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Abstract

We introduce a novel goal-directed Wasserstein Generative Adversarial Network with Gra-
dient Penalty (GD-WGAN-GP) for training a generator capable of producing peptide se-
quences with high predicted immunogenicity and strong binding affinity to the human leuko-
cyte antigen HLA-A*0201, thereby eliciting cytotoxic T-cell immune responses. The pro-
posed GD-WGAN-GP incorporates a critic network to guide the generator in producing
peptides with a strong binding affinity similar to those in the training set and a reward net-
work to steer the generator toward producing sequences with high predicted immunogenicity.
To avoid the generator prioritizing the objective of the critic at the expense of immunogenic-
ity, we introduce a scaling factor to balance the influence of the reward in the loss of the
generator. To reduce peptide repetition, we integrate the reward into the loss of the gen-
erator using two approaches: a switching mechanism that excludes the reward term when
duplicated peptides are present in a batch, and otherwise multiplies it by a v,n.. parameter
to control the reward’s contribution, and (2) a repetition penalty from ORGAN, where each
reward is divided by the number of occurrences of its corresponding peptide within the batch.
Experiments on bladder cancer epitope sequences demonstrate that GD-WGAN-GP with
the switching mechanism enables a tunable trade-off between the number of unique peptides
and the average immunogenicity score via varying v,mq.. Furthermore, the generator trained
by the GD-WGAN-GP with the ORGAN’s repetition penalty achieves an optimal balance
of uniqueness and immunogenicity. Across multiple datasets, GD-WGAN-GP outperforms
existing methods by effectively reducing peptide redundancy while preserving high immuno-
genicity scores and strong binding affinity. The Python codes are provided at: https:
//github.com/AnnonymousForPapers/GP-WGAN-GP_with_switch_and_ORGAN_penalty.

1 Introduction

Tumor-specific antigens have been utilized in cancer vaccines, a form of cancer immunotherapy, to stimulate
the production of tumor-specific T cells (Stevanovic, [2002). These antigens are encoded in the genome and
are not present in normal cells, making them representative of aberrant proteins (Gubin et al., |2015). An
epitope can be defined as a segment of an antigen that is generated through antigen processing (Sidney
et al, 2020). The activation of the tumor-specific T-cell response occurs when epitopes from class I or class
IT human leukocyte antigen (HLA) molecules are presented to T cell receptors (TCRs), which recognize
antigens in the form of peptides (Mohme & Neidert, 2020). The HLA class I molecule serves as the TCR
ligand for CD8+ cytotoxic T lymphocytes (CTLs) and binds peptides consisting of 8-11 amino acids. On the
other hand, the TCR ligand for CD4+ helper T cells is the HLA class II molecule, and the bound peptides
typically consist of 15 amino acids (Sim & Sun [2022)).

Peptide-based cancer vaccines refer to cancer vaccines that employ polypeptides comprised of known or
predicted tumor antigen epitopes (Liu et all |2022)). Peptide-based vaccines are widely utilized in cancer
vaccination practices and are designed to activate a tumor-specific cytotoxic T lymphocyte (CTL) response
(Butterfield, |2015)). These vaccines consist of multiple epitopes, typically ranging from 8 to 11 amino acids
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in length (Liu et al., [2021)). Moreover, these peptides are commonly combined with a carrier protein to
facilitate their recognition and processing by antigen-presenting cells (APCs), thereby triggering an immune
response that involves CTLs (Abd-Aziz & Poh, [2022)).

To develop an effective peptide-based vaccine, it is crucial to ensure that the epitopes are recognizable
by T cells, highly prevalent, and exclusive to tumor cells (Nelde et al. [2021). The process of identifying
immunogenic epitopes begins by obtaining samples of both cancerous and normal cells through biopsy,
followed by comparing their DNA sequences using techniques like Whole Exome Sequencing (WES) or
Whole Genome Sequencing (WGS) to identify tumor-specific mutations (Richard et all [2022)). Somatic
variant callers can be employed to detect single nucleotide variants from the WES and WGS data, and
subsequently, peptides containing the mutated regions are extracted using sliding windows from the varied
protein sequence (Richters et al., 2019)). Epitope candidates can be identified using computational prediction
tools, an approach that offers significant advantages in terms of time and cost when compared to traditional
methods such as mass spectrometry techniques (Lemmel & Stevanovid, |2003; (Chen et al.l 2020; [Hensen et al.|
2022; [Parvizpour et al., |2020)).

Immunogenicity refers to the capacity of a substance to initiate an immune response, and the binding of
a peptide to HLA molecules is essential for epitope immunogenicity (Antunes et al., |2018)). (Wu et al.|
2019) devised DeepHLApan, a recurrent neural network-based method that integrates binding affinity and
immunogenicity details of peptide-HLA complexes to predict CD8+ T-cell epitopes. (Li et al. [2021)), on the
other hand, utilized a convolutional neural network (CNN)-based method called DeepImmuno, where they
utilized linear peptides of 9 to 10 amino acids and 4-digit class I HLA alleles as input to forecast the immuno-
genicity score of peptide-HLA pairs for T-cell immune responses. (Diao et al.,2022|) introduced Seq2Neo, a
CNN-based pipeline that leverages the binding affinity and transporters associated with antigen processing
(TAP) transport efficiency of a given peptide-HLA pair to improve the prediction of immunogenicity scores
for T-cell immune responses.

Generative Adversarial Networks (GANs) (Goodfellow et al2014) are deep learning models with a generative
model trying to learn and capture the distribution of training data, thereby being capable of synthesizing
samples from the learned distribution (Gonog & Zhoul 2019; |Creswell et al., |2018)). GAN algorithms have
found application in generating novel protein and peptide structures for use in drug screening and the
discovery stage (Lin et al.,|2022). [Duttal (2022) developed a GAN equipped with a graph CNN that predicts
solubility and toxicity from molecular descriptors, guiding the generator network to produce new small
molecules with desired drug properties. [Putin et al.| (2018) proposed a GAN architecture known as "RANC,"
which incorporates reinforcement learning to generate chemically diverse structures with desired features,
with a focus on maintaining similar lengths of the SMILES string as their training data. [Karimi et al.
(2020) developed a semi-supervised, guided, conditional, Wasserstein generative adversarial network capable
of generating proteins with desired structure folds, while incorporating greater sequence diversity and novelty
compared to conditional variational auto-encoder designs. |Li et al.| (2021)) employed a generator trained with
a Wasserstein generative adversarial network with gradient penalty (WGAN-GP) to generate immunogenic
epitopes binding to HLA-A*0201 and demonstrated that their generated peptides exhibited features and
amino acid sequences similar to the epitopes in their training dataset.

In this study, we introduce a novel training framework, termed goal-directed Wasserstein Generative Ad-
versarial Network with Gradient Penalty (GD-WGAN-GP), for generating immunogenic peptide sequences.
Built upon the WGAN-GP architecture, known for its enhanced training stability (Gulrajani et al., 2017)),
our method integrates both a critic network and a reward network to guide the generator. The critic is
trained on bladder cancer-specific peptides that bind to HLA-A*0201, assigning higher values to sequences
similar to those in the training data. The reward network, implemented as a convolutional neural network
and trained using immunogenicity scores predicted by Deeplmmuno (Li et al., [2021)), directs the generator
toward producing peptides with high immunogenicity. Its output is scaled by a factor Ss.qie to balance the
influence of the reward and the critic in the loss of the generator. To reduce repetition among generated
sequences, we apply two strategies: a switching mechanism that excludes the reward term when duplicated
peptides are present in a batch, and otherwise multiplies it by a 74, parameter to control the reward’s
contribution to the loss of the generator; and a repetition penalty adapted from ORGAN (Guimaraes et al.|
2018)), where each reward is divided by the number of occurrences of its corresponding peptide within the
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batch. The proposed GD-WGAN-GP with the switching mechanism enables users to control the trade-
off between generating peptides with high predicted immunogenicity at the cost of increased repetition, or
achieving lower repetition rates with reduced immunogenicity. In both cases, the generated peptides maintain
strong binding affinity to HLA-A*0201, a characteristic shared with peptides in the training dataset. The
generator trained using the GD-WGAN-GP framework with ORGAN'’s repetition penalty (Guimaraes et al.,
2018) demonstrates the ability to produce peptides with high predicted immunogenicity, low repetition rates,
and strong binding affinity to HLA-A*0201. These improvements outperform existing approaches, such as
WGAN-GP (Li et all [2021) and MolGAN (Cao & Kipf, 2022)), highlight the potential of our method for
the design of immunogenic epitope candidates in cancer immunotherapy. An introduction to our method is
shown in Fig. [T}

2 Methods

2.1 Datasets

The tumor-specific neoantigen database (TSNAdb) (Wu et al., [2018)) offers 6234 bladder cancer neoepitopes,
each featuring a single amino acid mutation, predicted to bind with HLA-A*0201 and having predicted
binding affinity IC5¢ <500nM. These epitopes, along with their corresponding HLA molecules, were predicted
using NetMHCpan v4.0 (Jurtz et al [2017) which assesses the binding affinity of potential epitopes within
a protein sequence based on mass spectrometry eluted ligands and half-maximal inhibition (IC50) scores,
with a threshold of IC50 < 500nM. It is important to note that these epitopes have not been experimentally
verified in other literature. We choose HLA-A*0201 as the binding target of the generated peptides since
HLA-A*0201 binds with most of the bladder cancer neoepitopes in the TSNAdb (Wu et al., 2018).

During the data cleaning process, we specifically selected bladder cancer epitope sequences predicted to bind
with HLA-A*0201 and having a length of either 9 or 10 amino acids. Our resulting training dataset comprised
a total of 6234 epitopes. For standardization, we employed the same coding strategy as in (Li et al., |2021)).
This involved padding 9-mer peptides to become 10-mers by joining the first five amino acids and the last
four amino acids with a placeholder "-". Thus, the peptide sequences in our study are represented as a
sequence cousisting of a placeholder "-" and the 20 amino acid types: Alanine (A), Arginine (R), Asparagine
(N), Aspartate (D), Cysteine (C), Glutamine (Q), Glutamate (E), Glycine (G), Histidine (H), Isoleucine
(I), Leucine (L), Lysine (K), Methionine (M), Phenylalanine (F), Proline (P), Serine (S), Threonine (T),
Tryptophan (W), Tyrosine (Y), and Valine (V). The amino acids and placeholder were converted into one-hot
encoded matrices (Jiang et al., [2022).

As of March 2023, the Immune Epitope Database (IEDB) (Vita et al., 2019) reports only 24 experimentally
tested linear bladder cancer epitopes that bind with HLA class I molecules, as identified by [Wang et al.| (2020).
In addition, the neoepitopes from the TSNAdb (Wu et al.l|2018) are not predicted to be immunogenic. Thus,
we aim to design a goal-directed generator to provide potential immunogenic peptide sequences and increase
the pool of peptides worthy of experimental testing.

2.2 Goal-directed WGAN-GP

The designed GD-WGAN-GP architecture comprises a peptide sequence generator, a critic, an immuno-
genicity predictor, and a reward network. The generator and critic are CNN-based models from (Li et al.,
2021). The critic is trained using the predicted bladder cancer peptides obtained from TSNAdb (Wu et al.,
2018) with IC50 < 500nM and the generated epitopes, thereby guiding the training of the generator. Before
being input to the critic, the predicted bladder cancer epitopes are encoded as a one-hot matrix, as depicted
in Figure [2[ (a). Conversely, the output of the generator is a matrix of probabilities, which can be decoded
as a peptide sequence, as shown in Figure [2 (b). The peptide sequence generator tries to generate sequences
that are closely similar to the predicted bladder cancer epitopes in the training dataset.

The immunogenicity predictor utilized is the Deepimmuno-CNN from (Li et al., 2021). This predictor
takes a 9-mer or 10-mer generated peptide sequence, along with a 46-mer HLA-A*0201 sequence, as input,
predicting their respective immunogenicities. The reward network is a CNN-based model that outputs the
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Figure 1: Introduction to peptide-based cancer vaccines and our proposed method. (a) Epitopes in cancerous
cells may bind to HLA and the resulting HLA-peptide complex may be transferred to the cell surface to
be recognized by T cells |Zhao et al| (2021). (b) The polypeptides in peptide-based cancer vaccines are
processed in APCs, the epitopes are bound to HLA, and the HLA-complexes present the epitopes on the cell
surface to trigger T cell immune responses Bartnik et al.| (2013). (¢) The immunogenicity of a peptide can be
influenced by its delivery system |Li et al.| (2014)), the binding diversity between peptide and HLA
, the stability of the HLA-peptide complex [Van Der Burg et al. (1996), and the abundance
and density of the antigen that is presented on a cell surface [Purcell et al.| (2007)). (d) The standard way
of finding the immunogenic peptides for the design of cancer vaccines Guo et al.| (2018). (e) The designed
generator can produce more epitope candidates with high immunogenicity to facilitate peptide-based cancer
vaccines. Created with BioRender.com.

immunogenicity score. In contrast to the immunogenicity predictor, the reward network is trained during the
training of the GD-WGAN-GP. The reward network takes the generated sequences or the sequences in the
training dataset as input and the output of the immunogenicity predictor given the reward network’s input
as the target value. Throughout the training, the placeholder ’-’ remains in the peptide sequence and is only
removed when utilizing the trained generator to produce peptide sequences, as depicted in the procedure
outlined in Figure [2] (b), step (3).
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Figure 2: The encoding and the decoding methods in our goal-directed Wasserstein Generative Adversarial
Network with Gradient Penalty (WGAN-GP) adopted from (2021)). In (a), the peptide is encoded
from a peptide sequence to a one-hot matrix x. (1) A 9-mer peptide sequence, such as TLYSESPAL, is
prepared before input to the critic. (2) If the peptide sequence has only 9 amino acids, a placeholder -’ is
inserted at the fifth position to extend the sequence to a length of 10. (3) The encoded peptide is represented
as a one-hot matrix, where each row corresponds to a position in the peptide sequence, and columns represent
amino acids along with a placeholder ’-’. The element in the one-hot matrix is 1 if the corresponding position
contains the amino acid or the placeholder at the corresponding column. For example, T’ is at position 1,
so the first row of the one-hot matrix will have 1 at the 17th column, corresponding to the character "T’, and
0 in the other columns. In (b), the peptide is decoded through the generated one-probability matrix Gg(z).
(1) The output of the generator Gy(z) is a one-probability matrix, where each row represents the position of
a peptide sequence, and columns represent amino acids along with a placeholder -’ Each element in Gy(z)
is the probability that the position corresponding to the row contains the amino acid or the placeholder. (2)
A peptide sequence is decoded by selecting the amino acid or the placeholder with the highest probability
for each row. For instance, if 0.5 is the highest value in the first row, the first character in the decoded
sequence is "Y’, corresponding to the column with the value 0.5 in the first row. (3) If the peptide sequence
contains a placeholder, it is removed to form a peptide sequence shorter than 10.

Consider a generative network Gy : R™ — RP*? with a set of parameters § € R and a regression model
P :RP*? — [0,1]. We aim to update the set of parameters § such that the expected value Eg,(.)p[P] is
maximized, where p = P(Gy(z)), z € R™ is a random noise vector, and P is the generated data distribution.

The loss function of the critic D, is the same as in (Gulrajani et al. [2017)), which is

Ly =E3 54Dy (#)] — Eyp, [Do ()] (1)
+ AEsp, [(|V: Do (@)]|2 — 1)%],

where
T = GO(Z)’ (2)
T=ex+(1—¢€)7, (3)

E.p[f(x)] is the expected value of a function f(x) with x sampled from the distribution P, P, and Pg are
the training data distribution and the generated data distribution, respectively, P; is the distribution of the
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data sampled from the training and generated distribution as defined in (3)), Go(-) and D,,(-) is the function
of the generator and the critic in WGAN-GP, A is the penalty coeflicient, ||-||2 is the L-2 norm, € € [0, 1] is
a random real number between zero and one, z is a random noise vector and each element is sampled from
a normal distribution with zero mean and unit variance, 6 is the weights in the generative network Gy, and
w is the weights in the critic network D,,.

2.2.1 Generator loss with repetition penalty

The first approach: switching between vanilla WGAN-GP and a combined loss with the output
of the reward network The designed loss function of the generator Gy with a switching mechanism is

Lé)l = _EiNPG [Dw(‘i’)] - fYSscaleEiN]P’G [S¢(j)]’ (4)
where
max if n(A) = N, atc
N '( ) = Noaten 7 (5)
0 otherwise

Ymaz € [0,1], A is a set composed of the generated one-probability matrix Gy(z) in a batch, n(A) is the
cardinality of A (the number of elements in the set A), Npgien is the number of generated peptides in a
batch,

Sscate = 1+ |Eznpe [Duw(Z)] — Eznrg [So(T)]], (6)

| - | denotes as modulus, Sy is the reward network, and ¢ is the weights in the reward network Ss.

The loss function of the reward network Sy is defined as
Ly = Ezps[(S4(%) — P(2))%] + Exnr, [(Ss(z) — P(2))?], (7)
where P(-) € [0,1] is the output of the immunogenicity predictor.

The variable Sgcq in the loss function of the generator ensures that the expected value of the critic
output will not dominate the generator’s loss function. The variable v in the loss function of the generator
is used to force the generator to produce diverse peptide sequences in the training stage. If v = 1,
becomes a weighted sum of the expected value of the critic output and the expected value of the reward
network output given the generated one-probability matrices Gy(z) as input. If v = 0, the training of the
GD-WGAN-GP is the vanilla WGAN-GP in |Gulrajani et al.| (2017). The architecture of GD-WGAN-GP
using the first generator loss design is illustrated in Figure [3]

The second approach: dividing each reward in the batch by its number of occurrences
(Guimaraes et al.,2018) The loss function of the generator Gy with the repetition penalty from ORGAN
(Guimaraes et al. [2018]) is

LE? = = Bapo[Du(@)] = Socate FrnpaS(E); ®

where S, (%) is the output of the reward network,S, (%), divided by the number of the occurrences of the
generated one-hot matrix, &, in a batch.

2.2.2 Training of the GD-WGAN-GP

In this paper, the batch size is 64 (Npgten = 64). 2z € R!28 ig defined to be a random noise vector with 128
elements, and each element is sampled from a normal distribution with zero mean and unit variance. The
generative network, the critic network, and the reward network network are defined as Gg : R128 — R10%21
D, : R>*21 — R and S, : R'9%21 — R, respectively. For each epoch, the critic is trained 97 times,
the generator is trained 10 times, and the reward network is trained 97 times. The architecture of the
generator, the critic, the reward network, and the residual block in these three networks can be found in
Table [3] Table [d Table [5} and Table [f] in Appendix [A] respectively. The algorithm of the GD-WGAN-GP
with switching mechanism in is shown in Algorithm The same hyperparameters are used for the
GD-WGAN-GP with the ORGAN’s repetition penalty (Guimaraes et all 2018) in (§).
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Figure 3: Training scheme of the designed GD-WGAN-GP with the switching mechanism in . The
training of the GD-WGAN-GP involves incorporating an immunogenicity predictor from [Li et al.| (2021) to
train a generator and a reward network. The objective of the reward network is to assist the generator in
producing highly immunogenic peptides, while the critic aims to guide the generator in generating peptides
with high similarity (though not identical) to those in the training dataset. The generator takes a set of Nyt
random noise vectors z, each composed of 128 elements sampled from a zero-mean, unit-variance Gaussian
distribution, as input. Implemented as a deep convolutional neural network, the generator produces Npaich
one-probability matrices Gy(z), which serve as input for the critic, immunogenicity predictor, and reward
network. The critic’s output is a vector of real values D, (Gy(2)), the output of the immunogenicity predictor
P(Gp(z)) is a vector of real values between 0 and 1, and the reward network’s output is a vector with real
values Sy(Go(z)). The reward network is trained using the mean squared error between the output of the
immunogenicity predictor and its own output, considering the generated one-probability matrices Gg(z) and
the one-hot encoded matrix of peptides in the training data x as input. The outputs of the reward network
S¢(Go(z)) and the output of the critic D, (Gg(z)) are used to compute a scaling variable Sgcqre. The
variable 7 indicates whether the generated peptides are repeated in a batch (v = 0 for repetitions, v = ymaz
otherwise). The critic is trained using the standard critic loss in a WGAN-GP, while the generator is trained
with a loss aiming to minimize the critic’s output given the generated one-probability matrices D,,(Gg(z))and
to minimize the reward network’s output given the generated one-probability matrices S¢(Go(z)) multiplied
by the scaling variable S.q;e and the variable ~.

3 Experiments

To validate the efficacy of our proposed generator training scheme, we adopted the same architecture for both
the generative and critic networks as outlined in (Li et al |2021)). We then compared the peptides generated
by the generator trained with and without our devised training scheme. For assessing immunogenicity, we
utilized the CNN-based immunogenicity predictor, DeeplmmunoCNN;, from (Li et al., [2021). The CNN was
retrained using the "remove0123__sample100.csv"' data file provided in their source code. The immunogenicity
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Algorithm 1 The training procedure of the GD-WGAN-GP with the switching mechanism. The value for
the parameters are k = 1, A = 10, neritic = 10, Nyare = 6232, Npgren = 64, a = 1074, 51 = 0.5, and $; = 0.9.
Require: A maximum iteration number N, ¥,,42, and the initial weights wq, 0y, and ¢q for the critic D,
the generator Gy, and the reward network Sy, respectively.
Nsplit <~ Lﬁj
while £ < N do
Randomly split the training dataset with data distribution P, to ngu: data {]P’gl),IP’g), e ,IF’&"“’””)}
fori=1,--- ,ngpt do
Sample a batch of noise vectors {z(J)}Nb““’L ~ N(0,1).
for j =1,---, Npgtcn, do

Sample real data z ~ ]P’7(~i)
T+ Gg(z(j))
LY 51— ((Sp(@) — P())? + (Sp(x) — P(x))?)
T+ ex+(1—e)x
LY ¢ 5 (~Du(@) + Du(@) + M|V Do (2) ]2 — 1)2)
end for
¢ + Adam(Vy SN LY 6,0, B, o)

w + Adam(V,, ENI’“M L ]) Jw,a, B, B2)
if (i mod nc”tw) =0 then
Sample a batch of noise vectors {z(j)}éy:b‘i“” ~ N(0,1).
A+ 0
for j =1, -+, Npaten do
Add Gy(29)) to a set A
end for
Sscate <= 1+ |Nbutch Z;Vb(itdl D, (GQ(Z(]))) NbatdL Z;Vbliuh S, (GQ(Z(J))”
if n(A) = Nbatch then
Y <~ Ymax
else
¥4+ 0
end if
Ly ¢ 5t S N0eh (= Dy (Go(2D) = ¥Sscate S (Go(21)))
0« Adam(Vng, 9, «, 51, ﬁg)
end if
end for
k=k+1
end while

without replacement, and a random number € € U[0, 1].

predictor takes a 9- or 10-mer peptide sequence and a 4-digit encoded HLA sequence as inputs, predicting
their real-value immunogenicity score within the range of [0, 1].

3.1 Compared method

The designed GD-WGAN-GP is compared with the MolGAN designed by |Cao & Kipf] (2022). |Cao & Kipf
(2022) used WGAN without gradient penalty, and the loss functions of their critic and generator can be
written as:

LMOGAN _ B b [Dy(E)] — Egmp, [Do ()] ®)
and

LGN — Xyt Bgpa [Du(®)] = (1= Aar)So(@), (10)

respectively, where Ap; € [0,1]. The same hyperparameters as the designed GD-WGAN-GP are used for
the training of the MolGAN (|Cao & Kipf, |2022)) and the weight clipping of ¢ = 0.01 is applied to the critic
network.
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3.2 Immunogenicity

A comparison between the generators trained with the designed GD-WGAN-GP training scheme and the
generator trained using the architecture from |Li et al.| (2021) and MolGAN (Cao & Kipf, [2022) is shown in
Table The GANSs are trained on bladder cancer epitope data from TSNAdb (Wu et al.|2018)). Five variants
of the proposed GD-WGAN-GP are evaluated. The first four variants apply the switching mechanism in (4)
with ymax set to 0.25, 0.5, 0.75, and 1, respectively. The fifth variant incorporates the repetition penalty
from ORGAN (Guimaraes et al., 2018), as defined in . All of them are trained after 1000 epochs.

Three variants of the MolGAN (Cao & Kipf}, |2022)) designs are compared with the proposed GD-WGAN-GP.
The first two variants use MolGAN with Ay set to 0.5 and 0 in , respectively. The third variant uses
MolGAN with Ay; = 0 and incorporates the repetition penalty from ORGAN (Guimaraes et al.| [2018]). For
each variant, two generator checkpoints are selected: one after 1000 training epochs, and another selected
based on the epoch that yields the highest sum of the immunogenicity score and the ratio of non-repeated
peptides in a batch of 64 generated samples across all 1000 epochs, following a model selection strategy
similar to that used in |Cao & Kipf| (2022)).

In Table [T} 10,000 peptide sequences are produced by each of the generator given the same input with a size
of R10000x128 "\where each element is sampled from a normal distribution. The percentage of non-repeated
peptides for each generator is shown in the fourth column of Table The five variants of the proposed
GD-WGAN-GP achieve percentages above 75%, with one reaching 100%, outperforming the MolGAN (Cao
& Kipf, [2022)) designs, which remain below 25%.

To ensure that the generated peptides can be used as the input for the immunogenicity predictor (Li et al.,
2021)), the peptide sequences containing more than 2 placeholders (’-’) are removed. In addition, the repeated
peptide sequences are excluded prior to evaluating the immunogenicity score. The average immunogenicity
score across the remaining peptides for each generator is presented in the second column in Table

The GD-WGAN-GP with the switching machenism allows different generator configurations to optimize
the predicted immunogenicity score or the number of non-repeated peptides. The GD-WGAN-GP with
ORGAN’s (Guimaraes et al., |2018) repetition penalty can achieve a higher predicted immunogenicity score
with a similar percentage of non-repeated peptides compared to GD-WGAN-GP with (Ymaz = 0.5).

Using a model selection strategy similar to that used in MolGAN (Cao & Kipf, 2022), which selects the
generator that maximizes the sum of the predicted immunogenicity score and the ratio of non-repeated
peptides, the GD-WGAN-GP with ORGAN’s (Guimaraes et al.,|2018]) repetition penalty achieves the highest
sum of 1.7642. The second-highest value, 1.7268, is obtained by the GD-WGAN-GP with 7,4, = 0.5.

3.2.1 Evaluation of the immunogenicity on the generated brain cancer epitopes

The same evaluation is conducted on the same set of GANSs trained using brain cancer epitopes from TSNAdb
(Wu et al., 2018), with results presented in Table [7| in Appendix Unlike the result in Table the
MolGANPest variant with A\y; = 0.5 achieves a higher percentage of non-repeated peptides compared to
GD-WGAN-GP (Ymaz = 1), but yields a lower predicted immunogenicity score of 0.68. Moreover, GD-
WGAN-GP variants with V4 = 0.5, Ymaee = 0.75, and the ORGAN’s repetition penalty outperform
MolGANP®st in both predicted immunogenicity score and the percentage of non-repeated peptides.

The remaining five MolGAN ((Cao & Kipf, [2022)) variants achieve a maximum of only 22.30% non-repeated
peptides, whereas all GD-WGAN-GP variants maintain a minimum of 60.15%. In addition, the GD-WGAN-
GP with ORGAN’s (Guimaraes et al., |2018) repetition penalty achieves the highest sum of the predicted
immunogenicity score and the ratio of non-repeated peptides with a value of 1.7917 compared to other
methods. These results further demonstrate that the proposed GD-WGAN-GP outperforms MolGAN across
different datasets.

3.2.2 Immunogenicity score and unique peptide rate during training

The average immunogenicity scores of the generated peptide sequences from the same set of generators in
Section [3.2] during the 1000 epochs of training are presented in Figure [] (a), where the solid lines represent
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Table 1: Comparison of different designs of GANS trained to generate peptide vaccine candidates for bladder
cancer for 1000 epochs except for MolGANPet (Cao & Kipf, [2022), where the generator checkpoint is
selected from the epoch that yields the highest sum of the immunogenicity score (imm. score) and the ratio
of non-repeated peptides among a batch of 64 generated samples across all 1000 epochs. The imm. score is
predicted by the predictor from |Li et al.| (2021) and its average is across the generated non-repeated peptides
after removing peptides more than 10-mer and less than 9-mer. The percentage (percent.) of non-repeated
peptides is the percentage of the value of the number of non-repeated peptides divided by the number of
generated peptides (10,000). "min." indicates minute. In the Algorithm column, "with ORGAN" indicates
the reward for each generated data is penalized by divided the number of its repetition in a batch during
training.

Average Percent. of Percent. of Total
Algorithm imm. peptides with non-repeated training
score 9-10-mer (%) peptides (%) time (min.)

WGAN-GP 0.57 99.07 100.00 32.57

MolGAN (A = 0.5) 0.73 53.16 20.07 185.34
MolGANPest (\y, = 0.5) 0.73 62.59 17.34 166.75
MolGAN (A\ys = 0) 0.89 100.00 0.01 184.58
MolGANPest (X, = 0) 0.73 100.00 17.55 200.27
MolGAN (\j; = 0) with ORGAN 0.89 100.00 0.01 228.33
MolGANPest (\y; = 0) with ORGAN  0.73 100.00 16.95 160.56
GD-WGAN-GP (Vmaz = 0.25) 0.63 99.86 100.00 229.36
GD-WGAN-GP (Vmaz = 0.5) 0.73 99.52 99.68 173.25
GD-WGAN-GP (Ymae = 0.75) 0.88 99.97 81.42 198.71
GD-WGAN-GP (ymaz = 1) 0.93 99.98 77.33 235.92
GD-WGAN-GP with ORGAN 0.77 99.93 99.42 213.57

the averaged scores calculated using

10
) _ 1 K
Pepoch - TO Z P?%e)anv (11)
k=1
where k = 1,2,--- ,10 is the number of times the generator is trained in an epoch, s = 1,2,--- | N is the

number of epochs, N = 1000 is the maximum iteration number, and

P(k) 1 Npatch

mean ~

P(Go (=), (12)

Nbatch ,_
Jj=1

Notably, the immunogenicity scores of sequences generated from the proposed GD-WGAN-GP continue to
increase as the training epoch increases, reaching approximately 0.93 with the rate of non-repeated peptides
(unique rate) of around 0.99 at epoch 1000, as shown in the gray line in Figure Conversely, sequences
generated without the immunogenicity predictor from WGAN-GP only reach around 0.6 and show no further
increase. The MolGAN (Ay; = 0) and MolGAN (M) = 0) with ORGAN’s repetition penalty achieve an
immunogenicity scores of roughly 0.88, but the rate of non-repeated peptides decreases to around 0.02, as
shown in the red and green lines in Figure || (b).

3.3 Binding affinity

The binding affinity between the generated peptides and HLA-A*0201 is quantified by the half-maximal
inhibition (ICsg) values, representing the concentration of the test peptide resulting in 50% inhibition of
the binding of a probe peptide (Jurewicz et al.l 2019)). In the training dataset, the bladder cancer epitopes
are predicted to have a binding affinity smaller than 500nM using NetMHCpan v4.0 (Jurtz et al.| [2017)

10



Under review as submission to TMLR

(a) Immunogenicity Score vs. Epoch from Various WGANs (b) Unique Peptide Rate vs. Epoch from Various WGANs
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Figure 4: (a) The averaged immunogenicity score and (b) the unique rate of the peptide sequences generated
from the proposed GD-WGAN-GPs (purple, brown, pink, gray, and apple green lines) compared to the
WGAN-GP without the immunogenicity predictor (blue line) and MolGANs (Cao & Kipf, [2022) (orange,
green, and red lines) through 1000 epochs of training. The proposed GD-WGAN-GP with ;4. = 1 achieves
a higher immunogenicity and unique rate compared to MolGANs (Cao & Kipf} [2022)) after 400 epochs.

by (Wu et al., |2018)). To investigate whether the generated peptides also exhibit a strong binding affinity
(< 500nM), we employed the same prediction tool NetMHCpan 4.0 (Jurtz et all], [2017)) to predict the ICs0

values. Peptides with a predicted binding affinity IC5¢ below 500nM are considered binders to HLA-A*0201
(Lundegaard et al., 2008).

The percentage of the number of binders of the generated peptides divided by the total number of generated
peptides from the designed GD-WGAN-GP is presented in the second column of Table 2l The GD-WGAN-
GP with ORGAN’s repetition penalty shows that the generated peptides have a similar property to the
training set (binders to HLA-A*0201) compared to WGAN-GP and . The variants from the designed GD-
WGAN-GP with the switching mechanism achieve a higher binder rate with a minimum of 62.45% compared
to MolGAN’s variants with no more than 5.82%.

The prediction of the binding affinity between HLA-A*0201 and the generated brain cancer epitopes can-
didates from the same set of generators is presented in Table [§] of Appendix The results show that
WGAN-GP achieves the highest percentage of unique binders at 93.79%, followed by GD-WGAN-GP with
Ymaz = 0.25 at 89.45%. The lowest percentage of unique binders produced by the proposed method is
51.89% (from GD-WGAN-GP with 7,4, = 1), which is higher than the MolGAN variants
, where the best-performing model, MolGANP®s* (X3, = 0.5), achieves only 14.72%.

The results from Table 2] and Table [§] suggest that increasing ymax improves the average predicted immuno-
genicity score but reduces both the number of unique binders and the percentage of non-repeated peptides.

These findings indicate that the proposed GD-WGAN-GP achieves a higher percentage of unique binders
than the MolGAN variants (Cao & Kipf} [2022)), implying that the generated peptides are more similar to
the training data, all of which are binders to HLA-A*0201 with IC5q < 500 nM predicted by NetMHCpan
v4.0 (Jurtz et al.l [2017).

11
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Table 2: Comparison of the predicted binding affinity between different designs of GANs trained to generate
peptide vaccine candidates for bladder cancer after training for 1000 epochs except for MolGANP®st (Cao
& Kipf, |2022)), where the generator checkpoint is selected from the epoch that yields the highest sum of
the immunogenicity score and the ratio of non-repeated peptides among a batch of 64 generated samples
across all 1000 epochs. The percentage (percent.) of strong binders is the percentage of the ratio between
the number of generated unique sequences having IC59 < 500nM binding with HLA-A*0201 predicted by
NetMHCpan v4.0 (Jurtz et al. |2017) and the number of generated peptides (10,000). In the Algorithm
column, "with ORGAN" indicates the reward for each generated data is penalized by divided the number of
its repetition in a batch during training.

Number of Number of

generated generated
unique peptides peptides in
with 9-10-mer  the training set

Percent. of

Algorithm unique
binders (%)

WGAN-GP 69.23 9907 0
MolGAN (A, = 0.5) 4.68 1163 0
MolGANPEst (A, = 0.5) 5.82 1222 0
MolGAN (A = 0) 0.00 1 0
MolGANPest (A, = 0) 0.00 1749 0
MolGAN (A = 0) with ORGAN 0.00 1 0
MolGANPEst (A, = 0) with ORGAN  0.00 1688 0
GD-WGAN-GP (Yaz = 0.25) 77.36 9986 1
GD-WGAN-GP (Yaz = 0.5) 77.98 9919 0
GD-WGAN-GP (Ymaz = 0.75) 62.45 8139 0
GD-WGAN-GP (Ymaz = 1) 77.30 7730 0
GD-WGAN-GP with ORGAN 89.69 9934 0

4 Conclusion

This paper presents various designs of goal-directed Wasserstein Generative Adversarial Networks with Gra-
dient Penalty (GD-WGAN-GP) for training generators capable of producing 9- to 10-mer peptide sequences
with high predicted immunogenicity, low repetition rate, and strong binding affinity. The output of a reward
network, which is concurrently trained to predict immunogenicity scores during the training of the generator
network, is incorporated into the GD-WGAN-GP architecture by multiplying it with a scaling factor, Sscqie,
to prevent the generator from solely maximizing the critic output regardless of the reward signal. To reduce
repetition, two approaches are proposed: (1) a switching mechanism in which the reward term is excluded
in the generator loss when duplicated peptides are present in a batch, and otherwise multiplied by a v;,qz
parameter to control the reward’s contribution to the generator loss, and (2) a repetition penalty from OR-
GAN, which divides each reward by the number of occurrences of its corresponding peptide within a batch.
A strong binding affinity is achieved by using a training dataset comprising 6,234 bladder cancer epitope
sequences with predicted binding affinity 1C59 < 500 nM to HLA-A*0201.

The GD-WGAN-GP variant with the switching mechanism achieves the highest average immunogenicity
score among all compared methods when 7,,,,, = 1. The number of repeated peptides can be reduced
by decreasing vinq., although this comes at the cost of lower average immunogenicity. The GD-WGAN-
GP variant using ORGAN’s repetition penalty achieves the highest combined score of immunogenicity and
uniqueness, suggesting it as the most balanced and effective design. All GD-WGAN-GP variants outperform
existing goal-directed GANs in terms of the percentage of unique binders with predicted IC59 < 500 nM,
indicating that the proposed models can generate peptides with properties similar to those in the training
dataset while maximizing immunogenicity and minimizing redundancy.

12
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Broader Impact Statement

We present novel algorithms that enable goal-directed generation within the Wasserstein generative adver-
sarial network with gradient penalty framework, specifically used to design peptide sequences with enhanced
predicted immunogenicity score for peptide vaccine development against bladder cancer. Our approach not
only demonstrates improved performance in generating peptides with high predicted immunogenicity, strong
binding affinity, and low repetition for bladder cancer, but also generalizes to brain cancer, indicating its
broader applicability across multiple cancer types.
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A Detailed description of the network architecture

We present the details of the generator, the critic, the reward network, and the residual block in Table [3]
Table [d Table [f] and Table [0} respectively.

In the residual block shown in Table |§|, the residual connection is defined to be
Zres = Tres T+ O‘3yresv (13)

where 2,5 is the input data in a residual block, y,.s is the output from the fifth layer (convolution 1D) in
the residual block, and z,..s is the output of the residual connection.
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Table 3: Details of the generator network adopted from [Li et al.| (2021])

Layer Type Kseirzr;el Filter | Stride | Padding 2E;1;2t Number of parameters

1 Input - - - - 128 -

2 | Fully Connected - - - - 1280 165120
3 Reshape - - - - 12810 -

4 Residual block - - - - 12810 98560
5 Residual block - - - - 128x10 98560
6 Residual block - - - - 128 %10 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 128 %10 98560
9 Convolution 1D 1 21 1 no 21x10 2709
10 Transpose - - - - 10x21 -

11 | Gumbel-Softmax - - - - 10x21 -

We denote the output matrix of the Convolution 1D in the residual block as a two-dimensional matrix
Y7es. The element at the i-th row and the j-th column of Y"** is denoted Y;}**. The input matrix of
the Convolution 1D in the residual block is denoted as X"°. In the residual block, the dimension of the
input to the Convolution 1D is defined to be X7** € R"™X " *X" where r4¢* = 128 and ¢4¢* = 10 are the
number of rows and columns of the input matrix, respectively. The input matrix with one zero padding is
defined as XPed = [07¢s  X7es Q7] € R"™X X(X"+2) where 07 = [0 0 --- 0]7 € R"x %! is an all

zero column vector with dimension 7%¢°. The dimension of the output matrix after the Convolution 1D will
be Y € Rfm‘”&“, where fr.s = 128 is the number of kernels. Each element in the output matrix of the

Convolution 1D layer in the residual block is computed by

res _res
Cuw

Vi = 30 Dk XL 0 1

m=1n=1

where 1 < i < fres, 1 <7 < %7, wrest e R™x*ew” ig the 4-th convolutional kernel, c}?° = 3 is the number
of columns in the kernel, and b5 € R is the bias for the i-th kernel.

For The Convolution 1D in the 9-th layer of the generator, X9 ¢ R™% " %X is denoted as the input matrix,
where r§™ = 128 and ¢%" = 10 is the number of rows and columns of the input matrix, respectively. The
output matrix will be Y9¢" € Rfoen*eX™  where fgen = 21 is defined to be the number of kernels for this
Convolution 1D. The Convolution 1D in the 9-th layer of the generator is defined to be

rx "
gen __ gen,i gen gen,i
Y;,j - Z Z(km,n : Xm,n+j) +0b ’ (15)
m=1n=1

where 1 <@ < foen, 1 <j <%, wIeni ¢ RTx %™ ig the i-th convolutional kernel, c9°™ =1 is the number
of columns in the kernel, and »9¢™¢ € R is the bias for the i-th kernel.

critic, critic
xc§

For the Convolution 1D in the 3-rd layer of the critic and the reward network, Xcritic ¢ R is
denoted as its input matrix, where r§*% = 21 and ¢§**® = 10 is the number of rows and columns of its

critic

input matrix, respectively. The output matrix will be Yr##¢ ¢ RferitieXexX™™ 'where f,iric = 128 is defined
to be the number of kernels for this Convolution 1D. The operation of the Convolution 1D in the 3-rd layer
of the critic and the reward network is similar to but with the change of the input size and the number
of kernels and it is defined as

c{:’r‘ltic
w

r
}/ic]m'tic — ZX: Z (]43%57’: . XTcrz’z:f]) + bdis,i’ (16)
m=1

n=1

16



Under review as submission to TMLR

Table 4: Details of the critic network adopted from |Li et al.| (2021)

Layer Type Kseirzr;el Filter | Stride | Padding 2E;I;)2t Number of parameters
1 Input - - - - 10x21 -
2 Transpose - - - - 21x10 -
3 Convolution 1D 1 128 1 no |128x10 2816
4 Residual block - - - - 128 %10 98560
5 Residual block - - - - 128 %10 98560
6 Residual block - - - - 12810 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 12810 98560
9 Reshape - - - - 1280 -
10 | Fully Connected - - - - 1 1281
Table 5: Details of the reward network network
Layer Type Kseirzr;el Filter | Stride | Padding 2E;I;2t Number of parameters
1 Input - - - - 10x21 -
2 Transpose - - - - 21x10 -
3 Convolution 1D 1 128 1 no |128x10 2816
4 Residual block - - - - 12810 98560
5 Residual block - - - - 128x10 98560
6 Residual block - - - - 12810 98560
7 Residual block - - - - 128x10 98560
8 Residual block - - - - 12810 98560
9 Reshape - - - - 1280 -
10 | Fully Connected - - - - 1 1281

where 1 <4 < ferjtie, 1 < j < e, whisi ¢ R7x %<0 i5 the i-th convolutional kernel, coritic = 1 is the
number of columns in the kernel, and b%** € R is the bias for the i-th kernel.

In the critic and the reward network, the reshape function aligns each row into a row vector. The reshape
function acted on the matrix A € RP*? can be represented by

vec(A) £ [Arl Ay - ATP} , (17)

where A,; is denoted as the i-th row vector in the matrix A.

In the generator, the reshape function at the third layer converts a vector B € RP'? into a matrix B e RPX4
by putting the p-th ¢ elements of B to the p-th row of the matrix B. It can be represented as

B B> . Bq
Bq+1 Bq+2 T BQq

o
Il
—~
—_
(0]
=

B(P—l)q+1 B(p—l)q+2 -+ Bpg

where B; is denoted as the i-th elements in the matrix B.

Let XG5 € R7°%%” he the input and Y& ¢ R"%°%e% be the output of the Gumbel-Softmax in the 11-th
layer of the generator network, where r° = 10 is the number of row for the input matrix X% and ¢§¥ = 21

is the number of column in X ¥, respectively. The Gumbel-Softmax in the generator network is computed

17
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Table 6: Details of the residual block adopted from |Li et al.| (2021)

Layer Type K:il;réel Filter | Stride | Padding 2E?;2t Number of parameters
1 Input - - - - 128 %10 -
2 ReLLU - - - - 128x10 -
3 Convolution 1D 3 128 1 1 128x10 49280
4 ReLU - - - - 128x10 -
) Convolution 1D 3 128 1 1 128x10 49280
6 Residual - - - - 128x10 -
connection
as 6)(iG;Ln'Lbel
Y5 = G5 xGambel” (19)

22(:1 e o

where 1 <7 < rgs, 1<5< Cg:(s’ YZC;S is denoted as the element of Y& at the i-th row and the j-th column,

X Gumbel jg avaluated as

XGS _ ln(gGS)

i

XGumbel _ (20)

T

where g% € R7%°%e%” ig a matrix with its value generated by the exponential distribution f(z) = Ae™*%,
A=1,and 7 = 0.75.

B Experiment using brain cancer epitopes

In this section, the comparison of the proposed GD-WGAN-GP with the generator trained using the ar-
chitecture from |Li et al.| (2021) and MolGAN (Cao & Kipf, 2022) is presented in Table [7| using the 2,454
brain cancer epitopes from TSNAdb (Wu et al., 2018) with IC50 < 500nM. The network architecture and
hyperparameters are the same as in Section

The results in Table [7] demonstrate that the proposed GD-WGAN-GP with a switching mechanism enables
users to balance the average immunogenicity score and the uniqueness of the generated peptides. These
peptides also exhibit high binding affinity to HLA-A*0201, as shown in Table |8, outperforming those gen-
erated by MolGAN (Cao & Kipf] 2022). Among all models, the generator trained with the GD-WGAN-GP
incorporating ORGAN’s repetition penalty (Guimaraes et all 2018|) achieves the highest sum of average
immunogenicity score and ratio of non-repeated peptides (1.7917), indicating it as the most effective design.

18
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Table 7: Comparison of different designs of GANs trained to generate peptide vaccine candidates for brain
cancer for 1000 epochs except for MolGANPe* (Cao & Kipf, [2022), where the generator checkpoint is
selected from the epoch that yields the highest sum of the immunogenicity score (imm. score) and the ratio
of non-repeated peptides among a batch of 64 generated samples across all 1000 epochs. The imm. score is
predicted by the predictor from |Li et al.| (2021) and its average is across the generated non-repeated peptides
after removing peptides more than 10-mer and less than 9-mer. The percentage (percent.) of non-repeated
peptides is the percentage of the value of the number of non-repeated peptides divided by the number of
generated peptides (10,000). "min." indicates minute. In the Algorithm column, "with ORGAN" indicates
the reward for each generated data is penalized by divided the number of its repetition in a batch during

training (Guimaraes et al., 2018)).

Average Percent. of Percent. of Total
Algorithm imm. peptides with non-repeated training
score  9-10-mer (%) peptides (%) time (min.)
WGAN-GP 0.57 99.85 99.41 12.80
MolGAN (Ap = 0.5) 0.76 95.56 10.28 70.90
MolGANPest (X3, = 0.5) 0.68 99.98 73.61 76.14
MolGAN (Ap =0) 0.89 100.00 0.01 70.82
MolGANPest (\y, = 0) 0.73 100.00 22.30 73.91
MolGAN (Ap = 0) with ORGAN 0.89 100.00 0.01 70.71
MolGANPest (X3, = 0) with ORGAN  0.73 100.00 22.85 71.15
GD-WGAN-GP (Vmaz = 0.25) 0.64 97.99 98.88 64.83
GD-WGAN-GP (Vmaz = 0.5) 0.82 99.86 97.04 87.53
GD-WGAN-GP (Vmaz = 0.75) 0.86 99.94 76.77 75.70
GD-WGAN-GP (Yimaz = 1) 0.90 99.86 60.15 76.88
GD-WGAN-GP with ORGAN 0.83 99.96 96.17 74.66
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Table 8: Comparison of the predicted binding affinity between different designs of GANs trained to generate
peptide vaccine candidates for brain cancer after training for 1000 epochs except for MolGANPst (Cao
& Kipf, |2022)), where the generator checkpoint is selected from the epoch that yields the highest sum of
the immunogenicity score and the ratio of non-repeated peptides among a batch of 64 generated samples
across all 1000 epochs. The percentage (percent.) of strong binders is the percentage of the ratio between
the number of generated unique sequences having IC59 < 500nM binding with HLA-A*0201 predicted by
NetMHCpan v4.0 (Jurtz et al. |2017) and the number of generated peptides (10,000). In the Algorithm
column, "with ORGAN" indicates the reward for each generated data is penalized by divided the number of
its repetition in a batch during training (Guimaraes et al., [2018)).

Percent. of
Algorithm unique
binders (%)

Number of
generated
unique peptides
with 9-10-mer

Number of

generated

peptides in
the training set

WGAN-GP 93.79
MolGAN (A = 0.5) 6.34
MolGANPest (X5, = 0.5) 14.72
MolGAN (A = 0) 0.00
MolGANPest (X3, = 0) 0.00

MolGAN (A, = 0) with ORGAN 0.00
MolGANPest (X, = 0) with ORGAN  0.00

GD-WGAN-GP (Ymaz = 0.25) 89.45
GD-WGAN-GP (Ymaz = 0.5) 88.37
GD-WGAN-GP (Vimaz = 0.75) 72.10
GD-WGAN-GP (Vmaz = 1) 51.89
GD-WGAN-GP with ORGAN 89.29
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