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ABSTRACT

Understanding neural networks is challenging in part because of the dense, con-
tinuous nature of their hidden states. We explore whether we can train neural
networks to have hidden states that are sparse, discrete, and more interpretable by
quantizing their continuous features into what we call codebook features. Code-
book features are produced by finetuning neural networks with vector quantization
bottlenecks at each layer, producing a network whose hidden features are the sum
of a small number of discrete vector codes chosen from a larger codebook. Sur-
prisingly, we find that neural networks can operate under this extreme bottleneck
with only modest degradation in performance. This sparse, discrete bottleneck
also provides an intuitive way of controlling neural network behavior: first, find
codes that activate when the desired behavior is present, then activate those same
codes during generation to elicit that behavior. We validate our approach by train-
ing codebook Transformers on several different datasets. First, we explore a finite
state machine dataset with far more hidden states than neurons. In this setting,
our approach overcomes the superposition problem by assigning states to distinct
codes, and we find that we can make the neural network behave as if it is in a
different state by activating the code for that state. Second, we train Transformer
language models with up to 410M parameters on two natural language datasets.
We identify codes in these models representing diverse, disentangled concepts
(ranging from negative emotions to months of the year) and find that we can guide
the model to generate different topics by activating the appropriate codes during
inference. Overall, codebook features appear to be a promising unit of analysis
and control for neural networks and interpretability. Our codebase and models are
open-sourced.

1 INTRODUCTION

The strength of neural networks lies in their ability to learn emergent solutions that we could not
program ourselves. Unfortunately, the learned programs inside neural networks are challenging
to make sense of, in part because they differ from traditional software in important ways. Most
strikingly, the state of a neural network program, including intermediate computations and features,
is implemented in dense, continuous vectors inside of a network. As a result, many different pieces
of information are commingled inside of these vectors, violating the software engineering principle
of separation of concerns (Dijkstra, 1982). Moreover, the continuous nature of these vectors means
no feature is ever truly off inside of a network; instead, they are activated to varying degrees, vastly
increasing the complexity of this state and the possible interactions within it.

A natural question is whether it is possible to recover some of the sparsity and discreteness properties
of traditional software systems while preserving the expressivity and learnability of neural networks.
To make progress here, we introduce a structural constraint into training that refactors a network to
adhere more closely to these design principles. Specifically, we finetune a network with trainable
vector quantization bottlenecks (Gray, 1984) at each layer, which are sparse and discrete. We refer
to each vector in this bottleneck as a code and the entire library of codes as the codebook. See
Figure 1 for a visual depiction of this motivation.

The resulting codebooks learned through this process are a promising interface for understanding
and controlling neural networks. For example, when we train a codebook language model on the
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Figure 1: Codebook features attempt to combine the expressivity of neural networks with the sparse,
discrete state often found in traditional software.

outputs of a finite state machine, we find a precise mapping between activated codes in different
layers of the model to the states of the state machine, overcoming the challenge of superposition
(Elhage et al., 2022b). Furthermore, we demonstrate a causal role for these codes: changing which
code is activated during the forward pass causes the network to behave as if it were in a different
state. Additionally, we apply codebook features to transformer language models with up to 410M
parameters, showing that despite this bottleneck, they can be trained with only modest accuracy
degradation compared to the original model. We find codes that activate on a wide range of concepts,
spanning punctuation, syntax, lexical semantics, and high-level topics. We then show how to use
codebook features to control the topic of a model’s generations, providing a practical example of
how to use our method to understand and control real language models.

2 METHOD

Codebook features aim to improve our understanding and control of neural networks by compressing
their activation space with a sparse, discrete bottleneck. Specifically, we aim to learn a set of discrete
states the network can occupy, of which very few are active during any single forward pass. As we
will show later in the paper (Sections 3 and 4), this bottleneck encourages the network to store useful
and disentangled concepts in each code. Even more importantly, we show that these interpretations
enable us to make causal interventions on the network internals, producing the expected change
in the network’s behavior. Crucially, codebooks are learned, not hand-specified, enabling them to
capture behaviors potentially unknown by human researchers.

Concretely, codebook features are produced by replacing a hidden layer’s activations with a sparse
combination of code vectors. Let a ∈ RN be the activation vector of a given N-dimensional layer
in a network. We have a codebook C = {c1, c2, ..., cC} ∈ RC×N , where C is the codebook size.
To apply the codebook, we first compute the cosine similarities sim(a, ci) =

a·ci
|a||ci| between a and

each code vector ci. We then replace a with
∑

i∈S ci, where S contains the indices of the top k most
similar code vectors. In other words, we activate and sum the k code vectors most similar to the
original activation a. The value of k controls the bottleneck’s sparsity; we aim to make k as small
as possible while achieving adequate performance. k is a small fraction of C in our experiments,
typically less than 1%, and as a result, we find that codebooks are tight information bottlenecks,
transmitting much less information than even 4-bit quantized activations (Appendix B).

While codebook features can be applied to any neural network, we primarily focus on Transformer
networks, placing codebooks after either the network’s MLP blocks or attention heads. Figure 2
shows the precise location of the codebook for each type of sublayer. Note that this positioning of
the codebooks preserves the integrity of the residual stream of the network, which is important for
optimizing deep networks (He et al., 2016; Elhage et al., 2021).

2



Under review as a conference paper at ICLR 2024

Layer Activations

Attn Head 1 Attn Head 2

Attention Projection

Feedforward Block

+ Figure 2: Applying codebook features to trans-
formers. Attention heads: We add one codebook
(depicted by the colored rectangles) for each at-
tention head. The codebook is inserted before
the projection into the residual stream. Feedfor-
ward block: We insert the codebook after the feed-
forward block, before addition into the residual
stream.

2.1 TRAINING WITH CODEBOOKS

To obtain codebook features, we add the codebook bottlenecks to existing pretrained models and
finetune the model with the original training loss. Thus, the network must learn to perform the task
well while adjusting to the discrete codebook bottleneck. Using a pretrained model enables us to
produce codebook features more cheaply than training a network from scratch. When finetuning,
we use a linear combination of two losses:

Original training loss In our work, we apply codebooks to Transformer-based causal lan-
guage models and thus use the typical cross-entropy loss these models were trained with:
LLM(θ) = −

∑N
i=1 log pθ(xi|x<i) where θ represents the model parameters, xi is the next token

of input sequence x<i, pθ(xi|x<i) is the model’s predicted probability of token xi given input x<i,
and N is the length of the input sequence.

Reconstruction loss Because we compute the similarity between activations and codebook features
using the cosine similarity, which is invariant to magnitude, the code vectors can often grow in size
throughout training, leading to instability. For this reason, we find it helpful to add an auxiliary
loss to the codes: LMSE = MSE(C(a), stop-gradient(a)), where a are the input activations to the
codebook, C(a) is its output, and MSE is the mean squared error, to keep the distance between inputs
and chosen codes small. The stop gradient means the gradient of this operation only passes through
the codebook, not the input a, which we found was important to avoid damaging the network’s
capabilities.1

Final loss and optimization The final loss is simply a combination of both losses above L =
LLM + λLMSE where λ is a tradeoff coefficient. We set λ to 1 in this work. To optimize the
codebooks despite the discrete choice of codes, we use the straight-through estimator: we propagate
gradients to the codes that were chosen on each forward pass and pass no gradients to the remaining
codes (Bengio et al., 2013; van den Oord et al., 2017). We use this strategy to successfully perform
end-to-end training of networks up to 24 layers deep, with each layer having a codebook. We defer
additional details to Appendix A.

2.2 USING CODEBOOKS FOR UNDERSTANDING AND CONTROL

A trained codebook model enables a simple and intuitive way of controlling the network’s behavior.
This method consists of two phases:

1) Generating hypotheses for the role of codes. Most codes are activated infrequently in the
training dataset. We can gain an intuition for the functional role of each code in the network’s hidden
state by retrieving many examples in the dataset where that code was activated. For example, if a
code activates mainly around words like “candle,” “matches,” and “lighters,” we might hypothesize
that the token is involved in representations of fire. The discrete on-or-off nature of codes makes
this task more manageable than looking at continuous values like neuron activations, as past work
has speculated that lower-activating neurons can “smuggle” important information across layers,
even if many neurons appear interpretable (Elhage et al., 2022a). As we will show in the following

1We performed preliminary experiments that only used the reconstruction loss (keeping the language
model’s parameters fixed), similar to a VQ-VAE (van den Oord et al., 2017) at every layer. However, we
achieved significantly worse performance. See Table 8 for more details.
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sections, the codes we discover activate more often on a single interpretable feature, while neurons
may activate on many unrelated features. Appendix E.1 discusses the advantages and tradeoffs of
codebooks over neuron- and feature direction–based approaches in more detail.

2) Steering the network by activating codes. After we have identified codes that reliably activate
on the concept we are interested in, we can directly activate those codes to influence the network’s
behavior. For example, if we identified several codes related to fire, we could activate those codes
during generation to produce outputs about fire (e.g., as in Section 4.1). This intervention confirms
that the codes have a causal role in the network’s behavior.

In the following sections, we apply this same two-step procedure across several different datasets,
showing that we can successfully gain insight into the network and control its behavior in each case.

3 ALGORITHMIC SEQUENCE MODELING

The first setting we consider is an algorithmic sequence modeling dataset called TokFSM. The pur-
pose of this dataset is to create a controlled setting exhibiting some of the complexities of language
modeling, but where the latent features present in the sequence are known. This setting enables us to
evaluate how well the model learns codes that activate on these distinct features. An overview of the
section and our findings is shown in Figure 3. Below, we describe the dataset, and then (following
Section 2.2) we first generate hypotheses for the role of codes, then show how one can predictably
influence the network’s behavior by manipulating these codes.

The TokFSM Dataset The TokFSM dataset is produced by first constructing a simplified finite
state machine (FSM). Our FSM is defined by (V,E) where V = {0, · · · , N − 1} is a set of nodes
and E ⊆ V × V indicates the set of valid transitions from one state to the next. In our setting, we
choose N = 100 and give each node 10 randomly chosen outbound neighbors, each assigned an
equal transition probability (0.1). Entries in the dataset are randomly sampled rollouts of the FSM
up to 64 transitions. We tokenize the sequences at the digit level; this gives a sequence length of 128
for each input. For example, if our sampled rollout is [18, 00, 39], we would tokenize it as [1, 8, 0, 0,
3, 9] for the neural network. Thus, the model must learn to detokenize the input into its constituent
states, predict the next FSM state, and then retokenize the state to predict the next token.

Training and evaluating the codebook models We train 4-layer Transformers with 4 attention
heads and an embedding size of 128 based on the GPTNeoX architecture (Black et al., 2022) on the
TokFSM dataset. We train several models with different numbers of codes and sparsity values k,
with codebooks either at the network’s attention heads or both the attention heads and MLP Layers
(see Figure 2). In Table 1, we report the accuracy of the resulting models both in terms of their
language modeling loss, next token accuracy, and their ability to produce valid transitions of the
FSM across a generated sequence. The k = 1 model with codebooks at only the attention layers
achieves comparable performance across all metrics to the original model. At the same time, larger
values of k enable the model with codebooks at both attention and MLP blocks to attain comparable
performance. It is striking that networks can perform so well despite this extreme bottleneck at every
layer. We defer additional training details to Appendix C.1 and ablation studies to Table 8.
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Codebook Type Loss LM Acc State Acc
No Codebook 1.179 46.36 96.77

Attn Only k=1, C=2k 1.18 46.33 96.39

†Attn+MLP k=1, C=10k 1.269 45.27 63.65
Attn+MLP k=1, C=20k 1.254 45.56 63.81
Attn+MLP k=4, C=20k 1.192 46.20 80.69
Attn+MLP k=16, C=20k 1.183 46.32 91.53
Attn+MLP k=128, C=20k 1.178 46.38 95.82

Table 1: Performance of original
and codebook models on TokFSM.
A k = 1 codebook model on
only attention layers attains similar
performance to the original model,
while attention-and-MLP codebooks
require a higher k and codebook size
C to match performance. † indicates
the model we analyze in the rest of
the section.
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(a) State code interventions
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(b) State-plus-digit code interventions

Figure 4: Interventions on the state and state-plus-digit codes in a sequence. Changing just the
MLP codes to codes associated with another state shifts the output distribution almost entirely to the
target state. Changing codes in other layers has a much smaller effect. Normalized JS Div stands for
the normalized Jensen-Shannon Divergence, where the initial difference (None) is normalized to 1.

3.1 GENERATING HYPOTHESES FOR THE ROLE OF CODES

After training these models, we examine the k = 1 attention and MLP codebook transformer fol-
lowing Section 2.2. Looking at activating tokens reveals a wide range of interesting-looking codes.
We provide descriptions of these codes along with a table of examples in Table 6, and focus our
analysis on two families of codes here: in the last three MLP layers (layers 1, 2, and 3), we identify
state codes that reliably activate on the second token of a specific state (of which there are 100 pos-
sibilities), as well as state-plus-digit codes that activate on a specific digit when it follows a specific
state (686 possibilities in our state machine). For example, code 2543 in MLP layer 2 activates on
the 0 in the state 40 (e.g., 50-40-59). This finding is notable because there are only 128 neurons
in a given MLP layer, far lower than the total number of these features. Thus, the codebooks must
disentangle features represented in a distributed manner across different neurons inside the network.
(Anecdotally, the top-activating tokens for the neurons in these layers do not appear to follow any
consistent pattern.)

We quantify this further with an experiment where we use state codes to classify states and compare
them to the neuron with the highest precision at that state code’s recall level. As shown in Figure 6a,
codes have an average precision of 97.1%, far better than the average best neuron precision of 70.5%.
These pieces of evidence indicate that codebooks can minimize the superposition problem in this
setting. See Appendix C for additional details and experiments.

3.2 STEERING THE NETWORK BY ACTIVATING CODES

While these associations can provide hypotheses for code function, they do not provide causal ev-
idence that codes causally influence the network’s behavior. For this, interventional studies are
necessary (Spirtes et al., 2000; Pearl & Mackenzie, 2018; Geiger et al., 2020; 2021). The state and
state-plus-digit codes presented in Section 3.1 suggest a natural causal experiment: set the activated
code in a given codebook to the code corresponding to another state and see whether the next token
distribution shifts accordingly.2 More specifically, let C(l)(xt) be the codebook at layer l applied to

2This experiment is similar to what Geiger et al. (2020) call an interchange intervention, and more generally
establish a causal abstraction over the neural network (Geiger et al., 2021).
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Figure 5: Steering a lan-
guage model with topic
codes. We identify sev-
eral codes that activate
on examples of a given
topic (e.g., dragons). We
then activate these codes
at each generation step,
producing generated text
about that topic. See Ta-
ble 10 for examples.

Table 2: Codebook models are still capable language models.. Asterisks (*) denote the base
model we apply the codebooks to, while daggers (†) indicate the codebook models we analyze in the
rest of the paper. We trained the other models to provide additional comparisons (see Appendix D.3
for more details, including on grouped codebooks.). All models have a codebook size of C = 10k.
Note that the MLP 16-group k = 8 model is comparable to the attention k = 8 model because our
model has 16 attention heads. While we use a pretrained TinyStories model as our base model, we
also report metrics for a model we finetune to account for any subtle differences in data processing.

(a) TinyStories 1-Layer Model

Language Model Loss Acc
*Pretrained 1.82 56.22
Finetuned 1.57 59.27

†Attn, k = 8 1.66 57.91
MLP, k = 100 1.57 59.47
MLP, grouped 16× (k = 8) 1.60 59.36

(b) WikiText-103 410M 24-Layer Model

Language Model Loss Acc
*Finetuned (Wiki) 2.41 50.52
Finetuned 160M (Wiki) 2.72 46.75

†Attn, k = 8 2.74 46.68
Attn, k = 64 2.55 48.44
MLP, k = 100 3.03 42.47
MLP, grouped 16× (k = 8) 2.73 46.16
MLP, grouped 16× (k = 64) 2.57 48.46

input token xt. As we consider a k = 1 model, C(l)(xt) returns a single code c(l)t ∈ Rd. We replace
this code with c̃

(l)
t , a code that activates when a different state is present. We then recompute the

forward pass from that point and observe whether the network’s next token distribution resembles
the next token distribution for the new state.

In Figure 4a, we find that this is precisely the case—changing only the state codes in the MLP layers
to a different state code shifts the next token distribution towards that other state, as measured by
the Jensen-Shannon Divergence (JSD Lin, 1991), averaged over 500 random state transitions. This
effect is even more substantial for the state-plus-digit codes, where changing the codes in the MLP
layers makes the next-state distribution almost identical to that of the new state (Figure 4b). These
results provide strong evidence that these codes perform the expected causal role in the network.
Note that applying a similar perturbation to just a single MLP layer or all the attention layers causes
a much smaller drop in JSD, indicating that this information is mainly stored across several MLP
layers.

4 LANGUAGE MODELING

Next, we apply codebook features to language models (LMs) trained on naturalistic text corpora.
We demonstrate the generality and scalability of our approach by training two models of different
sizes on two different datasets. After describing the models we train and the training data, we follow
the strategy described in Section 2.2 and identify hypotheses for the role of codes in the network.
Then, we validate these hypotheses by steering the models through targeted activation of codes.

Trained models We finetune a small, 1-layer, 21 million parameter model on the TinyStories
dataset of children’s stories (Eldan & Li, 2023). We also finetune a larger, 24-layer 410M parameter
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(b) WikiText-103

Figure 6: Codes are better classifiers of simple textual features than neurons. Y-axis: precision
of a given code at classifying a regular expression. X-axis: precision of the best neuron in the
network, with a threshold chosen to match the recall of the code. Red line: y = x

model on the WikiText-103 dataset, consisting of high-quality English-language Wikipedia articles
(Merity et al., 2016). See Appendix D for more training details.

Codebook models are still strong language models Remarkably, despite the extreme bottleneck
imposed by the codebook constraint, the codebook language models can still achieve strong lan-
guage modeling performance. As shown in Table 2, codebook models can attain a loss and accuracy
close to or better than the original models with the proper settings. In addition, the generations of
the codebook look comparable to the base models, as shown in Table 10. Finally, in Appendix D.4,
we profile the inference speed of these codebook models, showing how sparsity and fast maximum
inner product search (MIPS) algorithms enable codebooks to run much more efficiently than the
naive implementation of two large matrix multiplications.

Generating hypotheses for the role of codes We also explore the interpretability of codes by
looking at examples that the code activates on. In Table 11, we catalog codes that selectively activate
on a wide range of linguistic phenomena, spanning orthography (e.g., names starting with “B”),
word types (e.g., months of the year), events (e.g., instances of fighting), and overall topics (e.g., fire
or football). Interestingly, codes for a particular linguistic phenomenon may not always activate on
the words most relevant to that concept. For example, in our TinyStories model, we find a code that
activates on mentions of fighting and violence might trigger on the word the but not the adjacent
word quarrel. We suspect this may be because the network can store pieces of information in nearby
tokens and retrieve them when needed via attention.

Comparison to neuron-level interpretability As in Section 3.1, we would like to compare the
interpretability of the codebook to neuron-level interpretability. While natural language features are
more complex than the states in Section 3, we conduct a preliminary experiment comparing both
neuron- and code-based classifiers to regular expression-based classifiers. We first collect a set of
codes that appear to have simple, interpretable activation patterns (e.g., “fires on years beginning
with 2”). We then created heuristic regular expressions targeting those features (e.g., 2\d\d\d ).
Next, we compute the precision of the code classifier, using the regular expression as our source of
truth. We then take the recall of our code classifier and search across all neurons, thresholding each
at the same recall as the code and reporting the highest precision found. As Figure 6b demonstrates,
codes are far better classifiers of these features than neurons on average, with over 30% higher
average precision. We defer additional details and discussion to Appendix D.7.

4.1 STEERING THE NETWORK BY ACTIVATING TOPIC CODES

As in Section 3.2, we would like to validate that codes do not merely fire in a correlated way with
different linguistic features but that they have a causal role in the network’s behavior. As an initial
investigation of this goal, we study a subset of codes in the attention codebook model that appear
to identify and control the topic discussed by a model. To identify potential topic codes, we use a
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Table 3: Activating topic codes causes the model to discuss those topics. Percentage of gener-
ations that mention the topic before and after setting one or all codes in each attention head to the
topic code. Numbers in (parentheses) indicate the number of activated topic codes. This number is
smaller for the all codes condition because only one topic code will be activated if multiple topic
codes are located in the same attention head.

(a) Wikitext

Topic Baseline
Freq

Steered
(one code)

Steered
(all codes)

Video
game

2.5 55.0 (18) 75.0 (4)

Football 7.5 47.5 (18) 95.0 (8)
Movie 27.5 42.5 (12) 90.0 (5)
Song 20.0 32.5 (17) 85.0 (11)

(b) TinyStories

Topic Baseline
Freq

Steered
(one code)

Dragon 2.5 65.0 (8)
Slide 2.5 95.0 (12)
Friend 42.5 75.0 (9)
Flower 0.0 90.0 (8)
Fire 2.5 100.0 (16)
Baby 0.0 90.0 (15)
Princess 40.0 87.5 (14)

simple heuristic and select only codes that activate on more than 50% of tokens in a given sequence.3
Of these, we manually filter by looking at the activating tokens of these codes and choose only those
that appear to activate frequently on other examples related to that topic.

To shift the output generations of the model, we then take an input prompt (e.g., the start-of-sequence
token) and activate the topic codes in the model for every token of this prompt. Then, we sample
from the model, activating the topic codes for each newly generated token. Unlike Section 3, our
models here have k > 1. Thus, we explore two types of interventions: First, activating a single code
in each codebook (replacing the code with the lowest similarity with the input) and second, replacing
all activated codes in each codebook with k copies of the topic code.4 We use the attention-only
codebook with k = 8 in our experiments. See Figure 5 for a graphical depiction.

Remarkably, activating the topic codes causes the model to introduce the target topic into the sam-
pled tokens in a largely natural way. We show several examples of this phenomenon in Tables 4, 13
and 14. Interestingly, even though the topic code is activated at every token, the topic itself is often
only introduced many words later in the sequence, when it would be contextually appropriate. We
quantify the success of this method by generating many steered sequences and classifying the gen-
erated examples into different categories with a simple word-based classifier. The results, presented
in Table 3, demonstrate that the steered generations mention the topic far more often, with almost all
generations successfully mentioning the topic when all codes in a codebook are replaced. See Ap-
pendix D.8 for more details and additional generations. These interventions constitute meaningful
evidence of how codebook features can enable interpretation and control of real language models.

5 RELATED WORK

Mechanistic interpretability Our work continues a long stream of work since the 1980s on un-
derstanding how neural networks operate, especially when individual neurons are uninterpretable
(Servan-Schreiber et al., 1988; Elman, 1990) Recent work has continued these investigations in
modern computer vision models (Olah et al., 2018; 2020; Bau et al., 2020b) and language models
(Elhage et al., 2021; Geva et al., 2021), with special focus on the problem of understanding superpo-
sition, when many features are distributed across a smaller number of neurons (Elhage et al., 2022b).
Recent work has investigated whether sparse dictionary learning techniques can recover these fea-
tures (Yun et al., 2021; Sharkey et al., 2022), including the concurrent work of Bricken et al. (2023)
and Cunningham et al. (2023). Our work shares similar goals as the above works. Codebook fea-
tures attempt to make it easier to identify concepts and algorithms inside of networks by refactoring

3This heuristic is inspired by past work connecting activation patterns in frequency space to different lin-
guistic phenomena (Tamkin et al., 2020)

4If m > 1 codes map to the steering topic in a given codebook, we replace the m lowest-scoring codes in
the first case and randomly select one code to replace all the codes in that codebook in the second case.
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Table 4: Example steered generations for TinyStories model. More examples in Table 13

Code Concept # codes Example steered generation

Dragon 8 Once upon a time, there was a little girl named Lily. She was very
excited to go outside and explore. She flew over the trees and saw a
big, scary dragon. The dragon was very scary. [...]

Flower 8 Once upon a time, there was a little girl named Lily. She liked to
pick flowers in the meadow. One day, she saw a big, green [...]

Fire 16 Once upon a time, there was a little boy named Timmy. Timmy
loved his new toy. He always felt like a real fireman. [...]

Princess 14 Once upon a time, there was a little bird named Tweety. One day,
the princess had a dream that she was invited to a big castle. She
was very excited and said, “I want to be a princess and [...]

their hidden states into a sparse and discrete form. We also show how codebooks can mitigate su-
perposition by representing more features than there are neurons and that we can intervene on the
codebooks to alter model behavior systematically.

Discrete structure in neural networks Our work also connects to multiple streams of research
on incorporating discrete structure into neural networks (Andreas et al., 2016; Mao et al., 2019).
Most relevant is VQ-VAE (van den Oord et al., 2017), which trains an autoencoder with a vector
quantized hidden state (Gray, 1984). Our work also leverages vector quantization; however, unlike
past work, we extend this method by using it as a sparse, discrete bottleneck that could inserted
between the layers of any neural network (and apply it to autoregressive language models), enabling
better understanding and control of the network’s intermediate computation.

Inference-time steering of model internals Finally, our work connects to recent research on
steering models based on inference-time perturbations. For example, Merullo et al. (2023) and
Turner et al. (2023) steer networks by adding vectors of different magnitudes to different layers in the
network. Our work supports these aims by making it easier to localize behaviors inside the network
(guided by activating tokens) and making it easier to perform the intervention by substituting codes
(so the user does not have to try many different magnitudes of a given steering vector at each layer).

We include an extended discussion of related work, including the relative advantages of codebooks
and dictionary learning methods in Appendix E.

6 DISCUSSION AND FUTURE WORK

We present codebook features, a method for training models with sparse and discrete hidden states.
Codebook features enable unsupervised discovery of algorithmic and linguistic features inside lan-
guage models, making progress on the superposition problem (Elhage et al., 2022b). We have shown
how the sparse, discrete nature of codebook features reduces the complexity of a neural network’s
hidden state, making it easier to search for features and control a model’s behavior with them.

Our work has limitations. First, we only study Transformer neural networks on one algorithmic
dataset and two natural language datasets; we do not study transformers applied to visual data or
other architectures, such as convolutional neural networks, leaving this for future work. In addition,
we only explore topic manipulation in language models; future work can explore the manipulation
of other linguistic features in text, including sentiment, style, and logical flow.

Ultimately, our results suggest that codebooks are an appealing unit of analysis for neural networks
and a promising foundation for the interpretability and control of more complex phenomena in
models. Looking forward, the sparse, discrete nature of codebook features should aid in discovering
circuits across layers, more sophisticated control of model behaviors, and making automated, larger-
scale interpretability methods more tractable.5

5See Appendix F for an extended discussion of applications and future work.
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REPRODUCIBILITY STATEMENT

We release our codebase and trained models to enable others to easily build on our work. Addi-
tionally, Sections 2 to 4 and appendices A, C and D describe the specific experimental details and
settings we used to carry out our experiments.
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A GENERAL TRAINING AND OPTIMIZATION DETAILS

Here, we provide some additional training details relevant to all experiments.

Layer norm We apply layer norm to the input activations of the codebooks, which we found
improved accuracy and stability.

Optimizer hyperparameters Unless otherwise specified, we use the Adam optimizer (Kingma
& Ba, 2014) with learning rate 5e-4 and default values of β1 = 0.9, β2 = 0.99. For experiments
using learning rate decay this refers to the peak learning rate; we spend 5% of training on a linear
warmup to the max learning rate and the rest on a linear decay to 0. We did not find a benefit to
using weight decay in our experiments. We also found no benefit to using k-means initialization of
the codebooks.

Training hyperparameters We train for 15k steps for most experiments. For the TinyStories
datasets, we train for 100k steps. The sequence length for WikiText-103 is 1024, and for TinyStories
it is 512. Depending on the model, we use a batch size of 64 to 256 and between 1-4 A100 GPUs.
By default, codebooks have C = 10k codebook size unless otherwise specified.

B CODEBOOKS AS INFORMATION BOTTLENECKS

Codebooks are information bottlenecks: they limit the bits of information that can be transmitted
from a given layer into the rest of the network. Intuitively, they force the network to represent its
activations as a choice of k distinct, unordered codes out of a vocabulary size of C. This fact enables
us to compute the channel capacity, or number of bits the codebook can transmit each forward pass:
⌈log2

(
C
k

)
⌉. In Table 5, we present the channel capacity of various codebooks of size 10,000 with

values of k ∈ [1, 8, 100]. We also compare this with the channel capacity of a standard 16-bit
activation with size 1024 hidden state, as well as quantized 4-bit vectors. We observe that even the
k = 100 case transmits far fewer bits than even a 4-bit quantized 1024-dimensional vector.

Table 5: Comparison of information content for different information bottlenecks.

Scenario Bits Transmitted

1024-dimensional 16-bit vector 16384
1024-dimensional 4-bit vector 4096

1 code from codebook of size 10,000 14
8 codes from codebook of size 10,000 91
100 codes from codebook of size 10,000 804

C FINITE STATE MACHINE EXPERIMENTS

This section presents additional details and experiments for the finite state machine (FSM) domain.

C.1 TOKFSM TRAINING HYPERPARAMETERS

We use a constant learning rate of 1e − 3 with a batch size of 512 and train the models for 20, 000
training steps. Note that the architecture used in Section 3 uses parallel attention and MLP blocks,
following (Black et al., 2022).

C.2 DEAD CODES

After training the models, we notice that many codes in the model do not activate at all on the eval
set; we refer to these as dead codes, and the opposite as active codes (Yu et al., 2021). We report the
number of active codes for each component of the k = 1 Attn+MLP codebook model in Table 7,
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computed over an evaluation set of 10240 samples of sequence length 128. While many codes end
up dead, we find that starting training with fewer codes leads to worse accuracy than training with
more codes than needed, suggesting some role for dead codes in the codebook optimization process.

C.3 ADDITIONAL OBSERVATIONS FROM ACTIVATING TOKENS

Although the strongest form of evidence we consider are the causal intervention experiments in
Section 4.1, we briefly overview a range of different types of codes we identify through qualitative
observation:

• Codes in MLP layer 0 (the first MLP layer), which activate on each different token
• Codes in MLP layers 1, 2, and 3, which activate on bigrams corresponding to different

states of the FSM (e.g., 42, 59, 29), only on the second digit of a state (state codes)
• Codes in MLP layers 1, 2, and 3, which activate on trigrams: (e.g., 823, 182), only on the

first digit of a state (state-plus-digit codes)
• In many cases, several different states (or state-plus-digits) activate the same code. In

Appendix C.4, we show that these state groups have much more similar next-token distri-
butions than average codes and provide potential interpretations for this phenomenon.

• Codes that activate on bigrams or trigrams, regardless of which digit they are present on
• Codes in several attention heads, which activate on states beginning with a specific digit

(e.g., 51, 52, 53 . . .)
• Codes that do not appear to fire on any discernible pattern.

From these points of anecdotal evidence, we make several broader observations:

1. The network learns codes that fire in association with useful high-level features of the input
space, e.g., when a given FSM state is present

2. Individual features are not necessarily isolated to a single point in the network; multiple
places may represent the same piece of information, as (Bau et al., 2020b) found in a
computer vision context.6

3. It is possible for the behavior of a given layer to be position dependent—that is, the network
can store different information in the same layer depending on the position in the sequence.
For example, the same MLP layer may hold different information when the input token is
the first digit vs. when it is the second digit of a state. Thus, absolute statements that certain
layers or attention heads “store concept X” warrant caution, as this layer’s function could
be contextually dependent.

4. Sometimes, the network forms representations that seem to admit a meaningful interpreta-
tion but do not immediately appear useful to the network. For example, it initially seems
useless to have a code that activates based on states that share the same first digit (e.g., 51,
52, 53, . . . ) as these states are unrelated. It may be possible this code is used as part of
a circuit to identify an FSM state in a future layer, or perhaps it is simply a vestigial or
spandrel feature (Gould & Lewontin, 1979; Gould, 1997).

C.4 ANALYSIS OF CODE PURITY IN THE FINITE-STATE-MACHINE MODELS

The TokFSM dataset from Section 3 was designed such that we know the exact number of features
in the data, permitting us to understand how the representation of these features changes across the
network. In Figure 8, we plot the fraction of codes that are pure at each layer, meaning they activate
only on a single state (in the case of state codes) or state and first digit (in the case of state-plus-
digit codes). We compute these statistics over all valid combinations of two- or three-digit starting
sequences. We see very high levels of purity for both sets of codes. The high purity of the codes at
the first layer demonstrates that codebook training has mostly resolved the superposition problem at
the first layer.

6We suspect it may be possible to detect these families of codes by computing co-occurrence statistics, but
we leave this to future work.
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Table 6: Example Code Activations for the TokFSM dataset. The bolded digits indicate the token
positions that activated the given code. Hyphens (-) are added between each state for readability
but are not presented to the model. MLP codes are written in the form layer.code-id, while
attention codes are written in the form layer.head.code-id. More activations are available at
[redacted for anonymity] .

Code Interpretation Example Activations
MLP 0.2523 1 digit 31-83-40-87-80-78-38-76-03-86-17-97-76-09-15

10-57-62-43-92-31-83-82-23-65-94-33-23-49-41
19-83-31-73-29-47-04-15-77-05-79-23-47-89-95

MLP 1.2527 489 trigram (either pos.) 86-04-89-80-17-03-40-74-24-09-93-35-59-61-49
40-46-50-38-47-04-89-80-91-82-94-33-41-77-59
18-94-55-55-48-24-68-48-90-43-97-50-74-77-59

MLP 2.2543 40 bigram (2nd pos.) 80-04-70-50-40-59-07-73-28-02-71-54-31-62-40
74-05-13-72-95-66-52-31-98-20-88-40-59-22-19
40-46-44-01-88-66-51-14-41-57-18-84-89-60-51

Attn 1.2.3207 Tokens after 44 bigram 44-27-74-05-59-64-67-72-42-93-35-09-67-39-96
44-27-74-05-22-65-98-75-83-20-00-60-80-57-94
77-69-28-02-34-46-52-72-94-18-84-12-16-64-46

Attn 2.0.3044 Tokens on or after 59 74-05-59-64-67-72-42-93-35-09-67-39-96-07-96
88-40-59-22-19-33-31-93-42-53-75-94-33-31-76
87-14-40-59-24-72-86-04-30-04-81-56-01-17-30

The code purity declines in higher layers as the model forms its prediction of the next token. Why
is this? As Figure 9 demonstrates, when two different states activate the same code, they tend
to have much more similar next-token distributions. Specifically, the next-token distributions of
trigram states that activate the same code (red bars) are much smaller than those of random pairs of
trigram states (blue bars). This result suggests that states are merged when they share a similar next-
token distribution. We speculate that codes merge later in the network as the network shifts from
identifying the state to forming its prediction of the next token, as previous work has also speculated
(Elhage et al., 2022a).

In general, we believe that better understanding when two concepts share a code is a fruitful avenue
for future study.

Table 7: Number of active codes in k = 1 attention + MLP codebook model trained on Tok-
FSM. Each codebook has 10,000 codes; most of the codes in each codebook are not active by the
end of training.

Layer Head 0 Head 1 Head 2 Head 3 MLP

0 40 45 41 49 11
1 293 367 657 460 1027
2 1482 3071 1103 1499 943
3 690 282 315 1233 247

C.5 ABLATION EXPERIMENTS

We perform several ablation studies to identify the importance of different elements of our training
method. Specifically, we compare the next-token accuracies of several families of models, including
the TinyStories one-layer model, the 4-layer TokFSM model, and the 24-layer wikitext model. For
each model, we present the accuracies for 1) the attention codebook model presented in the paper,
2) the same model but with a random initialization as opposed to the pretrained model, and 3) a
codebook model where the model parameters were frozen and only the codebook parameters were
trained, and 4) a model where only the codebook parameters were trained, and they were trained
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Figure 7: Code activation frequencies appear to follow a power law Frequency of code activations
by rank from TinyStories 1-layer attention-only codebook model. The x-axis denotes the rank of the
code in terms of frequency on a subset of the training set. We observe that most codes activate very
rarely, while a long tail of codes activate very frequently.
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Figure 8: Codebook training overcomes the superposition challenge in the first layer. We plot
the fraction of codes which are pure at each layer, meaning they activate only on a single state (in
the case of bigrams) or state + first digit (in the case of trigrams). We see very high levels of purity
for both bigram and trigram models. Because the number of hidden states is 128, and there are 1000
trigram combinations for the model to learn, the network cannot allocate each state to a different
neuron. The high purity of the codes demonstrates that codebook training has mostly resolved the
superposition problem at the first layer. Code purity declines in higher layers as the model forms its
prediction of the next token (see Figure 9). Experiment performed on the MLP codebooks of the
k = 1 Attn + MLP codebook TokFSM model over all 100 and 1000 possible combinations of the
first two and three digits, respectively.
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Figure 9: When two different states activate the same code, they tend to have much more
similar next-token distributions. We find that the next-token distributions of trigram states that
activate the same code (red bars) are much smaller than those of random pairs of trigram states (blue
bars). This result suggests that states are merged when they share a similar next-token distribution.
X-axis: Jenson-Shannon Divergence (JSD) between next-token distributions of different states. The
JSD is a measure of the distance between probability distributions).

with only the autoencoding portion of the loss. The results of these experiments are presented in
Table 8. Broadly, we find that all components are necessary for strong performance, although we do
not exhaustively tune hyperparameters for each ablation.

Table 8: Ablation studies. Next-token accuracy (for TinyStories and WikiText-103) and next-state
transition accuracies (for TokFSM) across various ablation studies. Legend: Attn CB: Codebook
applied to the attention layers. Random Init: Codebooks applied to a randomly-initialized model
instead of a pretrained model (then finetuned end-to-end as usual). Train Only CB: Train only the
codebook layers with the original loss while keeping the base model frozen. Only AE Loss: Only
apply the autoencoding loss to the codebooks; do not update the model parameters. Attn + MLP
CB Codebooks applied to the attention and MLP codebooks simultaneously.

Model Attn CB Random Init Train Only CB Only AE Loss

TinyStories-1L 57.91 55.67 47.08 51.73
FSM-4L 96.39 52.35 58.48 43.44
WikiText-103-24L 46.16 38.53 31.22 28.35

D LANGUAGE MODEL EXPERIMENTS

D.1 1-LAYER TINYSTORIES MODEL

We train a small, 1-layer 21 million parameter transformer on the TinyStories dataset of children’s
stories, constructed by prompting a language model (Eldan & Li, 2023). We train for 100k steps
with a batch size of 96, with learning rate warmup of 5% and linear cooldown to 0. We start by
loading the 21M pretrained model from the TinyStories paper (Eldan & Li, 2023). We train two
models: one with the codebook affixed to each of the heads of all the attention layers and one to
both the attention heads and MLP layers (Figure 2).

In Figure 7, we plot the distribution of code activation frequencies for the 1-layer TinyStories k = 1
Attn + MLP model. We find a very unequal distribution of use of the codebooks, with a small number
of codes activated extremely frequently and many others activated hardly at all. This distribution is
reminiscent of the Zipfian distribution known to characterize phenomena such as word frequency in
natural language (Kingsley Zipf, 1932).
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D.2 24-LAYER WIKITEXT-103 MODEL

We also train a larger, 24-layer 410M parameter model on the WikiText-103 dataset, consisting of
high-quality English-language Wikipedia articles. We finetune for 20, 000 steps with a batch size
of 24 and learning rate warmup and cooldown. For a pretrained model, we use the Pythia 410m
parameter model, trained on the Pile dataset with deduplication (Biderman et al., 2023). The model
has 16 attention heads, with a hidden size of 1024. We again train two variants of codebook models
here, with codebooks on every attention head and codebooks on every MLP block.

D.3 COMPARING THE PERFORMANCE OF CODEBOOK AND BASE MODELS

Here, we provide more details on the models trained in Table 2. Most model names in the table are
self-explanatory; for example, MLP, k=100 indicates a model with codebooks on the MLP layers
with a k of 100. The only exceptions are as follows:

Finetuned 160M (Wiki) The largest base language model we finetune is a 410M parameter 24-
layer model from the Pythia series of models (Biderman et al., 2023), finetuned on the WikiText-103
dataset (Merity et al., 2016). To explore how much codebooks reduce the performance of language
models, we also finetune the next smallest model in the series: a 160M parameter 16-layer model.
As we see, the language modeling accuracy of the Attn k = 8 model is comparable to this smaller
model, and the Attn k = 64 model falls squarely in between the 160M and 410M parameter models.

MLP, grouped 16× (k = 8 or 64) The MLP codebook layers broadly seem to attain lower per-
formance than the attention layers. Moreover, we found diminishing returns to increasing the value
of k for this layer. We observe that we can attain higher performance for these layers by splitting
the MLP layer activations into several equal-sized chunks (16 in our case) and training a smaller
codebook independently on each chunk, as in product quantization (Jegou et al., 2010). We refer to
this method as “grouped codebooks.”

All models except the grouped MLP codebook model are trained with the same hyperparameters.
We found that the grouped MLP codebook model achieved 4-5% higher accuracy and trained more
stably if we used a 10x higher learning rate on the codebook parameters than the default learning
rate (which was used for the language model parameters). We suspect the combination of grouped
codebooks and higher learning rates on the codebook parameters may be helpful when applying
codebooks to higher-dimensional layers. While we suspect the primary benefit of grouped code-
books is in aiding optimization, an interesting direction for future work is whether they improve
expressivity or interpretability of the resulting codebooks.

D.4 CODEBOOK MODELS STILL HAVE USABLE INFERENCE SPEED

The codebook modules at each attention head add parameters and computation to the model. While
this results in higher latency, the resulting model is still usable for real-time inference. Moreover, in-
ference can be sped up an additional amount through fast maximum inner product search (MIPS) al-
gorithms such as FAISS, which are faster than computing the matrix multiplication explicitly (John-
son et al., 2019). In Table 9, we show that the codebook models show a significant decrease in the
number of generated tokens per second (between 34% and 69% slowdown). However, this decrease
is significantly lower when FAISS is used. A decrease in latency may be acceptable in exchange for
increased interpretability or control, and we expect further optimizations (e.g., approximate MIPS
algorithms, custom kernels) to continue to close this gap.

D.5 EXAMPLE LANGUAGE MODEL GENERATIONS

We display example generations from both language models in Table 10.

D.6 ACTIVATING TOKENS

We present examples of activating tokens for both language models in Table 11
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Table 9: Maximum inner product search algorithms can close much of performance gap be-
tween codebook and tranditional models. Performance Comparison of Models with Different
Parameters. Computed on an A100 40GB GPU, with a batch size of 64 and over 100 batches.

(a) 70m Parameters

Model Tok/s ∆ FAISS ∆ Base

Base 57.5
CB w/ FAISS 37.4 34.2% -34.9%
CB no FAISS 27.9 -51.5%

(b) 410m Parameters

Model Tok/s ∆ FAISS ∆ Base

Base 14.8
CB w/ FAISS 7.2 56.2% -51.5%
CB no FAISS 4.6 -68.9%

Table 10: Example generations from language models. The prompts are highlighted in bold. While
the factuality of the completions is unreliable for all models, all models generate largely grammatical
text.

Language
Model

TinyStories 1-Layer Model WikiText-103 Model

Base Once upon a time there was a little boy
named Timmy. Timmy loved to play
outside in the rain. He would jump in
puddles and splash around. One day,
Timmy saw a big puddle in the park. He
jumped in it and got all wet.[...]

The war was fought against the Ot-
toman Empire and the Kingdom of
Hungary. The Ottoman Turks, their
king, and several of their princes were
killed and many more captured, and the
kingdom was divided among the Hun-
garian monarchs ; [...]

Codebooks
(Attn)

Once upon a time, there was a little girl
named Lily. She loved to play with her
toys and her friends. One day, Lily’s
mom told her that they were going to
buy a new toy. Lily was very excited
and asked, “Can I play with your toys,
please?”[...]

The war was fought by France and the
British Empire, and by the Axis pow-
ers. With the exception of the Italians
and Americans, whose armies won the
war against the Axis Powers, the victo-
rious Allies suffered the most of the war,
a terrible defeat on both fronts. [...]

Codebooks
(MLP)

Once upon a time, there was a little
boy named Timmy. Timmy loved to
play with his toy cars and trucks. One
day, Timmy’s mom took him to the store
to buy a new toy. Timmy saw a big
red truck and asked his mommy if they
could get it, but she said they had to wait
until they got to the store.

The war was fought between the
United States and France. The French
responded by launching an invasion of
the Allied continent in June 1917 with
the aim of defeating the Allied armies
in northern France. [...]
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Table 11: Example Code Activations for the TinyStories and the WikiText-103 dataset. The bolded
word indicates the token positions that activated the given code. Note that the concept may be near
but not directly at the activated token. MLP codes are written in the form layer.code-id,
while attention codes are written in the form layer.head.code-id. At symbol (@) delimiters
present in WikiText-103 data have been omitted for readability. More activations are available at
[redacted for anonymity] .

(a) WikiText-103

Code Interpretation Example Activations

7.12.7884 Months (after
preposition)

at Toulon in August The ship began trials [. . . ] and spent three weeks
in September attached to
14 : 30 on 7 December. The division had the [. . . ] a major attack until
8 December
on August 31, a Utah [. . . ] On September 1, 1987

4.15.6101 Evaluative words Initially , the New Zealand attack progressed well
Superman from the main timeline is successfully teleported into
only HWMs evaluated as ”excellent” are used by NHC

1.9.295 Names starting
with ‘B‘

In one account from the Bahamas , a mating pair ascended

while John and Roy Boulting noted that [...]
Bockscar, sometimes called Bock’s Car, is the name of the United
States Army Air Forces B-29 bomber

4.14.4742 Years in 2000s As of 2011 , the International Shark Attack File lists
In 2014 , a study at the University of Amsterdam with
Fabian Cancellara kicked off his 2010 campaign with an overall victory
at the Tour of

9.3.3727 Square Units Atlanta encompasses 134.0 square miles (347.1km2)
it covered more than 55 square metres (590 sq ft)
6 percent or 101,593 square kilometres (39,225 sq mi) of [...]

(b) TinyStories

Code Interpretation Example Activations

0.2 Fighting The two cats started to quarrel loudly over the bone
They ran around the house, fighting over the thread
But then, they got into a fight over who got to play with the toy

0.3 Negative emotions He feels angry and scared. He tries to catch the boat, but it
She started to feel nervous because she thought she wouldn’t be able to
Lily and Tom felt fearful. They did not like storms.

0.6 “You” dialogue The dragon smiled and said, ”You are too small. It’s not possible.”
The happy fish thanked her and said ”You must be very persistent to
complete this task.
John smiled and said, ”You won! You were really fast.”

1.2 Fire The fire spread to the cans and bottles and made more explosions.
The garage was full of smoke
Lily knew that fire could be dangerous and she always remembered to
be careful when playing with matches or lighters.
Mom hugged them and said, ”I know, but fire is not a toy. It can hurt
you and the plants and animals.

5.3 Discovered/found Lily found a delicate flower in the garden and showed it to her sister.
had discovered an amazing reef and helped a turtle in need.
One day, Tom and Mia found a ball in the hut.
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Table 12: Regular expressions used to measure topic steering for the text generated by the models.

(a) Wikitext

Topic Regex
Football football| soccer| goal| stadium| fifa| player| trophy| league
Movie movie| tv| television| film| media
Video Game game
Song song| music| mtv

(b) TinyStories

Topic Regex
Dragon dragon
Slide slide
Friend friend
Tom & Sam tom| sam
Flower flower
Fire fire
Baby baby
Princess prince| crown| king| castle

D.7 ADDITIONAL NOTES ON NEURON-LEVEL INTERPRETABILITY EXPERIMENTS

We briefly note two caveats to this preliminary experiment. First, regular expressions are not perfect
proxies for the features we care about (e.g., our regular expression for countries only includes some
countries or ways of spelling each country). Thus, these precision scores likely underestimate each
classifier’s true precision. Second, we note a potential bias in the experimental protocol due to
developing the regular expressions for codes that admit a meaningful interpretation. This could
result in a slight bias in favor of the code classifiers. However, we also exhaustively search over
all 410 million neurons in the network to find the best performer, which mitigates this bias. The
complete list of regexes we use is available in our codebase.

D.8 LANGUAGE MODEL STEERING EXPERIMENTS

We present additional language model steering results in Table 13.

Note that while we use the MLP codes to steer the TokFSM model, we use the attention codes to
steer the WikiText model. The reason for using different codes here is because we are trying to
control different aspects of the sequence/text in each model. In the TokFSM environment, we are
trying to alter the prediction of an individual state or token. We find codes in the MLP layers are
most associated with these single tokens. For the language modeling experiments, we are trying to
alter the global topic of a generation. Topics typically manifest across many tokens, rather than a
single token, and we find the attention layers are most associated with these features. However, we
believe it is quite possible that for more local linguistic features (such as word choice) editing the
MLP codes in a language model may prove to be the best way to edit the model’s behavior.

D.9 HOW DOES VARYING THE NUMBER OF CODES INFLUENCE HOW WELL THE MODEL CAN
BE STEERED?

To steer the language model, we activate a number of topic codes discovered throughout the network.
In Figure 10 we plot how changing the number of codes activated increases the rate at which the
topic is introduced to the generation. We observe a general increase in the steering rate as the number
of topic codes activated increases.
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Figure 10: Increasing the number of topic codes activated increases the rate at which the language
model is successfully steered to the desired topic.

Table 13: Steering the TinyStories language model with topic codes. While the language model
generations are often incoherent, the topics are largely introduced in grammatical ways

Topic Codes Steered generations
Null (default
generation)

- Once upon a time, there was a little girl named Lily. She loved to play
with her toys and eat yummy food. One day, she went to the store with
her mommy to buy some apples. She saw a big basket and wanted to
buy it. Her mommy said, ”Let’s count the apples and buy the yummiest
apples!” Lily was so happy and said, ”Yes, please!”

Dragon 8 Once upon a time, there was a little girl named Lily. She was very
excited to go outside and explore. She flew over the trees and saw a big,
scary dragon. The dragon was very scary. But Lily knew that things
were not real and she would hurt her.

Slide 12 Once upon a time, there was a big cake. He wanted to escape and
explore the world, but he was scared. He thought and thought about
how to use the slide. He asked his mom for some help.

Friend 9 Once upon a time, there was a little girl named Lily. She had a friend
named Sue. Sue was a nosy cat. She liked to play with her brother Tom.
One day, they went to the park and saw a big dog. The dog was not
nice.

Flower 8 Once upon a time, there was a little girl named Lily. She liked to pick
flowers in the meadow. One day, she saw a big, green caterpillar on a
leaf. She wanted to take it home and sell it to someone else. As she
picked the flower, it started to bloom and made it look pretty.

Fire 16 Once upon a time, there was a little boy named Timmy. Timmy loved
his new toy. He always felt like a real fireman. One day, Timmy’s
mom made him some hot soup and gave him some medicine to help his
mommy feel better. Timmy was scared that the fire would be gone, but
he didn’t feel happy.

Baby 15 Once upon a time, there was a little girl named Lily. She loved going
to the gym with her mommy. One day, Lily’s mom asked her to help
put the baby in the crib.

Princess 14 Once upon a time, there was a little bird named Tweety. One day, the
princess had a dream that she was invited to a big castle. She was very
excited and said, “I want to be a princess and ride the big, pretty castle!”
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Table 14: Steering language model generations with topic codes. Full table available at [redacted
for anonymity] . At symbol (@) delimiters present in WikiText-103 data have been omitted for
readability.

Topic Codes Original generations Steered generations
Video
game

18 The war was fought on two fronts.
The war was initiated in 1914 between
Austria-Hungary and Serbia, when the
Entente Powers signed a treaty of
friendship between the two countries.
In October 1914, Tschichky was sent
to defend the German Empire’

The war was fought on both sides,
and was only the second game to
deal with one-on-one battles, follow-
ing SimCity 2D Blade II. The game
was released to critical acclaim, with
praise particularly directed to the new
console

Football 18 The war was fought on two fronts.
The war was initiated in 1914 between
Austria-Hungary and Serbia, when the
Entente Powers signed a treaty of
friendship between the two countries.
In October 1914, Tschichky was sent
to defend the German Empire’

The war was fought in its first forty
years. In the summer of 1946, the
Cardinals of the All-America Football
Conference (AAFC) were rapidly be-
coming the favorites for NFL Hall-of-
Fame coach Jim Mora, who had

Movie 12 The novel was published in Novem-
ber 2009 by MacChinnacle, a London
publishing house. The book’s publish-
ers, Syco, published the book in the
United Kingdom and the United States
on 1 November 2009. The book re-
ceived generally positive reviews from
critics, who praised the

The novel was published in the
United States and Canada. The
film was directed by Joe Hahn and
stars Steven Spielberg as Lucas, Neil
Patrick Harris, and Jude Lawder as Lu-
cas’s best friend, Jonathan Miller. The
plot follows a character (Lucas

Song 17 The team won their first ever Grand
Prix and the first since the 1990 sea-
son. The team finished in third
place behind Williams and Ralf Schu-
macher, with the Ferraris of David
Coulthard and Jarno Trulli finishing in
the top three.

The team won the Grammy Awards
for Best Gospel Album. = = Back-
ground = = In 2004, The Dream re-
leased their third studio album, The
Beacon Street Collection, which pro-
duced the singles ”HOV Lane” and
”Wishing Machine
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E EXTENDED DISCUSSION OF RELATED WORK

In this section, we review related work and attempt to describe in more detail the design decisions
behind codebook features and how these lead to different tradeoffs compared to other approaches.
We focus on several subareas most relevant to our current work, with a particular focus on dictio-
nary learning methods, leaving more general overviews of interpretability research to prior surveys
(Rogers et al., 2021; Bommasani et al., 2021; Madsen et al., 2022).

E.1 SPARSE CODING AND SPARSE DICTIONARY LEARNING

Sparse coding, also known as sparse dictionary learning, is a well-studied research area with appli-
cations in machine learning, neuroscience, and compressed sensing (Kanerva, 1988; Olshausen &
Field, 1997; Lee et al., 2006; Candes et al., 2006; Donoho, 2006; Rozell et al., 2008). The typical
objective in sparse coding is to learn a fixed set of vectors, known as atoms or dictionary elements;
given this set of vectors, one should be able to represent a given input as a sparse linear combination
of these vectors. Sparse coding methods have been applied to various problems in machine learning,
including in computer vision (Elad & Aharon, 2006) and natural language domains (Zhu & Xing,
2012; Arora et al., 2018).

Dictionary learning methods have recently seen renewed interest as an interpretability approach for
neural networks (Yun et al., 2021; Wong et al., 2021). One reason for this is the superposition prob-
lem: to represent more feature directions than neurons, some neurons will be activated for multiple
different features (Yun et al., 2021; Elhage et al., 2022b). For example, one family of approaches
trains a wide autoencoder with a sparsity penalty. The width of the autoencoder is made greater than
the size of the input activations (producing an overcomplete basis); by regularizing the activations
of the autoencoder to be sparse, the dimensions of the autoencoder appear to correspond to more
disentangled features (Yun et al., 2021; Sharkey et al., 2022; Bricken et al., 2023; Cunningham et al.,
2023).

Codebook features share important similarities with dictionary learning approaches: for example,
both approaches learn a codebook of elements larger than the number of input neurons and attempt
to activate a small fraction of that basis on each forward pass. However, a significant conceptual
difference between codebook features and dictionary learning is their implicit choice of how features
are represented inside of neural networks:

E.1.1 FEATURES-AS-DIRECTIONS

Recent dictionary learning approaches typically start from an assumption we might call features-
as-directions: features the network learns are represented as continuous vectors along a direction
in activation space. This assumption is substantiated by prior work on interpretability (Kim et al.,
2018; Olah et al., 2018), and has the benefit that the magnitude of the vector along that direction cor-
responds to the strength of the feature or the probability of the feature existing in the data. However,
the feature as directions assumption also faces some challenges:

A direction can hold multiple features First, a single direction can theoretically represent mul-
tiple distinct features. For example, the positive and negative magnitudes of a direction could each
hold a different (mutually exclusive) feature, which could be extracted by outgoing weights of 1
and −1, respectively, in combination with a ReLU activation. More complex encodings of multiple
features within a single direction are possible with bias terms and activation functions. For example,
a network could detect whether a feature along direction x has low, medium, or high magnitude by
computing softmax(x, 2x− 1, 5x− 7); the first dimension is greatest when x < 1, the second when
1 < x < 2 and the third when x > 2.

Continuous features can be challenging to interpret Second, the continuous and graded nature
of feature directions can make them challenging to interpret: does an increase in the magnitude of
one feature mean the network is more confident the feature is present, or merely that the strength
of the feature is stronger in the input? If an input activates a feature at magnitude 0.52, or more
strongly than in 90% of inputs, does this mean the feature is present? The same factors also make
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it challenging to compare the strengths of different features without understanding how the network
weights process each of them.

Smuggling of information Another difference between codebook features and dictionary learn-
ing approaches is the contrast between soft and hard sparsity. Recent dictionary learning approaches
train an L1-regularized autoencoder (Sharkey et al., 2022). This method causes the hidden acti-
vations of the autoencoder to have a small number of entries with a high magnitude but does not
force the model to set the other features to be exactly zero. Past work has suggested that impor-
tant information can be “smuggled” via low-magnitude activations (Elhage et al., 2022a), making it
challenging to be confident that the interpretable features found by a dictionary learning approach
are fully capturing the information a network is detecting in the input.

E.1.2 FEATURES-AS-POINTS

In contrast, codebook features embody a view of features-as-points. For example, an activated code
is simply a vector of fixed magnitude that is added to the output of the codebook layer. This design
avoids many of the challenges in the previous subsection. For example, a single point can only hold
one bit of information, indicating the presence or absence of some feature, avoiding the challenges of
holding multiple features and graded interpretations. Similarly, because the weight of non-activated
codes is zero, the network cannot smuggle information through them.

However, there are several reasonable concerns one might have about features-as-points:

Multiple codes per feature First, the network could hypothetically encode more complex features
via complicated combinations of codes instead of assigning one feature to each code. For example,
codes 1 and 2 together might represent happiness, while codes 1 and 3 together might represent
cars. However, the simplicity of how the codes are chosen (by cosine similarity) makes it challeng-
ing to select codes with much complexity. Furthermore, similar concerns present themselves for
continuous dictionary learning approaches where complex features are encoded via combinations of
directions.

Multiple features per code Second, the reverse failure mode might present itself: the model might
still encode multiple features per code. Indeed, we have discussed certain cases where this is true, for
example, in Sections 3 and 4. While some of this may be improved by choosing a larger codebook
size or enabling the number of active codes k to vary based on the input and position, it is unclear
whether these approaches will solve the problem. Of course, as noted above, features-as-directions
approaches may also suffer these failure modes.

Lack of gradedness Third, one might worry that features-as-points cannot express the graded,
continuous nature of many real-world features, such as sentiment. We share this concern; however,
we note that there are mechanisms for expressing gradedness with discrete codes. For example, the
network might choose to activate multiple codes in a given position or nearby positions or allocate
different codes to different levels of the gradation. Furthermore, the strong language modeling
performance of the codebook models suggests that the model can accomplish its task well despite
this discrete constraint.

E.2 ADDITIONAL BENEFITS AND TRADEOFFS OF CODEBOOK FEATURES

We list two additional differences between codebook features and dictionary learning approaches:

Modification of the original network Dictionary learning approaches are typically trained off of
a frozen network. By contrast, in codebook features, the pretrained network is typically finetuned
to achieve high performance on the task with the codebook bottleneck. This training means we
are interpreting a new network rather than the original one. Furthermore, the performance of this
network is often slightly lower than the pretrained network, which is another tradeoff.

Improved Efficiency Because codebook features use hard sparsity, only one large matrix multi-
plication is necessary (to compute similarity scores with each element of the codebook). In contrast,
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a second large matrix multiplication may be needed by some sparse autoencoder approaches to do
a full weighted sum over all C dictionary elements rather than over k << C elements chosen from
the codebook; though activations such as ReLU may mitigate this problem to some degree. Fur-
thermore, as we show in Appendix D.4, hard sparsity enables us to use libraries such as FAISS to
replace the first matrix multiplication as well, further increasing efficiency.

E.3 MECHANISTIC INTERPRETABILITY

Researchers have long attempted to extract concepts, rules, and algorithms from neural networks.
For example, a line of work since the late 1980s attempted to extract rules and finite automata
from neural networks, especially recurrent neural networks (RNNs) (Servan-Schreiber et al., 1988;
Elman, 1990, see (Jacobsson, 2005) for a review). A core challenge noted in these works is that
neural networks use distributed representations (Rumelhart et al., 1986; 1988; Thorpe, 1989). This
form of representation enables networks to represent more concepts than hidden units, at the expense
of each unit no longer being interpretable (Elman, 1990). Thus, individual hidden units may not
correspond to interpretable concepts, and a holistic analysis of the entire vector may be necessary to
extract such structures (Servan-Schreiber et al., 1988; Elman, 1990; Jacobsson, 2005).

Recent work has attempted to revitalize this goal for today’s much more expressive networks, at-
tempting to detect concepts (Alain & Bengio, 2016; Kim et al., 2018; Olah et al., 2018; Goh et al.,
2021; Bau et al., 2020b) and algorithms (Giulianelli et al., 2018; Clark et al., 2019; Olah et al.,
2020; Bau et al., 2020a; Geiger et al., 2021; Geva et al., 2021; Elhage et al., 2021; Olsson et al.,
2022; Wang et al., 2022; Chan et al., 2022; Friedman et al., 2023) inside of models, with many
works focusing specifically on the challenges of neurons that fire on multiple concepts (Fong &
Vedaldi, 2018; Olah et al., 2020; Mu & Andreas, 2020; Elhage et al., 2022b; Geiger et al., 2023),
sometimes termed superposition (Olah et al., 2020).

Our work shares similar goals with the above works. Codebook features attempt to make identifying
concepts and algorithms more manageable inside networks by refactoring their internal representa-
tions into a sparse and discrete form that is easier to understand and manipulate. We also discover
one instance in Section 3 where codebooks represent more features than there are neurons, circum-
venting the superposition problem.

E.4 INTRODUCING DISCRETE STRUCTURE INTO NEURAL NETWORKS

A range of works attempts to introduce discrete bottlenecks or structures into neural networks
(Makhzani & Frey, 2015; Andreas et al., 2016; Keshari et al., 2019; Buch et al., 2021; Mao et al.,
2019; Liu et al., 2023). Most saliently, vector quantization (Gray, 1984, VQ) is a classical tech-
nique in signal processing that was applied most prominently in machine learning through VQ-VAE
(van den Oord et al., 2017) for use in autoencoder networks. By contrast, our method applies vector
quantization to each hidden layer of any neural network (including autoregressive language models),
enabling better understanding and control of the network’s intermediate computation. Our grouped
codebook method additionally employs product quantization (Jegou et al., 2010), an extension of
vector quantization to multiple codebooks whose outputs are concatenated. Finally, our k > 1 mod-
els leverage ideas very similar to composite quantization (Zhang et al., 2014), where vectors from
multiple codebooks are aggregated to represent the network; in our setting, it is the top-k vectors of
the same codebook which are aggregated.

Another line of work introduces structured bottlenecks into training for interpretability and con-
trol. For example, concept bottlenecks (Koh et al., 2020) directly supervise an intermediate state of
the network to align to a set of known features, while post-hoc concept bottlenecks (Yuksekgonul
et al., 2022) enable transferring known features from another source (e.g., a multimodal model). In
contrast to these methods, the concepts learned by the codebook are discovered emergently by the
network as part of the training process. Another related work, Backpack Language Models (Hewitt
et al., 2023), generate predictions by computing a set of weights over previous tokens; the next token
is then predicted through a weighted sum of learned sense vectors associated with those tokens. By
contrast, codebook features are applied to the hidden states of a neural network and facilitate better
understanding and control of this via a sparse, discrete representation.
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Work in computer vision has also explored vector quantization for image generation (Esser et al.,
2021) and classification (Zhang et al., 2023), suggesting promising avenues for multimodal applica-
tions of these techniques.

E.5 EDITING OR STEERING NEURAL NETWORKS

Various methods attempt to control, edit, or steer the behavior of trained neural networks. A natural
approach is to finetune the network on labeled data (Sermanet et al., 2013), though this process can
be time- and resource-intensive and may distort the model’s other capabilities. Prompting a model
with natural language instructions (Brown et al., 2020) or control tokens (Keskar et al., 2019) is a
lightweight steering method that overcomes some of these difficulties; however, not all models are
promptable, and there may be instances where prompting is insufficient to ensure the model performs
the desired behavior. In addition, a stream of work focusing on model editing makes targeted edits
to concepts or decision rules inside of neural networks with a small number of examples (Bau et al.,
2020a; Santurkar et al., 2021; Mitchell et al., 2021; Meng et al., 2022a;b).

Most related to our work, several recent works perform post-hoc steering of networks in ways that do
not require per-edit optimization (Merullo et al., 2023; Hernandez et al., 2023; Turner et al., 2023)
by adding vectors of different magnitudes to different layers in the network. Our work attempts
to support the aims of such work by producing a sparse, discrete, hidden representation inside of
networks. This representation makes it easier to localize behaviors inside the network (so that the
user does not have to exhaustively perform interventions at every layer of the network to find the
most effective intervention site) and makes it easier to perform the intervention by substituting codes
(so the user does not have to try many different magnitudes of a given steering vector at each layer).

F EXTENDED DISCUSSION OF APPLICATIONS, SIGNIFICANCE, AND FUTURE
DIRECTIONS

F.1 USES FOR CODEBOOK FEATURES

While we primarily explore codebook features on transformer language models, our method is
modality agnostic and can be applied to neural networks trained on any combination of modalities.
We envision several different use cases for codebook features in such diverse contexts:

Identifying phenomena in complex data Codebook features is an unsupervised method for dis-
covering different latent features inside models. This method could be useful in situations where
brainstorming novel kinds of features in data may be helpful for research. For example, codebook
features could potentially help uncover new protein, genomic, or medical imaging data features by
observing token activations and seeing what the examples all have in common.

Feature detection In many applications, it is helpful to count the number of times a particular
feature occurs or raise an alert when it does. While it may be more effective in many cases to collect
a labeled dataset and train a classifier for a particular feature, codebook features are ready-made for
this task and may enable faster iteration and experimentation.

Counterfactual explanations One way of explaining a model’s decision is via a counterfactual:
would the model’s decision change if this feature changed? While these counterfactuals often occur
at the input level, codebooks enable counterfactual explanations at the hidden feature level.

Steering models Finally, as explored in Sections 3.2 and 4.1, codebook features can be used to
steer the complex generations of models. We anticipate the flexibility of this method to improve as
codebook features are better understood.

F.2 WHAT THIS SAYS ABOUT TRANSFORMER COMPUTATION

As seen in Table 5, codebooks enforce a strong information bottleneck between layers. We find it
surprising that neural networks can operate amidst such a strong information constraint; this suggests
that the underlying computation happening inside these networks is or can be made sparse along a
set of understandable features.
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F.3 FUTURE WORK

We see several exciting directions for future work:

Understanding circuits and weights Past work has investigated circuits in vision models, where
more complex features are built up out of smaller features (see Appendix E for a full overview). The
sparse and discrete nature of codebooks may make it far easier to identify such circuits, including in
language models, due to the smaller number of possible relationships between components across
layers. The discrete nature of codebooks also makes it easier to compute which codes tend to fire
together across layers without the added complexity of accounting for continuous-valued neurons
or feature directions. Understanding the relationship between activations across a single layer may
also enable a better understanding of the weights of that layer, as these determine the input-output
relationship the layer must produce.

Understanding adversarial examples In computer vision, adversarial examples are small pertur-
bations added to images that cause the network to misclassify them; for example, misclassifying a
cat as a dog (Goodfellow et al., 2014). Codebooks enable identifying which codes in the network
shifted to produce that change in decision: for example, was a cat ear feature changed to a dog
ear feature? The discrete nature of codebook activations may also enable better defenses against
adversarial attacks.

Improving interpretability in larger models While we found that single-layer codebook models
produced codebooks where the majority of codes had a comprehensible interpretation, in larger
models, there were many codes where this was not the case. Future work might consider training
models with even larger codebooks to capture the greater number of features the models represent.
Future work might also consider using co-occurrence statistics of code activations to investigate
whether there are codes that routinely fire together and may represent a single feature in tandem.

Better quantization methods While we explore a simple cosine similarity–based approach in our
paper, other methods for sparse quantization of activations (e.g. recent variational sparse coding
methods (Tonolini et al., 2020; Fallah & Rozell, 2022)) may yield further gains.

Understand shared representations across domains and modalities Recent work has shown
generalization across distributions: for example, multimodal models contain neurons that fire on
concepts (e.g., spiderman) in both text and image form (Goh et al., 2021), and language models
trained on multiple languages can generalize zero-shot from one language to another (Johnson et al.,
2017). Codebooks may enable tracing exactly how and where these features are integrated across
the network.
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