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Abstract

We introduce a novel goal-directed Wasserstein Generative Adversarial Network with Gra-
dient Penalty (GD-WGAN-GP) for training a generator capable of producing peptide se-
quences with high predicted immunogenicity and strong binding affinity to the human leuko-
cyte antigen HLA-A*0201, thereby eliciting cytotoxic T-cell immune responses. The pro-
posed GD-WGAN-GP incorporates a critic network to guide the generator in producing
peptides with a strong binding affinity similar to those in the training set and a reward net-
work to steer the generator toward producing sequences with high predicted immunogenicity.
To avoid the generator prioritizing the objective of the critic at the expense of immunogenic-
ity, we introduce a scaling factor to balance the influence of the reward in the loss of the
generator. To reduce peptide repetition, we integrate the reward into the loss of the gen-
erator using two approaches: a switching mechanism that excludes the reward term when
duplicated peptides are present in a batch, and otherwise multiplies it by a v,n.. parameter
to control the reward’s contribution, and (2) a repetition penalty from ORGAN, where each
reward is divided by the number of occurrences of its corresponding peptide within the batch.
Experiments on bladder cancer epitope sequences demonstrate that GD-WGAN-GP with
the switching mechanism enables a tunable trade-off between the number of unique peptides
and the average immunogenicity score via varying v,mq.. Furthermore, the generator trained
by the GD-WGAN-GP with the ORGAN’s repetition penalty achieves an optimal balance
of uniqueness and immunogenicity. Across multiple datasets, GD-WGAN-GP outperforms
existing methods by effectively reducing peptide redundancy while preserving high immuno-
genicity scores and strong binding affinity. The Python codes are provided at: https:
//github.com/AnnonymousForPapers/GP-WGAN-GP_with_switch_and_ORGAN_penalty.

1 Introduction

Tumor-specific antigens have been utilized in cancer vaccines, a form of cancer immunotherapy, to stimulate
the production of tumor-specific T cells (Stevanovic, [2002). These antigens are encoded in the genome and
are not present in normal cells, making them representative of aberrant proteins (Gubin et al., |2015). An
epitope can be defined as a segment of an antigen that is generated through antigen processing (Sidney
et al, 2020). The activation of the tumor-specific T-cell response occurs when epitopes from class I or class
IT human leukocyte antigen (HLA) molecules are presented to T cell receptors (TCRs), which recognize
antigens in the form of peptides (Mohme & Neidert, 2020). The HLA class I molecule serves as the TCR
ligand for CD8+ cytotoxic T lymphocytes (CTLs) and binds peptides consisting of 8-11 amino acids. On the
other hand, the TCR ligand for CD4+ helper T cells is the HLA class II molecule, and the bound peptides
typically consist of 15 amino acids (Sim & Sun [2022)).

Peptide-based cancer vaccines refer to cancer vaccines that employ polypeptides comprised of known or
predicted tumor antigen epitopes (Liu et all |2022)). Peptide-based vaccines are widely utilized in cancer
vaccination practices and are designed to activate a tumor-specific cytotoxic T lymphocyte (CTL) response
(Butterfield, |2015)). These vaccines consist of multiple epitopes, typically ranging from 8 to 11 amino acids
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in length (Liu et al., [2021)). Moreover, these peptides are commonly combined with a carrier protein to
facilitate their recognition and processing by antigen-presenting cells (APCs), thereby triggering an immune
response that involves CTLs (Abd-Aziz & Poh, [2022)).

To develop an effective peptide-based vaccine, it is crucial to ensure that the epitopes are recognizable
by T cells, highly prevalent, and exclusive to tumor cells (Nelde et al. [2021). The process of identifying
immunogenic epitopes begins by obtaining samples of both cancerous and normal cells through biopsy,
followed by comparing their DNA sequences using techniques like Whole Exome Sequencing (WES) or
Whole Genome Sequencing (WGS) to identify tumor-specific mutations (Richard et all [2022)). Somatic
variant callers can be employed to detect single nucleotide variants from the WES and WGS data, and
subsequently, peptides containing the mutated regions are extracted using sliding windows from the varied
protein sequence (Richters et al., 2019)). Epitope candidates can be identified using computational prediction
tools, an approach that offers significant advantages in terms of time and cost when compared to traditional
methods such as mass spectrometry techniques (Lemmel & Stevanovid, |2003; (Chen et al.l 2020; [Hensen et al.|
2022; [Parvizpour et al., |2020)).

Immunogenicity refers to the capacity of a substance to initiate an immune response, and the binding of
a peptide to HLA molecules is essential for epitope immunogenicity (Antunes et al., |2018)). (Wu et al.|
2019) devised DeepHLApan, a recurrent neural network-based method that integrates binding affinity and
immunogenicity details of peptide-HLA complexes to predict CD8+ T-cell epitopes. (Li et al. [2021)), on the
other hand, utilized a convolutional neural network (CNN)-based method called DeepImmuno, where they
utilized linear peptides of 9 to 10 amino acids and 4-digit class I HLA alleles as input to forecast the immuno-
genicity score of peptide-HLA pairs for T-cell immune responses. (Diao et al.,2022|) introduced Seq2Neo, a
CNN-based pipeline that leverages the binding affinity and transporters associated with antigen processing
(TAP) transport efficiency of a given peptide-HLA pair to improve the prediction of immunogenicity scores
for T-cell immune responses.

Generative Adversarial Networks (GANs) (Goodfellow et al2014) are deep learning models with a generative
model trying to learn and capture the distribution of training data, thereby being capable of synthesizing
samples from the learned distribution (Gonog & Zhoul 2019; |Creswell et al., |2018)). GAN algorithms have
found application in generating novel protein and peptide structures for use in drug screening and the
discovery stage (Lin et al.,|2022). [Duttal (2022) developed a GAN equipped with a graph CNN that predicts
solubility and toxicity from molecular descriptors, guiding the generator network to produce new small
molecules with desired drug properties. [Putin et al.| (2018) proposed a GAN architecture known as "RANC,"
which incorporates reinforcement learning to generate chemically diverse structures with desired features,
with a focus on maintaining similar lengths of the SMILES string as their training data. [Karimi et al.
(2020) developed a semi-supervised, guided, conditional, Wasserstein generative adversarial network capable
of generating proteins with desired structure folds, while incorporating greater sequence diversity and novelty
compared to conditional variational auto-encoder designs. |Li et al.| (2021)) employed a generator trained with
a Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate immunogenic
epitopes binding to HLA-A*0201 and demonstrated that their generated peptides exhibited features and
amino acid sequences similar to the epitopes in their training dataset.

In this study, we introduce a novel training framework, termed goal-directed Wasserstein Generative Ad-
versarial Network with Gradient Penalty (GD-WGAN-GP), for generating immunogenic peptide sequences.
Built upon the WGAN-GP architecture, known for its enhanced training stability (Gulrajani et al., 2017)),
our method integrates both a critic network and a reward network to guide the generator. The critic is
trained on bladder cancer-specific peptides that bind to HLA-A*0201, assigning higher values to sequences
similar to those in the training data. The reward network, implemented as a convolutional neural network
and trained using immunogenicity scores predicted by Deeplmmuno (Li et al., [2021)), directs the generator
toward producing peptides with high immunogenicity. Its output is scaled by a factor Ss.qie to balance the
influence of the reward and the critic in the loss of the generator. To reduce repetition among generated
sequences, we apply two strategies: a switching mechanism that excludes the reward term when duplicated
peptides are present in a batch, and otherwise multiplies it by a 74, parameter to control the reward’s
contribution to the loss of the generator; and a repetition penalty adapted from ORGAN (Guimaraes et al.|
2018)), where each reward is divided by the number of occurrences of its corresponding peptide within the
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batch. The proposed GD-WGAN-GP with the switching mechanism enables users to control the trade-
off between generating peptides with high predicted immunogenicity at the cost of increased repetition, or
achieving lower repetition rates with reduced immunogenicity. In both cases, the generated peptides maintain
strong binding affinity to HLA-A*0201, a characteristic shared with peptides in the training dataset. The
generator trained using the GD-WGAN-GP framework with ORGAN'’s repetition penalty (Guimaraes et al.,
2018) demonstrates the ability to produce peptides with high predicted immunogenicity, low repetition rates,
and strong binding affinity to HLA-A*0201. These improvements outperform existing approaches, such as
WGAN-GP (Li et all [2021) and MolGAN (Cao & Kipf, 2022)), highlight the potential of our method for
the design of immunogenic epitope candidates in cancer immunotherapy. An introduction to our method is
shown in Fig. [T}

2 Methods

2.1 Datasets

The tumor-specific neoantigen database (TSNAdb) (Wu et al., [2018)) offers 6234 bladder cancer neoepitopes,
each featuring a single amino acid mutation, predicted to bind with HLA-A*0201 and having predicted
binding affinity IC5¢ <500nM. These epitopes, along with their corresponding HLA molecules, were predicted
using NetMHCpan v4.0 (Jurtz et al [2017) which assesses the binding affinity of potential epitopes within
a protein sequence based on mass spectrometry eluted ligands and half-maximal inhibition (IC50) scores,
with a threshold of IC50 < 500nM. It is important to note that these epitopes have not been experimentally
verified in other literature. We choose HLA-A*0201 as the binding target of the generated peptides since
HLA-A*0201 binds with most of the bladder cancer neoepitopes in the TSNAdb (Wu et al., 2018).

During the data cleaning process, we specifically selected bladder cancer epitope sequences predicted to bind
with HLA-A*0201 and having a length of either 9 or 10 amino acids. Our resulting training dataset comprised
a total of 6234 epitopes. For standardization, we employed the same coding strategy as in (Li et al., |2021)).
This involved padding 9-mer peptides to become 10-mers by joining the first five amino acids and the last
four amino acids with a placeholder "-". Thus, the peptide sequences in our study are represented as a
sequence cousisting of a placeholder "-" and the 20 amino acid types: Alanine (A), Arginine (R), Asparagine
(N), Aspartate (D), Cysteine (C), Glutamine (Q), Glutamate (E), Glycine (G), Histidine (H), Isoleucine
(I), Leucine (L), Lysine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), Threonine (T),
Tryptophan (W), Tyrosine (Y), and Valine (V). The amino acids and placeholder were converted into one-hot
encoded matrices (Jiang et al., [2022).

As of March 2023, the Immune Epitope Database (IEDB) (Vita et al., 2019) reports only 24 experimentally
tested linear bladder cancer epitopes that bind with HLA class I molecules, as identified by [Wang et al.| (2020).
In addition, the neoepitopes from the TSNAdb (Wu et al.l|2018) are not predicted to be immunogenic. Thus,
we aim to design a goal-directed generator to provide potential immunogenic peptide sequences and increase
the pool of peptides worthy of experimental testing.

2.2 Goal-directed WGAN-GP

The designed GD-WGAN-GP architecture comprises a peptide sequence generator, a critic, an immuno-
genicity predictor, and a reward network. The generator and critic are CNN-based models from (Li et al.,
2021). The critic is trained using the predicted bladder cancer peptides obtained from TSNAdb (Wu et al.,
2018) with IC50 < 500nM and the generated epitopes, thereby guiding the training of the generator. Before
being input to the critic, the predicted bladder cancer epitopes are encoded as a one-hot matrix, as depicted
in Figure[d] (a) in Appendix[A] Conversely, the output of the generator is a matrix of probabilities, which can
be decoded as a peptide sequence, as shown in Figure [4| (b) in Appendix |Al The peptide sequence generator
tries to generate sequences that are closely similar to the predicted bladder cancer epitopes in the training
dataset.

The immunogenicity predictor utilized is the Deepimmuno-CNN from (Li et al., 2021). This predictor
takes a 9-mer or 10-mer generated peptide sequence, along with a 46-mer HLA-A*0201 sequence, as input,
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Figure 1: Introduction to peptide-based cancer vaccines and our proposed method. (a) Epitopes in cancerous
cells may bind to HLA and the resulting HLA-peptide complex may be transferred to the cell surface to
be recognized by T cells |Zhao et al| (2021). (b) The polypeptides in peptide-based cancer vaccines are
processed in APCs, the epitopes are bound to HLA, and the HLA-complexes present the epitopes on the cell
surface to trigger T cell immune responses Bartnik et al.| (2013). (¢) The immunogenicity of a peptide can be
influenced by its delivery system |Li et al.| (2014)), the binding diversity between peptide and HLA
, the stability of the HLA-peptide complex [Van Der Burg et al. (1996), and the abundance
and density of the antigen that is presented on a cell surface [Purcell et al.| (2007)). (d) The standard way
of finding the immunogenic peptides for the design of cancer vaccines Guo et al.| (2018). (e) The designed
generator can produce more epitope candidates with high immunogenicity to facilitate peptide-based cancer
vaccines. Created with BioRender.com.

predicting their respective immunogenicities. The reward network is a CNN-based model that outputs the
immunogenicity score. In contrast to the immunogenicity predictor, the reward network is trained during the
training of the GD-WGAN-GP. The reward network takes the generated sequences or the sequences in the
training dataset as input and the output of the immunogenicity predictor given the reward network’s input
as the target value. Throughout the training, the placeholder ’-’ remains in the peptide sequence and is only
removed when utilizing the trained generator to produce peptide sequences, as depicted in the procedure
outlined in Figure [d] (b), step (3) in Appendix
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Consider a generative network Gy : R™ — RP*? with a set of parameters § € R and a regression model
P :RP*? — [0,1]. We aim to update the set of parameters 6 such that the expected value Eg,(.)p[P] is
maximized, where p = P(Gy(z)), z € R™ is a random noise vector, and P is the generated data distribution.

The loss function of the critic D,, is the same as in (Gulrajani et al.; |2017)), which is
L, =FEz~pg [Dw(Z)] — Exnp, [Du ()]

! ; (1)
+ AEimp, (V2 Do ()2 — 1)2],

where
= Gy(2), (2)
T=ex+(1—¢€)7, (3)
E.p[f(2)] is the expected value of a function f(x) with x sampled from the distribution P, P, and Pg are
the training data distribution and the generated data distribution, respectively, Pz is the distribution of the
data sampled from the training and generated distribution as defined in (3)), Go(-) and D,,(-) is the function
of the generator and the critic in WGAN-GP, X is the penalty coefficient, ||-||2 is the L-2 norm, € € [0, 1] is
a random real number between zero and one, z is a random noise vector and each element is sampled from
a normal distribution with zero mean and unit variance, 6 is the weights in the generative network Gy, and
w is the weights in the critic network D,,.

2.2.1 Generator loss with repetition penalty

The first approach: switching between vanilla WGAN-GP and a combined loss with the output
of the reward network The designed loss function of the generator Gy with a switching mechanism is

L{' = —Eanpe[Du(®)] = ¥Sscate Banea S5 (2], )

where

: (5)

v = Ymaz if TL(A) = Nbatch
0 otherwise

Ymaz € [0,1], A is a set composed of the generated one-probability matrix Gg(z) in a batch, n(A) is the
cardinality of A (the number of elements in the set A), Npytep, is the number of generated peptides in a
batch,

Sscate =1+ |E50~]P’G [DW(‘%)] — Ezpg [S¢(j)]|7 (6)

| - | denotes as modulus, Sy is the reward network, and ¢ is the weights in the reward network S,.
The loss function of the reward network Sy is defined as

Ly = Banrol(Ss() — P(2)?] + Eume, [(So(2) — P(2))?), (7)
where P(-) € [0, 1] is the output of the immunogenicity predictor.

The variable S.qie in the loss function of the generator ensures that the expected value of the critic
output will not dominate the generator’s loss function. The variable v in the loss function of the generator
is used to force the generator to produce diverse peptide sequences in the training stage. If v = 1,
becomes a weighted sum of the expected value of the critic output and the expected value of the reward
network output given the generated one-probability matrices Gy(z) as input. If 4 = 0, the training of the
GD-WGAN-GP is the vanilla WGAN-GP in |Gulrajani et al.| (2017). The architecture of GD-WGAN-GP
using the first generator loss design is illustrated in Figure [2|

The second approach: dividing each reward in the batch by its number of occurrences
(Guimaraes et al.,2018) The loss function of the generator Gy with the repetition penalty from ORGAN
(Guimaraes et al., 2018) is

LE? = = Bapo[Du(@)] = Socate FrnpalS(E), ®

where §¢(5c) is the output of the reward network,S, (%), divided by the number of the occurrences of the
generated one-hot matrix, &, in a batch.
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Figure 2: Training scheme of the designed GD-WGAN-GP with the switching mechanism in . The
training of the GD-WGAN-GP involves incorporating an immunogenicity predictor from [Li et al.| (2021) to
train a generator and a reward network. The objective of the reward network is to assist the generator in
producing highly immunogenic peptides, while the critic aims to guide the generator in generating peptides
with high similarity (though not identical) to those in the training dataset. The generator takes a set of Nyt
random noise vectors z, each composed of 128 elements sampled from a zero-mean, unit-variance Gaussian
distribution, as input. Implemented as a deep convolutional neural network, the generator produces Npaich
one-probability matrices Gy(z), which serve as input for the critic, immunogenicity predictor, and reward
network. The critic’s output is a vector of real values D, (Gy(2)), the output of the immunogenicity predictor
P(Gp(z)) is a vector of real values between 0 and 1, and the reward network’s output is a vector with real
values Sy(Go(z)). The reward network is trained using the mean squared error between the output of the
immunogenicity predictor and its own output, considering the generated one-probability matrices Gg(z) and
the one-hot encoded matrix of peptides in the training data x as input. The outputs of the reward network
S¢(Go(z)) and the output of the critic D, (Gg(z)) are used to compute a scaling variable Sgcqre. The
variable 7 indicates whether the generated peptides are repeated in a batch (v = 0 for repetitions, v = ymaz
otherwise). The critic is trained using the standard critic loss in a WGAN-GP, while the generator is trained
with a loss aiming to minimize the critic’s output given the generated one-probability matrices D,,(Gg(z))and
to minimize the reward network’s output given the generated one-probability matrices S¢(Go(z)) multiplied
by the scaling variable S.q;e and the variable ~.

2.2.2 Training of the GD-WGAN-GP

In this paper, the batch size is 64 (Npgten, = 64). z € R!28 ig defined to be a random noise vector with 128
elements, and each element is sampled from a normal distribution with zero mean and unit variance. The
generative network, the critic network, and the reward network network are defined as Gg : R128 — R10%21
D, : R0*21 — R and S, : R19%21 — R, respectively. For each epoch, the critic is trained 97 times,
the generator is trained 10 times, and the reward network is trained 97 times. The architecture of the
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Algorithm 1 The training procedure of the GD-WGAN-GP with the switching mechanism. The value for
the parameters are k = 1, A = 10, neritic = 10, Nyare = 6232, Npgren = 64, a = 1074, 51 = 0.5, and $; = 0.9.
Require: A maximum iteration number N, ¥,,42, and the initial weights wq, 0y, and ¢q for the critic D,
the generator Gy, and the reward network Sy, respectively.
Nsplit <~ Lﬁj
while £ < N do
Randomly split the training dataset with data distribution P, to ngu: data {]P’gl),IP’g), e ,IF’&"“’””)}
fori=1,--- ,ngpt do
Sample a batch of noise vectors {z(J)}Nb““’L ~ N(0,1).
for j =1,---, Npgtcn, do

Sample real data z ~ ]P’7(~i)
T+ Gg(z(j))
LY 51— ((Sp(@) — P())? + (Sp(x) — P(x))?)
T+ ex+(1—e)x
LY + 51— (=Du(x) + Du() + A([|V4Dus (2) 2 — 1))
end for

¢ + Adam(Vy SN LY 6,0, B, o)

w + Adam(V,, ENI’“M L ]) Jw,a, B, B2)
if (i mod nc”tw) =0 then
Sample a batch of noise vectors {z(j)}éy:b‘i“” ~ N(0,1).
A+ 0
for j =1, -+, Npaten do
Add Gy(29)) to a set A
end for
Sscate <= 1+ |Nbitch Z;Vb(itdl D, (GQ(Z(]))) NbatdL Z;Vbliuh S, (GQ(Z(J))”
if n(A) = Nbatch then
Y <~ Ymax
else
¥4+ 0
end if
Ly ¢ 5t S N0eh (= Dy (Go(2D) = ¥Sscate S (Go(21)))
0« Adam(Vng, 9, «, 51, ﬁg)
end if
end for
k=k+1
end while

without replacement, and a random number € € U[0, 1].

generator, the critic, the reward network, and the residual block in these three networks can be found in
Table [3] Table [d Table [5}, and Table [f] in Appendix [A] respectively. The algorithm of the GD-WGAN-GP
with switching mechanism in is shown in Algorithm The same hyperparameters are used for the
GD-WGAN-GP with the ORGAN’s repetition penalty (Guimaraes et all [2018) in (§).

3 Experiments

To validate the efficacy of our proposed generator training scheme, we adopted the same architecture for both
the generative and critic networks as outlined in (Li et al.; |2021]). We then compared the peptides generated
by the generator trained with and without our devised training scheme. For assessing immunogenicity, we
utilized the CNN-based immunogenicity predictor, DeeplmmunoCNN, from (Li et al.|2021)). The CNN was
retrained using the "remove0123__sample100.csv"' data file provided in their source code. The immunogenicity
predictor takes a 9- or 10-mer peptide sequence and a 4-digit encoded HLA sequence as inputs, predicting
their real-value immunogenicity score within the range of [0, 1].
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For evaluation, we performed a single run in which each generator produced 10,000 peptide sequences using
the same noise matrix. The matrix consists of 10,000 rows, each representing a batch, and 128 columns,
each corresponding to a dimension of the noise vector. The same set of generated sequences was used for
both immunogenicity and binding affinity evaluations.

3.1 Compared method

The designed GD-WGAN-GP is compared with the MolGAN designed by |Cao & Kipfl (2022)). |Cao & Kipf]
(2022) used WGAN without gradient penalty, and the loss functions of their critic and generator can be
written as:

Li\;/IOZGAN =Ezpg[Du(Z)] — Epnp, [Do(2)] (9)

and
Lg' AN = Ay B [Doo ()] = (1 = Aar) S5 (2), (10)
respectively, where Ap; € [0,1]. The same hyperparameters as the designed GD-WGAN-GP are used for

the training of the MolGAN (|Cao & Kipf, |2022)) and the weight clipping of ¢ = 0.01 is applied to the critic
network.

3.2 Immunogenicity

A comparison between the generators trained with the designed GD-WGAN-GP training scheme and the
generator trained using the architecture from [Li et al.| (2021) and MolGAN (Cao & Kipf, [2022) is shown in
Table The GANSs are trained on bladder cancer epitope data from TSNAdb (Wu et al.[|2018). Five variants
of the proposed GD-WGAN-GP are evaluated. The first four variants apply the switching mechanism in
with vmax set to 0.25, 0.5, 0.75, and 1, respectively. The fifth variant incorporates the repetition penalty
from ORGAN (Guimaraes et al., 2018)), as defined in . All of them are trained after 1000 epochs.

Three variants of the MolGAN (Cao & Kipf}, |2022)) designs are compared with the proposed GD-WGAN-GP.
The first two variants use MolGAN with A,s set to 0.5 and 0 in , respectively. The third variant uses
MolGAN with Ay = 0 and incorporates the repetition penalty from ORGAN (Guimaraes et al., 2018). For
each variant, two generator checkpoints are selected: one after 1000 training epochs, and another selected
based on the epoch that yields the highest sum of the immunogenicity score and the ratio of non-repeated

peptides in a batch of 64 generated samples across all 1000 epochs, following a model selection strategy
similar to that used in |Cao & Kipf| (2022)).

In Table[I] 10,000 peptide sequences are produced by each of the generator given the same input with a size
of R10000x128 "\where each element is sampled from a normal distribution. The percentage of non-repeated
peptides for each generator is shown in the fourth column of Table[l} The five variants of the proposed GD-
WGAN-GP achieve percentages above 75%, with one reaching 99.98%, outperforming the MolGAN (Cao &
Kipf, [2022)) designs, which remain below 25%.

To ensure that the generated peptides can be used as the input for the immunogenicity predictor (Li et al.,
2021)), the peptide sequences containing more than 2 placeholders (’-’) are removed. In addition, the repeated
peptide sequences are excluded prior to evaluating the immunogenicity score. The average immunogenicity
score across the remaining peptides for each generator is presented in the second column in Table

The GD-WGAN-GP with the switching machenism allows different generator configurations to optimize
the predicted immunogenicity score or the number of non-repeated peptides. The GD-WGAN-GP with
ORGAN’s (Guimaraes et al., |2018) repetition penalty can achieve a higher predicted immunogenicity score
with a similar percentage of non-repeated peptides compared to GD-WGAN-GP with (Yymaz = 0.5).

Using a model selection strategy similar to that used in MolGAN (Cao & Kipf, 2022), which selects the
generator that maximizes the sum of the predicted immunogenicity score and the ratio of non-repeated
peptides, the GD-WGAN-GP with ORGAN’s (Guimaraes et al.,|2018]) repetition penalty achieves the highest
sum of 1.763. The second-highest value, 1.7269, is obtained by the GD-WGAN-GP with 7,4, = 0.5.

Details of the computational times are provided and discussed in Table [7] in Appendix and the dots
and box plots of the immunogenicity scores across different methods, including the methods tested in this
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Table 1: Comparison of different designs of GANS trained to generate peptide vaccine candidates for bladder
cancer for 1000 epochs except for MolGANPet (Cao & Kipf, [2022), where the generator checkpoint is
selected from the epoch that yields the highest sum of the immunogenicity score (imm. score) and the ratio
of non-repeated peptides among a batch of 64 generated samples across all 1000 epochs. The imm. score is
predicted by the predictor from |Li et al.| (2021) and its average is across the generated non-repeated peptides
after removing peptides more than 10-mer and less than 9-mer. The percentage (percent.) of non-repeated
peptides is the percentage of the value of the number of non-repeated peptides divided by the number of
generated peptides (10,000). "min." indicates minute. In the Algorithm column, "with ORGAN" indicates
the reward for each generated data is penalized by divided the number of its repetition in a batch during
training.

Average Percent. of Percent. of Total
Algorithm imm. peptides with non-repeated training
score 9-10-mer (%) peptides (%) time (min.)

WGAN-GP 0.58+0.12  98.86 99.99 33.74

MoIGAN (Ay; = 0.5) 0.7240.08  63.28 18.13 181.14
MolGANPest (X3, = 0.5) 0.73+£0.09  65.46 17.44 166.75
MoIGAN (Ay; = 0) 0.89-£0.00  100.00 0.01 208.58
MolGANPest (X, = 0) 0.73+0.08  100.00 17.15 200.27
MoIGAN (Ay; = 0) with ORGAN 0.89:£0.00  100.00 0.01 203.77
MolGANPest (X, = 0) with ORGAN ~ 0.73+0.08  100.00 16.81 160.56
GD-WGAN-GP (Ymas = 0.25) 0.63+£0.11  99.86 99.98 218.16
GD-WGAN-GP (Ypae = 0.5) 0.73+£0.10  99.50 99.69 216.58
GD-WGAN-GP (Ypqe = 0.75) 0.88+0.05  99.95 81.60 216.49
GD-WGAN-GP (Yaz = 1) 0.92+0.04  99.96 77.55 182.35
GD-WGAN-GP with ORGAN 0.7740.10  99.93 99.30 193.89

section, the ablated variants of GD-WGAN-GP, the variants with different generator architectures, and the
predictions from the IEDB predictor [Vita et al. (2019), are shown in Figure [5|in Appendix [B} The diversity
of the generated peptides are discussed in Figure |8 of Appendix

3.2.1 Evaluation of the immunogenicity on the generated brain cancer epitopes

The same evaluation is conducted on the same set of GANs trained using brain cancer epitopes from TSNAdb
(Wu et al., |2018), with results presented in Table [8| in Appendix Unlike the result in Table the
MolGANP®st variant with Ap; = 0.5 achieves a higher percentage of non-repeated peptides compared to
GD-WGAN-GP (Ymaz = 1), but yields a lower predicted immunogenicity score of 0.68. Moreover, GD-
WGAN-GP variants with v,02 = 0.5, Ymae = 0.75, and the ORGAN’s repetition penalty outperform
MolGANP®st in both predicted immunogenicity score and the percentage of non-repeated peptides.

The remaining five MolGAN (Cao & Kipf] 2022) variants achieve a maximum of only 22.30% non-repeated
peptides, whereas all GD-WGAN-GP variants maintain a minimum of 60.15%. In addition, the GD-WGAN-
GP with ORGAN’s (Guimaraes et al., |2018) repetition penalty achieves the highest sum of the predicted
immunogenicity score and the ratio of non-repeated peptides with a value of 1.7917 compared to other
methods. These results further demonstrate that the proposed GD-WGAN-GP outperforms MolGAN across
different datasets.

The higher percentage of non-repeated peptides among the generated brain cancer epitopes compared to the
generated bladder cancer epitopes may result from the lower median binding affinity of the brain dataset
relative to the bladder dataset as shown in Figure [I0] of Appendix [B]
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(a) Immunogenicity Score vs. Epoch from Various WGANs (b) Unique Peptide Rate vs. Epoch from Various WGANs
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Figure 3: (a) The averaged immunogenicity score and (b) the unique rate of the peptide sequences generated
from the proposed GD-WGAN-GPs (purple, brown, pink, gray, and apple green lines) compared to the
WGAN-GP without the immunogenicity predictor (blue line) and MolGANs (Cao & Kipf, [2022) (orange,
green, and red lines) through 1000 epochs of training. The proposed GD-WGAN-GP with ;4. = 1 achieves
a higher immunogenicity and unique rate compared to MolGANs (Cao & Kipf} [2022)) after 400 epochs.

3.2.2 Immunogenicity score and unique peptide rate during training

The average immunogenicity scores of the generated peptide sequences from the same set of generators in
Section during the 1000 epochs of training are presented in Figure [3| (a), where the solid lines represent
the averaged scores calculated using

(k)
epoch - 10 ZPmea'rw (11)

where k = 1,2,---,10 is the number of times the generator is trained in an epoch, s = 1,2,--- | N is the
number of epochs, N = 1000 is the maximum iteration number, and

Noatch

Pk = Z P(Gg(z)) (12)

mean
batch

Notably, the immunogenicity scores of sequences generated from the proposed GD-WGAN-GP continue to
increase as the training epoch increases, reaching approximately 0.93 with the rate of non-repeated peptides
(unique rate) of around 0.99 at epoch 1000, as shown in the gray line in Figure Conversely, sequences
generated without the immunogenicity predictor from WGAN-GP only reach around 0.6 and show no further
increase. The MolGAN (Ay; = 0) and MolGAN (Ay; = 0) with ORGAN’s repetition penalty achieve an
immunogenicity scores of roughly 0.88, but the rate of non-repeated peptides decreases to around 0.02, as
shown in the red and green lines in Figure |3| (b).

10



Under review as submission to TMLR

Table 2: Comparison of the predicted binding affinity between different designs of GANs trained to generate
peptide vaccine candidates for bladder cancer after training for 1000 epochs except for MolGANP®st (Cao
& Kipf, |2022)), where the generator checkpoint is selected from the epoch that yields the highest sum of
the immunogenicity score and the ratio of non-repeated peptides among a batch of 64 generated samples
across all 1000 epochs. The percentage (percent.) of strong binders is the percentage of the ratio between
the number of generated unique sequences having IC59 < 500nM binding with HLA-A*0201 predicted by
NetMHCpan v4.0 (Jurtz et al. |2017) and the number of generated peptides (10,000). In the Algorithm
column, "with ORGAN" indicates the reward for each generated data is penalized by divided the number of
its repetition in a batch during training.

Number of Number of

generated generated
unique peptides peptides in
with 9-10-mer  the training set

Percent. of

Algorithm unique
binders (%)

WGAN-GP 67.61 9907 0
MolGAN (A, = 0.5) 4.68 1163 0
MolGANPEst (A, = 0.5) 3.43 1246 0
MolGAN (A = 0) 0.00 1 0
MolGANPest (A, = 0) 0.00 1708 0
MolGAN (A = 0) with ORGAN 0.00 1 0
MolGANPEst (A, = 0) with ORGAN  0.00 1677 0
GD-WGAN-GP (Yaz = 0.25) 77.64 9986 0
GD-WGAN-GP (Yaz = 0.5) 78.48 9919 0
GD-WGAN-GP (Ymaz = 0.75) 62.13 8139 0
GD-WGAN-GP (Ymaz = 1) 50.78 7730 0
GD-WGAN-GP with ORGAN 90.51 9934 0

3.3 Binding affinity

The binding affinity between the generated peptides and HLA-A*0201 is quantified by the half-maximal
inhibition (ICsp) values, representing the concentration of the test peptide resulting in 50% inhibition of
the binding of a probe peptide (Jurewicz et al.l 2019)). In the training dataset, the bladder cancer epitopes
are predicted to have a binding affinity smaller than 500nM using NetMHCpan v4.0 (Jurtz et al., 2017)
by (Wu et al 2018). To investigate whether the generated peptides also exhibit a strong binding affinity
(< 500nM), we employed the same prediction tool NetMHCpan 4.0 (Jurtz et al., |2017) to predict the ICs
values. Peptides with a predicted binding affinity IC5¢ below 500nM are considered binders to HLA-A*0201
(Lundegaard et al., |2008)).

The percentage of the number of binders of the generated peptides divided by the total number of generated
peptides from the designed GD-WGAN-GP is presented in the second column of Table[2] The GD-WGAN-
GP with ORGAN’s repetition penalty shows that the generated peptides have a similar property to the
training set (binders to HLA-A*0201) compared to WGAN-GP and . The variants from the designed GD-
WGAN-GP with the switching mechanism achieve a higher binder rate with a minimum of 50.78% compared
to MolGAN’s variants with no more than 5%.

The prediction of the binding affinity between HLA-A*0201 and the generated brain cancer epitopes can-
didates from the same set of generators is presented in Table [J] of Appendix [C] The results show that
WGAN-GP achieves the highest percentage of unique binders at 93.79%, followed by GD-WGAN-GP with
Ymaz = 0.25 at 89.45%. The lowest percentage of unique binders produced by the proposed method is
51.89% (from GD-WGAN-GP with 7,4, = 1), which is higher than the MolGAN variants (Cao & Kipf,
2022), where the best-performing model, MolGANPest (X, = 0.5), achieves only 14.72%.
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The results from Table 2] and Table [J] suggest that increasing Ymax improves the average predicted immuno-
genicity score but reduces both the number of unique binders and the percentage of non-repeated peptides.

These findings indicate that the proposed GD-WGAN-GP achieves a higher percentage of unique binders
than the MolGAN variants (Cao & Kipf] 2022)), implying that the generated peptides are more similar to
the training data, all of which are binders to HLA-A*0201 with IC59 < 500 nM predicted by NetMHCpan
v4.0 (Jurtz et al.l [2017).

4 Limitations

One potential limitation of this work is the risk of overfitting or reward hacking, since a single predictor is
used for both training and evaluation. This setup may bias the generator toward exploiting the weaknesses
of the predictor rather than capturing patterns for high immunogenicity sequences. Several strategies could
help mitigate this issue. First, regularization terms such as L1- or L2-norm penalties could be introduced into
the optimization objective. Second, a separate validation dataset could be employed to enable early stopping
if the validation loss begins to increase during training. Third, multiple predictors could be incorporated,
with their outputs combined through a weighted sum, to reduce reliance on any single model and improve
robustness.

Another limitation is observed in the results of the binding affinity between bladder and brain cancer. The
lower percentage of binders among the generated bladder cancer peptides compared to the brain cancer pep-
tides may be attributed to the lower median binding affinity of the brain dataset. A possible way to address
this limitation is to incorporate a binding affinity predictor into our framework, similar to the integration of
the immunogenicity predictor. However, this approach depends on the availability and reliability of suitable
predictors.

5 Conclusion

This paper presents various designs of goal-directed Wasserstein Generative Adversarial Networks with Gra-
dient Penalty (GD-WGAN-GP) for training generators capable of producing 9- to 10-mer peptide sequences
with high predicted immunogenicity, low repetition rate, and strong binding affinity. The output of a reward
network, which is concurrently trained to predict immunogenicity scores during the training of the generator
network, is incorporated into the GD-WGAN-GP architecture by multiplying it with a scaling factor, Sscaie,
to prevent the generator from solely maximizing the critic output regardless of the reward signal. To reduce
repetition, two approaches are proposed: (1) a switching mechanism in which the reward term is excluded
in the generator loss when duplicated peptides are present in a batch, and otherwise multiplied by a Vyqx
parameter to control the reward’s contribution to the generator loss, and (2) a repetition penalty from OR-
GAN, which divides each reward by the number of occurrences of its corresponding peptide within a batch.
A strong binding affinity is achieved by using a training dataset comprising 6,234 bladder cancer epitope
sequences with predicted binding affinity IC59 < 500 nM to HLA-A*0201.

The GD-WGAN-GP variant with the switching mechanism achieves the highest average immunogenicity
score among all compared methods when ~,,,,, = 1. The number of repeated peptides can be reduced
by decreasing vinq., although this comes at the cost of lower average immunogenicity. The GD-WGAN-
GP variant using ORGAN'’s repetition penalty achieves the highest combined score of immunogenicity and
uniqueness, suggesting it as the most balanced and effective design. All GD-WGAN-GP variants outperform
existing goal-directed GANs in terms of the percentage of unique binders with predicted ICs9 < 500 nM,
indicating that the proposed models can generate peptides with properties similar to those in the training
dataset while maximizing immunogenicity and minimizing redundancy.

Broader Impact Statement

We present novel algorithms that enable goal-directed generation within the Wasserstein generative adver-
sarial network with gradient penalty framework, specifically used to design peptide sequences with enhanced
predicted immunogenicity score for peptide vaccine development against bladder cancer. By prioritizing
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candidate sequences with higher predicted immunogenicity, our method has the potential to reduce both the
experimental cost and time required to identify peptides that are worth testing in laboratory and clinical
settings. Furthermore, our approach demonstrates generalization to brain cancer, suggesting broader appli-
cability across multiple cancer types. However, the reliability of the generated peptides is limited by the
expressiveness and accuracy of the predictor models used during training and evaluation.
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A Detailed description of the network architecture

We present the details of the generator, the critic, the reward network, and the residual block in Table
Table [4] Table [B] and Table [6] respectively. Before being input to the critic, the epitopes are encoded
as a one-hot matrix, as depicted in Figure 4| (a). Conversely, the output of the generator is a matrix of
probabilities, which can be decoded as a peptide sequence, as shown in Figure 4| (b).
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Figure 4: The encoding and the decoding methods in our goal-directed Wasserstein Generative Adversarial
Network with Gradient Penalty (WGAN-GP) adopted from (2021). In (a), the peptide is encoded
from a peptide sequence to a one-hot matrix z. (1) A 9-mer peptide sequence, such as TLYSESPAL, is
prepared before input to the critic. (2) If the peptide sequence has only 9 amino acids, a placeholder -’ is
inserted at the fifth position to extend the sequence to a length of 10. (3) The encoded peptide is represented
as a one-hot matrix, where each row corresponds to a position in the peptide sequence, and columns represent
amino acids along with a placeholder -’ The element in the one-hot matrix is 1 if the corresponding position
contains the amino acid or the placeholder at the corresponding column. For example, T’ is at position 1,
so the first row of the one-hot matrix will have 1 at the 17th column, corresponding to the character "T’, and
0 in the other columns. In (b), the peptide is decoded through the generated one-probability matrix Gg(z).
(1) The output of the generator Gy(z) is a one-probability matrix, where each row represents the position of
a peptide sequence, and columns represent amino acids along with a placeholder *-. Each element in Gy(z)
is the probability that the position corresponding to the row contains the amino acid or the placeholder. (2)
A peptide sequence is decoded by selecting the amino acid or the placeholder with the highest probability
for each row. For instance, if 0.5 is the highest value in the first row, the first character in the decoded
sequence is Y’, corresponding to the column with the value 0.5 in the first row. (8) If the peptide sequence
contains a placeholder, it is removed to form a peptide sequence shorter than 10.
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Table 3: Details of the generator network adopted from [Li et al.| (2021])

Layer Type Kseirzr;el Filter | Stride | Padding 2E;1;2t Number of parameters

1 Input - - - - 128 -

2 | Fully Connected - - - - 1280 165120
3 Reshape - - - - 12810 -

4 Residual block - - - - 12810 98560
5 Residual block - - - - 128x10 98560
6 Residual block - - - - 128 %10 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 128 %10 98560
9 Convolution 1D 1 21 1 no 21x10 2709
10 Transpose - - - - 10x21 -

11 | Gumbel-Softmax - - - - 10x21 -

In the residual block shown in Table [6] the residual connection is defined to be
Zres = Tres T+ O~3yresv (13)

where . is the input data in a residual block, y;..s is the output from the fifth layer (convolution 1D) in
the residual block, and z,..s is the output of the residual connection.

We denote the output matrix of the Convolution 1D in the residual block as a two-dimensional matrix
Y7es. The element at the i-th row and the j-th column of Y"** is denoted Y;}**. The input matrix of
the Convolution 1D in the residual block is denoted as X"°. In the residual block, the dimension of the
input to the Convolution 1D is defined to be X" € R"X " *¢X" where ri¢® = 128 and c%¢° = 10 are the
number of rows and columns of the input matrix, respectively. The input matrix with one zero padding is
defined as XPod = [0mes  X7es QU] € R™X X(X"+2) where 07 = [0 0 --- 0]7 € R"x <! is an all
zero column vector with dimension r%*. The dimension of the output matrix after the Convolution 1D will
be Y7es € RfresXeX” where fres = 128 is the number of kernels. Each element in the output matrix of the

Convolution 1D layer in the residual block is computed by

TX Cw
Ve = "N (ke XP ) b, (14)

m=1n=1

where 1 <@ < fres, 1 <7 < %7, w'est € R"x %" ig the i-th convolutional kernel, cv® = 3 is the number
of columns in the kernel, and "¢ € R is the bias for the i-th kernel.

For The Convolution 1D in the 9-th layer of the generator, X9¢" € R™% " %X is denoted as the input matrix,
where r§" = 128 and ¢§" = 10 is the number of rows and columns of the input matrix, respectively. The
output matrix will be Y9¢" € Rfsen X" where f,e, = 21 is defined to be the number of kernels for this
Convolution 1D. The Convolution 1D in the 9-th layer of the generator is defined to be

gen

rx Cuw
gen __ gen,i gen gen,i
Y;J' - Z Z(km,n 'Xm,nvLj) +b ) (15)
m=1n=1

where 1 <i < foen, 1 <j <%, w9 € R™x €% is the i-th convolutional kernel, " = 1 is the number
of columns in the kernel, and b9¢™* € R is the bias for the i-th kernel.

For the Convolution 1D in the 3-rd layer of the critic and the reward network, Xcritic ¢ R7EOxeRT gy
denoted as its input matrix, where r§/# = 21 and ¢§'* = 10 is the number of rows and columns of its
critic

input matrix, respectively. The output matrix will be Y¢ritic ¢ Rferitie XX ™™ where fopitic = 128 is defined
to be the number of kernels for this Convolution 1D. The operation of the Convolution 1D in the 3-rd layer
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Table 4: Details of the critic network adopted from |Li et al.| (2021)

Layer Type Kseirzr;el Filter | Stride | Padding 2E;I;)2t Number of parameters

1 Input - - - - 10x21 -

2 Transpose - - - - 21x10 -

3 Convolution 1D 1 128 1 no |128x10 2816
4 Residual block - - - - 128 %10 98560
5 Residual block - - - - 128 %10 98560
6 Residual block - - - - 12810 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 12810 98560
9 Reshape - - - - 1280 -
10 | Fully Connected - - - - 1 1281

Table 5: Details of the reward network network
Layer Type Kseirzr;el Filter | Stride | Padding 22};? Number of parameters

1 Input - - - - 10x21 -

2 Transpose - - - - 21x10 -

3 Convolution 1D 1 128 1 no |128x10 2816
4 Residual block - - - - 12810 98560
5 Residual block - - - - 128x10 98560
6 Residual block - - - - 12810 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 128 %10 98560
9 Reshape - - - - 1280 -
10 | Fully Connected - - - - 1 1281

of the critic and the reward network is similar to but with the change of the input size and the number
of kernels and it is defined as

critic
X Cw

vgte = 30 3T (ki X + 0, (16)

m=1 n=1
where 1 < i < fepitie, 1 < j < e§ritic wdisi ¢ R7x %<0 is the i-th convolutional kernel, coritic = 1 is the
number of columns in the kernel, and %% € R is the bias for the i-th kernel.

In the critic and the reward network, the reshape function aligns each row into a row vector. The reshape
function acted on the matrix A € RP*? can be represented by

vec(A) = [Arl Ay - Arp} , (17)

where A,; is denoted as the i-th row vector in the matrix A.

In the generator, the reshape function at the third layer converts a vector B € RP*? into a matrix B e RPx4
by putting the p-th ¢ elements of B to the p-th row of the matrix B. It can be represented as

B By <+ By
By Btz o By

o
Il
—
—_
(0]
—

Bop-1g+1 Bp-1er2 + Big
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Table 6: Details of the residual block adopted from |Li et al.| (2021)

Layer Type K:il;réel Filter | Stride | Padding ZEZI;? Number of parameters
1 Input - - - - 128 %10 -
2 ReLU - - - - 128%x10 -
3 Convolution 1D 3 128 1 1 128x%10 49280
4 ReLU - - - - 128%x10 -
5 Convolution 1D 3 128 1 1 128x%10 49280
6 Residual - - - - 128%x10 -
connection

where B; is denoted as the i-th elements in the matrix B.

Let XG5 € R7S°%<5” be the input and Y&5 ¢ R7%°%¢%® be the output of the Gumbel-Softmax in the 11-th
layer of the generator network, where Tg:(s = 10 is the number of row for the input matrix X“* and cg’(s =21
is the number of column in X9, respectively. The Gumbel-Softmax in the generator network is computed
as

ex'f;nlbel

GS
Yz’,j = (19)

¢G5 xGumbel’
Dm0
where 1 <4 < T)G(S, 1<j5< cg:(s, ijs is denoted as the element of Y& at the i-th row and the j-th column,

X Gumbel jg avaluated as
XGS _ ln(gGS)

)

XGumbel _ (20)

T

where g% € Rr%°xe%” is a matrix with its value generated by the exponential distribution f(z) = Ae %,
A=1,and 7 =0.75.

B Additional experiment comparison for bladder cancer epitopes generation

B.1 Additional baselines

A random generator is included as a baseline method. It is implemented by first uniformly sampling either
9 or 10 to determine the sequence length, and then uniformly sampling one character from "ARNDC-
QEGHILKMFPSTWYV' for each position in the sequence.

B.2 Additional comparison of computational time

The detail of the computational time for each process during the 1000 training for each method is shown
in Table [7} showing that the main reason for the increased computational time for all the other methods
compared to WGAN-GP resulting from the computation of the forward pass of the immunogenecity predictor.

B.3 Additional comparison of immunogenecity score and binding affinity

The dots and box plots of the immunogenicity score from the Deepimmuno-CNN |Li et al.| (2021)) (used in
the training) and IEDB |Vita et al| (2019)) (unseen) across different methods are shown in Figure The
results from the IEDB predictor show that the GD-WGAN-GP variants with CNN generators achieve higher
immunogenicity scores compared to the random generator baseline, the training dataset, and WGAN-GP.
In addition, the MolGAN variants (Ays = 0) obtain higher scores from the IEDB predictor |Vita et al.[(2019)
than other methods, which is not observed in the results from Deeplmmuno-CNN |Li et al.| (2021)).

The dots and box plots of the immunogenicity scores predicted by NetMHCpan-4.0 |Jurtz et al.| (2017) and
NetMHCpan-4.1 Reynisson et al.| (2020) are shown in Figure[6] The results indicate that the predictions from
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Table 7: Comparison of computational time of different designs of GANs trained to generate peptide vaccine
candidates for bladder cancer for 1000 epochs except for MolGANPe* (Cao & Kipf,[2022), where the generator
checkpoint is selected from the epoch that yields the highest sum of the immunogenicity score (imm. score)
and the ratio of non-repeated peptides among a batch of 64 generated samples across all 1000 epochs. "min."
indicates minute. In the Algorithm column, "with ORGAN" indicates the reward for each generated data is
penalized by divided the number of its repetition in a batch during training.

Others Total

Algorithm Weight update time (min.) Forward pass time (min.) (min.) 'trainin'g
time (min.)
Critic Generator Reward Critic Generator Reward Predictor l
WGAN-GP 13.47 0.71 - 3.71 2.36 - 7.32 6.18 33.74
MolGAN (Ap; = 0.5) 7.03 0.81 10.60 3.46 3.68 3.79 136.35 15.42 181.14
MolGAN (Xp; = 0) 8.37 0.99 11.98 3.77 3.74 4.36 159.93 15.45 208.58
MolGAN (A p; = 0) with ORGAN 8.41 0.99 11.05 3.83 3.31 4.43 158.47 13.28 203.77
GD-WGAN-GP (ymaz = 0.25) 13.70 0.99 11.38 4.21 3.82 4.74 160.15 19.17 218.16
GD-WGAN-GP (vymaz = 0.5) 13.68 0.98 11.30 417 3.82 4.66 158.65 19.34 216.58
GD-WGAN-GP (ymaq = 0.75) 13.66 0.97 11.33 4.22 3.86 4.69 158.33 19.44 216.49
GD-WGAN-GP (ymaz = 1) 11.83 0.84 9.01 3.63 2.89 4.06 134.26 15.84 182.35
GD-WGAN-GP with ORGAN 11.70 0.81 7.87 3.58 2.36 3.90 131.64 12.04 173.89

the two predictors are consistent, and that GD-WGAN-GP with ORGAN achieves the lowest binding affinity
among all methods. In contrast, the MolGAN variants (Ap; = 0) yield the highest median binding affinity
scores, suggesting that these sequences may not bind to HLA-A*0201 despite their high immunogenicity
predicted by the IEDB predictor [Vita et al.| (2019).

B.4 Comparison of the GD-WGAN-GP variants with LSTM and Transformer architecture in the
generator

Different generator architectures were explored by replacing the convolutional layers of the CNN generator
with one-directional Long Short-Term Memory (LSTM) layers [Hochreiter & Schmidhuber| (1997)) or Trans-
former layers |Vaswani et al.| (2017). Specifically, in the LSTM generator, the five residual blocks in Table
were replaced with four LSTM layers with a hidden size of 128, and the 1D convolution at layer 9 was
replaced with a fully connected layer. In the Transformer generator, the layer 9 in Table [3] was also replaced
with a fully connected layer and the five residual blocks in Table [3] were replaced with two Transformer
layers with an embedding dimension of 128, eight heads, rotary positional encoding (base = 10000) [Su et al.
(2024)), root-mean-square layer normalization |Zhang & Sennrich| (2019), and no causal masking in the at-
tention layer. The feed-forward network in each Transformer layer consists of a single fully connected layer
with a Gaussian Error Linear Unit (GELU) activation function Hendrycks & Gimpel| (2023) and a hidden
size four times the embedding dimension. The number of layers for the both generators are selected to be
similar to the CNN generator with 660,629 model parameters. The four-layer LSTM generator has 696,213
parameters and the two-layer Transformer generator has 563,861 parameters.

The predicted immunogenicity score and the binding affinity of the GD-WGAN-GP (y,n4 = 1) and the GD-
WGAN-GP woth ORGAN with LSTM or Transformer generator are shown in the gray boxes in Figure [
and Figure [6] respectively. The results in Figure [5] shows that GD-WGAN-GP (V4 = 1) with LSTM and
GD-WGAN-GP with ORGAN with transformer achieve a median of immunogenicity score higher than 0.9
from the Deepimmuno-CNN [Li et al.| (2021)), similar to GD-WGAN-GP (Y4 = 1) with the CNN generator,
while the result in Figure@shows that GD-WGAN-GP (Yya: = 1) with LSTM achieve a much higher median
binding affinity score with more than 10* nM. The GD-WGAN-GP with ORGAN with transformer achieve
a median binding affinity closer to that for the GD-WGAN-GP (ymaz = 1).

B.5 Comparison of the ablated GD-WGAN-GP variants

In the ablation study, five GD-WGAN-GP variants are considered: GD-WGAN-GP (4 = 1), GD-WGAN-
GP (Vmaz = 1) without the reward network, GD-WGAN-GP (Vjaz = 1, Sscate = 1), GD-WGAN-GP with-
out the switch and ORGAN, and GD-WGAN-GP with ORGAN. Specifically, the GD-WGAN-GP (V40 = 1)
without the reward network is implemented by directly using the immunogenicity predictor for the generator,
replacing S with P.
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Figure 5: The dots and box plots showing the immunogenicity scores predicted by Deeplmmuno-CNN
(top) and IEDB [Vita et al| (2019) (bottom). The evaluated sequences are 9-10 mers without
repetition from each method, the same as those evaluated for the second column in Table [ The blue
boxes represent the scores from the baselines and dataset, the orange boxes represent the scores from the
MolGAN variants, the green boxes represent the scores from the GD-WGAN-GP variants, the pink boxes
represent the scores from the ablated GD-WGAN-GP variants, and the gray boxes represent the scores from
the GD-WGAN-GP variants with LSTM or Transformer architectures in the generator.

The average immunogenicity scores during training for these ablated variants are shown in Figure Iﬂ (a).
GD-WGAN-GP (Ve = 1) and GD-WGAN-GP without the switch and ORGAN achieve average immuno-
genicity scores above 0.9 after 800 epochs. GD-WGAN-GP with ORGAN reaches an average score of around
0.8, while both GD-WGAN-GP (yma = 1) without the reward network and GD-WGAN-GP (Ve = 1,
Sscale = 1) fall below 0.7 after 600 epochs.
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Figure 6: The dots and box plots showing the binding affinity (nM) predicted by NetMHCpan-4.0
(top) and NetMHCpan-4.1 [Reynisson et al| (2020) (bottom). The evaluated sequences are
9-10 mers without repetition from each method. The blue boxes represent the scores from the baselines
and dataset, the orange boxes represent the scores from the MolGAN variants, the green boxes represent
the scores from the GD-WGAN-GP variants, the pink boxes represent the scores from the ablated GD-
WGAN-GP variants, and the gray boxes represent the scores from the GD-WGAN-GP variants with LSTM
or Transformer architectures in the generator.

The unique rate curves in Figure Iﬂ (b) show that, despite the high average immunogenicity score (>0.9)
of GD-WGAN-GP without the switch and ORGAN, its unique rate drops to nearly 0 after 100 epochs. In
contrast, GD-WGAN-GP (V4 = 1) maintains a unique rate of around 1.0 throughout training.
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Figure 7: The line plot showing the predicted immunogenicity score from Deeplmmuno-CNN (2021))
during training for different ablated variants of GD-WGAN-GP.

B.6 Experiment on edit distance

The edit distance distributions for all considered methods are shown in Figure The distributions are
evaluated by computing the edit distance between each pair of generated sequences. The highest mean value
is achieved by the random generator, with a mean of 9.00 in Figure[§| (a). As shown in Figure[|(b), MolGAN
(best, Aps = 0) has a lower mean edit distance compared to MolGAN (A = 0.5). Figure c) shows that
GD-WGAN-GP with the switching mechanism tends to have lower diversity as v,,q, increases. Among the
ablated variants of GD-WGAN-GP (Yimae = 1), the LSTM-based generator achieves the lowest mean edit
distance compared to other ablated methods, as shown in Figure [§] (d).

B.7 Analysis between the two considered datasets

The edit distance distribution between the bladder and brain datasets in Figure [9] shows that the peptide
diversity in the two datasets is similar, with the bladder dataset having a median edit distance of 8.04 and
the brain dataset a median edit distance of 7.96.

The dots and box plots comparing the bladder and brain datasets are shown in Figure [I0] The median
binding affinity of the brain dataset is lower than that of the bladder dataset, which may explain why the
number of binders in Table [2] for bladder cancer is generally lower than in Table 0] for brain cancer.

C Experiment using brain cancer epitopes

In this section, the comparison of the proposed GD-WGAN-GP with the generator trained using the ar-
chitecture from and MolGAN (Cao & Kipf, 2022) is presented in Table [8| using the 2,454
brain cancer epitopes from TSNAdb (Wu et al., [2018) with IC50 < 500nM. The network architecture and
hyperparameters are the same as in Section

The results in Table [§] demonstrate that the proposed GD-WGAN-GP with a switching mechanism enables
users to balance the average immunogenicity score and the uniqueness of the generated peptides. These
peptides also exhibit high binding affinity to HLA-A*0201, as shown in Table EI, outperforming those gen-
erated by MolGAN (Cao & Kipf, 2022). Among all models, the generator trained with the GD-WGAN-GP
incorporating ORGAN’s repetition penalty (Guimaraes et al., 2018) achieves the highest sum of average
immunogenicity score and ratio of non-repeated peptides (1.7917), indicating it as the most effective design.
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Figure 10: The dots and box plots between the bladder dataset and the brain dataset used in this work.
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Table 8: Comparison of different designs of GANSs trained to generate peptide vaccine candidates for brain
cancer for 1000 epochs except for MolGANPe* (Cao & Kipf, [2022), where the generator checkpoint is
selected from the epoch that yields the highest sum of the immunogenicity score (imm. score) and the ratio
of non-repeated peptides among a batch of 64 generated samples across all 1000 epochs. The imm. score is
predicted by the predictor from |Li et al.| (2021) and its average is across the generated non-repeated peptides
after removing peptides more than 10-mer and less than 9-mer. The percentage (percent.) of non-repeated
peptides is the percentage of the value of the number of non-repeated peptides divided by the number of
generated peptides (10,000). "min." indicates minute. In the Algorithm column, "with ORGAN" indicates
the reward for each generated data is penalized by divided the number of its repetition in a batch during

training (Guimaraes et al., 2018)).

Average Percent. of Percent. of Total
Algorithm imm. peptides with non-repeated training
score  9-10-mer (%) peptides (%) time (min.)
WGAN-GP 0.57 99.85 99.41 12.80
MolGAN (Ap = 0.5) 0.76 95.56 10.28 70.90
MolGANPest (X3, = 0.5) 0.68 99.98 73.61 76.14
MolGAN (Ap =0) 0.89 100.00 0.01 70.82
MolGANPest (\y, = 0) 0.73 100.00 22.30 73.91
MolGAN (Ap = 0) with ORGAN 0.89 100.00 0.01 70.71
MolGANPest (X3, = 0) with ORGAN  0.73 100.00 22.85 71.15
GD-WGAN-GP (Vmaz = 0.25) 0.64 97.99 98.88 64.83
GD-WGAN-GP (Vmaz = 0.5) 0.82 99.86 97.04 87.53
GD-WGAN-GP (Vmaz = 0.75) 0.86 99.94 76.77 75.70
GD-WGAN-GP (Yimaz = 1) 0.90 99.86 60.15 76.88
GD-WGAN-GP with ORGAN 0.83 99.96 96.17 74.66
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Table 9: Comparison of the predicted binding affinity between different designs of GANs trained to generate
peptide vaccine candidates for brain cancer after training for 1000 epochs except for MolGANPst (Cao
& Kipf, |2022)), where the generator checkpoint is selected from the epoch that yields the highest sum of
the immunogenicity score and the ratio of non-repeated peptides among a batch of 64 generated samples
across all 1000 epochs. The percentage (percent.) of strong binders is the percentage of the ratio between
the number of generated unique sequences having IC59 < 500nM binding with HLA-A*0201 predicted by
NetMHCpan v4.0 (Jurtz et al. |2017) and the number of generated peptides (10,000). In the Algorithm
column, "with ORGAN" indicates the reward for each generated data is penalized by divided the number of
its repetition in a batch during training (Guimaraes et al., [2018)).

Percent. of
Algorithm unique
binders (%)

Number of
generated
unique peptides
with 9-10-mer

Number of

generated

peptides in
the training set

WGAN-GP 93.79
MolGAN (A = 0.5) 6.34
MolGANPest (X5, = 0.5) 14.72
MolGAN (A = 0) 0.00
MolGANPest (X3, = 0) 0.00

MolGAN (A, = 0) with ORGAN 0.00
MolGANPest (X, = 0) with ORGAN  0.00

GD-WGAN-GP (Ymaz = 0.25) 89.45
GD-WGAN-GP (Ymaz = 0.5) 88.37
GD-WGAN-GP (Vimaz = 0.75) 72.10
GD-WGAN-GP (Vmaz = 1) 51.89
GD-WGAN-GP with ORGAN 89.29
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