52 79.54 46.00 74.13 81.00 79.42 56.23 60.13 66.06
OSTQuant 73.64 46.32 81.56 45.40 75.61 83.19 80.13 57.17 69.29 67.94
DartQuant 77.27 47.54 83.08 48.00 76.44 83.61 81.57 58.02 68.96 69.39

4-4-4

RTN 48.70 33.37 51.96 30.80 1.57 26.73 31.44 25.09 24.01 30.41
GPTQ 50.36 34.19 58.60 30.00 3.45 28.98 39.27 27.82 24.11 32.98
QuaRot 70.24 43.96 79.00 39.60 69.90 75.56 71.04 48.12 56.04 61.50

SpinQuant 73.80 43.81 79.38 43.40 72.56 81.20 76.81 54.10 57.81 64.76
OSTQuant 73.48 45.55 81.99 45.40 75.78 83.06 80.05 56.31 68.97 67.84
DartQuant 77.19 47.13 81.88 47.40 76.36 83.53 80.81 58.70 68.44 69.05

Table 15: Comprehensive comparison of Perplexity scores for LLaMA-3 70B across three datasets.

Bits
(W-A-KV) Method Wiki PTB C4 Avg

16-16-16 Full Precision 2.86 8.53 7.17 6.19

4-8-16

RTN 5.29 10.81 21.05 12.38
SmoothQuant 429.54 691.87 512.64 544.68

GPTQ 3.56 8.99 8.11 6.89
OmniQuant 8.09 21.83 14.93 14.95

QuaRot 3.78 9.05 7.94 6.92
SpinQuant 3.46 8.76 7.66 6.63
DartQuant 3.45 8.84 7.69 6.66

4-4-16

RTN 28070.21 4096.69 20005.66 17390.85
SmoothQuant 5328.88 7907.32 5491.67 6242.62

GPTQ 14637.05 3119.77 24848.08 14201.63
OmniQuant 363.42 462.06 317.33 380.94

QuaRot 6.51 12.97 12.70 10.73
SpinQuant 5.92 11.66 11.25 9.61
OSTQuant 4.5 9.58 8.93 7.67
DartQuant 4.83 9.80 9.35 7.99

4-4-4

RTN 31807.71 3742.77 17859.72 17803.40
GPTQ 15320.82 2741.99 34022.33 17361.71
QuaRot 6.79 14.01 13.33 11.38

SpinQuant 6.15 12.1 12.26 10.17
OSTQuant 4.55 9.71 9.03 7.76
DartQuant 4.92 9.92 9.55 8.13

D Sample Size Analysis

Table 16 investigates the impact of sample size on DartQuant’s performance. All experiments
are performed with a token sampling ratio of 10%. The results show that DartQuant’s calibration
performance remains robust even with a small dataset.

29

Table 16: Comparison of DartQuant Calibration Results with Different Sample Sizes.

Model Sample WikiText2 PTB C4 Avg

2 7b

32 5.91 42.61 8.03 18.85
64 5.88 43.33 8.00 19.07

128 5.92 42.63 7.99 18.85
256 5.92 42.41 8.04 18.79

3 8b

32 7.30 12.66 11.79 10.58
64 7.30 12.77 11.79 10.62

128 7.29 12.71 11.85 10.62
256 7.41 12.83 11.99 10.74

E Comparison with Mixed Precision Quantization Methods

For a more comprehensive comparison, we selected two mixed precision quantization algorithms,
QUIK [51] and Atom [52], and compared them with DartQuant under the 4-4-16 bit setting. It is
important to note that, for a fair comparison, we preserved QUIK’s feature of protecting the first
256 outlier channels, while quantizing the down projection to 4 bits to ensure consistency with our
method. Atom was tested using its default settings. The specific experimental results are shown in
Tables 17 and 18.

Table 17: Comparison of accuracy with mixed precision quantization methods on zero-shot tasks.

Model Method WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU AVG

2-7b
QUIK 62.12 41.20 73.67 36.80 61.81 68.41 62.25 37.46 27.76 52.39
Atom 64.38 43.01 76.04 39.40 69.76 70.40 70.17 41.26 34.01 56.49

DartQuant 67.17 44.93 76.93 39.00 71.65 73.76 70.96 42.41 35.66 58.05

2-13b
QUIK 62.67 44.37 74.86 41.40 62.27 72.88 65.87 41.38 35.32 55.67
Atom 69.04 45.26 77.94 43.60 73.94 75.81 72.62 45.44 45.07 60.97

DartQuant 71.11 46.16 79.27 44.20 75.18 78.04 75.38 47.61 46.80 62.64

2-70b
QUIK 68.67 44.22 77.58 42.80 64.12 74.32 68.98 46.42 46.53 59.29
Atom 75.29 46.27 81.12 45.73 76.44 79.98 79.18 54.88 59.30 66.47

DartQuant 77.58 48.52 82.70 48.20 79.99 82.62 81.93 57.00 62.60 69.02

3-8b
QUIK 59.59 39.00 65.78 35.00 42.81 58.45 52.53 34.98 29.01 46.35
Atom 68.67 43.06 76.88 42.00 70.41 73.26 72.36 46.35 53.28 60.70

DartQuant 70.96 45.34 79.16 43.40 72.39 75.81 74.45 48.21 55.46 62.80

3-70b
QUIK 56.83 40.94 71.33 34.80 55.07 70.11 62.16 38.82 31.87 51.33
Atom 74.16 44.98 78.61 45.54 72.17 76.88 74.23 51.78 61.62 64.44

DartQuant 77.27 47.54 83.08 48.00 76.44 83.61 81.57 58.02 68.96 69.39

Table 18: Comparison of perplexity with mixed precision quantization methods on the WikiText2,
PTB, and C4 datasets.

Model Method WIKI PTB C4 AVG

2-7b
QUIK 8.05 51.97 10.12 23.38
Atom 6.03 46.77 8.25 20.35

DartQuant 5.88 41.72 7.99 18.53

2-13b
QUIK 7.29 65.72 9.23 27.41
Atom 5.26 52.95 7.33 21.85

DartQuant 5.22 54.82 7.28 22.44

2-70b
QUIK 6.36 35.28 8.77 16.80
Atom 3.68 28.21 6.05 12.65

DartQuant 3.64 24.90 5.99 11.51

3-8b
QUIK 18.01 37.42 14.72 23.38
Atom 7.57 16.67 13.28 12.50

DartQuant 7.32 12.51 11.81 10.58

3-70b
QUIK 10.32 21.48 17.24 16.35
Atom 5.23 13.00 11.48 9.90

DartQuant 4.83 9.80 9.35 7.99

30

Even though DartQuant strictly quantizes all activations and weights to 4 bits (resulting in a lower
average bit-width compared to QUIK and Atom), it still achieves accuracy improvements on most
datasets. This underscores the effectiveness of our method.

(a) Layer 0 (b) Layer 0

(c) Layer 10 (d) Layer 10

(e) Layer 30 (f) Layer 30

(g) Last Layer (h) Last layer

Figure 10: Impact of different transformations on 1000 activations across layers in different models.

31

(a) 2-7b layer 0 (b) 2-7b layer 9 (c) 2-7b layer 19 (d) 2-7b layer 29 (e) 2-7b layer 31

(f) 2-13b layer 0 (g) 2-13b layer 9 (h) 2-13b layer 19 (i) 2-13b layer 29 (j) 2-13b layer 39

(k) 2-70b layer 0 (l) 2-70b layer 19 (m) 2-70b layer 39 (n) 2-70b layer 69 (o) 2-70b layer 79

(p) 3-8b layer 0 (q) 3-8b layer 9 (r) 3-8b layer 19 (s) 3-8b layer 29 (t) 3-8b layer 31

(u) 3-70b layer 0 (v) 3-70b layer 19 (w) 3-70b layer 39 (x) 3-70b layer 69 (y) 3-70b layer 79

Figure 11: Activation distribution histograms for different layers of various models. The x-axis
represents activation values, while the y-axis denotes the channel count.

32

F Effects of Different Transformations on Activation Outliers and
Quantization Errors

We extracted 1000 activation samples from different layers of Llama-2 (7B/13B/70B) and Llama-3
(8B/70B) models and analyzed the number of outliers and the average quantization error after applying
different transformation methods. The statistical results are shown in Figure 10. As observed, the
activations after DartQuant transformation exhibit a significant reduction in outliers, with a marked
decrease in quantization loss, further validating the effectiveness of DartQuant in large-scale language
model quantization.

G Activation Distribution

We conducted an in-depth investigation into the distribution characteristics of activations in LLMs.
First, we randomly sampled 1,000 activation samples from each model and computed their mean,
variance and kurtosis. The detailed statistical results are presented in Table 19. As observed, the
mean of activations is close to zero, the variance is approximately 1, and the activations exhibit high
kurtosis (whereas the kurtosis of a Gaussian distribution is 0). These statistics indicate that most
activation values are concentrated around zero and exhibit significant heavy-tailed properties.

Figure 11 presents the activation distribution histograms across different layers of various models. As
shown, apart from a few outliers, the overall activation distribution is symmetric around zero. These
distribution characteristics closely align with those of a Laplacian distribution. Therefore, we model
the activation distribution as a simplified Laplacian distribution.

Table 19: Statistics of each model activation.

Model Kurtosis Mean Variance
Llama 2-7b 87.69 1.18e-02 9.97e-01
Llama 2-13b 58.99 3.17e-03 9.98e-01
Llama 2-70b 245.10 -4.88e-03 9.97e-01
Llama 3-8b 44.32 -2.92e-05 9.91e-01
Llama 3-70b 37.35 4.64e-03 9.80e-01

H Performance on MoE

𝐗 𝐗

RMSNorm

෩𝐗𝐑𝟏

x

𝑥

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

Expert 0

𝐑𝟏
T(α)𝐖𝒈𝒂𝒕𝒆

𝟎

𝐑𝟏
T α 𝐖𝑢𝑝

𝟎

𝜎

𝐑𝟒
T𝐖𝑑𝑜𝑤𝑛

𝟎 𝐑𝟏⊗ 𝐑
𝟒

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

𝐑𝟏
T α 𝐖𝑟𝑜𝑢𝑡𝑒𝑟

𝐑𝟏
T(α)𝐖𝒈𝒂𝒕𝒆

𝒏

𝐑𝟏
T α 𝐖𝑢𝑝

𝒏

𝜎

𝐑𝟒
T𝐖𝑑𝑜𝑤𝑛

𝐧 𝐑𝟏⊗ 𝐑
𝟒

𝑞
𝑢

𝑎
𝑛

𝑡𝑖
𝑧𝑒

Expert n

··· 𝐘𝐑𝟏

𝐘𝐑𝟏⊗

Weights

by Router

Figure 12: MoE applied in DartQuant. The fusion method of the MHSA block is the same as that of
dense models 9.

33

Table 20: Zero-shot and perplexity evaluation results of Mixtral-7×8B using DartQuant.

Method Bits WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU AVG WIKI
Baseline FP16 76.24 49.80 83.57 47.60 78.05 84.03 83.67 59.30 67.29 69.95 3.84

RTN

4-4-16

47.28 34.49 53.16 25.60 0.41 29.13 34.39 24.66 23.57 30.30 345.40
GPTQ 50.51 34.70 52.88 27.40 1.69 29.81 33.63 25.34 23.30 31.03 219.61
Quarot 69.46 45.45 79.60 44.00 74.27 79.01 76.47 53.41 59.42 64.57 4.97

DartQuant 71.90 46.09 80.47 45.20 75.02 80.19 77.31 54.10 59.93 65.58 4.75
RTN

4-4-4

52.09 34.14 53.26 24.00 0.29 29.43 34.64 23.72 23.25 30.54 329.05
GPTQ 49.17 33.52 54.03 26.40 1.69 29.76 32.79 24.66 23.29 30.59 239.59
Quarot 67.32 45.45 80.14 42.40 71.98 78.74 75.76 52.05 58.44 63.59 5.03

DartQuant 69.85 46.11 80.29 45.12 73.47 79.98 77.61 52.13 60.35 64.99 4.80

Table 21: Zero-shot and perplexity evaluation results of DeepSeek-moe-16b-base using DartQuant.

Method Bits WG SIQA PIQA OBQA LAMB HS ARC-E ARC-C MMLU AVG WIKI
Baseline FP16 69.93 45.96 80.52 43.20 72.99 77.43 73.19 47.53 38.18 60.99 6.51

RTN

4-4-16

52.17 35.93 67.79 31.60 32.51 48.38 53.58 33.70 24.13 42.20 251.42
GPTQ 52.41 38.54 68.88 33.80 36.66 50.22 57.66 33.36 23.95 43.94 103.99
Quarot 66.64 45.55 78.40 42.60 70.81 74.68 70.34 44.11 34.05 58.58 7.02

DartQuant 67.72 45.70 78.89 43.00 72.44 75.97 71.13 45.23 35.04 59.46 6.88
RTN

4-4-4

49.72 36.34 65.18 31.60 27.40 44.77 51.05 30.46 23.64 40.02 276.81
GPTQ 52.25 35.62 65.40 30.20 29.23 46.89 54.25 30.72 24.41 41.00 127.74
Quarot 66.32 44.83 78.16 42.32 70.53 74.68 70.10 43.94 33.54 58.27 7.07

DartQuant 67.24 45.20 78.67 42.80 71.46 75.68 71.02 44.34 35.06 59.05 6.91

To demonstrate the adaptability of DartQuant to different model architectures, we also applied it to
two MoE models (Mixtral-7×8B and DeepSeek-MoE-16B). The rotation matrix is integrated with
the MoE architecture as shown in Figure 12. As shown in Table 20 and 21, DartQuant continues to
demonstrate outstanding performance on the MoE architecture, with improved accuracy compared to
QuaRot, which uses random rotations.

I Additional Ablation Analysis of Whip Loss

To further demonstrate the effectiveness of the Whip loss, we evaluated PPL and zero-shot accuracy
under different loss functions. As shown in Table 22, the results highlight the advantages of Whip
loss in both PPL and zero-shot accuracy.

Table 22: Comparison of zero-shot accuracy and perplexity across different loss functions.

model loss WG ARC-E ARC-C MMLU WIKI PTB C4

Llama 2-7b

Quant 66.30 68.90 41.72 33.73 6.03 45.70 8.17
Variance 66.85 68.52 41.30 34.70 6.03 44.96 8.20
Kurtosis 66.22 69.87 42.15 35.64 5.99 46.57 8.14

Whip 67.17 70.96 42.41 35.66 5.90 42.94 8.01

Llama 3-8b
Quant 68.19 71.46 46.33 54.08 7.64 13.17 12.32

Variance 69.61 72.52 46.93 53.30 7.66 12.92 12.32
Kurtosis 69.93 71.72 45.99 54.16 7.64 13.09 12.37

Whip 70.96 74.45 48.21 55.46 7.29 12.71 11.85

J The Mechanism of Whip Loss

As shown in Figure 5, the smoothing of matrix peaks is not solely due to the amplification of small
values near zero; it also involves a broader redistribution of the activation values.

Specifically, the Whip Loss we designed pushes small activation values away from zero, making them
more evenly distributed, which in turn helps reduce quantization error. Under the norm-invariance
constraint imposed by the rotation transformation, activation values are effectively redistributed:
high-peak regions in the distribution histogram are compressed, while low-value regions are filled,
leading to an overall "peak smoothing" effect.

Thus, the smoothing of matrix peaks is not merely a result of amplifying small values but also stems
from the uniformization of the overall distribution—one of the key objectives of DartQuant.

34

The property of norm invariance originates from the mathematical characteristics of rotation matrices.
Let W be a rotation matrix (i.e., an orthogonal matrix) satisfying WTW = I . For any input vector x,
the transformed norm follows:

∥Wx∥2 = (Wx)T (Wx) = xTWTWx = xTx = ∥x∥2. (6)

This confirms that rotation preserves the Euclidean norm of the vector.

o illustrate this effect, we provide a four-dimensional example explaining why amplifying small values
under the norm-invariance constraint leads to outlier reduction. Consider a vector x = [x1, x2, x3, x4],
where x1, x2 and x3 have absolute values close to zero, while x4 is an outlier. Introducing a
perturbation ϵi(i = 1, 2, 3, 4.) to each component, the new norm of the vector becomes:

∥x̃∥2 =
√

x̃2
1 + x̃2

2 + x̃2
3 + x̃2

4 (7)

=
√
(x1 + ε1)2 + (x2 + ε2)2 + (x3 + ε3)2 + (x4 + ε4)2 (8)

=
√

x2
1 + x2

2 + x2
3 + x2

4 = ∥x∥2. (9)

Clearly, if ϵ1, ϵ2, ϵ3 > 0, it must follow that ϵ4 < 0. DartQuant effectively leverages this constraint to
suppress outliers.

K Hyperparameter Settings

The specific hyperparameter settings for DartQuant are shown in Table 23. It is important to note that
the latent parameter Z0 is initialized using a random Hadamard matrix.

Table 23: Comparison of zero-shot accuracy and perplexity across different loss functions.

Rotation Model LR Epoch Optimizer BS

R1

2-7b 2.00E-03 10 SGD 64
2-13b 1.00E-02 10 SGD 64
2-70b 1.00E-03 10 SGD 64
3-8b 8.00E-03 10 SGD 64

3-70b 3.00E-03 10 SGD 64

R2 All 1.00E-03 10 SGD 64

L Limitation

DartQuant is tailored for uniformly distributed integer formats. Its effectiveness on alternative formats,
such as FP4, or other non-uniform numerical representations, remains to be further explored and
validated. Furthermore, Whip assumes that activations are approximately zero-mean, which generally
holds true for most transformer layers. However, in rare cases where the activation mean significantly
deviates from zero, the effectiveness of Whip may degrade.

In the future, we can explore a wider range of distribution transformation methods to better accom-
modate various numerical formats.

M Impact Statement

This work introduces DartQuant, an efficient rotational distribution calibration method for LLM
quantization. DartQuant simplifies the optimization of rotation matrices while avoiding the overfitting
risks associated with end-to-end training. It successfully quantizes a 70B model on a single RTX
3090, marking a significant advancement. This progress not only improves the efficiency of LLMs
in practical applications but also provides a practical solution for large-scale model quantization,
contributing to the accessibility and scalability of AI technologies. However, if misused for harmful
purposes, it could have a negative social impact.

35

	Introduction
	Related Work
	Challenges in LLM Quantization
	Outlier Handling through Scaling
	Outlier Handling through Rotation

	Preliminaries and Difficulty
	Method
	Rotational Distribution Calibration
	Activation Uniformity via Whip Loss
	Enforcing Orthogonality with QR-Orth

	Experiment
	Main Results
	Ablation Studies
	Optimization objectives
	Optimizer Comparison

	Results on Different Datasets

	Conclusions
	Acknowledgments
	Computational Invariance in Transformers
	Comparison of Calculation Amount
	QR Decomposition
	Cayley SGD

	Complete Results of Main Result Table
	Sample Size Analysis
	Comparison with Mixed Precision Quantization Methods
	Effects of Different Transformations on Activation Outliers and Quantization Errors
	Activation Distribution
	Performance on MoE
	Additional Ablation Analysis of Whip Loss
	The Mechanism of Whip Loss
	Hyperparameter Settings
	Limitation
	Impact Statement

